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University of Ljubljana

CAS, Oslo, 17 November 2016



Abstract

Let M be an open Riemann surface.

We prove that every meromorphic function on M is the complex
Gauss map of a conformal minimal immersion M → R3 which may
furthermore be chosen as the real part of a holomorphic null curve
M → C3.

Analogous results are proved for conformal minimal immersions
M → Rn and null curves M → Cn for any n > 3.

We also show that every conformal minimal immersion M → Rn is
isotopic (through conformal minimal immersions) to a flat one, and
we identify the path connected components of the space of all
conformal minimal immersions M → Rn for any n ≥ 3.

Based on joint work with Antonio Alarcón and Francisco J. López,
University of Granada; http://arxiv.org/abs/1604.00514



Robert Osserman, 1926–2011

The connection between complex
analysis and minimal surface theory
goes back to Riemann and
Weierstrass.

Robert Osserman was a modern
pioneer of this field. His book A
survey of minimal surfaces (Dover,
New York,1986) remains a classic.



Conformal minimal surfaces in Rn

Let M be an open Riemann surface and n ≥ 3. The following are
equivalent for a conformal immersion X = (X1, . . . ,Xn) : M → Rn:

X parametrizes a minimal surface.

X has identically vanishing mean curvature vector.

X is harmonic: 4X = 0.

Φ = ∂X = (φ1, . . . , φn) is a nowhere vanishing holomorphic 1-form
satisfying the following nullity condition:

(φ1)
2 + (φ2)

2 + · · ·+ (φn)
2 = 0.

Conversely, if Φ = (φ1, . . . , φn) satisfies the nullity condition and∫
γ
<(Φ) = 0 for all γ ∈ H1(M; Z),

then

X (p) = X (p0) +
∫ p

p0
2<Φ, p0, p ∈ M

is a conformal minimal immersion M → Rn.



Weierstrass representation of minimal surfaces

Fix a nowhere vanishing holomorphic 1-form θ on M. The above shows
that every conformal minimal immersion X : M → Rn is of the form

X (p) = X (p0) +
∫ p

p0
<(f θ), p, p0 ∈ M,

where f : M → An−1
∗ = An−1 \ {0} is a holomorphic map with values in

the null quadric

An−1 = {(z1, . . . , zn) ∈ Cn : z21 + z22 + · · ·+ z2n = 0}

such that the Cn-valued 1-form f θ has vanishing real periods.

The flux of a conformal minimal immersion X : M → Rn is the group
homomorphism FluxX : H1(M; Z)→ Rn given by

FluxX (γ) =
∫

γ
=(∂X ) = −i

∫
γ

∂X for every closed curve γ ⊂ M.



Construction of null curves and CMI’s

We have FluxX = 0 iff X admits a harmonic conjugate surface
Y : M → Rn. In this case, Z = X + iY : M → Cn is a holomorphic
null curve, i.e., a holomorphic immersion satisfying the nullity condition

(dZ1)
2 + (dZ2)

2 + · · ·+ (dZn)
2 = 0.

Thus, we have bijective correspondences (up to constants):

{Z : M → Cn null curve} ←→ {f : M → A∗ holomorphic, f θ exact}

Z (p) = Z (p0) +
∫ p

p0
f θ; p ∈ M.

{X : M → Rn conformal minimal} ←→ {f : M → A∗ holo., <(f θ) exact}

X (p) = X (p0) +
∫ p

p0
<(f θ); p ∈ M.



Example: the catenoid and the helicoid

Example: The catenoid and the helicoid are conjugate minimal
surfaces – the real and the imaginary part of the same null curve

Z (ζ) = (cos ζ, sin ζ,−iζ) ∈ C3, ζ = u + iv ∈ C.

Consider the following family of minimal surfaces in R3 for t ∈ R:

Xt(ζ) = <
(
eitZ (ζ)

)
= cos t

cos u· cosh v
sin u· cosh v

v

+ sin t

 sin u· sinh v
− cos u· sinh v

u



At t = 0 we have a catenoid and at t = ±π/2 a helicoid.



