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In this lecture. . .

I will describe some recent developments
in the theory of minimal surfaces in
Euclidean spaces Rn which have been
obtained by complex analytic methods.
My collaborators on these projects:

Antonio Alarcón and Francisco J.
López, Granada

Barbara Drinovec Drnovšek,
Ljubljana

David Kalaj, Podgorica

Finnur Lárusson, Adelaide



From Leonhard Euler to Joseph–Louis Lagrange

1744 Euler A surface in R3 is called minimal if it locally minimizes the area
among all nearby surfaces with the same boundary.

The only minimal surfaces of rotation are planes and catenoids.

x2 + y2 = cosh2 z

(t, z) 7→ (cos t · cosh z , sin t · cosh z , z)

The catenoid is a paradigmatic
example in the theory. Besides
Enneper’s surface, it is the only
complete nonflat orientable minimal
surface in R3 with the smallest
absolute total Gaussian curvature 4π.

1762 Lagrange: Formula for the first variation of the area of a surface with
fixed boundary. The equation of minimal graphs.

Minimal surfaces are stationary points of the area functional.
Small pieces of such surfaces are area minimizers.



Connection with differential geometry

1776 Meusnier A surface in R3 is a minimal surface if and only if its mean
curvature vanishes at every point.

The helicoid is a minimal surface.

It is obtained by rotating a line and
displacing it along the axis of rotation.

(u, v) 7→
(cos u · sinh v , sin u · sinh v , u)

1842 Catalan The helicoid and the
plane are the only ruled minimal
surfaces in R3.



Scherk’s surface

1835 Scherk The first two new minimal surfaces since Meusnier (1776).

The first Scherk’s surface is doubly
periodic.

Its main branch is a graph over the
square P = (−π/2, π/2)2 given by

x3 = log
cos x2

cos x1

Finn and Osserman (1964)
Sherk’s surface S has the biggest
absolute Gaussian curvature at
0 ∈ R3 over all minimal graphs over
P tangent to S at 0.

1917 Bernstein A minimal graph in R3 over the whole plane is a plane.



Riemann’s minimal examples

Bernhard Riemann discovered a family Rλ, λ > 0, of periodic planar domains,
properly embedded as minimal surfaces in R3 such that every horizontal plane
intersects each Rλ in a circle or a line. As λ→ 0 his surfaces converge to a
vertical catenoid, and as λ→ ∞ they converge to a vertical helicoid.

2015 Meeks, Pérez, Ros Planes, catenoids, helicoids, and Riemann’s examples
are the only planar domains which can be properly embedded as minimal
surfaces in R3.



The Plateau Problem

1873 Plateau Soap films are minimal surfaces. A conformally parameterized
minimal disc with a given Jordan boundary curve minimizes the internal
tension within the surface.

1932 Douglas, Radó Every Jordan curve Γ in R3 spans a minimal surface.

1976 Meeks, S.-T. Yau If Γ lies in the boundary of a convex domain, then the
disc surface of smallest area with boundary Γ is embedded.



Costa’s minimal surface

1982 Celso J. Costa discovered a complete embedded minimal surface in R3 of
genus one, a middle planar end and two catenoidal ends, and total
Gaussian curvature −12π. Its conformal type is that of a thrice-punctured
torus. Hoffman and Meeks proved in 1985 that it is embedded.

1991 Costa The only complete embedded minimal surfaces in R3 having genus
one and three ends are the 1-parameter family of Costa–Hoffman–Meeks
surfaces.



Analytic description of conformal minimal surfaces

Assume that D ⊂ R2
(u,v ) is a bounded domain with smooth boundary and

X : D → Rn is a smooth immersion. Precomposing X with a diffeomorphism
from another such domain in R2, we may assume that X is conformal:

|Xu | = |Xv |, Xu ·Xv = 0.

Digression: If M is any smooth orientable surface and X : M → N is an
immersion into a Riemannian manifold (N, ds2) (for example, into (Rn, ds2)
with the Riemannian metric ds2 = dx2

1 + · · ·+ dx2
n ), then X induces on M the

structure of a Riemann surface such that X is a conformal immersion.

Indeed, let g = X ∗ds2 be the induced metric. Then, X : (M, g)→ (N, ds2) is
an isometric immersion. At every point of M there exists a local oriented
isothermal coordinate z = x + iy in which

g = λ|dz |2 = λ(dx2 + dy2), λ > 0.

