Recent advances in elliptic complex geometry

Franc Forstnerič

University of Ljubljana

RAFROT, Rincón, March 22, 2010

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A *Stein manifold* is a complex manifold *S* with *many* holomorphic functions $S \to \mathbb{C}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Function-theoretically, S is similar to domains in \mathbb{C} .

A *Stein manifold* is a complex manifold *S* with *many* holomorphic functions $S \to \mathbb{C}$.

Function-theoretically, S is similar to domains in \mathbb{C} .

Examples: Domains in \mathbb{C} . Open Riemann surfaces. Domains of holomorphy in \mathbb{C}^n . Closed complex submanifolds of \mathbb{C}^N .

A Stein manifold is a complex manifold S with many holomorphic functions $S \to \mathbb{C}$.

Function-theoretically, S is similar to domains in \mathbb{C} .

Examples: Domains in \mathbb{C} . Open Riemann surfaces. Domains of holomorphy in \mathbb{C}^n . Closed complex submanifolds of \mathbb{C}^N .

What is the right way to interpret "many functions"?

A Stein manifold is a complex manifold S with many holomorphic functions $S \to \mathbb{C}$.

Function-theoretically, S is similar to domains in \mathbb{C} .

Examples: Domains in \mathbb{C} . Open Riemann surfaces. Domains of holomorphy in \mathbb{C}^n . Closed complex submanifolds of \mathbb{C}^N .

What is the right way to interpret "many functions"?

Several equivalent definitions:

• S is holomorphically convex and holomorphic functions separate points and provide local charts.

A *Stein manifold* is a complex manifold *S* with *many* holomorphic functions $S \to \mathbb{C}$.

Function-theoretically, S is similar to domains in \mathbb{C} .

Examples: Domains in \mathbb{C} . Open Riemann surfaces. Domains of holomorphy in \mathbb{C}^n . Closed complex submanifolds of \mathbb{C}^N .

What is the right way to interpret "many functions"?

Several equivalent definitions:

• S is holomorphically convex and holomorphic functions separate points and provide local charts.

• S is a closed complex submanifold of \mathbb{C}^N , some N.

A *Stein manifold* is a complex manifold *S* with *many* holomorphic functions $S \to \mathbb{C}$.

Function-theoretically, S is similar to domains in \mathbb{C} .

Examples: Domains in \mathbb{C} . Open Riemann surfaces. Domains of holomorphy in \mathbb{C}^n . Closed complex submanifolds of \mathbb{C}^N .

What is the right way to interpret "many functions"?

Several equivalent definitions:

• S is holomorphically convex and holomorphic functions separate points and provide local charts.

- S is a closed complex submanifold of \mathbb{C}^N , some N.
- $H^k(S, \mathscr{F}) = 0$ for all coherent analytic sheaves \mathscr{F} , $k \ge 1$.

A *Stein manifold* is a complex manifold *S* with *many* holomorphic functions $S \to \mathbb{C}$.

Function-theoretically, S is similar to domains in \mathbb{C} .

Examples: Domains in \mathbb{C} . Open Riemann surfaces. Domains of holomorphy in \mathbb{C}^n . Closed complex submanifolds of \mathbb{C}^N .

What is the right way to interpret "many functions"?

Several equivalent definitions:

• S is holomorphically convex and holomorphic functions separate points and provide local charts.

- S is a closed complex submanifold of \mathbb{C}^N , some N.
- $H^k(S, \mathscr{F}) = 0$ for all coherent analytic sheaves \mathscr{F} , $k \ge 1$.
- S has a strictly plurisubharmonic exhaustion function.

Some important complex manifolds X admit *many* holomorphic maps $\mathbb{C} \to X$, and $\mathbb{C}^k \to X$; for example \mathbb{C}^n , \mathbb{P}^n , complex Lie groups and their homogeneous spaces.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Some important complex manifolds X admit *many* holomorphic maps $\mathbb{C} \to X$, and $\mathbb{C}^k \to X$; for example \mathbb{C}^n , \mathbb{P}^n , complex Lie groups and their homogeneous spaces.

Opposite properties: Kobayashi-Eisenman-Brody hyperbolicity (no nonconstant maps $\mathbb{C} \to X$, no maps $\mathbb{C}^k \to X$ of maximal rank,...)

Some important complex manifolds X admit *many* holomorphic maps $\mathbb{C} \to X$, and $\mathbb{C}^k \to X$; for example \mathbb{C}^n , \mathbb{P}^n , complex Lie groups and their homogeneous spaces.

Opposite properties: Kobayashi-Eisenman-Brody hyperbolicity (no nonconstant maps $\mathbb{C} \to X$, no maps $\mathbb{C}^k \to X$ of maximal rank,...)

Can we find a good way to interpret "many"?

Some important complex manifolds X admit *many* holomorphic maps $\mathbb{C} \to X$, and $\mathbb{C}^k \to X$; for example \mathbb{C}^n , \mathbb{P}^n , complex Lie groups and their homogeneous spaces.

Opposite properties: Kobayashi-Eisenman-Brody hyperbolicity (no nonconstant maps $\mathbb{C} \to X$, no maps $\mathbb{C}^k \to X$ of maximal rank,...)

Can we find a good way to interpret "many"?

Start with two classical theorems of 19th century complex analysis.

Some important complex manifolds X admit *many* holomorphic maps $\mathbb{C} \to X$, and $\mathbb{C}^k \to X$; for example \mathbb{C}^n , \mathbb{P}^n , complex Lie groups and their homogeneous spaces.

Opposite properties: Kobayashi-Eisenman-Brody hyperbolicity (no nonconstant maps $\mathbb{C} \to X$, no maps $\mathbb{C}^k \to X$ of maximal rank,...)

Can we find a good way to interpret "many"?

Start with two classical theorems of 19th century complex analysis.

Weierstrass Theorem. On a discrete subset of a domain Ω in \mathbb{C} , we can prescribe the values of a holomorphic function on Ω .

Some important complex manifolds X admit *many* holomorphic maps $\mathbb{C} \to X$, and $\mathbb{C}^k \to X$; for example \mathbb{C}^n , \mathbb{P}^n , complex Lie groups and their homogeneous spaces.

Opposite properties: Kobayashi-Eisenman-Brody hyperbolicity (no nonconstant maps $\mathbb{C} \to X$, no maps $\mathbb{C}^k \to X$ of maximal rank,...)

Can we find a good way to interpret "many"?

Start with two classical theorems of 19th century complex analysis.

Weierstrass Theorem. On a discrete subset of a domain Ω in \mathbb{C} , we can prescribe the values of a holomorphic function on Ω .

Runge Theorem. Let $K \subset \mathbb{C}$ be compact with no holes. Every holomorphic function $K \to \mathbb{C}$ can be approximated uniformly on K by entire functions.

Higher-dimensional generalisations:

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Higher-dimensional generalisations:

Cartan Extension Theorem. If T is a subvariety of a Stein manifold S, then every holomorphic function $T \to \mathbb{C}$ extends to a holomorphic function $S \to \mathbb{C}$.

