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What is a Teichmiiller space?

The notion of a Teichmiiller space originates in a paper of Oswald Teichmiiller (1944),
who defined a complex manifold structure on the set of isomorphism classes of
marked closed Riemann surfaces of genus g.

Given a Riemann surface M = (M, Jy), let
J(M) = {J is a complex structure on M quasiconformally equivalent to Jp}.

Complex structure Ji, Jo € J(M) are Teichmiiller equivalent iff there is a
biholomorphism ¢ : (M, J1) — (M, J») which induces the identity on the ideal
boundary dM and is homotopic to the identity on M U dM relative to oM.
The space of equivalence classes is the Teichmiiller space T (M).

Droping the requirement that the homotopy from ¢ to Id,, is fixed on dM gives the
reduced Teichmiiller space T#(M).

Droping the requirement that ¢ is homotopic to Idy gives the Riemann space R(M).

J(M) — T(M) — T# (M) — R(M)




=EES

e If M is CIP! with at most three punctures then T(M), and hence also
T#(M) and R(M), are singletons. In fact, any two structure are
gc-equivalent, and combination of up to three punctures can be placed in
the standard position {oo, 0, 1} by a Mobius transformation of crl.

e If M is a torus then T(M) and T# (M) are canonically identifiable with
the upper halfplane H, and R(M) = IH/PSL(2,Z). The same holds for

once-punctured torus.

e If M is the disc ID then T(ID) is a ball in an infinite dimensional Banach
space while T#(ID) and R(ID) are singletons.

The universal family over T(M) is a space V(M) with projection
m: V(M) — T(M) whose fibre 7171(t), t € T(M), is the Riemann surface
(M, Ji) where J; is the complex structure determined by t.




The Teichmiiller family V' (g, n) — T(g, n)

The Teichmiiller space T (M) is finite dimensional iff

M=M\{p1....pn}

is a compact Riemann surface M of genus g with n punctures. Such M is said to be
of finite conformal type and we write T(M) = T (g, n). The universal family

w:V(g,n)— T(g n)

is a holomorphic submersion whose fibre over t € T(g, n) is the compact Riemann
surface (I\7I, Ji) with the complex structure J; determined by t, and with n
holomorphic sections si,...,s,: T(g,n) — \7(g, n) with pairwise disjoint images
representing the punctures. The open subset

n

Vig,n) = V(g,n)\ si(T(g.n) > T(g.n)
fi=1l

is the universal family of n-punctured compact Riemann surfaces of genus g.
If 2g +n > 3 then 7w : V(g,n) — T(g, n) is the universal object in the category of
holomorphically varying families of n-punctured genus g Riemann surfaces.




The main result

Behrs and Ehrenpreis 1964, Wolpert 1987 T (g, n) is a Stein manifold.

By the Bers embedding theorem, T (g, n) can be holomorphically realised as a
bounded contractible domain in some CV. If 2g + n > 3 then N = 3g — 3+ n.

Markovi¢ 2018 If g > 2 then T (g, n) cannot be holomorphically realised as a
convex domain in C383+7 The reason is that the Teichmiiller metric on

T (g, n) (which equals the Kobayashi metric) does not agree with the
Carathéodory metric.

Let r: V(g,n) — T(g, n) denote the holomorphic Teichmiiller submersion.

Theorem (F. 2025)
If n > 1 then V/(g, n) is a Stein manifold.

https://arxiv.org/abs/2511.07963, November 2025
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Corollaries

If g =0and n € {1,2,3} then T(0, n) is a singleton and V/(0, n) equals C,
C* =C\ {0}, and C\ {0, 1}, respectively. These are evidently Stein (every
open Riemann surface is Stein).

V(1,1) — T(1,1) = H is the universal family of once-punctured tori. It is no
longer evident that the complex surface V/(1,1) is Stein.