Euler’s theorem

1744 Euler The only area minimizing surfaces of rotation in R3 are planes
and catenoids.



A Catenoid over Granada

Catenoids appear in nature, sometime in unexpected places. The neck of
this cloud over Sierra Nevada seems catenoidal.
c© Guido Montañés, http://apod.nasa.gov/apod/ap131126.html



The helicoid (Archimedes’ screw)

1776 Meusnier The helicoid is a minimal surface.

1842 Catalan The helicoid and the plane are the only ruled embedded
minimal surfaces in R3 (i.e., unions of straight lines).



The Helicatenoid

The family of minimal surfaces Xt(ζ) = <
(
eitZ (ζ)

)
, ζ ∈ C, t ∈ R:



The generalized Gauss map

We now come to the main subject of this talk.

Let X = (X1, . . . ,Xn) : M → Rn be a conformal minimal immersion.

Since the 1-form ∂X = (∂X1, . . . , ∂Xn) is holomorphic and nowhere
vanishing, it determines the Kodaira type holomorphic map

GX : M → CPn−1, GX (p) = [∂X1(p) : · · · : ∂Xn(p)] (p ∈ M).

The map GX is known as the generalized Gauss map of X and is of
great importance in the theory of minimal surfaces.

Since ∑n
j=1(∂Xj )

2 = 0, GX assumes values in the hyperquadric

Qn−2 = {[z1 : . . . : zn] ∈ CPn−1 : z21 + · · ·+ z2n = 0} = π(An−1
∗ ),

where π : Cn
∗ → CPn−1 denotes the canonical projection.



The main theorem

Theorem
Let M be an open Riemann surface and let n ≥ 3 be an integer.

For every holomorphic map G : M → Qn−2 ⊂ CPn−1 there exists a
conformal minimal immersion X : M → Rn with the generalized
Gauss map GX = G and with vanishing flux (hence, X is the real
part of a holomorphic null curve Z : M → Cn).

If in addition the map G is full (i.e., its image is not contained in
any proper projective subspace of CPn−1), then X can be chosen to
have arbitrary flux and to be an embedding if n ≥ 5 and an
immersion with simple double points if n = 4.

Problem

Suppose that M and G are algebraic (so M = M \ {p1, . . . , pm} with M
a compact Riemann surface); can X be chosen algebraic?



The Weierstrass formula for n = 3

The quadric Q1 ⊂ CP2 is the image of a quadratically embedded
Riemann sphere CP1 ↪→ CP2, and the complex Gauss map of a
conformal minimal immersion X = (X1,X2,X3) : M → R3 is defined to
be the holomorphic map

gX =
∂X3

∂X1 − i ∂X2
=

∂X2 − i ∂X1

i ∂X3
: M −→ CP1.

The function gX is the stereographic projection of the real Gauss map
N = (N1,N2,N3) : M → S2 ⊂ R3 to the Riemann sphere CP1:

gX =
N1 + iN2

1−N3
: M −→ C∪ {∞} = CP1.

We can recover the differential ∂X = (∂X1, ∂X2, ∂X3) from the pair
(gX , φ3), with φ3 = ∂X3, by the classical Weierstrass formula:

∂X = Φ = (φ1, φ2, φ3) =

(
1

2

(
1

gX
− gX

)
,
i

2

(
1

gX
+ gX

)
, 1

)
φ3.



The case n = 3

Conversely, given a pair (g , φ3) consisting of a holomorphic map

g : M → CP1 and a meromorphic 1-form φ3 on M, the meromorphic
1-form Φ = (φ1, φ2, φ3) defined by the Weierstrass formula satisfies

(φ1)
2 + (φ2)

2 + (φ3)
2 = 0.

Φ is the differential ∂X of a conformal minimal immersion X : M → R3

iff it is holomorphic and nowhere vanishing, and its real periods vanish.

Example (The helicatenoid)

Z (ζ) = (cos ζ, sin ζ,−iζ) ∈ C3, ζ ∈ C

∂Z = (− sin ζ, cos ζ,−i)dζ

gZ (ζ) =
∂Z2 − i ∂Z1

i ∂Z3
= cos ζ + i sin ζ.