Higher-dimensional generalisations:

Cartan Extension Theorem. If T is a subvariety of a Stein manifold S, then every holomorphic function $T \to \mathbb{C}$ extends to a holomorphic function $S \to \mathbb{C}$.

Oka-Weil Approximation Theorem. Let K be a holomorphically convex compact subset of a Stein manifold S (i.e., for every point $p \in S \setminus K$ there exists $f \in \mathcal{O}(S)$ such that $|f(p)| > \sup_{K} |f|$). Then every holomorphic function $K \to \mathbb{C}$ can be approximated uniformly on K by holomorphic functions $S \to \mathbb{C}$.

Higher-dimensional generalisations:

Cartan Extension Theorem. If T is a subvariety of a Stein manifold S, then every holomorphic function $T \to \mathbb{C}$ extends to a holomorphic function $S \to \mathbb{C}$.

Oka-Weil Approximation Theorem. Let K be a holomorphically convex compact subset of a Stein manifold S (i.e., for every point $p \in S \setminus K$ there exists $f \in \mathcal{O}(S)$ such that $|f(p)| > \sup_{K} |f|$). Then every holomorphic function $K \to \mathbb{C}$ can be approximated uniformly on K by holomorphic functions $S \to \mathbb{C}$.

These are fundamental properties of Stein manifolds.

Higher-dimensional generalisations:

Cartan Extension Theorem. If T is a subvariety of a Stein manifold S, then every holomorphic function $T \to \mathbb{C}$ extends to a holomorphic function $S \to \mathbb{C}$.

Oka-Weil Approximation Theorem. Let K be a holomorphically convex compact subset of a Stein manifold S (i.e., for every point $p \in S \setminus K$ there exists $f \in \mathcal{O}(S)$ such that $|f(p)| > \sup_K |f|$). Then every holomorphic function $K \to \mathbb{C}$ can be approximated uniformly on K by holomorphic functions $S \to \mathbb{C}$.

These are fundamental properties of Stein manifolds.

We can also view them as properties of the target \mathbb{C} .

Higher-dimensional generalisations:

Cartan Extension Theorem. If T is a subvariety of a Stein manifold S, then every holomorphic function $T \to \mathbb{C}$ extends to a holomorphic function $S \to \mathbb{C}$.

Oka-Weil Approximation Theorem. Let K be a holomorphically convex compact subset of a Stein manifold S (i.e., for every point $p \in S \setminus K$ there exists $f \in \mathcal{O}(S)$ such that $|f(p)| > \sup_K |f|$). Then every holomorphic function $K \to \mathbb{C}$ can be approximated uniformly on K by holomorphic functions $S \to \mathbb{C}$.

These are fundamental properties of Stein manifolds.

We can also view them as properties of the target \mathbb{C} .

Formulate them as properties of an arbitrary target X, with source any Stein manifold (or Stein space).

Oka properties of a complex manifold

A property that a complex manifold X might or might not have:

Basic Oka Property (BOP): For every Stein inclusion $T \hookrightarrow S$ and every compact $\mathcal{O}(S)$ -convex set $K \subset S$, a continuous map $f: S \to X$ that is holomorphic on $K \cup T$ can be deformed to a holomorphic map $F: S \to X$.

The deformation (homotopy) can be kept fixed on T and holomorphic on K (approximating f on K).

Oka properties of a complex manifold

A property that a complex manifold X might or might not have:

Basic Oka Property (BOP): For every Stein inclusion $T \hookrightarrow S$ and every compact $\mathcal{O}(S)$ -convex set $K \subset S$, a continuous map $f: S \to X$ that is holomorphic on $K \cup T$ can be deformed to a holomorphic map $F: S \to X$.

The deformation (homotopy) can be kept fixed on T and holomorphic on K (approximating f on K).

Oka properties of a complex manifold

A property that a complex manifold X might or might not have:

Basic Oka Property (BOP): For every Stein inclusion $T \hookrightarrow S$ and every compact $\mathcal{O}(S)$ -convex set $K \subset S$, a continuous map $f: S \to X$ that is holomorphic on $K \cup T$ can be deformed to a holomorphic map $F: S \to X$.

The deformation (homotopy) can be kept fixed on T and holomorphic on K (approximating f on K).

By Oka-Weil and Cartan, \mathbb{C} , and hence \mathbb{C}^n , satisfy BOP. No hyperbolic (or volume hyperbolic) X has BOP.

Let $Q \subset P$ be compacts in \mathbb{R}^m . Consider maps $f: P \times S \to X$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Let $Q \subset P$ be compacts in \mathbb{R}^m . Consider maps $f: P \times S \to X$.

POP of X: Every lifting in the big square can be deformed through such liftings to a lifting in the left-hand square.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Let $Q \subset P$ be compacts in \mathbb{R}^m . Consider maps $f: P \times S \to X$.

POP of X: Every lifting in the big square can be deformed through such liftings to a lifting in the left-hand square.

Applying POP with parameter pairs $\emptyset \subset S^k$ and $S^k \subset B^{k+1}$ shows that for any POP manifold X and for any Stein manifold S:

$$\pi_k(\mathcal{O}(S,X)) \cong \pi_k(\mathcal{C}(S,X)), \quad \forall k = 0, 1, 2, \dots$$

(日)

Let $Q \subset P$ be compacts in \mathbb{R}^m . Consider maps $f: P \times S \to X$.

POP of X: Every lifting in the big square can be deformed through such liftings to a lifting in the left-hand square.

Applying POP with parameter pairs $\emptyset \subset S^k$ and $S^k \subset B^{k+1}$ shows that for any POP manifold X and for any Stein manifold S:

$$\pi_k(\mathcal{O}(S,X)) \cong \pi_k(\mathcal{C}(S,X)), \quad \forall k = 0, 1, 2, \dots$$

The isomorphisms of homotopy groups are induced by the inclusion $\mathcal{O}(S, X) \hookrightarrow \mathcal{O}(S, X)$.

The Oka-Grauert Principle

Theorem (Grauert, 1957-58): Every complex homogeneous manifold enjoys POP for all pairs of finite polyhedra $Q \subset P$. The analogous result holds for sections of holomorphic *G*-bundles (*G* a complex Lie group) over a Stein space.

The Oka-Grauert Principle

Theorem (Grauert, 1957-58): Every complex homogeneous manifold enjoys POP for all pairs of finite polyhedra $Q \subset P$. The analogous result holds for sections of holomorphic *G*-bundles (*G* a complex Lie group) over a Stein space.

Since every isomorphism between G-bundles is a section of an associated G-bundle, we get

Corollary. The holomorphic and topological classifications of such bundles over Stein spaces coincide.

This holds in particular for complex vector bundles.