(Solve a Beltrami equation.) The transition map between any pair of such
local charts is an orientation preserving conformal diffeomorphism between
plane domains, hence a biholomorphic map.

If M is nonorientable, we can pass to its orientable double cover M̃ → M.



Analytic description of conformal minimal surfaces

We consider the area functional

Area(X ) =
∫
D
|Xu × Xv | dudv =

∫
D

√
|Xu |2|Xv |2 − |Xu ·Xv |2 dudv

and the Dirichlet energy functional

D(X ) =
1

2

∫
D
|∇X |2 dudv =

1

2

∫
D

(
|Xu |2 + |Xv |2

)
dudv .

From the elementary inequalities

|x |2|y |2 − |x · y |2 ≤ |x |2|y |2 ≤ 1

4

(
|x |2 + |y |2

)2
, x , y ∈ Rn,

which are equalities iff x , y is a conformal frame, we infer that

Area(X ) ≤ D(X ), with equality iff X is conformal.

Hence, these two functionals have the same critical points.



A conformal immersion is minimal iff it is harmonic

If G : D → Rn is a smooth map vanishing on bD, then

d

dt

∣∣∣
t=0

D(X + tG ) =
∫
D
(Xu ·Gu + Xv ·Gv ) dudv = −

∫
D

∆X ·G dudv .

We integrated by parts and used G |bD = 0.

This vanishes for all such G iff ∆X = 0, thereby proving the first part of the
following theorem. The second one is an elementary calculation.

Theorem

A smooth conformal immersion X : D → Rn (n ≥ 3) parameterizes a minimal
surface iff X is harmonic (∆X = 0) iff the mean curvature vector field of X
vanishes.



Connection to complex analysis

Let z = u + iv be a complex coordinate on C. Then,

dX = ∂X + ∂̄X = Xzdz + Xz̄dz̄ =
1

2
(Xu − iXv ) dz +

1

2
(Xu + iXv ) dz̄ .

From ∆X = 4(Xz )z̄ we see that

X is harmonic iff Xz is holomorphic.

Furthermore:

X is conformal ⇐⇒ Xu ·Xv = 0, |Xu |2 = |Xv |2 ⇐⇒
n

∑
k=1

(∂Xk )
2 = 0.

The analogous conclusions hold if D is any open Riemann surface.

Every orientable immersed surface in Rn admits a conformal parameterization
by a Riemann surface. For nonorientable surfaces, we pass to their orientable
double cover.



The Enneper-Weierstrass representation, 1864–66

Hence, a smooth immersion X = (X1,X2, · · · ,Xn) : M → Rn from an open
Riemann surface parameterizes a conformal minimal surface if and only if

∂X = (∂X1, . . . , ∂Xn) is a holomorphic 1-form and
n

∑
k=1

(∂Xk )
2 = 0.

Conversely: a nowhere vanishing holomorphic 1-form Φ = (φ1, . . . , φn) on M
satisfying the nullity condition ∑n

k=1 φ2
k = 0 and the period vanishing conditions

<
∫
C

Φ = 0 ∈ Rn for every closed curve C in M

determines a conformal minimal immersion

X = <
∫

Φ : M → Rn, 2∂X = Φ.

Since Φ is holomorphic, it suffices to test the period conditions on the
homology basis of H1(M, Z). If M is simply connected, there are no period
conditions.



The null quadric

Let us introduce the null quadric:

A =

{
z = (z1, . . . , zn) ∈ Cn :

n

∑
j=1

z2
j = 0

}
.

Fix a nowhere vanishing holomorphic 1-form θ on M. Then, with Φ as above,
we have

Φ = f θ

where
f : M → A∗ = A \ {0}

is a holomorphic map having vanishing real periods:

<
∫
C
f θ = 0 ∈ Rn for every [C ] ∈ H1(M, Z).

If ∫
C
f θ = 0 ∈ Cn for every [C ] ∈ H1(M, Z),

then Z =
∫
f θ : M → Cn is a well-defined holomorphic curve with dZ = f θ;

such are called holomorphic null curves.



Dimension n = 3

Let X = (X1,X2,X3) : M → R3 be a conformal minimal immersion, and let
(N1,N2,N3) : M → S2 ⊂ R3 denote its classical Gauss map. Then,

g =
N1 + iN2

1−N3
=

∂X3

∂X1 − i∂X2
: M → CP1 = C∪ {∞}

is a holomorphic map, called the complex Gauss map of X , and we have the
classical Enneper-Weierstrass formula:

X = 2<
∫ (

1

2

(
1

g
− g

)
,
i

2

(
1

g
+ g

)
, 1

)
∂X3.