Every meromorphic function is the Gauss map

Hence, the main theorem takes the following form in dimension 3.

Corollary

Let M be an open Riemann surface. Every holomorphic map
g : M → CP1 is the complex Gauss map of a holomorphic null curve
Z = X + iY : M → C3, and hence of conformal minimal immersion
X = <Z : M → R3.

If g is nonconstant, then we can find X with arbitrary flux.

In dimension 3, the complex Gauss map is fundamental in the theory; it
completely determines several important geometric properties of the
minimal surface, and there is a huge literature devoted to it.



Stable minimal surfaces in R3

We give an example illustrating the last assertion.

A minimal surface S ⊂ R3 is said to be stable if any relatively compact
smoothly bounded domain D ⊂ S has minimal area among all small
variations of D which keep the boundary bD fixed.

Barbosa and do Carmo, 1976 Let X : M → R3 be a conformal
minimal immersion. The minimal surface X (M) ⊂ R3 is stable if the

spherical image gX (M) ⊂ CP1 of its Gauss map has area less than 2π.

This holds in particular if gX (M) lies in the unit disk D ⊂ C.

Corollary

If M is an open Riemann surface and g : M → CP1 is a holomorphic
map whose image g(M) has area less than 2π, then there is a stable
conformal minimal immersion M → R3 with the complex Gauss map g .



Idea of proof of the main theorem

Since an open Riemann surface M is homotopy equivalent to a wedge of
circles and the projection π : Cn

∗ → CPn−1 is a C∗-bundle, every
holomorphic map G : M → CPn−1 lifts to a holomorphic map
f = (f1, . . . , fn) : M → Cn

∗ such that

G = π ◦ f = [f1 : · · · : fn] : M → CPn−1.

Clearly, G (M) ⊂ Qn−2 if and only if f (M) ⊂ A∗.

To prove the theorem, we find a holomorphic multiplier h : M → C∗
such that the Cn-valued holomorphic 1-form

Φ = hf θ = h(f1, . . . , fn)θ

has vanishing periods, so it integrates to a holomorphic null curve

Z (p) = X (p) + iY (p) =
∫ p

∗
Φ, p ∈ M.

Then, ∂Z = 2∂X = Φ, and hence GX = GZ = G .



The main complex analytic result

Theorem
Let M be an open Riemann surface and let n ∈N be an integer. Let

Φt = (φt,1, . . . , φt,n), t ∈ [0, 1]

be a continuous family of full holomorphic 1-forms on M with values in
Cn, and let

qt : H1(M; Z)→ Cn, t ∈ [0, 1]

be a continuous family of group homomorphisms.

Then there exists a continuous family of holomorphic multipliers
ht : M → C∗, t ∈ [0, 1], such that∫

γ
ht Φt = qt(γ) for every closed curve γ ⊂ M and t ∈ [0, 1].

If the above condition holds at t = 0 with the constant function h0 = 1,
then the homotopy ht : M → C∗ can be chosen with h0 = 1.



Comments on the main theorem

This result shows that we can arbitrarily change the period map in an
isotopy of Cn

∗-valued 1-forms by a suitable isotopy of multipliers.

For example, if we begin with an arbitrary Φ = Φ0 and take h0 = 1, then
we can choose ht such that h1Φ is exact, so it integrates to a null curve.

If <Φ is exact, then <Φ integrates to an immersion M → Rn with the
Gauss map Φ. Hence, we recover and improve our previous result:

Theorem (Alarcón & F., Crelle, in press)

Every conformal minimal immersion M → Rn (n ≥ 3) is isotopic
(through conformal minimal immersions) to the real part of a
holomorphic null curve M → Cn.

The new addition is that all immersions in the isotopy can have the
same Gauss map.



Proof

A desired family of holomorphic multipliers ht : M → C∗ (t ∈ I = [0, 1])
is constructed by induction with respect to an exhaustion of M by an
increasing sequence of smoothly bounded Runge domains

D1 ⊂ D2 ⊂ · · · ⊂ ∪∞
j=1Dj = M.

