
The universal family of punctured Riemann
surfaces is Stein

Franc Forstnerič
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What is a Teichmüller space?

The notion of a Teichmüller space originates in a paper of Oswald Teichmüller (1944),
who defined a complex manifold structure on the set of isomorphism classes of
marked closed Riemann surfaces of genus g .

Given a Riemann surface M = (M, J0), let

J(M) = {J is a complex structure on M quasiconformally equivalent to J0}.

Complex structure J1, J2 ∈ J(M) are Teichmüller equivalent iff there is a
biholomorphism σ : (M, J1) → (M, J2) which induces the identity on the ideal
boundary ∂M and is homotopic to the identity on M ∪ ∂M relative to ∂M.
The space of equivalence classes is the Teichmüller space T (M).

Droping the requirement that the homotopy from σ to IdM is fixed on ∂M gives the
reduced Teichmüller space T#(M).

Droping the requirement that σ is homotopic to IdM gives the Riemann space R(M).

J(M) −→ T (M) −→ T#(M) −→ R(M)



Examples

If M is CP1 with at most three punctures then T (M), and hence also
T#(M) and R(M), are singletons. In fact, any two structure are
qc-equivalent, and combination of up to three punctures can be placed in
the standard position {∞, 0, 1} by a Möbius transformation of CP1.

If M is a torus then T (M) and T#(M) are canonically identifiable with
the upper halfplane H, and R(M) = H/PSL(2,Z). The same holds for
once-punctured torus.

If M is the disc D then T (D) is a ball in an infinite dimensional Banach
space while T#(D) and R(D) are singletons.

The universal family over T (M) is a space V (M) with projection
π : V (M) → T (M) whose fibre π−1(t), t ∈ T (M), is the Riemann surface
(M, Jt) where Jt is the complex structure determined by t.



The Teichmüller family V (g , n) → T (g , n)

The Teichmüller space T (M) is finite dimensional iff

M = M̂ \ {p1, . . . , pn}

is a compact Riemann surface M̂ of genus g with n punctures. Such M is said to be
of finite conformal type and we write T (M) = T (g , n). The universal family

π : V̂ (g , n) → T (g , n)

is a holomorphic submersion whose fibre over t ∈ T (g , n) is the compact Riemann
surface (M̂, Jt ) with the complex structure Jt determined by t, and with n
holomorphic sections s1, . . . , sn : T (g , n) → V̂ (g , n) with pairwise disjoint images
representing the punctures. The open subset

V (g , n) = V̂ (g , n) \
n⋃

i=1

si (T (g , n))
π−→ T (g , n)

is the universal family of n-punctured compact Riemann surfaces of genus g .
If 2g + n ≥ 3 then π : V (g , n) → T (g , n) is the universal object in the category of
holomorphically varying families of n-punctured genus g Riemann surfaces.



The main result

Behrs and Ehrenpreis 1964, Wolpert 1987 T (g , n) is a Stein manifold.

By the Bers embedding theorem, T (g , n) can be holomorphically realised as a
bounded contractible domain in some CN . If 2g + n ≥ 3 then N = 3g − 3+ n.

Marković 2018 If g ≥ 2 then T (g , n) cannot be holomorphically realised as a
convex domain in C3g−3+n. The reason is that the Teichmüller metric on
T (g , n) (which equals the Kobayashi metric) does not agree with the
Carathéodory metric.

Let π : V (g , n) → T (g , n) denote the holomorphic Teichmüller submersion.

Theorem (F. 2025)

If n ≥ 1 then V (g , n) is a Stein manifold.

https://arxiv.org/abs/2511.07963, November 2025

https://arxiv.org/abs/2511.07963


Corollaries

Example

If g = 0 and n ∈ {1, 2, 3} then T (0, n) is a singleton and V (0, n) equals C,
C∗ = C \ {0}, and C \ {0, 1}, respectively. These are evidently Stein (every
open Riemann surface is Stein).

V (1, 1) → T (1, 1) ∼= H is the universal family of once-punctured tori. It is no
longer evident that the complex surface V (1, 1) is Stein.

Corollary (1)

If n ≥ 1 then V (g , n) admits a proper holomorphic embedding in some CN .

If 2g + n ≥ 3 we can take N =
[ 3dimV (g ,n)

2

]
+ 1 =

[ 9g−9+3n
2

]
+ 1.