The Oka-Grauert Principle

Theorem (Grauert, 1957-58): Every complex homogeneous manifold enjoys POP for all pairs of finite polyhedra $Q \subset P$. The analogous result holds for sections of holomorphic *G*-bundles (*G* a complex Lie group) over a Stein space.

Since every isomorphism between G-bundles is a section of an associated G-bundle, we get

Corollary. The holomorphic and topological classifications of such bundles over Stein spaces coincide.

This holds in particular for complex vector bundles.

Kiyoshi Oka proved this result for line bundles in 1939: A Cousin-II problem is solvable by holomorphic functions if it is solvable by continuous functions.

Elliptic manifolds

Gromov, 1989: A complex manifold X is elliptic if it admits a dominating spray:

A holomorphic map $s: E \to X$ defined on the total space of a holomorphic vector bundle E over X such that $s(0_x) = x$ and $s|E_x \to X$ is a submersion at 0_x for all $x \in X$.

Elliptic manifolds

Gromov, 1989: A complex manifold X is elliptic if it admits a dominating spray:

A holomorphic map $s: E \to X$ defined on the total space of a holomorphic vector bundle E over X such that $s(0_x) = x$ and $s|E_x \to X$ is a submersion at 0_x for all $x \in X$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Elliptic manifolds

Gromov, 1989: A complex manifold X is elliptic if it admits a dominating spray:

A holomorphic map $s: E \to X$ defined on the total space of a holomorphic vector bundle E over X such that $s(0_x) = x$ and $s|E_x \to X$ is a submersion at 0_x for all $x \in X$.

Subelliptic manifold (F. 2002): There exist finitely many sprays $s_j: E_j \rightarrow X$ such that

$$\sum_{j} ds_{j}(E_{j,x}) = T_{x}X, \quad \forall x \in X.$$

Examples of (sub) elliptic manifolds

• A homogeneous X is elliptic: $X \times \mathfrak{g} \xrightarrow{s} X$, $(x, v) \mapsto \exp(v) \cdot x$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Examples of (sub) elliptic manifolds

- A homogeneous X is elliptic: $X \times \mathfrak{g} \xrightarrow{s} X$, $(x, v) \mapsto \exp(v) \cdot x$.
- Assume that X admits \mathbb{C} -complete holomorphic vector fields v_1, \ldots, v_k that span $T_x X$ at every point. Let ϕ_t^j denote the flow of v_j . Then the map $s \colon E = X \times \mathbb{C}^k \to X$,

$$s(x,t_1,\ldots,t_k)=\phi_{t_1}^1\circ\cdots\circ\phi_{t_k}^k(x)$$

is a dominating spray on X_{\cdot}

Examples of (sub) elliptic manifolds

- A homogeneous X is elliptic: $X \times \mathfrak{g} \xrightarrow{s} X$, $(x, v) \mapsto \exp(v) \cdot x$.
- Assume that X admits \mathbb{C} -complete holomorphic vector fields v_1, \ldots, v_k that span $T_x X$ at every point. Let ϕ_t^j denote the flow of v_j . Then the map $s \colon E = X \times \mathbb{C}^k \to X$,

$$s(x, t_1, \ldots, t_k) = \phi_{t_1}^1 \circ \cdots \circ \phi_{t_k}^k(x)$$

is a dominating spray on X.

• A spray of this type exists on $X = \mathbb{C}^n \setminus A$ where A is algebraic subvariety with dim $A \leq n-2$. Use shear vector fields $f(\pi(z))v$ ($v \in \mathbb{C}^n$, $\pi : \mathbb{C}^n \to \mathbb{C}^{n-1}$ linear projection, $\pi(v) = 0$) that vanish on A: f = 0 on $\pi(A) \subset \mathbb{C}^{n-1}$.
Examples of (sub) elliptic manifolds

- A homogeneous X is elliptic: $X \times \mathfrak{g} \xrightarrow{s} X$, $(x, v) \mapsto \exp(v) \cdot x$.
- Assume that X admits \mathbb{C} -complete holomorphic vector fields v_1, \ldots, v_k that span $T_x X$ at every point. Let ϕ_t^j denote the flow of v_j . Then the map $s \colon E = X \times \mathbb{C}^k \to X$,

$$s(x, t_1, \ldots, t_k) = \phi_{t_1}^1 \circ \cdots \circ \phi_{t_k}^k(x)$$

is a dominating spray on X.

• A spray of this type exists on $X = \mathbb{C}^n \setminus A$ where A is algebraic subvariety with dim $A \leq n-2$. Use shear vector fields $f(\pi(z))v$ ($v \in \mathbb{C}^n$, $\pi : \mathbb{C}^n \to \mathbb{C}^{n-1}$ linear projection, $\pi(v) = 0$) that vanish on A: f = 0 on $\pi(A) \subset \mathbb{C}^{n-1}$.

• $\mathbb{P}^n \setminus A$ is subelliptic if A is a subvariety of codimension ≥ 2 .

Examples of (sub) elliptic manifolds

- A homogeneous X is elliptic: $X \times \mathfrak{g} \xrightarrow{s} X$, $(x, v) \mapsto \exp(v) \cdot x$.
- Assume that X admits \mathbb{C} -complete holomorphic vector fields v_1, \ldots, v_k that span $T_x X$ at every point. Let ϕ_t^j denote the flow of v_j . Then the map $s \colon E = X \times \mathbb{C}^k \to X$,

$$s(x, t_1, \ldots, t_k) = \phi_{t_1}^1 \circ \cdots \circ \phi_{t_k}^k(x)$$

is a dominating spray on X.

- A spray of this type exists on $X = \mathbb{C}^n \setminus A$ where A is algebraic subvariety with dim $A \le n-2$. Use shear vector fields $f(\pi(z))v$ ($v \in \mathbb{C}^n$, $\pi : \mathbb{C}^n \to \mathbb{C}^{n-1}$ linear projection, $\pi(v) = 0$) that vanish on A: f = 0 on $\pi(A) \subset \mathbb{C}^{n-1}$.
- $\mathbb{P}^n \setminus A$ is subelliptic if A is a subvariety of codimension ≥ 2 .

Problem: Lack of known functorial properties of (sub)ellipticity

Theorem (Gromov 1989). POP holds in the following cases:

1. Maps $S \rightarrow X$ from a Stein manifold S to an elliptic manifold X.

2. Sections of a holomorphic fiber bundle $Z \rightarrow S$ with elliptic fiber over a Stein manifold *S*.

3. Sections of an elliptic submersion $Z \rightarrow S$ over a Stein S.

Theorem (Gromov 1989). POP holds in the following cases:

1. Maps $S \rightarrow X$ from a Stein manifold S to an elliptic manifold X.

2. Sections of a holomorphic fiber bundle $Z \rightarrow S$ with elliptic fiber over a Stein manifold *S*.

3. Sections of an elliptic submersion $Z \rightarrow S$ over a Stein S.

Elliptic submersion: A holo. submersion $Z \rightarrow S$ with fiber dominating sprays over small open sets in *S*.

