The universal family of punctured Riemann

surfaces is Stein

Franc Forstnerič

Seminar for Complex Analysis Ljubljana, 25 November 2025

What is a Teichmüller space?

The notion of a Teichmüller space originates in a paper of Oswald Teichmüller (1944), who defined a complex manifold structure on the set of isomorphism classes of marked closed Riemann surfaces of genus g.

Given a Riemann surface $M = (M, J_0)$, let

$$\mathcal{J}(M) = \{J \text{ is a complex structure on } M \text{ quasiconformally equivalent to } J_0\}.$$

Complex structure J_1 , $J_2 \in \mathcal{J}(M)$ are Teichmüller equivalent iff there is a biholomorphism $\sigma: (M,J_1) \to (M,J_2)$ which induces the identity on the ideal boundary ∂M and is homotopic to the identity on $M \cup \partial M$ relative to ∂M . The space of equivalence classes is the Teichmüller space T(M).

Droping the requirement that the homotopy from σ to Id_M is fixed on ∂M gives the reduced Teichmüller space $\mathcal{T}^\#(M)$.

Droping the requirement that σ is homotopic to Id_M gives the Riemann space R(M).

$$\mathcal{J}(M) \longrightarrow \mathcal{T}(M) \longrightarrow \mathcal{T}^{\#}(M) \longrightarrow \mathcal{R}(M)$$

Examples

- If M is \mathbb{CP}^1 with at most three punctures then T(M), and hence also $T^\#(M)$ and R(M), are singletons. In fact, any two structure are qc-equivalent, and combination of up to three punctures can be placed in the standard position $\{\infty,0,1\}$ by a Möbius transformation of \mathbb{CP}^1 .
- If M is a torus then T(M) and $T^{\#}(M)$ are canonically identifiable with the upper halfplane \mathbb{H} , and $R(M) = \mathbb{H}/PSL(2,\mathbb{Z})$. The same holds for once-punctured torus.
- If M is the disc $\mathbb D$ then $T(\mathbb D)$ is a ball in an infinite dimensional Banach space while $T^\#(\mathbb D)$ and $R(\mathbb D)$ are singletons.

The universal family over T(M) is a space V(M) with projection $\pi: V(M) \to T(M)$ whose fibre $\pi^{-1}(t)$, $t \in T(M)$, is the Riemann surface (M, J_t) where J_t is the complex structure determined by t.

The Teichmüller family $V(g, n) \rightarrow T(g, n)$

The Teichmüller space T(M) is finite dimensional iff

$$M = \widehat{M} \setminus \{p_1, \ldots, p_n\}$$

is a compact Riemann surface \widehat{M} of genus g with n punctures. Such M is said to be of finite conformal type and we write T(M) = T(g, n). The universal family

$$\pi:\widehat{V}(g,n)\to T(g,n)$$

is a holomorphic submersion whose fibre over $t \in T(g,n)$ is the compact Riemann surface (\widehat{M},J_t) with the complex structure J_t determined by t, and with n holomorphic sections $s_1,\ldots,s_n:T(g,n)\to \widehat{V}(g,n)$ with pairwise disjoint images representing the punctures. The open subset

$$V(g,n) = \widehat{V}(g,n) \setminus \bigcup_{i=1}^{n} s_i(T(g,n)) \stackrel{\pi}{\longrightarrow} T(g,n)$$

is the universal family of n-punctured compact Riemann surfaces of genus g. If $2g+n\geq 3$ then $\pi:V(g,n)\to T(g,n)$ is the universal object in the category of holomorphically varying families of n-punctured genus g Riemann surfaces.

The main result

Behrs and Ehrenpreis 1964, Wolpert 1987 T(g, n) is a Stein manifold.

By the Bers embedding theorem, T(g,n) can be holomorphically realised as a bounded contractible domain in some \mathbb{C}^N . If $2g + n \ge 3$ then N = 3g - 3 + n.

