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Abstract

We survey recent constructions of complete bounded submanifolds in
several geometries:

holomorphic submanifolds (the problem of Paul Yang, 1977)

null holomorphic curves and conformal minimal surfaces in
Euclidean spaces (the Calabi-Yau problem, 1965 & 2000)

Legendrian curves in contact complex manifolds.

A noncompact submanifold M (immersed or embedded) of a manifold X
is said to be bounded if it is relatively compact.

Let g be a Riemannian metric on X . A submanifold M ⊂ X is said to be
complete if the pull-back of g to M is a complete metric on M.
Equivalently, every divergent curve in M (i.e., one that leaves every
compact subset of M) has infinite g-length in X .

If M is bounded, this notion is independent of the choice of g.



Part I: Complete bounded complex submanifolds of Cn

Paul Yang 1977 Do there exist complete bounded complex submanifolds
of complex Euclidean spaces?

Peter Jones 1979 There is a bounded complete holomorphic immersion
D = {ζ ∈ C : |ζ| < 1} → C2, embedding D→ C3, and proper
embedding D→ B4. (Based on C. Fefferman: Every φ ∈ BMOR(T)
equals φ = u + ṽ where u, v ∈ L∞(T), ṽ the Hilbert transform of v .)

Martin, Umehara and Yamada 2009 There exist complete bounded
holomorphic curves in C2 with arbitrary finite topology.

Theorem
Alarcón and Forstnerič 2013 Every bordered Riemann surface admits a
complete proper holomorphic immersion to B2 and a complete proper
holomorphic embedding to B3.



A disc on the way of becoming complete

The illustration shows a minimal disc solving a Plateau problem. By
twisting the boundary curve enough to make it everywhere
non-rectifiable, the disc becomes complete. Holomorphic disc are
minimal, in fact, absolute area minimizers.



Ripples on a disc increase boundary distance



Complete bounded surfaces abound in nature



Idea of the construction – Pythagora’s theorem

Let M be a bordered Riemann surface, and let ds2 denote the Euclidean
metric on Cn.

Let F0 : M → Cn be a holomorphic immersion satisfying
|F0| ≥ r0 > 0 on bM. We try to increase the boundary distance on
M with respect to the induced metric F ∗0 ds

2 by δ > 0.

To this end, we approximate F0 uniformly on a compact set in M by
an immersion F1 : M → Cn which at a point p ∈ bM adds a
displacement for approximately δ in a direction V ∈ Cn, |V | = 1,
approximately orthogonal to the point F0(p) ∈ Cn. The boundary
distance increases by ≈ δ, while the outer radius increases by δ2:

|F1(p)| ≈
√
|F0(p)|2 + δ2 ≈ |F0(p)|+

δ2

2|F0(p)|
≤ |F0(p)|+

δ2

2r0
.

Choosing δj > 0 such that ∑j δj = +∞ while ∑j δ2j < ∞, we obtain
by induction a limit immersion F = limj→∞ Fj : M → Cn with

bounded outer radius and with complete metric F ∗ds2.



The first main tool – the Riemann-Hilbert problem

This idea can be realized on short arcs I ⊂ bM, on which F0 does not
vary too much, by approximately solving a Riemann-Hilbert problem.

Lemma

Let D = {ζ ∈ C : |ζ| < 1} and T = b D = {ζ ∈ C : |ζ| = 1}.
Let f ∈ A (D, Cn), and let g : T×D→ Cn be a continuous map such
that for each ζ ∈ T we have g(ζ, · ) ∈ A (D, Cn) and g(ζ, 0) = f (ζ).

Given ε > 0 and 0 < r < 1, there are a number r ′ ∈ [r , 1) and a disc
h ∈ A (D, Cn) with h(0) = f (0) satisfying the following conditions:

(i) for any ζ ∈ T we have dist
(
h(ζ), g(ζ, T)

)
< ε,

(ii) for any ζ ∈ T and ρ ∈ [r ′, 1] we have dist
(
h(ρζ), g(ζ, D)

)
< ε,

(iii) for any |ζ| ≤ r ′ we have |h(ζ)− f (ζ)| < ε, and

(iv) if g(ζ, · ) = f (ζ) is the constant disc for all ζ ∈ T \ J, where J ⊂ T

is an arc, then |h− f | < ε outside a neighborhood of J in D.