Corollary (1)

If n > 1 then V/(g, n) admits a proper holomorphic embedding in some CN.
If 2g +n > 3 we can take N = [39mY(gn)] 4 1 _ [9g=9+43n) | 1

Problem

Does V/(g, n) for n > 1 admit a proper holomorphic embedding in some C"
which is algebraic on every fibre?




Corollaries, 2

Since T (g, n) is contractible, the submersion 77 : V(g,n) — T(g, n) is
smoothly trivial and the inclusion of any fibre of 7z in V(g, n) is a homotopy
equivalence. It follows that for any manifold Y, the restrictions of a continuous
map V(g,n) — Y to the fibre of V(g, n) lie in the same homotopy class.

Corollary (2)
Let Y be an Oka manifold and n > 1.

* There is a holomorphic map V(g,n) — Y in every homotopy class.

« A holomorphic map My — Y, t € T(g, n), from any fibre My = w=1(T)
of V(g, n) extends to a holomorphic map V(g,n) — Y.

« More generally, given a closed complex subvariety T' of T(g, n), every
continuous map Fo : V(g,n) — Y which is holomorphic on 7t=(T") is
homotopic to a holomorphic map F : V/(g,n) — Y by a homotopy which
is fixed on T~ (T").




Corollaries, 3

Note that V(0,1) =C. If n > 1 and (g, n) # (0,1) then V(g, n) is not simply
connected, and its homotopy type is a finite bouquet of circles. It follows that
homotopically nontrivial maps V(g, n) — Y exist whenever the manifold Y is
not simply connected. This gives the following corollary. The last statement
follows by taking the Oka manifold Y = C*.

Corollary (3)

If n>1 and Y is an Oka manifold which is not simply connected, there is a
holomorphic map V/(g, n) — Y which is nonconstant on every fibre.

In particular, V (g, n) admits a nowhere vanishing holomorphic function which
is nonconstant on every fibre.

One can also construct fibrewise nonconstant holomorphic maps by using the
Oka principle with approximation.




Corollaries, 4

The fact that V/(g, n) for n > 1 is homotopy equivalent to a bouquet of circles
implies that every complex vector bundle on V/(g, n) is topologically trivial.
Since V/(g, n) is Stein, the Oka—Grauert principle implies the following.

Corollary (4)

Every holomorphic vector bundle on V/ (g, n) for n > 1 is holomorphically trivial.

Corollary (5)
Assume that n > 1.

® There exists a nowhere vanishing holomorphic vector field & on V (g, n)
which is tangent to the fibres of the projection 7w : V/(g,n) — T(g, n),
that is, drt(&) = 0.

® With € as in (a), there exists a holomorphic 1-form 6 on V/ (g, n) satisfying
(0,&) = 1. In particular, 0 is nowhere vanishing on the tangent bundle to
any fibre of 7t.




Proof of Corollary 5

Part (a) follows from the fact that the holomorphic line bundle
ker dt — V/(g, n) is trivial.

To see (b), consider the short exact sequence of vector bundles over V(g, n):

0 —> kerdm — TV(g,n) — H:= TV(g, n)/ kerm — 0.
Here, TV(g, n) denotes the tangent bundle of V/(g, n).

Since V/(g, n) is Stein, Cartan’s Theorem B implies that the sequence splits,
i.e. there is a holomorphic vector bundle injection

cg:H<—— TV(g,n), waoc=Idy.

Hence,
TV(g.n) =kerdn@®o(H) =Ci®o(H),

where ¢ is as in (a). The unique holomorphic 1-form 6 on V/(g, n) with
(0,¢) =1and ¢ =0 on o(H) clearly satisfies condition (b).




A problem

Problem

Let n > 1. Does there exist a holomorphic function f : V (g, n) — C whose
restriction to any fibre of 7t : V/(g,n) — T(g, n) is an immersion?

There exists a holomorphic function f : V(g, n) — C without critical points.
The problem is to ensure that ker df; is transverse to ker d7t, at every point
z € V(g,n). In my paper Runge and Mergelyan theorems on families of open
Riemann surfaces, | constructed a smooth function on V/(g, n) whose
restriction to any fibre of 7t : V(g, n) — T(g, n) is a holomorphic immersion.