Many important quantities of a minimal surface can be computed from its
Gauss map, in particular:

g = X ∗ds2 = 2(|∂X1|2 + |∂X2|2 + |∂X3|2) =
(1 + |g|2)2

4|g|2 |∂X3|2

Kg = − 4|dg|2
(1 + |g|2)2

= −g∗(σ2
CP1 ) the Gauss curvature function

TC(X ) =
∫
M

KdA = −Area
CP1 (g(M)) the total Gauss curvature



Schwarz–Pick lemma for harmonic maps which are conformal at a point

Theorem (F. and Kalaj, 2021)

Let D denote the unit disc in C and Bn denote the unit ball of Rn. Assume
that f : D→ Bn (n ≥ 2) is a harmonic map which is conformal at a point
z ∈ D. Denote by R ∈ (0, 1] the radius of the affine disc
Σ = (f (z) + dfz (R2)) ∩Bn. Then

‖dfz‖ ≤
1

R
· 1− |f (z)|2

1− |z |2 .

Equality holds if and only if f is a conformal diffeomorphism of D onto Σ, and
in this case equality holds at every point of D.

The case n = 2, R = 1 generalizes the classical Schwarz–Pick lemma due to
H. A. Schwarz 1869, H. Poincaré 1884, and G. Pick 1915.

The classical lemma pertains only to maps which are conformal at every point
of D, i.e., they are holomorphic or antiholomorphic.



Distance-decreasing property of conformal harmonic maps

The theorem implies that conformal harmonic maps D→ Bn are distance

decreasing from the Poincaré metric |dz |
1−|z |2 on the disc D to the

Cayley–Klein metric on the ball Bn:

CK2 =
(1− |x |2)|dx |2 + |x · dx |2

(1− |x |2)2
=
|dx |2

1− |x |2 +
|x · dx |2

(1− |x |2)2
.

Extremal maps are the conformal embeddings of the disc D onto affine discs in
the ball Bn. Their differential at any point has norm one in the Poincaré metric
on the disc D and the Cayley–Klein metric on the ball Bn.

The same is true if we replace the disc by any hyperbolic Riemann surface
(universally covered by the disc) endowed with the Poincaré metric.

The Beltrami–Cayley–Klein model of hyperbolic geometry was introduced by Arthur
Cayley (1859) and Eugenio Beltrami (1968), and it was developed by Felix Klein
(1871–1873). The underlying space is the ball Bn, and geodesics are line segments
with endpoints on the boundary sphere. This is a special case of a metric on convex
domains in Rn introduced by David Hilbert in 1895.

Up to constants, the Cayley–Klein metric is the restriction to Bn of the Kobayashi
metric and the Bergman metric on the complex ball Bn

C ⊂ Cn.



Runge-Mergelyan approximation theorem for minimal surfaces

Theorem (Alarcón, López, F., 2012–2017)

Let K be a compact smoothly bounded domain without holes in an open
Riemann surface M (such K is called a Runge compact in M). Then:

Every conformal minimal immersion X : K → Rn (n ≥ 3) can be
approximated uniformly on K by proper conformal minimal immersions
X̃ : M → Rn.

General position theorem: X̃ can be chosen to have only simple double
points if n = 4 and to be an embedding if n ≥ 5.

Analogous results hold for nonorientable minimal surfaces in Rn and for
holomorphic null curves in Cn, n ≥ 3.

2019 Alarcón, Castro-Infantes: In addition, one can prescribe the values of X̃
on any closed discrete subset of M (Weierstrass-type interpolation).

2019 Alarcón, López: The analogous approximation result holds for complete
minimal surfaces of finite total Gaussian curvature. In this case, M is a
finitely punctured compact Riemann surface and ∂X̃ is algebraic with an
effective pole at every puncture.



Techniques used in the proof

Fix a nonvanishing holomorphic 1-form θ on M. (For example, θ = dz on C.)

By Enneper–Weierstrass, it suffices to prove the Runge–Mergelyan approximation
theorem for holomorphic maps f : M → A∗ satisfying the period vanishing conditions

<
∫
C
f θ = 0 for all [C ] ∈ H1(M, Z).

