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What is the right way to interpret “many functions”?

Several equivalent definitions:

• S is holomorphically convex and holomorphic functions separate
points and provide local charts.

• S is a closed complex submanifold of C
N , some N.

• Hk(S , F ) = 0 for all coherent analytic sheaves F , k ≥ 1.

• S has a strictly plurisubharmonic exhaustion function.
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What should the dual notion be?

Some important complex manifolds X admit many holomorphic
maps C → X , and C

k → X ; for example C
n, P

n, complex Lie
groups and their homogeneous spaces.

Opposite properties: Kobayashi-Eisenman-Brody hyperbolicity (no
nonconstant maps C → X , no maps C

k → X of maximal rank,...)

Can we find a good way to interpret “many”?

Start with two classical theorems of 19th century complex analysis.

Weierstrass Theorem. On a discrete subset of a domain Ω in C,
we can prescribe the values of a holomorphic function on Ω.

Runge Theorem. Let K ⊂ C be compact with no holes. Every
holomorphic function K → C can be approximated uniformly on K
by entire functions.
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Cartan Extension Theorem. If T is a subvariety of a Stein
manifold S , then every holomorphic function T → C extends to a
holomorphic function S → C.

Oka-Weil Approximation Theorem. Let K be a holomorphically
convex compact subset of a Stein manifold S (i.e., for every point
p ∈ S\K there exists f ∈ O(S) such that |f (p)| > supK |f |). Then
every holomorphic function K → C can be approximated uniformly
on K by holomorphic functions S → C.

These are fundamental properties of Stein manifolds.

We can also view them as properties of the target C.

Formulate them as properties of an arbitrary target X , with source
any Stein manifold (or Stein space).
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By Oka-Weil and Cartan, C, and hence C
n, satisfy BOP.

No hyperbolic (or volume hyperbolic) X has BOP.
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POP of X : Every lifting in the big square can be deformed through
such liftings to a lifting in the left-hand square.

Applying POP with parameter pairs ∅ ⊂ Sk and Sk ⊂ Bk+1 shows
that for any POP manifold X and for any Stein manifold S :

πk(O(S , X )) ∼= πk(C(S , X )), ∀k = 0, 1, 2, . . .

The isomorphisms of homotopy groups are induced by the inclusion
O(S , X ) →֒ O(S , X ).
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Theorem (Grauert, 1957-58): Every complex homogeneous
manifold enjoys POP for all pairs of finite polyhedra Q ⊂ P.
The analogous result holds for sections of holomorphic G -bundles
(G a complex Lie group) over a Stein space.

Since every isomorphism between G -bundles is a section of an
associated G -bundle, we get

Corollary. The holomorphic and topological classifications of such
bundles over Stein spaces coincide.
This holds in particular for complex vector bundles.

Kiyoshi Oka proved this result for line bundles in 1939: A Cousin-II
problem is solvable by holomorphic functions if it is solvable by
continuous functions.



Elliptic manifolds

Gromov, 1989: A complex manifold X is elliptic if it admits a
dominating spray:
A holomorphic map s : E → X defined on the total space of a
holomorphic vector bundle E over X such that s(0x) = x and
s|Ex → X is a submersion at 0x for all x ∈ X .



Elliptic manifolds

Gromov, 1989: A complex manifold X is elliptic if it admits a
dominating spray:
A holomorphic map s : E → X defined on the total space of a
holomorphic vector bundle E over X such that s(0x) = x and
s|Ex → X is a submersion at 0x for all x ∈ X .

b

b

b
e s

X
x

Ex



Elliptic manifolds

Gromov, 1989: A complex manifold X is elliptic if it admits a
dominating spray:
A holomorphic map s : E → X defined on the total space of a
holomorphic vector bundle E over X such that s(0x) = x and
s|Ex → X is a submersion at 0x for all x ∈ X .

b

b

b
e s

X
x

Ex

Subelliptic manifold (F. 2002): There exist finitely many sprays
sj : Ej → X such that

∑

j

dsj(Ej ,x) = TxX , ∀x ∈ X .
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• A homogeneous X is elliptic: X × g →s X , (x , v) 7→ exp(v) · x .

