Complete bounded submanifolds in different geometries

Franc Forstnerič

University of Ljubljana Institute of Mathematics, Physics and Mechanics

Coláiste na Tríonóide Trinity College, Dublin, 30 March 2017

Abstract

We survey recent constructions of **complete bounded submanifolds** in several geometries:

- holomorphic submanifolds (the problem of Paul Yang, 1977)
- null holomorphic curves and conformal minimal surfaces in Euclidean spaces (the Calabi-Yau problem, 1965 & 2000)
- Legendrian curves in contact complex manifolds.

A noncompact submanifold M (immersed or embedded) of a manifold X is said to be **bounded** if it is relatively compact.

Let $\mathfrak g$ be a Riemannian metric on X. A submanifold $M\subset X$ is said to be **complete** if the pull-back of $\mathfrak g$ to M is a complete metric on M. Equivalently, every divergent curve in M (i.e., one that leaves every compact subset of M) has infinite $\mathfrak g$ -length in X.

If M is bounded, this notion is independent of the choice of \mathfrak{g} .

Part I: Complete bounded complex submanifolds of \mathbb{C}^n

Paul Yang 1977 Do there exist complete bounded complex submanifolds of complex Euclidean spaces?

Peter Jones 1979 There is a bounded complete holomorphic immersion $\mathbb{D}=\{\zeta\in\mathbb{C}:|\zeta|<1\}\to\mathbb{C}^2,$ embedding $\mathbb{D}\to\mathbb{C}^3,$ and proper embedding $\mathbb{D}\to\mathbb{B}^4.$ (Based on **C. Fefferman**: Every $\phi\in\mathrm{BMO}_\mathbb{R}(\mathbb{T})$ equals $\phi=u+\tilde{v}$ where $u,v\in L^\infty(\mathbb{T}),\ \tilde{v}$ the Hilbert transform of v.)

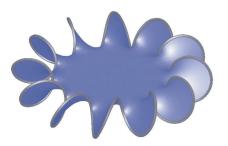
Martin, Umehara and Yamada 2009 There exist complete bounded holomorphic curves in \mathbb{C}^2 with arbitrary finite topology.

Theorem

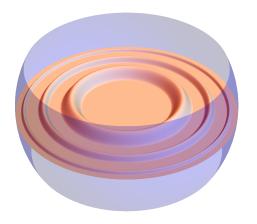
Alarcón and Forstnerič 2013 Every bordered Riemann surface admits a complete proper holomorphic immersion to \mathbb{B}^2 and a complete proper holomorphic embedding to \mathbb{B}^3 .

A disc on the way of becoming complete

The illustration shows a **minimal disc** solving a **Plateau problem**. By twisting the boundary curve enough to make it everywhere non-rectifiable, the disc becomes complete. Holomorphic disc are minimal, in fact, absolute area minimizers.



Ripples on a disc increase boundary distance



Complete bounded surfaces abound in nature

Idea of the construction – Pythagora's theorem

Let M be a bordered Riemann surface, and let ds^2 denote the Euclidean metric on \mathbb{C}^n .

- Let $F_0 \colon \overline{M} \to \mathbb{C}^n$ be a holomorphic immersion satisfying $|F_0| \ge r_0 > 0$ on bM. We try to increase the boundary distance on M with respect to the induced metric $F_0^* ds^2$ by $\delta > 0$.
- To this end, we approximate F_0 uniformly on a compact set in M by an immersion $F_1:\overline{M}\to\mathbb{C}^n$ which at a point $p\in bM$ adds a displacement for approximately δ in a direction $V\in\mathbb{C}^n$, |V|=1, approximately orthogonal to the point $F_0(p)\in\mathbb{C}^n$. The boundary distance increases by $\approx \delta$, while the outer radius increases by δ^2 :

$$|F_1(p)| \approx \sqrt{|F_0(p)|^2 + \delta^2} \approx |F_0(p)| + \frac{\delta^2}{2|F_0(p)|} \le |F_0(p)| + \frac{\delta^2}{2r_0}.$$

• Choosing $\delta_j > 0$ such that $\sum_j \delta_j = +\infty$ while $\sum_j \delta_j^2 < \infty$, we obtain by induction a limit immersion $F = \lim_{j \to \infty} F_j \colon M \to \mathbb{C}^n$ with bounded outer radius and with complete metric F^*ds^2 .