Marković 2018 If $g \ge 2$ then T(g,n) cannot be holomorphically realised as a convex domain in \mathbb{C}^{3g-3+n} . The reason is that the Teichmüller metric on T(g,n) (which equals the Kobayashi metric) does not agree with the Carathéodory metric.

Let $\pi: V(g, n) \to T(g, n)$ denote the holomorphic Teichmüller submersion.

Theorem (F. 2025)

If $n \ge 1$ then V(g, n) is a Stein manifold.

https://arxiv.org/abs/2511.07963, November 2025

Corollaries

Example

If g=0 and $n\in\{1,2,3\}$ then T(0,n) is a singleton and V(0,n) equals \mathbb{C} , $\mathbb{C}^*=\mathbb{C}\setminus\{0\}$, and $\mathbb{C}\setminus\{0,1\}$, respectively. These are evidently Stein (every open Riemann surface is Stein).

 $V(1,1) \to T(1,1) \cong \mathbb{H}$ is the universal family of once-punctured tori. It is no longer evident that the complex surface V(1,1) is Stein.

Corollary (1)

If $n \ge 1$ then V(g,n) admits a proper holomorphic embedding in some \mathbb{C}^N . If $2g+n \ge 3$ we can take $N = \left[\frac{3\dim V(g,n)}{2}\right] + 1 = \left[\frac{9g-9+3n}{2}\right] + 1$.

Problem

Does V(g,n) for $n \ge 1$ admit a proper holomorphic embedding in some \mathbb{C}^N which is algebraic on every fibre?

Corollaries, 2

Since T(g,n) is contractible, the submersion $\pi: V(g,n) \to T(g,n)$ is smoothly trivial and the inclusion of any fibre of π in V(g,n) is a homotopy equivalence. It follows that for any manifold Y, the restrictions of a continuous map $V(g,n) \to Y$ to the fibre of V(g,n) lie in the same homotopy class.

Corollary (2)

Let Y be an Oka manifold and $n \ge 1$.

- There is a holomorphic map $V(g,n) \to Y$ in every homotopy class.
- A holomorphic map $M_t \to Y$, $t \in T(g, n)$, from any fibre $M_t = \pi^{-1}(T)$ of V(g, n) extends to a holomorphic map $V(g, n) \to Y$.
- More generally, given a closed complex subvariety T' of T(g,n), every continuous map $F_0: V(g,n) \to Y$ which is holomorphic on $\pi^{-1}(T')$ is homotopic to a holomorphic map $F: V(g,n) \to Y$ by a homotopy which is fixed on $\pi^{-1}(T')$.

Corollaries, 3

Note that $V(0,1)=\mathbb{C}$. If $n\geq 1$ and $(g,n)\neq (0,1)$ then V(g,n) is not simply connected, and its homotopy type is a finite bouquet of circles. It follows that homotopically nontrivial maps $V(g,n)\to Y$ exist whenever the manifold Y is not simply connected. This gives the following corollary. The last statement follows by taking the Oka manifold $Y=\mathbb{C}^*$.

Corollary (3)

If $n \ge 1$ and Y is an Oka manifold which is not simply connected, there is a holomorphic map $V(g,n) \to Y$ which is nonconstant on every fibre. In particular, V(g,n) admits a nowhere vanishing holomorphic function which is nonconstant on every fibre.

One can also construct fibrewise nonconstant holomorphic maps by using the Oka principle with approximation.

Corollaries, 4

The fact that V(g,n) for $n \ge 1$ is homotopy equivalent to a bouquet of circles implies that every complex vector bundle on V(g,n) is topologically trivial. Since V(g,n) is Stein, the Oka–Grauert principle implies the following.

Corollary (4)

Every holomorphic vector bundle on V(g,n) for $n \ge 1$ is holomorphically trivial.

Corollary (5)

Assume that n > 1.

- There exists a nowhere vanishing holomorphic vector field ξ on V(g,n) which is tangent to the fibres of the projection $\pi: V(g,n) \to T(g,n)$, that is, $d\pi(\xi) = 0$.
- **®** With ξ as in (a), there exists a holomorphic 1-form θ on V(g,n) satisfying $\langle \theta, \xi \rangle = 1$. In particular, θ is nowhere vanishing on the tangent bundle to any fibre of π .