• Assume that X admits C-complete holomorphic vector fields
v1, . . . , vk that span TxX at every point. Let φ

j
t denote the flow of

vj . Then the map s : E = X × C
k → X ,

s(x , t1, . . . , tk) = φ1
t1
◦ · · · ◦ φk

tk
(x)

is a dominating spray on X .

• A spray of this type exists on X = C
n\A where A is algebraic

subvariety with dimA ≤ n − 2.
Use shear vector fields f (π(z))v (v ∈ C

n, π : C
n → C

n−1 linear
projection, π(v) = 0) that vanish on A: f = 0 on π(A) ⊂ C

n−1.

• P
n\A is subelliptic if A is a subvariety of codimension ≥ 2.

Problem: Lack of known functorial properties of (sub)ellipticity
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Gromov’s Oka principle

Theorem (Gromov 1989). POP holds in the following cases:
1. Maps S → X from a Stein manifold S to an elliptic manifold X .
2. Sections of a holomorphic fiber bundle Z → S with elliptic fiber
over a Stein manifold S .
3. Sections of an elliptic submersion Z → S over a Stein S .

Elliptic submersion: A holo. submersion Z → S with fiber
dominating sprays over small open sets in S .

Detailed proofs: Forstnerič & Prezelj, 2000-2002.

F. 2002: Sections of subelliptic submersions Z → S satisfy POP.

F. 2010: Sections of stratified subelliptic submersions over Stein
spaces satisfy POP. (This includes stratified fiber bundles with
subelliptic fibers.)

S = S0 ⊃ S1 ⊃ · · · ⊃ Sm = ∅, Mk = Sk\Sk+1 smooth, the
restriction of Z |Mk a subelliptic submersion.
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fibers Êx
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fibers Êx
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fibers Êx
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H-principle for holomorphic immersions Sn → C
N .
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Convex Approximation Property (CAP) (F. 2005):
Every holomorphic map K → X from a compact (geometrically!)
convex set K ⊂ C

n can be approximated uniformly on K by
holomorphic maps C

n → X .

Observe that CAP equals BOP in the model case S = C
n, K a

convex set in C
n, and T = ∅.

Theorem (F. 2005, 2006, 2009) CAP ⇐⇒ POP for any Stein
space S as source, and for any compacts Q ⊂ P ⊂ R

m.

Corollary. All Oka type properties of a complex manifold are
equivalent. Such manifolds are called Oka manifolds.

F. Lárusson: What is an Oka manifold?
Notices Amer. Math. Soc. 57 (2010), no. 1, 50–52.
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Properties and examples

Theorem. If E → B is a holomorphic fiber bundle whose fiber is
an Oka manifold, then B is Oka if and only if E is Oka.

Examples of Oka manifolds:

C
n, Pn, complex Lie groups and their homog. spaces

C
n\A, A tame analytic subvariety of codim. ≥ 2

P
n\A, A subvariety of codim. ≥ 2

Hirzebruch surfaces (P1 bundles over P
1)

Hopf manifolds (quotients of C
n\{0} by a cyclic group)

Algebraic manifolds that are locally Zariski affine (∼= C
n);

certain modifications of such (blowing up points, removing
subvarieties of codim. ≥ 2)
C

n blown up at all points of a tame discrete sequence
complex torus of dim> 1 with finitely many points removed, or
blown up at finitely many points

Question: Is every Oka manifold also elliptic? (Gromov: Every
Stein Oka manifold is elliptic.)
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Methods to prove CAP =⇒ POP

A nonlinear Cousin-I problem

Let (A, B) be a Cartain pair in a Stein manifold S (compacts such
that A ∪ B, A ∩ B have Stein neighborhood bases).

Given f : A → X , g : B → X holomorphic, with f ≈ g on A ∩ B,
find a holomorphic map f̃ : A ∪ B → X such that f̃ |A ≈ f |A.

• Extend f , g to holomorphic maps

F : A × B
k → X , G : B × B

k → X ,

submersive in z ∈ B
k ⊂ C

k ; f = F (· , 0), g = G (· , 0).

• Find a holomorphic transition map γ(x , z) = (x , c(x , z)) over
(A ∩ B) × rBk (r < 1), γ ≈ Id, such that F = G ◦ γ.

• Split
γ = β ◦ α−1, α, β ≈ Id.

Then F ◦ α = G ◦ β : (A ∪ B) × rBk → X solves the problem.