The first main tool – the Riemann-Hilbert problem

This idea can be realized on short arcs $I \subset bM$, on which F_0 does not vary too much, by approximately solving a **Riemann-Hilbert problem**.

Lemma

Let
$$\mathbb{D}=\{\zeta\in\mathbb{C}\colon |\zeta|<1\}$$
 and $\mathbb{T}=b\,\mathbb{D}=\{\zeta\in\mathbb{C}\colon |\zeta|=1\}.$

Let $f \in \mathscr{A}(\mathbb{D}, \mathbb{C}^n)$, and let $g: \mathbb{T} \times \overline{\mathbb{D}} \to \mathbb{C}^n$ be a continuous map such that for each $\zeta \in \mathbb{T}$ we have $g(\zeta, \cdot) \in \mathscr{A}(\mathbb{D}, \mathbb{C}^n)$ and $g(\zeta, 0) = f(\zeta)$.

Given $\epsilon > 0$ and 0 < r < 1, there are a number $r' \in [r, 1)$ and a disc $h \in \mathscr{A}(\mathbb{D}, \mathbb{C}^n)$ with h(0) = f(0) satisfying the following conditions:

- (i) for any $\zeta \in \mathbb{T}$ we have $\operatorname{dist}(h(\zeta), g(\zeta, \mathbb{T})) < \epsilon$,
- (ii) for any $\zeta \in \mathbb{T}$ and $\rho \in [r',1]$ we have $\operatorname{dist} \left(h(\rho \zeta), g(\zeta, \overline{\mathbb{D}})\right) < \epsilon$,
- (iii) for any $|\zeta| \le r'$ we have $|h(\zeta) f(\zeta)| < \epsilon$, and
- (iv) if $g(\zeta, \cdot) = f(\zeta)$ is the constant disc for all $\zeta \in \mathbb{T} \setminus J$, where $J \subset \mathbb{T}$ is an arc, then $|h f| < \epsilon$ outside a neighborhood of J in $\overline{\mathbb{D}}$.

Proof of the Riemann-Hilbert lemma

Write

$$g(\zeta, z) = f(\zeta) + \lambda(\zeta, z), \qquad \zeta \in \mathbb{T}, \ z \in \overline{\mathbb{D}},$$

where λ is continuous on $\mathbb{T} \times \overline{\mathbb{D}}$ and holomorphic in $z \in \mathbb{D}$, with $\lambda(\zeta,0)=0$. Approximate λ by Laurent polynomials

$$\lambda(\zeta,z) = \frac{1}{\zeta^m} \sum_{j=1}^N A_j(\zeta) z^j = \frac{z}{\zeta^m} \sum_{j=1}^N A_j(\zeta) z^{j-1}$$

with polynomial coefficients $A_j(\zeta)$. Choose an integer k>m and set

$$h_k(\zeta) = f(\zeta) + \lambda(\zeta, \zeta^k) = f(\zeta) + \zeta^{k-m} \sum_{j=1}^N A_j(\zeta) \left(\zeta^k\right)^{j-1}, \quad |\zeta| \le 1.$$

This is an analytic disc satisfying $h_k(0)=f(0).$ For $\zeta=\mathrm{e}^{\mathrm{i} t}\in\mathbb{T}$ we have

$$h_k(e^{it}) = f(e^{it}) + \lambda(e^{it}, e^{kit}) \approx g(e^{it}, e^{ikt}),$$

and hence (i) holds. It is easy to verify the other conditions for big k.

Exposing boundary points on a Riemann surface

The Riemann-Hilbert method could lead to **sliding curtains** (at least in low dimensions), creating shortcuts in the induced metric on M. We **eliminate shortcuts** by the **exposing of points method**.

Erlend F. Wold & F.F. 2009 Construction of proper holomorphic embeddings of certain bordered Riemann surfaces into \mathbb{C}^2 .

Set $bM = \bigcup_i C_i$ where C_i is a Jordan curve. Subdivide $C_i = \bigcup_j I_{i,j}$ such that any two adjacent arcs $I_{i,j-1}$, $I_{i,j}$ meet at a common endpoint $p_{i,j}$.

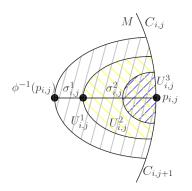
At the point $x_{i,j} = F_0(p_{i,j}) \in \mathbb{C}^n$ we attach to $F_0(\overline{M})$ a smooth real curve $\lambda_{i,j}$ of length $> \delta$ which increases the outer radius by $< \delta^2$. Let $y_{i,j}$ be other endpoint of $\lambda_{i,j}$.