Theorem (Gromov 1989). POP holds in the following cases:

1. Maps $S \rightarrow X$ from a Stein manifold S to an elliptic manifold X.

2. Sections of a holomorphic fiber bundle $Z \rightarrow S$ with elliptic fiber over a Stein manifold *S*.

3. Sections of an elliptic submersion $Z \rightarrow S$ over a Stein S.

Elliptic submersion: A holo. submersion $Z \rightarrow S$ with fiber dominating sprays over small open sets in S.

Detailed proofs: Forstnerič & Prezelj, 2000-2002.

Theorem (Gromov 1989). POP holds in the following cases:

1. Maps $S \rightarrow X$ from a Stein manifold S to an elliptic manifold X.

2. Sections of a holomorphic fiber bundle $Z \rightarrow S$ with elliptic fiber over a Stein manifold *S*.

3. Sections of an elliptic submersion $Z \rightarrow S$ over a Stein S.

Elliptic submersion: A holo. submersion $Z \rightarrow S$ with fiber dominating sprays over small open sets in S.

Detailed proofs: Forstnerič & Prezelj, 2000-2002.

F. 2002: Sections of subelliptic submersions $Z \rightarrow S$ satisfy POP.

Theorem (Gromov 1989). POP holds in the following cases:

1. Maps $S \rightarrow X$ from a Stein manifold S to an elliptic manifold X.

2. Sections of a holomorphic fiber bundle $Z \rightarrow S$ with elliptic fiber over a Stein manifold *S*.

3. Sections of an elliptic submersion $Z \rightarrow S$ over a Stein S.

Elliptic submersion: A holo. submersion $Z \rightarrow S$ with fiber dominating sprays over small open sets in S.

Detailed proofs: Forstnerič & Prezelj, 2000-2002.

F. 2002: Sections of subelliptic submersions $Z \rightarrow S$ satisfy POP.

F. 2010: Sections of stratified subelliptic submersions over Stein spaces satisfy POP. (This includes stratified fiber bundles with subelliptic fibers.)

Theorem (Gromov 1989). POP holds in the following cases:

1. Maps $S \rightarrow X$ from a Stein manifold S to an elliptic manifold X.

2. Sections of a holomorphic fiber bundle $Z \rightarrow S$ with elliptic fiber over a Stein manifold *S*.

3. Sections of an elliptic submersion $Z \rightarrow S$ over a Stein S.

Elliptic submersion: A holo. submersion $Z \rightarrow S$ with fiber dominating sprays over small open sets in *S*.

Detailed proofs: Forstnerič & Prezelj, 2000-2002.

F. 2002: Sections of subelliptic submersions $Z \rightarrow S$ satisfy POP.

F. 2010: Sections of stratified subelliptic submersions over Stein spaces satisfy POP. (This includes stratified fiber bundles with subelliptic fibers.)

 $S = S_0 \supset S_1 \supset \cdots \supset S_m = \emptyset$, $M_k = S_k \setminus S_{k+1}$ smooth, the restriction of $Z|M_k$ a subelliptic submersion.

Example: Let $E \to S$ be a holo. vector bundle with fiber $E_x \cong \mathbb{C}^k$, and let $\Sigma \subset E$ be a tame complex subvariety with fibers $\Sigma_x \subset E_x$ of codimension ≥ 2 . Then $E \setminus \Sigma \to S$ is an elliptic submersion. Hence sections $S \to E$ avoiding Σ satisfy POP.

Example: Let $E \to S$ be a holo. vector bundle with fiber $E_x \cong \mathbb{C}^k$, and let $\Sigma \subset E$ be a tame complex subvariety with fibers $\Sigma_x \subset E_x$ of codimension ≥ 2 . Then $E \setminus \Sigma \to S$ is an elliptic submersion. Hence sections $S \to E$ avoiding Σ satisfy POP.

Tameness: The closure of Σ in the associated bundle $\widehat{E} \to S$ with fibers $\widehat{E}_x \cong \mathbb{P}^k$ does not contain the hyperplane at infinity $\widehat{E}_x \setminus E_x \cong \mathbb{P}^{k-1}$ over any point $x \in X$.

Algebraic subvarieties are tame.

Example: Let $E \to S$ be a holo. vector bundle with fiber $E_x \cong \mathbb{C}^k$, and let $\Sigma \subset E$ be a tame complex subvariety with fibers $\Sigma_x \subset E_x$ of codimension ≥ 2 . Then $E \setminus \Sigma \to S$ is an elliptic submersion. Hence sections $S \to E$ avoiding Σ satisfy POP.

Tameness: The closure of Σ in the associated bundle $\widehat{E} \to S$ with fibers $\widehat{E}_x \cong \mathbb{P}^k$ does not contain the hyperplane at infinity $\widehat{E}_x \setminus E_x \cong \mathbb{P}^{k-1}$ over any point $x \in X$.

Algebraic subvarieties are tame.

Applications:

Removal of intersections of maps $S \to \mathbb{C}^n$, \mathbb{P}^n with algebraic subvarieties of codim. ≥ 2 . (Special case: complete intersections.)

Example: Let $E \to S$ be a holo. vector bundle with fiber $E_x \cong \mathbb{C}^k$, and let $\Sigma \subset E$ be a tame complex subvariety with fibers $\Sigma_x \subset E_x$ of codimension ≥ 2 . Then $E \setminus \Sigma \to S$ is an elliptic submersion. Hence sections $S \to E$ avoiding Σ satisfy POP.

Tameness: The closure of Σ in the associated bundle $\widehat{E} \to S$ with fibers $\widehat{E}_x \cong \mathbb{P}^k$ does not contain the hyperplane at infinity $\widehat{E}_x \setminus E_x \cong \mathbb{P}^{k-1}$ over any point $x \in X$.

Algebraic subvarieties are tame.

Applications:

Removal of intersections of maps $S \to \mathbb{C}^n$, \mathbb{P}^n with algebraic subvarieties of codim. ≥ 2 . (Special case: complete intersections.)

Existence of proper holo. embeddings $S^n \hookrightarrow \mathbb{C}^N$, $N = \left[\frac{3n}{2}\right] + 1$, when S^n is Stein and n > 1.

Example: Let $E \to S$ be a holo. vector bundle with fiber $E_x \cong \mathbb{C}^k$, and let $\Sigma \subset E$ be a tame complex subvariety with fibers $\Sigma_x \subset E_x$ of codimension ≥ 2 . Then $E \setminus \Sigma \to S$ is an elliptic submersion. Hence sections $S \to E$ avoiding Σ satisfy POP.

Tameness: The closure of Σ in the associated bundle $\widehat{E} \to S$ with fibers $\widehat{E}_x \cong \mathbb{P}^k$ does not contain the hyperplane at infinity $\widehat{E}_x \setminus E_x \cong \mathbb{P}^{k-1}$ over any point $x \in X$.

Algebraic subvarieties are tame.