Proof of Corollary 5

Part (a) follows from the fact that the holomorphic line bundle $\ker d\pi \to V(g,n)$ is trivial.

To see (b), consider the short exact sequence of vector bundles over V(g, n):

$$0 \longrightarrow \ker d\pi \hookrightarrow TV(g,n) \stackrel{\alpha}{\longrightarrow} H := TV(g,n) / \ker \pi \longrightarrow 0.$$

Here, TV(g, n) denotes the tangent bundle of V(g, n).

Since V(g,n) is Stein, Cartan's Theorem B implies that the sequence splits, i.e. there is a holomorphic vector bundle injection

$$\sigma: H \hookrightarrow TV(g, n), \quad \alpha \circ \sigma = \mathrm{Id}_{H}.$$

Hence,

$$TV(g, n) = \ker d\pi \oplus \sigma(H) = \mathbb{C}\xi \oplus \sigma(H),$$

where ξ is as in (a). The unique holomorphic 1-form θ on V(g,n) with $\langle \theta, \xi \rangle = 1$ and $\xi = 0$ on $\sigma(H)$ clearly satisfies condition (b).

A problem

Problem

Let $n \ge 1$. Does there exist a holomorphic function $f: V(g, n) \to \mathbb{C}$ whose restriction to any fibre of $\pi: V(g, n) \to T(g, n)$ is an immersion?

There exists a holomorphic function $f:V(g,n)\to\mathbb{C}$ without critical points. The problem is to ensure that $\ker df_z$ is transverse to $\ker d\pi_z$ at every point $z\in V(g,n)$. In my paper Runge and Mergelyan theorems on families of open Riemann surfaces, I constructed a smooth function on V(g,n) whose restriction to any fibre of $\pi:V(g,n)\to T(g,n)$ is a holomorphic immersion.

This is related to the question whether a holomorphic 1-form θ in Corollary 5 (b) can be made exact on every fibre of π by multiplying it with a suitably chosen nowhere vanishing holomorphic function on V(g,n). However, this is not the only problem. Since the submersion $\pi:V(g,n)\to T(g,n)$ does not admit a holomorphic section when $g\geq 3$, there is no natural way of choosing the initial point for computing the fibrewise integrals of θ .

Towards the main theorem

Recall that

$$\pi:\widehat{V}(g,n)\to T(g,n)$$

is a holomorphic submersion whose fibres are compact Riemann surfaces, with n holomorphic sections $s_1,\ldots,s_n:T(g,n)\to \widehat{V}(g,n)$ with pairwise disjoint images such that

$$V(g,n) = \widehat{V}(g,n) \setminus \bigcup_{i=1}^{n} s_i(T(g,n)).$$

Since T(g, n) is Stein, the fact that V(g, n) is Stein is an immediate consequence of the following result.

Theorem

Assume that X is a Stein manifold, Z is a connected complex manifold with $\dim Z = \dim X + 1$, $\pi: Z \to X$ is a surjective proper holomorphic submersion, and $s_1, \ldots, s_n: X \to Z$ are holomorphic sections with pairwise disjoint images for some $n \geq 1$. Then, the domain $\Omega = Z \setminus \bigcup_{i=1}^n s_i(X)$ is Stein.

the conditions imply that every fibre $Z_x = \pi^{-1}(x)$, $x \in X$, is a compact Riemann surface, and the fibres are diffeomorphic but not necessarily biholomorphic to each other. Hence, $\{Z_x\}_{x \in X}$ is a holomorphic family of compact Riemann surfaces and $\Omega_x = Z_x \setminus \bigcup_{i=1}^n s_i(x) \ (x \in X)$ is a holomorphic family of n-punctured Riemann surfaces.

Each $H_i = s_i(X)$ is a closed complex hypersurface in Z whose ideal sheaf is a principal ideal sheaf, that is, it is locally near each point of H_i generated by a single holomorphic function.