Three main ingredients are employed at every step, combining complex
analysis with Gromov’s convex integration theory:

construction of multipliers on an arc (or a loop) in M that give
approximately correct values of periods;

construction of a period dominating spray of multipliers (this device
is used to make arbitrary small corrections of the periods);

Mergelyan’s approximation theorem is used to approximate
continuous families of continuous multipliers on curves by continuous
families of holomorphic multipliers on Runge domains D b M.



Main Lemma 1

The following lemma provides homotopies of continuous multiplier
functions which enable us to prescribe the periods. Set I = [0, 1].

Lemma (1)

Let f : I 2 = I × I → Cn and α : I → Cn be continuous maps. Assume
that the path ft := f (t, · ) : I → Cn is nowhere flat for every t ∈ I . Then
there exists a continuous function h : I 2 → C∗ such that

h(t, s) = 1 for t ∈ I and s = 0, 1

and ∫ 1

0
h(t, s)f (t, s) ds = α(t), t ∈ I .

If in addition
∫ 1
0 f (0, s) ds = α(0), then h can be chosen such that

h(0, s) = 1 for s ∈ [0, 1].



Proof of Lemma 1, part 1

It suffices to prove that for any ε > 0 there exists h : I 2 → C∗ such that∣∣∣∣∫ 1

0
h(t, s)f (t, s) ds − α(t)

∣∣∣∣ < ε, t ∈ I .

The exact result is obtained by splitting I = I1 ∪ I2 = [0, 1/2] ∪ [1/2, 1],
applying the approximate result with a small ε > 0 on I1, and a period
dominating argument on I2 (see Lemma 2) to correct the error.

Since ft is nowhere flat and hence full for each fixed t ∈ [0, 1], there is a
division 0 = s0 < s1 < · · · < sN = 1 of I such that

span{ft(s1), . . . , ft(sN )} = Cn for all t ∈ I .

Set

Vj (t) =
∫ sj

sj−1
ft(s) ds ≈ ft(sj )(sj − sj−1), j = 1, . . . ,N.

By passing to a finer division, we may therefore assume that

span{V1(t), . . . ,VN (t)} = Cn, t ∈ I .



Proof of Lemma 1, part 2

For each t ∈ I we let Σt ⊂ CN denote the affine complex hyperplane

Σt =
{
(g1, . . . , gN ) ∈ CN :

N

∑
j=1

gjVj (t) = α(t)
}

.

Clearly, there exists a continuous map g = (g1, . . . , gN ) : I → CN such
that g(t) ∈ Σt for every t ∈ I . (We may view g as a section of the affine
bundle over I whose fiber over the point t ∈ I equals Σt .) Hence

N

∑
j=1

∫ sj

sj−1
gj (t)ft(s) ds =

N

∑
j=1

gj (t)Vj (t) = α(t), t ∈ I .

Note that
N

∑
j=1

Vj (t) =
N

∑
j=1

∫ sj

sj−1
ft(s) ds =

∫ 1

0
ft(s) ds.

Hence, if
∫ 1
0 f (0, s) ds = α(0) then g can be chosen such that

g(0) = (1, . . . , 1) ∈ CN . We assume in the sequel that this holds.



Proof of Lemma 1, part 3

By a small perturbation, we may assume that gj (t) ∈ C∗ for every t ∈ I
and j = 1, . . . ,N. This changes the exact condition to the approximate
condition ∣∣∣∣∣ N

∑
j=1

∫ sj

sj−1
gj (t)ft(s) ds − α(t)

∣∣∣∣∣ < ε

2
, t ∈ I .

View the vector g(t) = (gj (t))j ∈ CN for every fixed t ∈ I as a step
function of the variable s ∈ I which equals the constant gj (t) ∈ C∗ on
the j-segment s ∈ [sj−1, sj ] for every j = 1, . . . ,N.