Applications:

Removal of intersections of maps $S \to \mathbb{C}^n$, \mathbb{P}^n with algebraic subvarieties of codim. ≥ 2 . (Special case: complete intersections.)

Existence of proper holo. embeddings $S^n \hookrightarrow \mathbb{C}^N$, $N = \left[\frac{3n}{2}\right] + 1$, when S^n is Stein and n > 1.

Existence of proper holo. immersions $S^n \hookrightarrow \mathbb{C}^N$, $N = \begin{bmatrix} \frac{3n+1}{2} \end{bmatrix}$.

・ロト・4週ト・4回ト・回・999で

Example: Let $E \to S$ be a holo. vector bundle with fiber $E_x \cong \mathbb{C}^k$, and let $\Sigma \subset E$ be a tame complex subvariety with fibers $\Sigma_x \subset E_x$ of codimension ≥ 2 . Then $E \setminus \Sigma \to S$ is an elliptic submersion. Hence sections $S \to E$ avoiding Σ satisfy POP.

Tameness: The closure of Σ in the associated bundle $\widehat{E} \to S$ with fibers $\widehat{E}_x \cong \mathbb{P}^k$ does not contain the hyperplane at infinity $\widehat{E}_x \setminus E_x \cong \mathbb{P}^{k-1}$ over any point $x \in X$.

Algebraic subvarieties are tame.

Applications:

Removal of intersections of maps $S \to \mathbb{C}^n$, \mathbb{P}^n with algebraic subvarieties of codim. ≥ 2 . (Special case: complete intersections.)

Existence of proper holo. embeddings $S^n \hookrightarrow \mathbb{C}^N$, $N = \left[\frac{3n}{2}\right] + 1$, when S^n is Stein and n > 1.

Existence of proper holo. immersions $S^n \hookrightarrow \mathbb{C}^N$, $N = \begin{bmatrix} \frac{3n+1}{2} \end{bmatrix}$.

H-principle for holomorphic immersions $S^n \to \mathbb{C}^N$.

<ロ> <@> < E> < E> E のQの

Gromov (1989): Can one characterize BOP and POP by a Runge approximation property for maps $\mathbb{C}^n \to X$? BOP \Longrightarrow POP ?

Gromov (1989): Can one characterize BOP and POP by a Runge approximation property for maps $\mathbb{C}^n \to X$? BOP \Longrightarrow POP ?

Convex Approximation Property (CAP) (F. 2005): Every holomorphic map $K \to X$ from a compact (geometrically!) convex set $K \subset \mathbb{C}^n$ can be approximated uniformly on K by holomorphic maps $\mathbb{C}^n \to X$.

Gromov (1989): Can one characterize BOP and POP by a Runge approximation property for maps $\mathbb{C}^n \to X$? BOP \Longrightarrow POP ?

Convex Approximation Property (CAP) (F. 2005): Every holomorphic map $K \to X$ from a compact (geometrically!) convex set $K \subset \mathbb{C}^n$ can be approximated uniformly on K by holomorphic maps $\mathbb{C}^n \to X$.

Observe that CAP equals BOP in the model case $S = \mathbb{C}^n$, K a convex set in \mathbb{C}^n , and $T = \emptyset$.

Gromov (1989): Can one characterize BOP and POP by a Runge approximation property for maps $\mathbb{C}^n \to X$? BOP \Longrightarrow POP ?

Convex Approximation Property (CAP) (F. 2005): Every holomorphic map $K \to X$ from a compact (geometrically!) convex set $K \subset \mathbb{C}^n$ can be approximated uniformly on K by holomorphic maps $\mathbb{C}^n \to X$.

Observe that CAP equals BOP in the model case $S = \mathbb{C}^n$, K a convex set in \mathbb{C}^n , and $T = \emptyset$.

Theorem (F. 2005, 2006, 2009) CAP \iff POP for any Stein space S as source, and for any compacts $Q \subset P \subset \mathbb{R}^m$.

Gromov (1989): Can one characterize BOP and POP by a Runge approximation property for maps $\mathbb{C}^n \to X$? BOP \Longrightarrow POP ?

Convex Approximation Property (CAP) (F. 2005): Every holomorphic map $K \to X$ from a compact (geometrically!) convex set $K \subset \mathbb{C}^n$ can be approximated uniformly on K by holomorphic maps $\mathbb{C}^n \to X$.

Observe that CAP equals BOP in the model case $S = \mathbb{C}^n$, K a convex set in \mathbb{C}^n , and $T = \emptyset$.

Theorem (F. 2005, 2006, 2009) CAP \iff POP for any Stein space S as source, and for any compacts $Q \subset P \subset \mathbb{R}^m$.

Corollary. All Oka type properties of a complex manifold are equivalent. Such manifolds are called Oka manifolds.

Gromov (1989): Can one characterize BOP and POP by a Runge approximation property for maps $\mathbb{C}^n \to X$? BOP \Longrightarrow POP ?

Convex Approximation Property (CAP) (F. 2005): Every holomorphic map $K \to X$ from a compact (geometrically!) convex set $K \subset \mathbb{C}^n$ can be approximated uniformly on K by holomorphic maps $\mathbb{C}^n \to X$.

Observe that CAP equals BOP in the model case $S = \mathbb{C}^n$, K a convex set in \mathbb{C}^n , and $T = \emptyset$.

Theorem (F. 2005, 2006, 2009) CAP \iff POP for any Stein space S as source, and for any compacts $Q \subset P \subset \mathbb{R}^m$.

Corollary. All Oka type properties of a complex manifold are equivalent. Such manifolds are called Oka manifolds.

F. Lárusson: What is an Oka manifold? Notices Amer. Math. Soc. 57 (2010), no. 1, 50–52.

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then B is Oka if and only if E is Oka.

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then *B* is Oka if and only if *E* is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then *B* is Oka if and only if *E* is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces $\mathbb{C}^n \setminus A$, A tame analytic subvariety of codim. ≥ 2

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then *B* is Oka if and only if *E* is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces $\mathbb{C}^n \setminus A$, A tame analytic subvariety of codim. ≥ 2 $\mathbb{P}^n \setminus A$, A subvariety of codim. ≥ 2

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then B is Oka if and only if E is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces $\mathbb{C}^n \setminus A$, A tame analytic subvariety of codim. ≥ 2 $\mathbb{P}^n \setminus A$, A subvariety of codim. ≥ 2 Hirzebruch surfaces (\mathbb{P}^1 bundles over \mathbb{P}^1)

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then *B* is Oka if and only if *E* is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces $\mathbb{C}^n \setminus A$, A tame analytic subvariety of codim. ≥ 2 $\mathbb{P}^n \setminus A$, A subvariety of codim. ≥ 2 Hirzebruch surfaces (\mathbb{P}^1 bundles over \mathbb{P}^1) Hopf manifolds (quotients of $\mathbb{C}^n \setminus \{0\}$ by a cyclic group)