Proof of the Riemann-Hilbert lemma

Write
g(ζ, z) = f (ζ) + λ(ζ, z), ζ ∈ T, z ∈ D,

where λ is continuous on T×D and holomorphic in z ∈ D, with
λ(ζ, 0) = 0. Approximate λ by Laurent polynomials

λ(ζ, z) =
1

ζm

N

∑
j=1

Aj (ζ)z
j =

z

ζm

N

∑
j=1

Aj (ζ)z
j−1

with polynomial coefficients Aj (ζ). Choose an integer k > m and set

hk (ζ) = f (ζ) + λ(ζ, ζk ) = f (ζ) + ζk−m
N

∑
j=1

Aj (ζ)
(

ζk
)j−1

, |ζ| ≤ 1.

This is an analytic disc satisfying hk (0) = f (0). For ζ = eit ∈ T we have

hk
(
eit
)
= f

(
eit
)
+ λ

(
eit , ekit

)
≈ g

(
eit , eikt)

)
,

and hence (i) holds. It is easy to verify the other conditions for big k.



Exposing boundary points on a Riemann surface

The Riemann-Hilbert method could lead to sliding curtains (at least in
low dimensions), creating shortcuts in the induced metric on M. We
eliminate shortcuts by the exposing of points method.

Erlend F. Wold & F.F. 2009 Construction of proper holomorphic
embeddings of certain bordered Riemann surfaces into C2.

Set bM = ∪iCi where Ci is a Jordan curve. Subdivide Ci = ∪j Ii ,j such
that any two adjacent arcs Ii ,j−1, Ii ,j meet at a common endpoint pi ,j .

At the point xi ,j = F0(pi ,j ) ∈ Cn we attach to F0(M) a smooth real

curve λi ,j of length > δ which increases the outer radius by < δ2. Let
yi ,j be other endpoint of λi ,j .

Choose an arc γi ,j ⊂ R \M attached to M at pi ,j , with the other
endpoint qi ,j . Extend F0 to a smooth diffeomorphism γi ,j → λi ,j

mapping qi ,j to yi ,j . Use Mergelyan to approximate F0 by a holomorphic

map from a neighborhood of M ∪ γi ,j to Cn.



Exposing a boundary point

The main point: there is a biholomorphism φ : M → φ(M) ⊂ R sending
each pi ,j ∈ bM to the other endpoint qi ,j of the attached arc γi ,j ⊂ R,
and close to the identity away from the points pi ,j . Define G by

G = F0 ◦ φ : M → Cn.



Increasing the boundary distance

In the metric G ∗(ds2) on M, the distance to the yellow neighborhoods of
the points pi ,j ∈ bM increased by the length of λi ,j which is > δ.

Apply the Riemann-Hilbert method on the arc β2i ,j ⊂ bM to increase the
distance to it by > δ. These two deformations are performed in almost
orthogonal directions, so they don’t cancel each other.
The boundary distance increased by > δ and the outer radius by < δ2.



Embedded complete complex submanifolds

This method works well on any bordered Riemann surface M and allows
a complete control of the complex structure (i.e., no part of M needs to
be cut away in order to keep its image suitably bounded). This was the
main novelty with respect to the previous results in the literature.

Diasadvantages:

It does not give complete bounded embeddings into C2, and

it does not work on higher dimensional manifolds.

Another idea: start with a closed complex submanifold X ⊂ Cn.

In the ball Bn ⊂ Cn, choose a suitable labyrinth F = ∪jKj , where each
Kj is a closed ball (or polytope) in an affine real hyperplane Λj ⊂ Cn,
such that any path in Bn \ F terminating on bBn has infinite length.

Then, use holomorphic automorphisms of Cn to push X away from F.



A complex subvariety avoiding a labyrinth

A labyrinth consisting of tangent
balls. Any divergent curve in Bn

avoiding all except finitely many of
these balls has infinite length.

The subvariety X ⊂ Cn is twisted by
holomorphic automorphisms so that
it avoids the labyrinth F. The image
is ambiently complete.



A theorem of Globevnik, Alarcón and López

Theorem
For every closed complex submanifold X ⊂ Cn and compact set
L ⊂ X ∩Bn there exists a Runge domain Ω ⊂ X ∩Bn with L ⊂ Ω
which admits a complete proper holomorphic embedding into Bn.

In particular, every open orientable surface S admits a complex structure
J such that the Riemann surface R = (S , J) admits a complete proper
holomorphic embedding to B2.

This gives an affirmative answer to Yang’s original question in all
dimensions and codimensions. The shortcoming is that one cannot
control the complex structure of the examples.

Also, this uses that Cn has a lot of holomorphic automorphisms (the
Andersén-Lempert theory), which fails in most other interesting
geometries that we wish to consider.



Part II: Holomorphic Legendrian curves

A holomorphic directed system on a complex manifold X is given by a
conical complex subvariety G ⊂ TX of the tangent bundle. Holomorphic
integral curves are complex curves tangent to G .