To this end, we use two main properties of punctured null quadric. The first one is:

The punctured null quadric A∗ is an Oka manifold.

In fact, A∗ is a complex homogeneous space of the complex orthogonal group On(C).

A complex manifold Y is an Oka manifold if, in the absence of topological
obstructions, the Runge approximation theorem holds for holomorphic maps M → Y
from any Stein manifold, in particular, from any open Riemann surface.

1958 Grauert Every complex homogeneous manifold is Oka.

To control the period vanishing conditions, we also need that

the convex hull of A∗ equals Cn.

It follows that any pair of points in Cn can be connected by a path whose derivative
belongs to A∗. (M. Gromov: Convex integration lemma.)



Outline of proof of the approximation theorem

Assume that K ⊂ L are connected, smoothly bounded Runge compacts in M,
X : K → Rn is a conformal minimal surface, and f = 2∂X/θ : K → A∗. We may
assume that f (K ) is not contained in a ray of A∗.

The noncritical case: there is no change of topology from K to L. Let C1, . . . ,C` ⊂ K

be closed curves forming a homology basis of K such that C =
⋃`

j=1 Cj is Runge.



The noncritical case

Let Bn denote the unit ball of Cn. By using flows of vector fields tangent to A∗ and
the fact that Co(A∗) = Cn, we construct a holomorphic map

F : K ×Bn` → A∗, F (· , 0) = f = 2∂X/θ

such that the period map

Bn` 3 t 7−→
(∫

Cj

F (· , t)θ
)`

j=1

∈ Cn`

is biholomorphic onto its image. Such a map can be found of the form

F (p, t) = φ1
g1(p)t1

◦ φ2
g2(p)t2

◦ · · · ◦ φn`
gn`(p)tn`

(f (p)) ∈ A∗, p ∈ K ,

where each φj is the flow of a holomorphic vector field tangent to A and gj ∈ O(K ).

Since A∗ is Oka, we can approximate F by a holomorphic map F̃ : M ×Bn` → A∗.

By the implicit function theorem, there exists t̃ ∈ Bn` close to 0 such that the map
f̃ = F (· , t̃) : M → A∗ has vanishing real periods on the curves C1, . . . ,C`.

Hence, fixing a point p0 ∈ K , the map X̃ : L→ Rn given by

X̃ (p) = X (p0) +<
∫ p

p0

f̃ θ, p ∈ L

is a conformal minimal immersion which approximates X : K → Rn on K .



The critical case

Assume now that E ⊂ L \ K̊ is an arc attached with its endpoints to K such
that K ∪ E is a deformation retract of L. This situation arises when passing a
critical point of index 1 of an exhaustion function on M. We illustrate
attaching a pair of pants, which increases the genus by one.

1◦ The domain K

2◦ Add the arc E – the
seam of the pants

3◦ Add the pair of
pants

bK
bK

K

a b

E

bL

L
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The critical case

Let a, b ∈ bK be the endpoints of the arc E . Fix p0 ∈ K and write

X (p) = X (p0) +<
∫ p

p0

f θ, p ∈ K .

Extend f smoothly across E to a map f : K ∪ E → A∗ such that

<
∫
E
f θ = X (b)− X (a) ∈ Rn.

This is possible since the convex hull of A∗ equals Cn.

Now, proceed as in the noncritical case, constructing a period dominating spray
and applying Mergelyan approximation on K ∪ E .

The proof of the approximation theorem follows by induction on an exhaustion
of M such that every step is of one of the two types described above.
Interpolation on a discrete set of points is obtained by the same scheme.

However, general position theorems and the existence of proper conformal
minimal immersions or embeddings require substantial additional work.



Topological structure of the space of conformal minimal immersions

Let CMI(M, Rn) denote the space of all conformal minimal immersions
M → Rn, n ≥ 3. Consider the map

φ : CMI(M, Rn)→ O(M,A∗) ↪→ C (M,A∗), φ(X ) = 2∂X/θ.

Let CMInf(M, Rn) denote the subspace of CMI(M, Rn) consisting of nonflat
conformal minimal immersions M → Rn.

Theorem

1 F., Lárusson 2019 The map φ : CMInf(M, Rn)→ C (M,A∗) is a weak
homotopy equivalence, and a homotopy equivalence if M has finite
topological type.