Problem

Does V (g , n) for n ≥ 1 admit a proper holomorphic embedding in some CN

which is algebraic on every fibre?



Corollaries, 2

Since T (g , n) is contractible, the submersion π : V (g , n) → T (g , n) is
smoothly trivial and the inclusion of any fibre of π in V (g , n) is a homotopy
equivalence. It follows that for any manifold Y , the restrictions of a continuous
map V (g , n) → Y to the fibre of V (g , n) lie in the same homotopy class.

Corollary (2)

Let Y be an Oka manifold and n ≥ 1.

There is a holomorphic map V (g , n) → Y in every homotopy class.

A holomorphic map Mt → Y , t ∈ T (g , n), from any fibre Mt = π−1(T )
of V (g , n) extends to a holomorphic map V (g , n) → Y .

More generally, given a closed complex subvariety T ′ of T (g , n), every
continuous map F0 : V (g , n) → Y which is holomorphic on π−1(T ′) is
homotopic to a holomorphic map F : V (g , n) → Y by a homotopy which
is fixed on π−1(T ′).



Corollaries, 3

Note that V (0, 1) = C. If n ≥ 1 and (g , n) ̸= (0, 1) then V (g , n) is not simply
connected, and its homotopy type is a finite bouquet of circles. It follows that
homotopically nontrivial maps V (g , n) → Y exist whenever the manifold Y is
not simply connected. This gives the following corollary. The last statement
follows by taking the Oka manifold Y = C∗.

Corollary (3)

If n ≥ 1 and Y is an Oka manifold which is not simply connected, there is a
holomorphic map V (g , n) → Y which is nonconstant on every fibre.
In particular, V (g , n) admits a nowhere vanishing holomorphic function which
is nonconstant on every fibre.

One can also construct fibrewise nonconstant holomorphic maps by using the
Oka principle with approximation.



Corollaries, 4

The fact that V (g , n) for n ≥ 1 is homotopy equivalent to a bouquet of circles
implies that every complex vector bundle on V (g , n) is topologically trivial.
Since V (g , n) is Stein, the Oka–Grauert principle implies the following.

Corollary (4)

Every holomorphic vector bundle on V (g , n) for n ≥ 1 is holomorphically trivial.

Corollary (5)

Assume that n ≥ 1.

(a) There exists a nowhere vanishing holomorphic vector field ξ on V (g , n)
which is tangent to the fibres of the projection π : V (g , n) → T (g , n),
that is, dπ(ξ) = 0.

(b) With ξ as in (a), there exists a holomorphic 1-form θ on V (g , n) satisfying
⟨θ, ξ⟩ = 1. In particular, θ is nowhere vanishing on the tangent bundle to
any fibre of π.



Proof of Corollary 5

Part (a) follows from the fact that the holomorphic line bundle
ker dπ → V (g , n) is trivial.

To see (b), consider the short exact sequence of vector bundles over V (g , n):

0 −→ ker dπ ↪−→ TV (g , n)
α−→ H := TV (g , n)/ ker π −→ 0.

Here, TV (g , n) denotes the tangent bundle of V (g , n).

Since V (g , n) is Stein, Cartan’s Theorem B implies that the sequence splits,
i.e. there is a holomorphic vector bundle injection

σ : H ↪−→ TV (g , n), α ◦ σ = IdH .

Hence,
TV (g , n) = ker dπ ⊕ σ(H) = Cξ ⊕ σ(H),

where ξ is as in (a). The unique holomorphic 1-form θ on V (g , n) with
⟨θ, ξ⟩ = 1 and ξ = 0 on σ(H) clearly satisfies condition (b).



A problem

Problem

Let n ≥ 1. Does there exist a holomorphic function f : V (g , n) → C whose
restriction to any fibre of π : V (g , n) → T (g , n) is an immersion?

There exists a holomorphic function f : V (g , n) → C without critical points.
The problem is to ensure that ker dfz is transverse to ker dπz at every point
z ∈ V (g , n). In my paper Runge and Mergelyan theorems on families of open
Riemann surfaces, I constructed a smooth function on V (g , n) whose
restriction to any fibre of π : V (g , n) → T (g , n) is a holomorphic immersion.