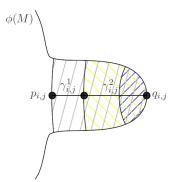
Choose an arc $\gamma_{i,j}\subset R\setminus M$ attached to M at $p_{i,j}$, with the other endpoint $q_{i,j}$. Extend F_0 to a smooth diffeomorphism $\gamma_{i,j}\to\lambda_{i,j}$ mapping $q_{i,j}$ to $y_{i,j}$. Use Mergelyan to approximate F_0 by a holomorphic map from a neighborhood of $\overline{M}\cup\gamma_{i,j}$ to \mathbb{C}^n .

Exposing a boundary point

The main point: there is a biholomorphism $\phi \colon \overline{M} \to \phi(\overline{M}) \subset R$ sending each $p_{i,j} \in bM$ to the other endpoint $q_{i,j}$ of the attached arc $\gamma_{i,j} \subset R$, and close to the identity away from the points $p_{i,j}$. Define G by

$$G=F_0\circ\phi:M\to\mathbb{C}^n.$$



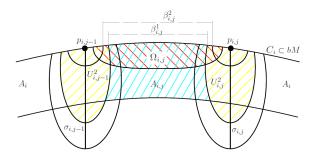


Increasing the boundary distance

In the metric $G^*(ds^2)$ on M, the distance to the yellow neighborhoods of the points $p_{i,j} \in bM$ increased by the length of $\lambda_{i,j}$ which is $> \delta$.

Apply the Riemann-Hilbert method on the arc $\beta_{i,j}^2 \subset bM$ to increase the distance to it by $> \delta$. These two deformations are performed in almost orthogonal directions, so they don't cancel each other.

The boundary distance increased by $> \delta$ and the outer radius by $< \delta^2$.



Embedded complete complex submanifolds

This method works well on any bordered Riemann surface M and allows a complete control of the complex structure (i.e., no part of M needs to be cut away in order to keep its image suitably bounded). This was the main novelty with respect to the previous results in the literature.

Diasadvantages:

- It does not give complete bounded **embeddings into** \mathbb{C}^2 , and
- it does not work on higher dimensional manifolds.

Another idea: start with a closed complex submanifold $X \subset \mathbb{C}^n$.

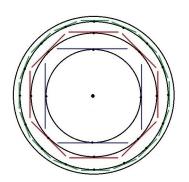
In the ball $\mathbb{B}^n \subset \mathbb{C}^n$, choose a suitable **labyrinth** $\mathfrak{F} = \cup_j K_j$, where each K_j is a closed ball (or polytope) in an affine real hyperplane $\Lambda_j \subset \mathbb{C}^n$, such that any path in $\mathbb{B}^n \setminus \mathfrak{F}$ terminating on $b\mathbb{B}^n$ has infinite length.

Then, use holomorphic automorphisms of \mathbb{C}^n to push X away from \mathfrak{F} .

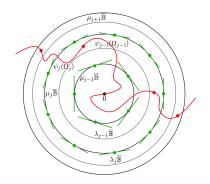


A complex subvariety avoiding a labyrinth

A labyrinth consisting of tangent balls. Any divergent curve in \mathbb{B}^n avoiding all except finitely many of these balls has infinite length.



The subvariety $X \subset \mathbb{C}^n$ is twisted by holomorphic automorphisms so that it avoids the labyrinth \mathfrak{F} . The image is ambiently complete.



A theorem of Globevnik, Alarcón and López

Theorem

For every closed complex submanifold $X \subset \mathbb{C}^n$ and compact set $L \subset X \cap \mathbb{B}^n$ there exists a Runge domain $\Omega \subset X \cap \mathbb{B}^n$ with $L \subset \Omega$ which admits a complete proper holomorphic embedding into \mathbb{B}^n .

In particular, every open orientable surface S admits a complex structure J such that the Riemann surface R = (S, J) admits a complete proper holomorphic embedding to \mathbb{B}^2 .

This gives an affirmative answer to Yang's original question in all dimensions and codimensions. The shortcoming is that **one cannot control the complex structure of the examples**.