Grauert and Remmert: If Z is a Stein space and H is a closed complex hypersurface in Z (of pure codimension one) whose ideal sheaf is a principal ideal sheaf, then $Z \setminus H$ is also Stein. If Z is nonsingular then the ideal sheaf of any closed complex hypersurface in Z is a principal ideal sheaf.

Hence, it suffices to prove the theorem for n=1, that is, to show that the complement of the image of a single section $s:X\to Z$ is Stein.

By a theorem of Siu 1976, the Stein hypersurface H=s(X) has a basis of open Stein neighbourhoods U in Z. Since $U\setminus H$ is a Stein manifold by the aforementioned theorem of Grauert and Remmert, it admits a strongly plurisubharmonic exhaustion function $\phi:U\setminus H\to \mathbb{R}_+$.

To prove the theorem, we shall construct a strongly plurisubharmonic exhaustion function $Z \setminus H \to \mathbb{R}_+$; a theorem of Grauert 1958 will then imply that $Z \setminus H$ is Stein.

Fix a point $x_0 \in X$ and set $z_0 = s(x_0) \in H \subset Z$. Since $\pi: Z \to X$ is a holomorphic submersion with compact one-dimensional fibres, it is a smooth fibre bundle whose fibre M is a compact smooth surface. In particular, there is a neighbourhood $X_0 \subset X$ of x_0 such that the restricted bundle $Z|X_0 = \pi^{-1}(X_0) \to X_0$ can be smoothly identified with the trivial bundle $X_0 \times M \to X_0$. In this identification, $z_0 = (x_0, p_0)$ with $p_0 \in M$.

Since ϕ tends to $+\infty$ along H, there are small smoothly bounded open discs $D \subseteq D' \subseteq M$ with $p_0 \in D$ such that

$$\inf_{p\in bD}\phi(x_0,p)>\max_{p\in bD'}\phi(x_0,p).$$

The set $O=M\setminus D$ is a compact bordered Riemann surface with smooth boundary bO=bD, endowed with the complex structure inherited by the identification $M\cong Z_{x_0}=\pi^{-1}(x_0)$. Note that $bD'\subset \operatorname{Int}(O)$. There is a smooth strongly subharmonic function $u_0:O\to\mathbb{R}_+$ such that

$$\phi(x_0,\cdot)>u_0$$
 on $bO=bD$, $u_0>\phi(x_0,\cdot)$ on bD' .

Shrinking X_0 around x_0 , the following conditions hold for every $x \in X_0$:

- (a) $s(x) \in D$,
- **b** the function $u(x, \cdot) = u_0$ is strongly subharmonic on O in the complex structure on $Z_x \cong M$,

We define a function $\rho_0: (X_0 \times M) \setminus H \to \mathbb{R}_+$ by taking for every $x \in X_0$:

$$\rho_0(x,p) = \begin{cases} \phi(x,p), & p \in D \setminus \{s(x)\}; \\ \max\{\phi(x,p), u(x,p)\}, & p \in D' \setminus D; \\ u(x,p), & p \in M \setminus D'. \end{cases}$$

Note that ρ_0 is well defined, piecewise smooth, strongly subharmonic on each fibre $Z_x\setminus\{s(x)\}\ (x\in X_0)$, and it agrees with ϕ on $(X_0\times D)\setminus H$. By using the regularised maximum in the definition of ρ_0 , we may assume that ρ_0 is smooth.

This gives an open locally finite cover $\{X_j\}_{j=1}^\infty$ of X with smooth fibre bundle trivialisations $Z|X_j\cong X_j\times M$, discs $D_j\subset M$ such that $s(x)\in D_j$ for all $x\in X_j$, and smooth functions $\rho_j:(Z|X_j)\setminus H=\pi^{-1}(X_j)\setminus H\to \mathbb{R}_+$ such that

- ullet ho_j is strongly subharmonic on each fibre $Z_x\setminus\{s(x)\}\ (x\in X_j)$, and
- $\rho_j = \phi$ on $(X_j \times D_j) \setminus H$, so it is strongly plurisubharmonic there.