Next, approximate this step function by a continuous function
ht = h(t, · ) : I → C∗ (t ∈ I ) which agrees with the step function, except
near the division points s0, s1, . . . , sN . This causes an error of size < ε/2
provided the modification is supported on sufficiently short segments
around the division points, and it yields the desired estimate∣∣∣∣∫ 1

0
h(t, s)f (t, s) ds − α(t)

∣∣∣∣ < ε, t ∈ I .

This proves Lemma 1, subject to Lemma 2.



Period dominating sprays of multipliers

Lemma (2)

Let I ′ be a nontrivial closed subinterval of I = [0, 1], let Q be a compact
Hausdorff space (the parameter space), and let n ∈N.

Given a continuous map f : Q × I → Cn such that f (q, ·) is full on I ′ for
every q ∈ Q, there exist finitely many continuous functions
g1, . . . , gN : I → C (N ≥ n), supported on I ′, such that the function
h : CN × I → C given by

h(ζ, s) = 1 +
N

∑
i=1

ζigi (s), ζ = (ζ1, . . . , ζN ) ∈ CN , s ∈ I

is a period dominating multiplier of f , meaning that the map

∂

∂ζ

∣∣∣∣
ζ=0

∫ 1

0
h(ζ, s)f (q, s) ds : T0CN ∼= CN → Cn

is surjective for every q ∈ Q.



Proof of Lemma 2

Assume that

h(ζ, s) := 1 +
N

∑
i=1

ζigi (s), (ζ, s) ∈ CN × I .

Let P : Q ×CN → Cn be the map given by

P(q, ζ) =
∫ 1

0
h(ζ, s)f (q, s) ds, (q, ζ) ∈ Q ×CN .

Then,

∂P(q, ζ)

∂ζi

∣∣∣∣
ζ=0

=
∫ 1

0

∂h(ζ, s)

∂ζi

∣∣∣∣
ζ=0

f (q, s) ds =
∫ 1

0
gi (s)f (q, s) ds.

Since f (q, ·) is full on I ′ for every q ∈ Q, there are distinct points
s1, . . . , sN in the interior of I ′ for a big N ∈N such that

span{f (q, s1), . . . , f (q, sN )} = Cn for all q ∈ Q.



Proof of Lemma 2

Let ε > 0 be small enough such that the intervals [si − ε, si + ε]
(i = 1, . . . ,N) are pairwise disjoint and contained in I ′. Let gi : I → C

be continuous function supported on (si − ε, si + ε) ⊂ I ′ and satisfying∫ 1

0
gi (s) ds =

∫ si+ε

si−ε
gi (s) ds = 1.

We have that

∂P(q, ζ)

∂ζi

∣∣∣∣
ζ=0

=
∫ 1

0
gi (s)f (q, s) ds ≈ f (q, si )

for all q ∈ Q and i ∈ {1, . . . ,N}. Therefore, if ε > 0 is small enough,

span
{

∂P(q, ζ)

∂ζ1

∣∣∣
ζ=0

, . . . ,
∂P(q, ζ)

∂ζN

∣∣∣
ζ=0

}
= Cn for all q ∈ Q.

This proves Lemma 2, and hence the Main Theorem.



Spaces of conformal minimal immersions M → Rn

Assume that M is an open Riemann surface and n ≥ 3 is an integer.

A conformal minimal immersion X : M → Rn is said to be flat if its
image X (M) lies in an affine 2-plane of Rn; otherwise it is nonflat. Let

M(M, Rn)

denote the space of all conformal minimal immersions M → Rn endowed
with the compact-open topology, and let M∗(M, Rn) denote the open
subset of M(M, Rn) consisting of all nonflat immersions.

Fix a nowhere vanishing holomorphic 1-form θ on M and consider the
maps

M(M, Rn) −→ O(M,A∗) ↪−→ C (M,A∗),

where A∗ = An−1
∗ ⊂ Cn is the punctured null quadric.

The first map is given by X 7→ ∂X/θ, and the second map is the natural
inclusion of the space of all holomorphic maps M → A∗ into the space of
continuous maps.



Path components of the space M∗(M , Rn)

Since A∗ is an Oka manifold, the inclusion O(M,A∗) ↪→ C (M,A∗) is a
weak homotopy equivalence by the main result of Oka theory.