Also, this uses that \mathbb{C}^n has a lot of holomorphic automorphisms (the Andersén-Lempert theory), which fails in most other interesting geometries that we wish to consider.

Part II: Holomorphic Legendrian curves

A holomorphic directed system on a complex manifold X is given by a conical complex subvariety $\mathscr{G} \subset TX$ of the tangent bundle. Holomorphic integral curves are complex curves tangent to \mathscr{G} .

Example (Pfaffian and contact systems)

Let $\xi \subset TX$ be a holomorphic vector subbundle. A complex curve $F \colon M \to X$ is **horizontal**, or **isotropic**, or an **integral curve** if

$$dF_x(T_xM)\subset \xi_{F(x)}\quad \text{for all } x\in M.$$

The case of interest is when ξ is **completely nonintegrable**, in the sense that repeated commutators of vector fields tangent to ξ span TX. When $\dim X = 2k+1$, $\operatorname{rank} \xi = 2k$ and first order commutators span, we have $\xi = \ker \alpha$ where α is a holomorphic 1-form satisfying

$$\alpha \wedge \alpha^k \neq 0$$
 ... a contact form.

Darboux 1882: Locally near each point we have $\xi = \ker \alpha_0$ with

$$\alpha_0 = dz + \sum_{j=1}^k x_j dy_j.$$

Standard contact system on \mathbb{C}^{2k+1}

Consider the standard contact space $(\mathbb{C}^{2k+1}, \alpha_0)$. Holomorphic integral curves are called **Legendrian curves**. They are plentiful:

Theorem (Alarcón, F., López 2016)

- Every immersed Legendrian curve $M \to \mathbb{C}^{2k+1}$ can be approximated uniformly on compacts by properly embedded Legendrian curves.
- ② Let M be a compact bordered Riemann surface. Every Legendrian curve $M \to \mathbb{B}^{2k+1}$ can be approximated uniformly on compacts in \mathring{M} by complete proper Legendrian embeddings $\mathring{M} \to \mathbb{B}^{2k+1}$.
- **3** Let M be a compact bordered Riemann surface. Every Legendrian curve $M \to \mathbb{C}^{2k+1}$ of class $\mathscr{A}^1(M)$ can be uniformly approximated by topological embeddings $F \colon M \to \mathbb{C}^{2k+1}$ such that $F|_{\mathring{M}} \colon \mathring{M} \to \mathbb{C}^{2k+1}$ is a complete Legendrian embedding.

Comments about the proof

Consider $\mathbb{C}^3_{(x,y,z)}$ with the contact form $\alpha=dz+xdy$. A Legendrian curve $(x,y,z)\colon M\to\mathbb{C}^3$ is a holomorphic map such that xdy is an exact 1-form and $z=-\int^\cdot xdy$.

In an approximation problem on a Runge domain $D\subset M$, first create a **period dominating spray** $(x(\cdot\,,\zeta),y(\cdot\,,\zeta))\colon D\to\mathbb{C}^2$ depending holomorphically on $\zeta\in\mathbb{C}^\ell$, $\ell=\mathrm{rank}H_1(M;\mathbb{Z})$. The approximated spray $(\tilde{x}(\cdot\,,\zeta),\tilde{y}(\cdot\,,\zeta))\colon M\to\mathbb{C}^2$ then contains an element for which $\tilde{x}(\cdot\,,\zeta)d\tilde{y}(\cdot\,,\zeta)$ is exact on D.

Change of topology: extend x, y smoothly to the arc E attached to $D \subset M$ such that $\int_E x dy$ has the correct value. In particular, ensure that $\int_C x dy = 0$ over the new cycle C formed in part by E. Use period dominating sprays and Mergelyan approximation.

The Riemann-Hilbert lemma holds for Legendrian curves: if the central curve $f\colon M\to\mathbb{C}^3$ and all attached boundary discs $g(p,\cdot)\colon \overline{\mathbb{D}}\to\mathbb{C}^3\ (p\in bM)$ are Legendrian, we can choose a Legendrian approximate solution $h\colon M\to\mathbb{C}^3$ to the Riemann-Hilbert problem.

A hyperbolic contact system on \mathbb{C}^{2k+1}

Theorem (F., 2016)

For any $k \geq 1$ there exists a holomorphic contact system ξ on \mathbb{C}^{2k+1} which is **Kobayashi hyperbolic**; in particular, every holomorphic Legendrian curve $\mathbb{C} \to (\mathbb{C}^{2k+1}, \xi)$ is constant.