Let $\{\chi_j\}_j$ be a smooth partition of unity on X with $\mathrm{supp}\,(\chi_j)\subset X_j$ for each j. Set

$$\rho = \sum_{j=1}^{\infty} \chi_j \rho_j : Z \setminus H \to \mathbb{R}_+.$$

The restriction of ρ to each fibre $Z_x \setminus \{s(x)\}$ $(x \in X)$ is strongly subharmonic, and there is an open neighbourhood $U_0 \subset U \subset Z$ of H such that $\rho = \phi$ holds on $U_0 \setminus H$. In particular, ρ is strongly plurisubharmonic on $U_0 \setminus H$.

Note that for every compact set $K \subset X$, the set $\pi^{-1}(K) \setminus U_0 \subset Z \setminus H$ is compact. Hence, by choosing a strongly plurisubharmonic exhaustion function $\tau: X \to \mathbb{R}_+$ whose Levi form $dd^c\tau$ grows fast enough, we can ensure that

$$ho + au \circ \pi : Z \setminus H o \mathbb{R}_+$$
 is a strongly plurisubharmonic exhaustion function.

Indeed, denoting by J the almost complex structure on Z and

$$(d^{c}\rho)(z,\xi) = -d\rho(z,J\xi), \quad z \in Z, \ \xi \in T_{z}Z,$$

A function ρ is strongly plurisubharmonic at $z \in Z$ iff

$$(dd^c\rho)(z,\xi\wedge J\xi)>0\ \ \text{for every }0\neq\xi\in\textit{T}_z\textit{Z}.$$

Since ρ is strongly subharmonic on every fibre $Z_x \setminus \{s(x)\}$, $x \in X$, we have

$$(dd^c\rho)(z,\xi\wedge J\xi)>0 \ \ \text{if} \ z\in Z\setminus H \ \text{and} \ 0\neq \xi\in \ker d\pi_z.$$

Hence, the eigenvectors of the Levi form $(dd^c\rho)(z,\cdot)$ associated to non-positive eigenvalues lie in a closed cone $C_z \subset T_z Z$ which intersects $\ker d\pi_z$ only in the origin.

It follows that if $\tau:X\to\mathbb{R}$ is such that $dd^c\tau>0$ is sufficiently big on T_xX , $x=\pi(z)$, then

$$dd^c \rho + dd^c (\tau \circ \pi) > 0$$
 on $T_z Z$.

Furthermore, the estimates are uniform on the compact set $\pi^{-1}(K) \setminus U_0$, where $U_0 \subset Z$ is a neighbourhood of H as above such that $dd^c \rho > 0$ on $U_0 \setminus H$.

To see that $\tau:X\to\mathbb{R}_+$ can be chosen such that $dd^c\tau$ grows as fast as desired, note that if $h:\mathbb{R}\to\mathbb{R}$ is a \mathbb{C}^2 function then for each point $x\in X$ and tangent vector $\xi\in T_xX$ we have that

$$dd^{c}(h \circ \tau)(x, \xi \wedge J\xi) = h'(\tau(x)) (dd^{c}\tau)(x, \xi \wedge J\xi) + h''(\tau(x)) (|d\tau(x, \xi)|^{2} + |d\tau(x, J\xi)|^{2}).$$

Hence, if τ is a strongly plurisubharmonic exhaustion function on X and the function $h: \mathbb{R} \to \mathbb{R}$ is chosen such that $h'' \geq 0$ and h' grows sufficiently fast, then $dd^c(h \circ u)$ also grows as fast as desired. This completes the proof.

A minor modification of the proof gives the following more general result.

Theorem

Assume that X is a Stein manifold, Z is a connected complex manifold with $\dim Z=\dim X+1$, $\pi:Z\to X$ is a surjective proper holomorphic submersion, and H is a closed complex subvariety of Z of pure codimension one which does not contain any fibre of π . Then, the domain $\Omega=Z\setminus H$ is Stein.