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then *B* is Oka if and only if *E* is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces $\mathbb{C}^n \setminus A$, A tame analytic subvariety of codim. ≥ 2 $\mathbb{P}^n \setminus A$, A subvariety of codim. ≥ 2 Hirzebruch surfaces (\mathbb{P}^1 bundles over \mathbb{P}^1) Hopf manifolds (quotients of $\mathbb{C}^n \setminus \{0\}$ by a cyclic group) Algebraic manifolds that are locally Zariski affine ($\cong \mathbb{C}^n$);

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then B is Oka if and only if E is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces $\mathbb{C}^n \setminus A$, A tame analytic subvariety of codim. ≥ 2 $\mathbb{P}^n \setminus A$, A subvariety of codim. ≥ 2 Hirzebruch surfaces (\mathbb{P}^1 bundles over \mathbb{P}^1) Hopf manifolds (quotients of $\mathbb{C}^n \setminus \{0\}$ by a cyclic group) Algebraic manifolds that are locally Zariski affine ($\cong \mathbb{C}^n$); certain modifications of such (blowing up points, removing subvarieties of codim. ≥ 2)

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then B is Oka if and only if E is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces $\mathbb{C}^n \setminus A$, A tame analytic subvariety of codim. ≥ 2 $\mathbb{P}^n \setminus A$, A subvariety of codim. ≥ 2 Hirzebruch surfaces (\mathbb{P}^1 bundles over \mathbb{P}^1) Hopf manifolds (quotients of $\mathbb{C}^n \setminus \{0\}$ by a cyclic group) Algebraic manifolds that are locally Zariski affine ($\cong \mathbb{C}^n$); certain modifications of such (blowing up points, removing subvarieties of codim. ≥ 2)

 \mathbb{C}^n blown up at all points of a tame discrete sequence

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then B is Oka if and only if E is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces $\mathbb{C}^n \setminus A$, A tame analytic subvariety of codim. ≥ 2 $\mathbb{P}^n \setminus A$, A subvariety of codim. ≥ 2 Hirzebruch surfaces (\mathbb{P}^1 bundles over \mathbb{P}^1) Hopf manifolds (quotients of $\mathbb{C}^n \setminus \{0\}$ by a cyclic group) Algebraic manifolds that are locally Zariski affine ($\cong \mathbb{C}^n$); certain modifications of such (blowing up points, removing subvarieties of codim. > 2) \mathbb{C}^n blown up at all points of a tame discrete sequence complex torus of dim> 1 with finitely many points removed, or blown up at finitely many points

Theorem. If $E \rightarrow B$ is a holomorphic fiber bundle whose fiber is an Oka manifold, then B is Oka if and only if E is Oka.

Examples of Oka manifolds:

 $\mathbb{C}^n, \mathbb{P}^n$, complex Lie groups and their homog. spaces $\mathbb{C}^n \setminus A$, A tame analytic subvariety of codim. ≥ 2 $\mathbb{P}^n \setminus A$, A subvariety of codim. ≥ 2 Hirzebruch surfaces (\mathbb{P}^1 bundles over \mathbb{P}^1) Hopf manifolds (quotients of $\mathbb{C}^n \setminus \{0\}$ by a cyclic group) Algebraic manifolds that are locally Zariski affine ($\cong \mathbb{C}^n$); certain modifications of such (blowing up points, removing subvarieties of codim. > 2) \mathbb{C}^n blown up at all points of a tame discrete sequence complex torus of dim> 1 with finitely many points removed, or blown up at finitely many points

Question: Is every Oka manifold also elliptic? (Gromov: Every Stein Oka manifold is elliptic.)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

A nonlinear Cousin-I problem

A nonlinear Cousin-I problem

Let (A, B) be a *Cartain pair* in a Stein manifold S (compacts such that $A \cup B$, $A \cap B$ have Stein neighborhood bases).

A nonlinear Cousin-I problem

Let (A, B) be a *Cartain pair* in a Stein manifold S (compacts such that $A \cup B$, $A \cap B$ have Stein neighborhood bases).

Given $f: A \to X$, $g: B \to X$ holomorphic, with $f \approx g$ on $A \cap B$, find a holomorphic map $\tilde{f}: A \cup B \to X$ such that $\tilde{f}|_A \approx f|_A$.

A nonlinear Cousin-I problem

Let (A, B) be a *Cartain pair* in a Stein manifold S (compacts such that $A \cup B$, $A \cap B$ have Stein neighborhood bases).

Given $f: A \to X$, $g: B \to X$ holomorphic, with $f \approx g$ on $A \cap B$, find a holomorphic map $\tilde{f}: A \cup B \to X$ such that $\tilde{f}|_A \approx f|_A$.

• Extend f, g to holomorphic maps

$$F: A \times \mathbb{B}^k \to X, \ G: B \times \mathbb{B}^k \to X,$$

submersive in $z \in \mathbb{B}^k \subset \mathbb{C}^k$; $f = F(\cdot, 0), g = G(\cdot, 0)$.
Methods to prove $CAP \implies POP$

A nonlinear Cousin-I problem

Let (A, B) be a *Cartain pair* in a Stein manifold S (compacts such that $A \cup B$, $A \cap B$ have Stein neighborhood bases).

Given $f: A \to X$, $g: B \to X$ holomorphic, with $f \approx g$ on $A \cap B$, find a holomorphic map $\tilde{f}: A \cup B \to X$ such that $\tilde{f}|_A \approx f|_A$.

• Extend f, g to holomorphic maps

$$F: A imes \mathbb{B}^k \to X, \ G: B imes \mathbb{B}^k \to X,$$

submersive in $z \in \mathbb{B}^k \subset \mathbb{C}^k$; $f = F(\cdot, 0), g = G(\cdot, 0)$.

• Find a holomorphic transition map $\gamma(x, z) = (x, c(x, z))$ over $(A \cap B) \times r \mathbb{B}^k$ $(r < 1), \gamma \approx \text{Id}$, such that $F = G \circ \gamma$.

Methods to prove $CAP \implies POP$

A nonlinear Cousin-I problem

Let (A, B) be a *Cartain pair* in a Stein manifold S (compacts such that $A \cup B$, $A \cap B$ have Stein neighborhood bases).

Given $f: A \to X$, $g: B \to X$ holomorphic, with $f \approx g$ on $A \cap B$, find a holomorphic map $\tilde{f}: A \cup B \to X$ such that $\tilde{f}|_A \approx f|_A$.

• Extend f, g to holomorphic maps

$$F: A imes \mathbb{B}^k \to X, \ G: B imes \mathbb{B}^k \to X,$$

submersive in $z \in \mathbb{B}^k \subset \mathbb{C}^k$; $f = F(\cdot, 0), \ g = G(\cdot, 0).$

• Find a holomorphic transition map $\gamma(x, z) = (x, c(x, z))$ over $(A \cap B) \times r \mathbb{B}^k$ $(r < 1), \gamma \approx \text{Id}$, such that $F = G \circ \gamma$.