Idea of proof: We take $\alpha=\Phi^*\alpha_0$ where $\alpha_0=dz+\sum_{j=1}^kx_jdy_j$ is the standard contact form on \mathbb{C}^{2k+1} and $\Phi\colon\mathbb{C}^{2k+1}\to\Omega\subset\mathbb{C}^{2k+1}$ is a **Fatou-Bieberbach map** whose image Ω avoids the union of cylinders

$$K = \bigcup_{N=1}^{\infty} 2^{N-1} b \mathbb{D}_{(x,y)}^{2k} \times C_N \overline{\mathbb{D}}_z.$$

If $C_N \ge k2^{3N+1}$ for all $N \in \mathbb{N}$, then $\mathbb{C}^{2k+1} \setminus K$ is α_0 -hyperbolic; hence $(\mathbb{C}^{2k+1}, \alpha)$ is hyperbolic.

Darboux charts around immersed Legendrian curves

Let (X, ξ) be an arbitrary contact complex manifold.

Theorem (Alarcón & F. 2017)

Let R be an open Riemann surface with a nowhere vanishing holomorphic 1-form θ , and let $f: R \to (X, \xi)$ be a holomorphic Legendrian immersion. Then, every compact set in R has a neighborhood $U \subset R$ and a holomorphic immersion $F: U \times \mathbb{B}^{2k} \to X$ such that the contact structure $F^*\xi$ is given by $(x \in U,$ the other coordinates Euclidean)

$$\alpha = dz - y\theta(x) - \sum_{j=2}^{k} y_j dx_j$$
. Darboux chart

Corollary

Let $M \subset R$ be a compact bordered Riemann surface. Then $f|_M$ can be uniformly approximated by topological embeddings $F \colon M \to X$ such that $F|_{\mathring{M}} \colon \mathring{M} \to X$ is a complete Legendrian embedding.

Part III: Null holomorphic curves and minimal surfaces

Another classical example of a directed system are **null holomorphic** curves in \mathbb{C}^n and **minimal surfaces**, in \mathbb{R}^n .

Let M be an open Riemann surface.

A null holomorphic curve is a holomorphic immersion $Z = (Z_1, \ldots, Z_n) \colon M \to \mathbb{C}^n \ (n \ge 3)$ whose derivative satisfies

$$(dZ_1)^2 + \cdots + (dZ_n)^2 = 0.$$

An immersion $X = (X_1, ..., X_n) : M \to \mathbb{R}^n$ is a **conformal minimal** (=harmonic) immersion, abbreviated CMI, iff $\partial X = (\partial X_1, ..., \partial X_n)$ is a **holomorphic** 1-form on M satisfying the same equation:

$$(\partial X_1)^2 + \cdots + (\partial X_n)^2 = 0.$$

The real part $X = \Re Z$ of a null curve is a CMI; converse holds on simply connected domains.

Weierstrass representation of minimal surfaces

Fix a nowhere vanishing holomorphic 1-form θ on M. Then every conformal minimal immersion $X \colon M \to \mathbb{R}^n$ is of the form

$$X(p) = X(p_0) + \int_{p_0}^p \Re(f\theta), \quad p, p_0 \in M,$$

where $f: M \to A^{n-1} \setminus \{0\}$ is a holomorphic map into the **null quadric**

$$A^{n-1} = \{(z_1, \dots, z_n) \in \mathbb{C}^n \colon z_1^2 + z_2^2 + \dots + z_n^2 = 0\}$$

such that the \mathbb{C}^n -valued 1-form $f\theta$ has vanishing real periods.

Similarly, every holomorphic null curve is of the form

$$Z(p) = Z(p_0) + \int_{p_0}^{p} f\theta, \quad p \in M$$

where f is as above and $f\theta$ has vanishing periods.