2 Alarcón, F., López 2019 The map φ : CMI(M, Rn)→ C (M,A∗) induces
a bijection of path components of the two spaces. Hence,

π0(CMI(M, Rn)) =

{
Z`

2, n = 3, H1(M, Z) = Z`;

0, n > 3.

3 Alarcón, F., Lárusson, 2018–2019 The inclusion of the space of real
parts of holomorphic null curves M → Cn into the space of conformal
minimal immersions M → Rn is a weak homotopy equivalence.



Minimal surfaces with the given Gauss map

Let X = (X1, . . . ,Xn) : M → Rn be a conformal minimal immersion.

Since the 1-form ∂X = (∂X1, . . . , ∂Xn) is holomorphic and nowhere vanishing,
it determines the Kodaira type holomorphic map

GX : M → CPn−1, GX (p) = [∂X1(p) : · · · : ∂Xn(p)], p ∈ M,

called the Gauss map of X , with values in the projective hyperquadric

Qn−2 =
{
[z1 : . . . : zn] ∈ CPn−1 : z2

1 + z2
2 + · · ·+ z2

n = 0
}

.

Theorem (Alarcón, F., López, 2019)

Every holomorphic map G : M → Qn−2 is the Gauss map of a conformal
minimal immersion X : M → Rn.

In particular, Q1 ∼= CP1, and every meromorphic function on M is the complex
Gauss map of a conformal minimal surface X : M → R3.



The Calabi-Yau problem for minimal surfaces

By results of Chern–Osserman (1967) and Jorge–Meeks (1983),
a complete minimal surface in Rn of finite total curvature is proper in Rn.

1965 Calabi’s Conjecture There is no complete nonflat minimal hypersurface in
Rn, n ≥ 3, with a bounded coordinate function.

1980 Jorge and Xavier Calabi’s conjecture is false in R3: there is a complete
immersed minimal disc D→ R2 × (−1,+1) with the third coordinate <z .

1996 Nadirashvili There is a bounded complete immersed minimal disc in R3.

2000 S.-T. Yau Review of geometry and analysis. Two main questions:
1 What are the possible conformal types of complete bounded minimal

surfaces?
2 What can be said about their boundary behaviour?

2007 Mart́ın & Nadirashvili There is a continuous map X : D→ R3 such that
X : D→ R3 is a complete conformal minimal immersion.

2008 Colding & Minicozzi Every complete embedded minimal surface in R3 of
finite topological type is proper in R3 (so Calabi’s conjecture holds).

2018 Meeks, Pérez, Ros: The same is true for embedded minimal surfaces in
R3 of finite genus and countably many ends.



Recent results on the Calabi-Yau problem

Theorem (Alarcón, Drinovec, F., López, 2015)

Let M be any bordered Riemann surface. Every conformal minimal immersion
X0 : M → Rn (n ≥ 3) can be uniformly approximated by continuous maps
X : M → Rn (embeddings if n ≥ 5) such that

X : M → Rn is a complete conformal minimal immersion, and

the boundary X (bM) ⊂ Rn is a union of Jordan curves.

Theorem (Alarcón and F., 2021)

The same holds if M is a bordered Riemann surface of the form

M = R \
⋃
i

Di

where R is a compact Riemann surface and Di is a finite or countable family of
pairwise disjoint compact geometric discs in R.



Labyrinths used by Jorge-Xavier and Nadirashvili

All constructions of complete bounded minimal surfaces up to 2015 were based
on those by Jorge-Xavier (1980) and Nadirashvili (1996), using Runge’s
theorem to modify X so that every path crossing a piece of a suitable labyrinth
becomes long, while any divergent curve avoiding the labyrinth is also long.

In both constructions one must cut aways small pieces of the surface in order
to keep the image bounded in Rn. Hence, this method does not provide
control of the conformal type on topologically nontrivial surfaces.



Novelties and techniques behind our theorems

The main novelties:

1 There is no change of the conformal structure on M (any conformal
structure of the indicated type can arise).

2 The image surface is bounded by pairwise disjoint Jordan curves.

3 Countably many nonpoint boundary components are allowed.

4 The analogous results have been proved in several other geometries, in
particular for holomorphic curves, holomorphic null curves, holomorphic
Legendrian curves in complex contact manifolds, and superminimal
surfaces in self-dual or anti-self-dual Einstein 4-manifolds (via the Pensor
twistor space and Bryant correspondence).