• Split

$$\gamma = \beta \circ \alpha^{-1}, \quad \alpha, \beta \approx \text{Id.}$$

Then $F \circ \alpha = G \circ \beta \colon (A \cup B) \times r\mathbb{B}^k \to X$ solves the problem.

Passing a critical point

Passing a critical point p_0 of an exhaustion function ρ on S

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Figure: The set $\Omega_c = \{\tau < c\}, c > 0$.

Grothendieck: Properties of objects (manifolds, varieties) should give rise to corresponding properties of maps (morphisms).

Grothendieck: Properties of objects (manifolds, varieties) should give rise to corresponding properties of maps (morphisms).

Oka properties of a holomorphic map $\pi: E \to B$ refer to liftings in the following diagram, with Stein source S:

Grothendieck: Properties of objects (manifolds, varieties) should give rise to corresponding properties of maps (morphisms).

Oka properties of a holomorphic map $\pi: E \to B$ refer to liftings in the following diagram, with Stein source S:

For a given S-holo. map $f: P \times S \to B$ (with P a compact in \mathbb{R}^m), every continuous lifting F must be homotopic to an S-holo. lifting.

Grothendieck: Properties of objects (manifolds, varieties) should give rise to corresponding properties of maps (morphisms).

Oka properties of a holomorphic map $\pi: E \to B$ refer to liftings in the following diagram, with Stein source S:

For a given S-holo. map $f: P \times S \to B$ (with P a compact in \mathbb{R}^m), every continuous lifting F must be homotopic to an S-holo. lifting.

Theorem (F. 2010) Let $\pi: E \to B$ a stratified holo. submersion. (a) BOP \implies POP, and these are local properties. (b) A stratified holo. fiber bundle with Oka fibers enjoys POP. (c) A stratified subelliptic submersion enjoys POP.

Theorem (Ivarsson and Kutzschebauch, 2009) Let *S* be a Stein manifold and $f: S \to SL_m(\mathbb{C})$ a null-homotopic holomorphic mapping. There exist $k \in \mathbb{N}$ and holomorphic mappings $G_1, \ldots, G_k: S \to \mathbb{C}^{m(m-1)/2}$ such that

$$f(x) = \begin{pmatrix} 1 & 0 \\ G_1(x) & 1 \end{pmatrix} \begin{pmatrix} 1 & G_2(x) \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & G_k(x) \\ 0 & 1 \end{pmatrix}.$$

Theorem (Ivarsson and Kutzschebauch, 2009) Let *S* be a Stein manifold and $f: S \to SL_m(\mathbb{C})$ a null-homotopic holomorphic mapping. There exist $k \in \mathbb{N}$ and holomorphic mappings $G_1, \ldots, G_k: S \to \mathbb{C}^{m(m-1)/2}$ such that

$$f(x) = \begin{pmatrix} 1 & 0 \\ G_1(x) & 1 \end{pmatrix} \begin{pmatrix} 1 & G_2(x) \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & G_k(x) \\ 0 & 1 \end{pmatrix}.$$

Algebraic case: Consider algebraic maps $\mathbb{C}^n \to SL_m(\mathbb{C})$.

Theorem (Ivarsson and Kutzschebauch, 2009) Let *S* be a Stein manifold and $f: S \to SL_m(\mathbb{C})$ a null-homotopic holomorphic mapping. There exist $k \in \mathbb{N}$ and holomorphic mappings $G_1, \ldots, G_k: S \to \mathbb{C}^{m(m-1)/2}$ such that

$$f(x) = \begin{pmatrix} 1 & 0 \\ G_1(x) & 1 \end{pmatrix} \begin{pmatrix} 1 & G_2(x) \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & G_k(x) \\ 0 & 1 \end{pmatrix}.$$

Algebraic case: Consider algebraic maps $\mathbb{C}^n \to SL_m(\mathbb{C}^)$. Cohn (1966): The matrix

$$\left(egin{array}{ccc} 1-z_1z_2&z_1^2\ -z_2^2&1+z_1z_2 \end{array}
ight)\in SL_2(\mathbb{C}[z_1,z_2])$$

does not decompose as a finite product of unipotent matrices.

Theorem (Ivarsson and Kutzschebauch, 2009) Let *S* be a Stein manifold and $f: S \to SL_m(\mathbb{C})$ a null-homotopic holomorphic mapping. There exist $k \in \mathbb{N}$ and holomorphic mappings $G_1, \ldots, G_k: S \to \mathbb{C}^{m(m-1)/2}$ such that

$$f(x) = \begin{pmatrix} 1 & 0 \\ G_1(x) & 1 \end{pmatrix} \begin{pmatrix} 1 & G_2(x) \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & G_k(x) \\ 0 & 1 \end{pmatrix}.$$

Algebraic case: Consider algebraic maps $\mathbb{C}^n \to SL_m(\mathbb{C}^)$. Cohn (1966): The matrix

$$\left(egin{array}{ccc} 1-z_1z_2&z_1^2\ -z_2^2&1+z_1z_2\end{array}
ight)\in {\it SL}_2(\mathbb{C}[z_1,z_2])$$

does not decompose as a finite product of unipotent matrices. Suslin (1977): For $m \ge 3$ (and any n) any matrix in $SL_m(\mathbb{C}^{[n]})$

decomposes as a finite product of unipotent matrices.

Theorem (Ivarsson and Kutzschebauch, 2009) Let *S* be a Stein manifold and $f: S \to SL_m(\mathbb{C})$ a null-homotopic holomorphic mapping. There exist $k \in \mathbb{N}$ and holomorphic mappings $G_1, \ldots, G_k: S \to \mathbb{C}^{m(m-1)/2}$ such that

$$f(x) = \begin{pmatrix} 1 & 0 \\ G_1(x) & 1 \end{pmatrix} \begin{pmatrix} 1 & G_2(x) \\ 0 & 1 \end{pmatrix} \cdots \begin{pmatrix} 1 & G_k(x) \\ 0 & 1 \end{pmatrix}.$$

Algebraic case: Consider algebraic maps $\mathbb{C}^n \to SL_m(\mathbb{C})$. Cohn (1966): The matrix

$$\left(egin{array}{ccc} 1-z_1z_2&z_1^2\ -z_2^2&1+z_1z_2\end{array}
ight)\in {\it SL}_2(\mathbb{C}[z_1,z_2])$$

does not decompose as a finite product of unipotent matrices.

Suslin (1977): For $m \ge 3$ (and any n) any matrix in $SL_m(\mathbb{C}^{[n]})$ decomposes as a finite product of unipotent matrices.