Example: the catenoid and the helicoid

Example

Consider the null curve

$$Z(\zeta) = (\cos \zeta, \sin \zeta, -i\zeta) \in \mathbb{C}^3, \qquad \zeta = u + iv \in \mathbb{C},$$

$$\partial Z = (-\sin\zeta, \cos\zeta, -i)d\zeta, \quad \sin^2\zeta + \cos^2\zeta + (-i)^2 = 0,$$

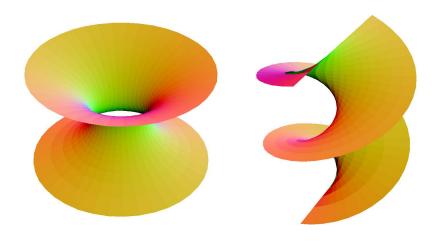
and the associated family of minimal surfaces in \mathbb{R}^3 for $t \in \mathbb{R}$:

$$X_{t}(\zeta) = \Re\left(e^{it}Z(\zeta)\right)$$

$$= \cos t \begin{pmatrix} \cos u \cdot \cosh v \\ \sin u \cdot \cosh v \\ v \end{pmatrix} + \sin t \begin{pmatrix} \sin u \cdot \sinh v \\ -\cos u \cdot \sinh v \\ u \end{pmatrix}$$

At t=0 we have a **catenoid** and at $t=\pm \pi/2$ a **helicoid**.

The catenoid and the helicoid



The Helicatenoid (Source: Wikipedia)

The family of minimal surfaces $X_t(\zeta) = \Re \left(e^{\mathrm{i}t}Z(\zeta)\right)$, $\zeta \in \mathbb{C}$, $t \in \mathbb{R}$:

The Calabi-Yau problem for minimal surfaces

Calabi 1965 Conjecture: every complete minimal surface in \mathbb{R}^3 is unbounded.

Osserman, Jorge and Meeks 1983 A complete conformal minimal surface in \mathbb{R}^3 of finite total Gauss curvature (FTC) is proper; its conformal type is a finitely punctured compact Riemann surface.

On the other hand, omitting FTC leads to counterexamples:

Jorge & Xavier 1980 There exists a complete minimal surface in \mathbb{R}^3 with a bounded coordinate function. (Calabi was somewhat wrong.)

Nadirashvili 1996 The disc is a complete bounded immersed minimal surface in \mathbb{R}^3 . Ferrer, Martin, Meeks 2012 There exist complete bounded immersed minimal surfaces in \mathbb{R}^3 with arbitrary topology. (Calabi was completely wrong.)

S.T. Yau 2000: Review of geometry and analysis (the Millenium Lecture). **Calabi-Yau problem**: When is Calabi's conjecture true?

Embedded minimal surfaces in \mathbb{R}^3

Colding & Minicozzi 2008 A complete embedded minimal surface M with finite topology in \mathbb{R}^3 is proper.

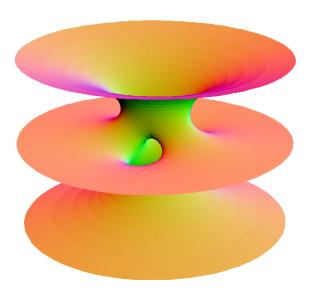
(Calabi was right for embedded surfaces with finite topology.)

Meeks-Rosenberg 2005 The helicoid (conformal type \mathbb{C}) is the only nonflat, properly embedded, simply connected minimal surface in \mathbb{R}^3 .

Costa 1984 Besides the plane, the helicoid, and the catenoid, Costa's surface was the first example of a complete, properly embedded parabolic minimal surface in \mathbb{R}^3 .

It is of finite total curvature and has three ends, two catenoidal ones at the top and the bottom (as all FTC properly embedded minimal surfaces besides the plane have) and a planar end in the middle.

Costa's surface



Complete minimal surfaces with Jordan boundaries

Theorem (Alarcón, F., 2015)

Every bordered Riemann surface M admits a complete proper conformal minimal immersion into the ball of \mathbb{R}^3 .

Theorem (Alarcón, Drinovec, F., López, 2016)

Let M be a compact bordered Riemann surface, and let $n \geq 3$. Every conformal minimal immersion $f: M \to \mathbb{R}^n$ can be approximated, uniformly on M, by continuous maps $F: M \to \mathbb{R}^n$ such that $F|_{bM} \colon bM \to \mathbb{R}^n$ is a topological embedding and $F|_{\mathring{M}} \colon \mathring{M} \to \mathbb{R}^n$ is a complete immersed conformal minimal surface (embedded if $n \geq 5$).

Our surfaces don't have FTC, but we have a complete control of both the conformal structure (any bordered Riemann surface) and of the boundary (a union of Jordan curves).

Catenoidal cloud over the Sierra Nevada (Granada)

\sim Thank you for your attention \sim

Image Credit & Copyright: Guido Montañés