The method of proof: We construct a uniformly convergent sequence of
spiralling modifications which inductively increase the intrinsic metric on M and
make the limit minimal surface complete. The main tools:

(a) Exposing boundary points of Riemann surfaces

(b) The Riemann-Hilbert boundary value problem for minimal surfaces

The idea of proof is shown in pictures.



Exposing a boundary point

φ(M)

φ(p) = q

p q

E

M

M is a bordered domain in a Riemann surface R. We attach to M a smooth
arc E in the complement of M with one endpoint p ∈ bM. We extend
X : M → Rn smoothly to E such that the arc X (E ) ⊂ Rn is long but stays
close to X (M). By Mergelyan approximation, X can be made a conformal
minimal immersion in a neighbourhood of M ∪ E . We do this at (finitely)
many points of bM.



Exposing a boundary point

φ(M)

φ(p) = q

p q

E

M

We then construct a conformal diffeomorphism φ : M → φ(M) ⊂ R which
maps p to the other endpoint q of the arc E , it adds a thin tube around E , and
it is close to the identity on M outside a small neighbourhood of p. The
conformal minimal immersion X ◦ φ : M → Rn then has a much larger intrinsic
distance to p ∈ bM.



The Riemann–Hilbert deformation, I

Y (M)

G (p, bD)

X (p)

G (p, D)

X (M)

On each of the short arcs I ⊂ bM between two consecutive exposed points, we
push the image X (M) in the direction roughly orthogonal to the position
vector in order to enlarge the intrinsic boundary distance by a given amount.

This is done by attaching to X (M) a family of conformal minimal discs
G (p, · ) : D→ Rn, p ∈ I , and taking an approximate solution of the
Riemann–Hilbert problem as shown on the next slide.



The Riemann–Hilbert deformation, I

Y (M)

G (p, bD)

X (p)

G (p, D)

X (M)

The new disc Y is close to X outside a small neighbourhood of the arc I ⊂ bM,
and for p ∈ I the point Y (p) is close to the circle G (p, bD). The modification
is tempered at the endpoints of I to keep what was done in the first step.

The model case is the disc D 3 z → (z , 0) ∈ C2 deformed to the discs
z 7→ (z , czN ) for large N ∈N.



The Riemann–Hilbert deformation, II

Y (M)

X (I )

X (p)

G (p, D)

X (M)

On this 3-dimensional picture of the deformation, we see a family of conformal
minimal discs G (p, · ) : D→ Rn centred at points G (p, 0) = X (p), p ∈ I .



The Riemann–Hilbert deformation, II

Y (M)

X (I )

X (p)

G (p, D)

X (M)

The modification Y has now been made. Its image follows closely that of X
until we come near the arc I , where it turns in the direction of the discs G (p, · )
and maps the point p ∈ I close to the circle G (p, bD).



An inductive application of this technique

The illustration shows the inductive step in the construction of a bounded
complete conformal minimal surface X = limj→∞ Xj : M → Rn. At the j-th
step, the inner radius increases for roughly δj = 1/j , while the outer radius
increases for at most δ2

j = 1/j2. Since ∑∞
j=1 δj = +∞, the limit surface is

complete, and since ∑∞
j=1 δ2

j < ∞, it is bounded.



An inductive application of this technique

A Riemann–Hilbert deformation for approximately δj = 1/j in the direction
tangential to the position vector.



An inductive application of this technique

The intrinsic radius of the surface increased for approximately 1/j , while the

new extrinsic radius is roughly Rj =
√

R2
j−1 +

1
j2 ≈ Rj−1 +

1
2j2Rj−1

≤ Rj−1 +
c
j2 .

To create surfaces with Jordan boundaries, we apply the same method locally
around the initial curves in X (bM).



A few open problems

(a) Let R be a compact Riemann surface and M ( R be an open domain
which admits a nonconstant bounded harmonic function that does not
extend to a harmonic function on any bigger domain.

Is M the conformal structure of a complete bounded minimal surface?

(b) Is there an example of a complete bounded minimal surface in R3 whose
underlying complex structure is C \K , where K is a Cantor set in C?

(c) Does the Calabi–Yau property hold for minimal surfaces in every
Riemannian manifold? (It holds for superminimal surfaces in self-dual
Einstein 4-manifolds by using the Penrose twistor construction, the Bryant
correspondence, and the corresponding theory for holomorphic Legendrian
curves in complex contact manifolds.)



∼ Thank you for your attention ∼