Vaserstein (1988): Factorization of continuous maps,

Define $\Psi_k \colon (\mathbb{C}^{m(m-1)/2})^k o SL_m(\mathbb{C})$ by

$$\Psi_k(g_1,\ldots,g_k)=\left(egin{array}{cc} 1&0\\g_1&1\end{array}
ight)\left(egin{array}{cc} 1&g_2\\0&1\end{array}
ight)\ldots\left(egin{array}{cc} 1&g_k\\0&1\end{array}
ight).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Define $\Psi_k \colon (\mathbb{C}^{m(m-1)/2})^k \to SL_m(\mathbb{C})$ by

$$\Psi_k(g_1,\ldots,g_k)=\left(egin{array}{cc} 1&0\\g_1&1\end{array}
ight)\left(egin{array}{cc} 1&g_2\\0&1\end{array}
ight)\ldots\left(egin{array}{cc} 1&g_k\\0&1\end{array}
ight).$$

We want to find a holomorphic map $G = (g_1, \ldots, g_k) \colon S \to (\mathbb{C}^{m(m-1)/2})^k$ such that the following diagram commutes:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Define $\Psi_k \colon (\mathbb{C}^{m(m-1)/2})^k \to SL_m(\mathbb{C})$ by

$$\Psi_k(g_1,\ldots,g_k)=\left(egin{array}{cc} 1&0\\g_1&1\end{array}
ight)\left(egin{array}{cc} 1&g_2\\0&1\end{array}
ight)\ldots\left(egin{array}{cc} 1&g_k\\0&1\end{array}
ight).$$

We want to find a holomorphic map $G = (g_1, \ldots, g_k) \colon S \to (\mathbb{C}^{m(m-1)/2})^k$ such that the following diagram commutes:

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Vaserstein's result gives a *continuous* lifting of *f*.

Define $\Psi_k \colon (\mathbb{C}^{m(m-1)/2})^k \to SL_m(\mathbb{C})$ by

$$\Psi_k(g_1,\ldots,g_k)=\left(egin{array}{cc} 1&0\\g_1&1\end{array}
ight)\left(egin{array}{cc} 1&g_2\\0&1\end{array}
ight)\ldots\left(egin{array}{cc} 1&g_k\\0&1\end{array}
ight).$$

We want to find a holomorphic map $G = (g_1, \ldots, g_k) \colon S \to (\mathbb{C}^{m(m-1)/2})^k$ such that the following diagram commutes:

Vaserstein's result gives a *continuous* lifting of f. We deform this continuous lifting to a holomorphic lifting by applying the Oka principle to certain auxiliary submersions (row projections $SL_m(\mathbb{C}) \to \mathbb{C}^n$) that are *stratified elliptic*.

• Find a geometric characterisation of Oka manifolds. Clarify the relationship with Gromov's ellipticity.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Find a geometric characterisation of Oka manifolds. Clarify the relationship with Gromov's ellipticity.

Lárusson: Every quasi-projective algebraic X admits an affine bundle $E \rightarrow X$ with Stein total space. If X is Oka then E is elliptic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

• Find a geometric characterisation of Oka manifolds. Clarify the relationship with Gromov's ellipticity.

Lárusson: Every quasi-projective algebraic X admits an affine bundle $E \rightarrow X$ with Stein total space. If X is Oka then E is elliptic.

• Which complex surfaces of non-general type are Oka?

• Find a geometric characterisation of Oka manifolds. Clarify the relationship with Gromov's ellipticity.

Lárusson: Every quasi-projective algebraic X admits an affine bundle $E \rightarrow X$ with Stein total space. If X is Oka then E is elliptic.

- Which complex surfaces of non-general type are Oka?
- Is $\mathbb{C}^n \setminus (\text{closed ball})$ Oka? It contains biholomorphic images of \mathbb{C}^n .

• Find a geometric characterisation of Oka manifolds. Clarify the relationship with Gromov's ellipticity.

Lárusson: Every quasi-projective algebraic X admits an affine bundle $E \rightarrow X$ with Stein total space. If X is Oka then E is elliptic.

- Which complex surfaces of non-general type are Oka?
- Is $\mathbb{C}^n \setminus (\text{closed ball})$ Oka? It contains biholomorphic images of \mathbb{C}^n .
- Let $g: \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{C}$ be a continuous map. Assume that $\pi: E_g = \mathbb{D} \times \mathbb{C} \setminus \Gamma_g \to \mathbb{D}$ is Oka. Then there is a holomorphic map $F: \mathbb{D} \times \mathbb{C}^* \to E_g$ such that the dgm. commutes:

• Find a geometric characterisation of Oka manifolds. Clarify the relationship with Gromov's ellipticity.

Lárusson: Every quasi-projective algebraic X admits an affine bundle $E \rightarrow X$ with Stein total space. If X is Oka then E is elliptic.

- Which complex surfaces of non-general type are Oka?
- Is $\mathbb{C}^n \setminus (\text{closed ball})$ Oka? It contains biholomorphic images of \mathbb{C}^n .
- Let $g: \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{C}$ be a continuous map. Assume that $\pi: E_g = \mathbb{D} \times \mathbb{C} \setminus \Gamma_g \to \mathbb{D}$ is Oka. Then there is a holomorphic map $F: \mathbb{D} \times \mathbb{C}^* \to E_g$ such that the dgm. commutes:

g(z) is the missing value in the range of the map $F(z, \cdot) \colon \mathbb{C}^* \to \mathbb{C}$.

• Find a geometric characterisation of Oka manifolds. Clarify the relationship with Gromov's ellipticity.

Lárusson: Every quasi-projective algebraic X admits an affine bundle $E \rightarrow X$ with Stein total space. If X is Oka then E is elliptic.

- Which complex surfaces of non-general type are Oka?
- Is $\mathbb{C}^n \setminus (\text{closed ball})$ Oka? It contains biholomorphic images of \mathbb{C}^n .
- Let $g: \mathbb{D} = \{z \in \mathbb{C} : |z| < 1\} \to \mathbb{C}$ be a continuous map. Assume that $\pi: E_g = \mathbb{D} \times \mathbb{C} \setminus \Gamma_g \to \mathbb{D}$ is Oka. Then there is a holomorphic map $F: \mathbb{D} \times \mathbb{C}^* \to E_g$ such that the dgm. commutes:

g(z) is the missing value in the range of the map $F(z, \cdot) : \mathbb{C}^* \to \mathbb{C}$. Question: Must g be holomorphic?

Link with homotopy theory

Lárusson 2004: POP is a homotopy-theoretic property.

The category of complex manifolds can be embedded into a model category such that:

- a holomorphic map is acyclic iff it is topologically acyclic.
- a Stein inclusion is a cofibration.
- a holomorphic map is a fibration iff it is a topological fibration and satisfies POP.

Link with homotopy theory

Lárusson 2004: POP is a homotopy-theoretic property.

The category of complex manifolds can be embedded into a model category such that:

- a holomorphic map is acyclic iff it is topologically acyclic.
- a Stein inclusion is a cofibration.
- a holomorphic map is a fibration iff it is a topological fibration and satisfies POP.

Theorem (Lárusson 2004–5). In this model structure, a complex manifold is:

- cofibrant iff it is Stein.
- fibrant iff it has POP.