Example (Pfaffian and contact systems)

Let ξ ⊂ TX be a holomorphic vector subbundle. A complex curve
F : M → X is horizontal, or isotropic, or an integral curve if

dFx (TxM) ⊂ ξF (x) for all x ∈ M.

The case of interest is when ξ is completely nonintegrable, in the sense
that repeated commutators of vector fields tangent to ξ span TX .
When dimX = 2k + 1, rank ξ = 2k and first order commutators span,
we have ξ = ker α where α is a holomorphic 1-form satisfying

α ∧ αk 6= 0 . . . a contact form.

Darboux 1882: Locally near each point we have ξ = ker α0 with

α0 = dz +
k

∑
j=1

xjdyj .



Standard contact system on C2k+1

Consider the standard contact space (C2k+1, α0). Holomorphic integral
curves are called Legendrian curves. They are plentiful:

Theorem (Alarcón, F., López 2016)

1 Every immersed Legendrian curve M → C2k+1 can be approximated
uniformly on compacts by properly embedded Legendrian curves.

2 Let M be a compact bordered Riemann surface. Every Legendrian
curve M → B2k+1 can be approximated uniformly on compacts in
M̊ by complete proper Legendrian embeddings M̊ → B2k+1.

3 Let M be a compact bordered Riemann surface. Every Legendrian
curve M → C2k+1 of class A 1(M) can be uniformly approximated
by topological embeddings F : M → C2k+1 such that
F |M̊ : M̊ → C2k+1 is a complete Legendrian embedding.



Comments about the proof

Consider C3
(x,y ,z) with the contact form α = dz + xdy . A Legendrian

curve (x , y , z) : M → C3 is a holomorphic map such that xdy is an exact
1-form and z = −

∫ ·
xdy .

In an approximation problem on a Runge domain D ⊂ M, first create a
period dominating spray (x(· , ζ), y(· , ζ)) : D → C2 depending
holomorphically on ζ ∈ C`, ` = rankH1(M; Z). The approximated spray
(x̃(· , ζ), ỹ(· , ζ)) : M → C2 then contains an element for which
x̃(· , ζ)dỹ(· , ζ) is exact on D.

Change of topology: extend x , y smoothly to the arc E attached to
D ⊂ M such that

∫
E xdy has the correct value. In particular, ensure that∫

C xdy = 0 over the new cycle C formed in part by E . Use period
dominating sprays and Mergelyan approximation.

The Riemann-Hilbert lemma holds for Legendrian curves: if the
central curve f : M → C3 and all attached boundary discs
g(p, · ) : D→ C3 (p ∈ bM) are Legendrian, we can choose a Legendrian
approximate solution h : M → C3 to the Riemann-Hilbert problem.



A hyperbolic contact system on C2k+1

Theorem (F., 2016)

For any k ≥ 1 there exists a holomorphic contact system ξ on C2k+1

which is Kobayashi hyperbolic; in particular, every holomorphic
Legendrian curve C→ (C2k+1, ξ) is constant.

Idea of proof: We take α = Φ∗α0 where α0 = dz + ∑k
j=1 xjdyj is the

standard contact form on C2k+1 and Φ : C2k+1 → Ω ⊂ C2k+1 is a
Fatou-Bieberbach map whose image Ω avoids the union of cylinders

K =
∞⋃

N=1

2N−1bD2k
(x,y ) × CNDz .

If CN ≥ k23N+1 for all N ∈N, then C2k+1 \K is α0-hyperbolic; hence
(C2k+1, α) is hyperbolic.



Darboux charts around immersed Legendrian curves

Let (X , ξ) be an arbitrary contact complex manifold.

Theorem (Alarcón & F. 2017)

Let R be an open Riemann surface with a nowhere vanishing holomorphic
1-form θ, and let f : R → (X , ξ) be a holomorphic Legendrian
immersion. Then, every compact set in R has a neighborhood U ⊂ R
and a holomorphic immersion F : U ×B2k → X such that the contact
structure F ∗ξ is given by (x ∈ U, the other coordinates Euclidean)

α = dz − yθ(x)−
k

∑
j=2

yjdxj . Darboux chart

Corollary

Let M ⊂ R be a compact bordered Riemann surface. Then f |M can be
uniformly approximated by topological embeddings F : M → X such that
F |M̊ : M̊ → X is a complete Legendrian embedding.



Part III: Null holomorphic curves and minimal surfaces

Another classical example of a directed system are null holomorphic
curves in Cn and minimal surfaces, in Rn.

Let M be an open Riemann surface.