This is related to the question whether a holomorphic 1-form θ in Corollary 5
(b) can be made exact on every fibre of π by multiplying it with a suitably
chosen nowhere vanishing holomorphic function on V (g , n). However, this is
not the only problem. Since the submersion π : V (g , n) → T (g , n) does not
admit a holomorphic section when g ≥ 3, there is no natural way of choosing
the initial point for computing the fibrewise integrals of θ.



Towards the main theorem

Recall that
π : V̂ (g , n) → T (g , n)

is a holomorphic submersion whose fibres are compact Riemann surfaces, with
n holomorphic sections s1, . . . , sn : T (g , n) → V̂ (g , n) with pairwise disjoint
images such that

V (g , n) = V̂ (g , n) \
n⋃

i=1

si (T (g , n)).

Since T (g , n) is Stein, the fact that V (g , n) is Stein is an immediate
consequence of the following result.

Theorem
Assume that X is a Stein manifold, Z is a connected complex manifold with
dimZ = dimX + 1, π : Z → X is a surjective proper holomorphic submersion,
and s1, . . . , sn : X → Z are holomorphic sections with pairwise disjoint images
for some n ≥ 1. Then, the domain Ω = Z \⋃n

i=1 si (X ) is Stein.



Proof, 1

the conditions imply that every fibre Zx = π−1(x), x ∈ X , is a compact
Riemann surface, and the fibres are diffeomorphic but not necessarily
biholomorphic to each other. Hence, {Zx}x∈X is a holomorphic family of
compact Riemann surfaces and Ωx = Zx \

⋃n
i=1 si (x) (x ∈ X ) is a

holomorphic family of n-punctured Riemann surfaces.

Each Hi = si (X ) is a closed complex hypersurface in Z whose ideal sheaf is a
principal ideal sheaf, that is, it is locally near each point of Hi generated by a
single holomorphic function.

Grauert and Remmert: If Z is a Stein space and H is a closed complex
hypersurface in Z (of pure codimension one) whose ideal sheaf is a principal
ideal sheaf, then Z \H is also Stein. If Z is nonsingular then the ideal sheaf of
any closed complex hypersurface in Z is a principal ideal sheaf.

Hence, it suffices to prove the theorem for n = 1, that is, to show that the
complement of the image of a single section s : X → Z is Stein.



Proof, 2

By a theorem of Siu 1976, the Stein hypersurface H = s(X ) has a basis of
open Stein neighbourhoods U in Z . Since U \H is a Stein manifold by the
aforementioned theorem of Grauert and Remmert, it admits a strongly
plurisubharmonic exhaustion function ϕ : U \H → R+.

To prove the theorem, we shall construct a strongly plurisubharmonic
exhaustion function Z \H → R+; a theorem of Grauert 1958 will then imply
that Z \H is Stein.

Fix a point x0 ∈ X and set z0 = s(x0) ∈ H ⊂ Z . Since π : Z → X is a
holomorphic submersion with compact one-dimensional fibres, it is a smooth
fibre bundle whose fibre M is a compact smooth surface. In particular, there is
a neighbourhood X0 ⊂ X of x0 such that the restricted bundle
Z |X0 = π−1(X0) → X0 can be smoothly identified with the trivial bundle
X0 ×M → X0. In this identification, z0 = (x0, p0) with p0 ∈ M.



Proof, 3

Since ϕ tends to +∞ along H, there are small smoothly bounded open discs
D ⋐ D ′ ⋐ M with p0 ∈ D such that

inf
p∈bD

ϕ(x0, p) > max
p∈bD ′

ϕ(x0, p).

The set O = M \D is a compact bordered Riemann surface with smooth
boundary bO = bD, endowed with the complex structure inherited by the
identification M ∼= Zx0 = π−1(x0). Note that bD ′ ⊂ Int(O). There is a
smooth strongly subharmonic function u0 : O → R+ such that

ϕ(x0, · ) > u0 on bO = bD, u0 > ϕ(x0, · ) on bD ′.

Shrinking X0 around x0, the following conditions hold for every x ∈ X0:

(a) s(x) ∈ D,

(b) the function u(x , · ) = u0 is strongly subharmonic on O in the complex
structure on Zx

∼= M,

(c) ϕ(x , · ) > u(x , · ) on bO = bD and u(x , · ) > ϕ(x , · ) on bD ′.