This is related to the question whether a holomorphic 1-form 6 in Corollary 5
(b) can be made exact on every fibre of 71 by multiplying it with a suitably
chosen nowhere vanishing holomorphic function on V(g, n). However, this is
not the only problem. Since the submersion 77 : V(g,n) — T(g, n) does not
admit a holomorphic section when g > 3, there is no natural way of choosing
the initial point for computing the fibrewise integrals of 0.




Towards the main theorem

Recall that N
t:V(g,n)— T(g,n)

is a holomorphic submersion whose fibres are compact Riemann surfaces, with
n holomorphic sections s1,...,s,: T(g,n) — V(g, n) with pairwise disjoint
images such that

n

V(g.n) = V(g n)\ U
i=1

Since T(g, n) is Stein, the fact that V/(g, n) is Stein is an immediate
consequence of the following result.

Theorem

Assume that X is a Stein manifold, Z is a connected complex manifold with
dimZ =dimX +1, m: Z — X is a surjective proper holomorphic submersion,
and sy, ...,sp: X — Z are holomorphic sections with pairwise disjoint images
for some n > 1. Then, the domain Q = Z \ U s;i(X) is Stein.




Proof, 1

the conditions imply that every fibre Z, = n_l(x), x € X, is a compact
Riemann surface, and the fibres are diffeomorphic but not necessarily
biholomorphic to each other. Hence, {Z}xcx is a holomorphic family of
compact Riemann surfaces and Qx = Z, \ U"_; si(x) (x € X) is a
holomorphic family of n-punctured Riemann surfaces.

Each H; = s;(X) is a closed complex hypersurface in Z whose ideal sheaf is a
principal ideal sheaf, that is, it is locally near each point of H; generated by a
single holomorphic function.

Grauert and Remmert: If Z is a Stein space and H is a closed complex
hypersurface in Z (of pure codimension one) whose ideal sheaf is a principal
ideal sheaf, then Z \ H is also Stein. If Z is nonsingular then the ideal sheaf of
any closed complex hypersurface in Z is a principal ideal sheaf.

Hence, it suffices to prove the theorem for n = 1, that is, to show that the
complement of the image of a single section s : X — Z is Stein.




Proof, 2

By a theorem of Siu 1976, the Stein hypersurface H = s(X) has a basis of
open Stein neighbourhoods U in Z. Since U\ H is a Stein manifold by the
aforementioned theorem of Grauert and Remmert, it admits a strongly
plurisubharmonic exhaustion function ¢ : U\ H — R.

To prove the theorem, we shall construct a strongly plurisubharmonic
exhaustion function Z\ H — R ; a theorem of Grauert 1958 will then imply
that Z \ H is Stein.

Fix a point xg € X and set zg = s(xp) € HC Z. Since m: Z — X is a
holomorphic submersion with compact one-dimensional fibres, it is a smooth
fibre bundle whose fibre M is a compact smooth surface. In particular, there is
a neighbourhood Xy C X of xg such that the restricted bundle

Z|Xo = m1(Xp) — Xo can be smoothly identified with the trivial bundle

Xo X M — Xp. In this identification, zy = (xp, pg) with pg € M.




Proof, 3

Since ¢ tends to 4o along H, there are small smoothly bounded open discs
D @ D' @ M with pg € D such that

Jinf#(x0.P) > s ¢(x0, p)-

The set O = M\ D is a compact bordered Riemann surface with smooth
boundary bO = bD, endowed with the complex structure inherited by the
identification M =2 Z,, = 71~ !(xp). Note that bD’ C Int(O). There is a

smooth strongly subharmonic function ug : O — IR such that

¢(x0,-) > ug on bO = bD,  uyg > ¢(xg,-) on bD'.