Passing a critical point

Passing a critical point p0 of an exhaustion function ρ on S

{ρ = −t0}

Ωc

E

b

p0

{ρ < c − t1}{ρ < c − t1}

Figure: The set Ωc = {τ < c}, c > 0.
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From manifolds to maps

Grothendieck: Properties of objects (manifolds, varieties) should
give rise to corresponding properties of maps (morphisms).

Oka properties of a holomorphic map π : E → B refer to liftings in
the following diagram, with Stein source S :

E

π

��
P × S

f //

F

<<xxxxxxxxx

B

For a given S-holo. map f : P × S → B (with P a compact in R
m),

every continuous lifting F must be homotopic to an S-holo. lifting.

Theorem (F. 2010) Let π : E → B a stratified holo. submersion.
(a) BOP =⇒ POP, and these are local properties.
(b) A stratified holo. fiber bundle with Oka fibers enjoys POP.
(c) A stratified subelliptic submersion enjoys POP.



Recent application to Gromov-Vaserstein Problem
Theorem (Ivarsson and Kutzschebauch, 2009)
Let S be a Stein manifold and f : S → SLm(C) a null-homotopic
holomorphic mapping. There exist k ∈ N and holomorphic
mappings G1, . . . ,Gk : S → C
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Recent application to Gromov-Vaserstein Problem
Theorem (Ivarsson and Kutzschebauch, 2009)
Let S be a Stein manifold and f : S → SLm(C) a null-homotopic
holomorphic mapping. There exist k ∈ N and holomorphic
mappings G1, . . . ,Gk : S → C

m(m−1)/2 such that

f (x) =

(
1 0

G1(x) 1

)(
1 G2(x)
0 1

)
. . .

(
1 Gk(x)
0 1

)
.

Algebraic case: Consider algebraic maps C
n → SLm(C).

Cohn (1966): The matrix
(

1 − z1z2 z2
1

−z2
2 1 + z1z2

)
∈ SL2(C[z1, z2])

does not decompose as a finite product of unipotent matrices.

Suslin (1977): For m ≥ 3 (and any n) any matrix in SLm(C[n])
decomposes as a finite product of unipotent matrices.

Vaserstein (1988): Factorization of continuous maps.
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Idea of proof
Define Ψk : (Cm(m−1)/2)k → SLm(C) by

Ψk(g1, . . . , gk) =

(
1 0
g1 1

)(
1 g2

0 1

)
. . .

(
1 gk

0 1

)
.

We want to find a holomorphic map
G = (g1, . . . , gk) : S → (Cm(m−1)/2)k such that the following
diagram commutes:

(Cm(m−1)/2)k

Ψk

��
S

f
//

G
99ttttttttttt
SLm(C)

Vaserstein’s result gives a continuous lifting of f .
We deform this continuous lifting to a holomorphic lifting by
applying the Oka principle to certain auxiliary submersions (row
projections SLm(C) → C

n) that are stratified elliptic.
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A few open problems
• Find a geometric characterisation of Oka manifolds. Clarify the
relationship with Gromov’s ellipticity.

Lárusson: Every quasi-projective algebraic X admits an affine
bundle E → X with Stein total space. If X is Oka then E is elliptic.

• Which complex surfaces of non-general type are Oka?

• Is C
n\(closed ball) Oka? It contains biholomorphic images of C

n.

• Let g : D = {z ∈ C : |z | < 1} → C be a continuous map.
Assume that π : Eg = D × C\Γg → D is Oka. Then there is a
holomorphic map F : D × C

∗ → Eg such that the dgm. commutes:

D × C
∗

proj
##GG

GG
GG

GG
GG

F // Eg

π

��
D

g(z) is the missing value in the range of the map F (z , · ) : C
∗ → C.

Question: Must g be holomorphic?
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Link with homotopy theory

Lárusson 2004: POP is a homotopy-theoretic property.

The category of complex manifolds can be embedded into a model
category such that:
• a holomorphic map is acyclic iff it is topologically acyclic.
• a Stein inclusion is a cofibration.
• a holomorphic map is a fibration iff it is a topological fibration
and satisfies POP.

Theorem (Lárusson 2004–5). In this model structure, a complex
manifold is:
• cofibrant iff it is Stein.
• fibrant iff it has POP.