Proof, 4

We define a function ρ0 : (X0 ×M) \H → R+ by taking for every x ∈ X0:

ρ0(x , p) =


ϕ(x , p), p ∈ D \ {s(x)};
max{ϕ(x , p), u(x , p)}, p ∈ D ′ \D;

u(x , p), p ∈ M \D ′.

Note that ρ0 is well defined, piecewise smooth, strongly subharmonic on each
fibre Zx \ {s(x)} (x ∈ X0), and it agrees with ϕ on (X0 ×D) \H. By using the
regularised maximum in the definition of ρ0, we may assume that ρ0 is smooth.

This gives an open locally finite cover {Xj}∞
j=1 of X with smooth fibre bundle

trivialisations Z |Xj
∼= Xj ×M, discs Dj ⊂ M such that s(x) ∈ Dj for all

x ∈ Xj , and smooth functions ρj : (Z |Xj ) \H = π−1(Xj ) \H → R+ such that

ρj is strongly subharmonic on each fibre Zx \ {s(x)} (x ∈ Xj ), and

ρj = ϕ on (Xj ×Dj ) \H, so it is strongly plurisubharmonic there.



Proof, 5

Let {χj}j be a smooth partition of unity on X with supp (χj ) ⊂ Xj for each j . Set

ρ =
∞

∑
j=1

χjρj : Z \H → R+.

The restriction of ρ to each fibre Zx \ {s(x)} (x ∈ X ) is strongly subharmonic, and
there is an open neighbourhood U0 ⊂ U ⊂ Z of H such that ρ = ϕ holds on U0 \H.
In particular, ρ is strongly plurisubharmonic on U0 \H.

Note that for every compact set K ⊂ X , the set π−1(K ) \U0 ⊂ Z \H is compact.
Hence, by choosing a strongly plurisubharmonic exhaustion function τ : X → R+

whose Levi form ddcτ grows fast enough, we can ensure that

ρ + τ ◦ π : Z \H → R+ is a strongly plurisubharmonic exhaustion function.

Indeed, denoting by J the almost complex structure on Z and

(dcρ)(z , ξ) = −dρ(z , Jξ), z ∈ Z , ξ ∈ TzZ ,

A function ρ is strongly plurisubharmonic at z ∈ Z iff

(ddcρ)(z , ξ ∧ Jξ) > 0 for every 0 ̸= ξ ∈ TzZ .



Proof, 6

Since ρ is strongly subharmonic on every fibre Zx \ {s(x)}, x ∈ X , we have

(ddcρ)(z , ξ ∧ Jξ) > 0 if z ∈ Z \H and 0 ̸= ξ ∈ ker dπz .

Hence, the eigenvectors of the Levi form (ddcρ)(z , · ) associated to
non-positive eigenvalues lie in a closed cone Cz ⊂ TzZ which intersects
ker dπz only in the origin.

It follows that if τ : X → R is such that ddcτ > 0 is sufficiently big on TxX ,
x = π(z), then

ddcρ + ddc (τ ◦ π) > 0 on TzZ .

Furthermore, the estimates are uniform on the compact set π−1(K ) \ U0,
where U0 ⊂ Z is a neighbourhood of H as above such that ddcρ > 0 on
U0 \H.



Proof, 7

To see that τ : X → R+ can be chosen such that ddcτ grows as fast as
desired, note that if h : R → R is a C2 function then for each point x ∈ X and
tangent vector ξ ∈ TxX we have that

ddc (h ◦ τ)(x , ξ ∧ Jξ) = h′(τ(x)) (ddcτ)(x , ξ ∧ Jξ)

+ h′′(τ(x))
(
|dτ(x , ξ)|2 + |dτ(x , Jξ)|2

)
.

Hence, if τ is a strongly plurisubharmonic exhaustion function on X and the
function h : R → R is chosen such that h′′ ≥ 0 and h′ grows sufficiently fast,
then ddc (h ◦ u) also grows as fast as desired. This completes the proof.

A minor modification of the proof gives the following more general result.

Theorem

Assume that X is a Stein manifold, Z is a connected complex manifold with
dimZ = dimX + 1, π : Z → X is a surjective proper holomorphic submersion,
and H is a closed complex subvariety of Z of pure codimension one which does
not contain any fibre of π. Then, the domain Ω = Z \H is Stein.



THAT’S ALL FOLKS!

THANKS FOR YOUR ATTENTION