Shrinking Xo around xg, the following conditions hold for every x € Xp:
® s(x)eD,

® the function u(x, ) = ug is strongly subharmonic on O in the complex
structure on Zy = M,

® ¢(x,-)>u(x,-)on bO =>bD and u(x,-) > ¢(x,-) on bD'.




Proof, 4

We define a function pg : (Xp x M)\ H — R by taking for every x € Xp:

¢(x. p). p€D\{s(x)}
po(x, p) = { max{¢(x, p), u(x,p)}, p€ D"\D;
u(x, p), peM\D.

Note that pg is well defined, piecewise smooth, strongly subharmonic on each
fibre Z, \ {s(x)} (x € Xp), and it agrees with ¢ on (Xp x D) \ H. By using the
regularised maximum in the definition of pg, we may assume that pg is smooth.

This gives an open locally finite cover {Xj}j“’:1 of X with smooth fibre bundle
trivialisations Z|X; = X; x M, discs Dj C M such that s(x) € D; for all
x € X;, and smooth functions p; : (Z|X;) \ H = n~(X;) \ H — Ry such that
* pj is strongly subharmonic on each fibre Z, \ {s(x)} (x € X;), and
® 0j = ¢ on (X; x Dj) \ H, so it is strongly plurisubharmonic there.




Proof, 5

Let {x;}; be a smooth partition of unity on X with supp (x;) C X; for each j. Set
[ee]
p=Y xjpj: Z\H—=R,.
j=1

The restriction of p to each fibre Z, \ {s(x)} (x € X) is strongly subharmonic, and
there is an open neighbourhood Uy C U C Z of H such that p = ¢ holds on Up \ H.
In particular, p is strongly plurisubharmonic on Up \ H.

Note that for every compact set K C X, the set w7 1(K)\ Up C Z\ H is compact.
Hence, by choosing a strongly plurisubharmonic exhaustion function 7 : X — R
whose Levi form dd®T grows fast enough, we can ensure that

o+Tom:Z\H— Ry is a strongly plurisubharmonic exhaustion function.
Indeed, denoting by J the almost complex structure on Z and
(dp)(2,8) = —dp(z,J0), z€Z TeT.Z
A function p is strongly plurisubharmonic at z € Z iff

(ddp)(z,ENJE) >0 forevery 0 #¢ € T,Z.




Proof, 6

Since p is strongly subharmonic on every fibre Z, \ {s(x)}, x € X, we have
(ddp)(z,ENJE) >0 ifze€ Z\ Hand 0 # € € kerdr,.

Hence, the eigenvectors of the Levi form (dd®p)(z, - ) associated to
non-positive eigenvalues lie in a closed cone C, C T,Z which intersects
ker d7t, only in the origin.

It follows that if T: X — R is such that dd“t > 0 is sufficiently big on T, X,
x = 7(z), then

ddp + dd(t o 1) > 0 on T,Z.
Furthermore, the estimates are uniform on the compact set 7~ 1(K) \ Up,

where Uy C Z is a neighbourhood of H as above such that dd“p > 0 on
Uo \ H.




Proof, 7

To see that T : X — R4 can be chosen such that dd“t grows as fast as
desired, note that if h: R — R is a €2 function then for each point x € X and
tangent vector ¢ € T, X we have that

dd(hoT)(x,EAJE) = h(t(x))(ddT)(x,{ A )
+1'(2(x)) (|dT(x, &) * + [dt(x, JE) ).
Hence, if T is a strongly plurisubharmonic exhaustion function on X and the

function h: R — R is chosen such that i/ > 0 and A’ grows sufficiently fast,
then dd€(ho u) also grows as fast as desired. This completes the proof.

A minor modification of the proof gives the following more general result.
Theorem

Assume that X is a Stein manifold, Z is a connected complex manifold with
dimZ =dimX +1, w: Z — X is a surjective proper holomorphic submersion,
and H is a closed complex subvariety of Z of pure codimension one which does
not contain any fibre of 7. Then, the domain () = Z\ H is Stein.




THAT'S ALL FOLKS!

THANKS FOR YOUR ATTENTION