Lárusson and myself recently proved that the restricted map

M∗(M, Rn)→ O(M,A∗), X 7→ ∂X/θ

is also a weak homotopy equivalence. If H1(M; Z) is finitely generated
then both these maps are actually homotopy equivalences.

It follows that the path components of M∗(M, Rn) are in bijective
correspondence with the path components of the space C (M,An−1

∗ ).

Since M is homotopy equivalent to a bouquet of circles, we have

H1(M; Z) ∼= Z`, ` ∈ Z+ ∪ {∞},

π1(A
2
∗) = H1(A∗; Z) = Z2, π1(A

n−1
∗ ) = 0 if n > 3.

Thus, the path components of M∗(M, R3) are in bijective
correspondence with homomorphisms H1(M; Z) ∼= Z` → Z2, hence
with elements of (Z2)

`, and M∗(M, Rn) is path connected if n > 3.



Path components of the space M(M , Rn)

Theorem (Alarcón, López and F.)

Let M be an open connected Riemann surface. The natural inclusion

M∗(M, Rn) ↪→M(M, Rn)

induces a bijection of path components of the two spaces. In particular,
the set π0(M(M, R3)) of path components of M(M, R3) is in bijective
correspondence with the elements of the free abelian group (Z2)

`, where
H1(M; Z) = Z`, and M(M, Rn) is path connected if n > 3.

The case n > 3 trivially follows from the following deformation result.

Theorem (Alarcón, López and F.)

Let M be a connected open Riemann surface. Given a flat conformal
minimal immersion X : M → Rn (n ≥ 3), there exists an isotopy
Xt : M → Rn (t ∈ [0, 1]) of conformal minimal immersions such that
X0 = X and X1 is nonflat.



Proof of the deformation theorem

Clearly it suffices to prove the theorem for n = 3. Let X : M → R3 be a
flat conformal minimal immersion. We may assume that ∂X = (1, i, 0)φ3

where φ3 is an exact holomorphic 1-form without zeros on M.

The gist of the proof is show that there is nonconstant holomorphic
function g : M → C∗ such that gφ3 and g2φ3 are exact 1-forms. This
is similar to the proof of Lemma 1. Then,

Φλ =
(

1− λ2g2, i(1 + λ2g2), 2λg
)

φ3, λ ∈ C

is an exact holomorphic 1-form and the map Φλ/φ3 assumes values in
A∗ ⊂ C3 for every λ ∈ C. Thus, Φλ provides a conformal minimal
immersion Xλ : M → R3 by

Xλ(p) = X (p0) + 2
∫ p

p0
<(Φλ), p ∈ M.

Since Φ0 = ∂X , we have that X0 = X . Furthermore, since g is
nonconstant, X1 is nonflat, and we are done.



Path components of the space M(M , R3)

In dimension n = 3, we obtain the above theorem to the effect that

π0(M(M, R3)) = Z`
2

by using the corresponding result for nonflat immersions,

π0(M∗(M, R3)) = Z`
2,

along with the deformation theorem and the following result.

Theorem
Let M be a connected open Riemann surface and let θ be a nowhere
vanishing holomorphic 1-form on M. For every group homomorphism

p : H1(M; Z) ∼= Z` → Z2

there exists a flat conformal minimal immersion X : M → R3

satisfying H1(∂X/θ) = p.



The Gauss map can omit two points

We also prove the following result concerning isotopies of conformal
minimal immersions into R3.

Theorem

Given an open Riemann surface M and a conformal minimal immersion
X : M → R3, there exists an isotopy

Xt : M → R3, t ∈ [0, 1]

of conformal minimal immersions such that X0 = X and the complex
Gauss map of X1 is nonconstant and avoids any two given points of the
Riemann sphere.

There also exists an isotopy Xt as above such that X0 = X and X1 is flat.

If M is covered by C, then the Gauss map cannot omit three point of
CP1 by Picard’s theorem, unless it is constant and the immersion is flat.



THANK YOU FOR YOUR ATTENTION
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