A null holomorphic curve is a holomorphic immersion
Z = (Z1, . . . ,Zn) : M → Cn (n ≥ 3) whose derivative satisfies

(dZ1)
2 + · · ·+ (dZn)

2 = 0.

An immersion X = (X1, . . . ,Xn) : M → Rn is a conformal minimal
(=harmonic) immersion, abbreviated CMI, iff ∂X = (∂X1, . . . , ∂Xn) is
a holomorphic 1-form on M satisfying the same equation:

(∂X1)
2 + · · ·+ (∂Xn)

2 = 0.

The real part X = <Z of a null curve is a CMI; converse holds on simply
connected domains.



Weierstrass representation of minimal surfaces

Fix a nowhere vanishing holomorphic 1-form θ on M. Then every
conformal minimal immersion X : M → Rn is of the form

X (p) = X (p0) +
∫ p

p0
<(f θ), p, p0 ∈ M,

where f : M → An−1 \ {0} is a holomorphic map into the null quadric

An−1 = {(z1, . . . , zn) ∈ Cn : z21 + z22 + · · ·+ z2n = 0}

such that the Cn-valued 1-form f θ has vanishing real periods.

Similarly, every holomorphic null curve is of the form

Z (p) = Z (p0) +
∫ p

p0
f θ, p ∈ M

where f is as above and f θ has vanishing periods.



Example: the catenoid and the helicoid

Example

Consider the null curve

Z (ζ) = (cos ζ, sin ζ,−iζ) ∈ C3, ζ = u + iv ∈ C,

∂Z = (− sin ζ, cos ζ,−i)dζ, sin2 ζ + cos2 ζ + (−i)2 = 0,

and the associated family of minimal surfaces in R3 for t ∈ R:

Xt(ζ) = <
(
eitZ (ζ)

)
= cos t

cos u· cosh v
sin u· cosh v

v

+ sin t

 sin u· sinh v
− cos u· sinh v

u


At t = 0 we have a catenoid and at t = ±π/2 a helicoid.



The catenoid and the helicoid



The Helicatenoid (Source: Wikipedia)

The family of minimal surfaces Xt(ζ) = <
(
eitZ (ζ)

)
, ζ ∈ C, t ∈ R:



The Calabi-Yau problem for minimal surfaces

Calabi 1965 Conjecture: every complete minimal surface in R3 is
unbounded.

Osserman, Jorge and Meeks 1983 A complete conformal minimal
surface in R3 of finite total Gauss curvature (FTC) is proper; its
conformal type is a finitely punctured compact Riemann surface.

On the other hand, omitting FTC leads to counterexamples:

Jorge & Xavier 1980 There exists a complete minimal surface in R3

with a bounded coordinate function. (Calabi was somewhat wrong.)

Nadirashvili 1996 The disc is a complete bounded immersed minimal
surface in R3. Ferrer, Martin, Meeks 2012 There exist complete
bounded immersed minimal surfaces in R3 with arbitrary topology.
(Calabi was completely wrong.)

S.T. Yau 2000: Review of geometry and analysis (the Millenium
Lecture). Calabi-Yau problem: When is Calabi’s conjecture true?



Embedded minimal surfaces in R3

Colding & Minicozzi 2008 A complete embedded minimal surface M
with finite topology in R3 is proper.
(Calabi was right for embedded surfaces with finite topology.)

Meeks-Rosenberg 2005 The helicoid (conformal type C) is the only
nonflat, properly embedded, simply connected minimal surface in R3.

Costa 1984 Besides the plane, the helicoid, and the catenoid, Costa’s
surface was the first example of a complete, properly embedded
parabolic minimal surface in R3.

It is of finite total curvature and has three ends, two catenoidal ones at
the top and the bottom (as all FTC properly embedded minimal surfaces
besides the plane have) and a planar end in the middle.



Costa’s surface



Complete minimal surfaces with Jordan boundaries

Theorem (Alarcón, F., 2015)

Every bordered Riemann surface M admits a complete proper conformal
minimal immersion into the ball of R3.

Theorem (Alarcón, Drinovec, F., López, 2016)

Let M be a compact bordered Riemann surface, and let n ≥ 3. Every
conformal minimal immersion f : M → Rn can be approximated,
uniformly on M, by continuous maps F : M → Rn such that
F |bM : bM → Rn is a topological embedding and F |M̊ : M̊ → Rn is a
complete immersed conformal minimal surface (embedded if n ≥ 5).

Our surfaces don’t have FTC, but we have a complete control of both
the conformal structure (any bordered Riemann surface) and of the
boundary (a union of Jordan curves).



Catenoidal cloud over the Sierra Nevada (Granada)

∼ Thank you for your attention ∼
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