
Complete conformal minimal surfaces with Jordan
boundaries in Rn

Franc Forstnerič
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From Euler’s area minimizing surfaces of rotation. . .

1744 Euler The only area minimizing surfaces of rotation in R3 are planes
and catenoids.



. . . to the concept of a minimal surface

Meusnier 1776 A smooth surface M ⊂ R3 is locally area minimizing
(among the surfaces with the same boundary) if and only if its mean
curvature function H vanishes everywhere.

Definition

A smoothly immersed surface M → Rn is said to be a minimal surface
if its mean curvature vector H : M → Rn is identically zero: H = 0.

For n = 3 and working in isothermal coordinates we have H = H ·N,
where N is the unit normal vector field to M and

H =
κ1 + κ2

2

is the mean curvature function. Here, κ1 and κ2 are the principal
curvatures of the surface. Their product K = κ1κ2 : M → R is the
Gauss curvature function of M. Note that H = 0⇒ K ≤ 0.



The helicoid (Archimedes’ screw)

1776 Meusnier The helicoid is a minimal surface.

x = ρ cos(αθ), y = ρ sin(αθ), z = θ

1842 Catalan The helicoid and the plane are the only ruled minimal
surfaces in R3 (unions of straight lines).



Conformal minimal = conformal harmonic

Let M be an open Riemann surface and let u = (u1, . . . , un) : M → Rn

be a smooth immersion for some n ≥ 3. The following are equivalent:

u is conformal minimal: H(u) = 0.

u is conformal harmonic: 4u = 0.

∂u = (∂u1, . . . , ∂un) is a holomorphic 1-form on M satisfying

(∂u1)
2 + (∂u2)

2 + · · ·+ (∂un)
2 = 0.

Hence every conformal minimal immersion u : M → Rn is of the form

u(x) = u(p) +
∫ x

p
<ϑ (p, x ∈ M)

where ϑ = (ϑ1, . . . , ϑn) is a Cn-valued holomorphic 1-form on M
satisfying ϑ2

1 + · · ·+ ϑ2
n = 0 and |ϑ1|2 + · · ·+ |ϑn|2 > 0.



The Plateau problem

1873 Plateau Minimal surfaces can be obtained as soap films.

1932 Douglas, Radó Every continuous injective closed curve in Rn for
n ≥ 3 spans a minimal surface.

1965 Calabi’s Conjecture: Bounded minimal surfaces in R3 can not be
complete.



First main theorem

An immersion u : M → Rn is said to be complete if the pullback u∗ds2

of the Euclidean metric on Rn is a complete metric on M. Equivalently,
the image in Rn of any divergent curve in M has infinite length.

Theorem (1)

Let M be a compact bordered Riemann surface. Every conformal
minimal immersion u0 : M → Rn (n ≥ 3) of class C 1(M) can be
approximated arbitrarily closely in the C 0(M) topology by a continuous
map u : M → Rn such that

u|M̊ : M̊ = M \ bM → Rn is a conformal complete minimal
immersion, and

u|bM : bM → Rn is a topological embedding.

In particular, u(bM) ⊂ Rn consists of finitely many (necessarily non
rectifiable) Jordan curves.

If n ≥ 5 there exist embeddings u : M ↪→ Rn with these properties.



Comments and history

Theorem 1 shows that every finite collection of smooth Jordan curves in
Rn spanning a connected minimal surface can be uniformly approximated
by families of Jordan curves spanning complete connected minimal
surfaces. Hence it can be viewed as an approximate solution of the
Plateau problem by complete minimal surfaces. It gives the most
decisive known counterexample to the Calabi Conjecture.

This is the first result of its kind in the literature which provides the
control of both

(a) the conformal type of M (any bordered Riemann surface), and

(b) the topology of the boundary u(bM) ⊂ Rn (Jordan curves).

There exist several previous results concerning part (a), but without the
control of the conformal structure (Nadirashvili 1996, Mart́ın and
Nadirashvili 2007, Alarcón 2010, Alarcón and López 2014).

Earlier attempts to control the topology of the boundary (part (b)) were
inconclusive (incomplete proofs).



Holomorphic null curves in Cn

We shall now explain the tools used in the proof.
Let M be an open or a compact bordered Riemann surface.

Definition
A holomorphic immersion

F = (F1, F2, . . . , Fn) : M → Cn

is a null curve if the derivative F ′ = (F ′1, F ′2, . . . , F ′n) with respect to any
local holomorphic coordinate ζ = x + iy on M satisfies

(F ′1)
2 + (F ′2)

2 + . . . + (F ′n)
2 = 0.

We denote by A ⊂ Cn the null quadric

A = {z = (z1, . . . , zn) ∈ Cn :
n

∑
j=1

z2j = 0}.

The nullity condition is equivalent to F ′(ζ) ∈ A∗ = A \ {0}.



Connection between null curves and minimal surfaces

If F = u + iv : M → Cn is a holomorphic null curve, then

u = <F : M → Rn, v = =F : M → Rn

are conformal harmonic (hence minimal) immersions into Rn.

Conversely, a conformal minimal immersion u : D→ Rn of the disc
D = {ζ ∈ C : |ζ| < 1} is the real part of a holomorphic null curve
F : D→ Cn. (This fails on multiply connected Riemann surfaces.)

If F = u + iv : M → Cn is a null curve then

F ∗ds2Cn = 2u∗ds2Rn = 2v∗ds2Rn .

Hence the real and the imaginary part of a complete null
curve in Cn are complete conformal minimal surfaces in Rn.



Example: catenoid and helicoid

Example: The catenoid and the helicoid are conjugate minimal
surfaces – the real and the imaginary part of the same null curve

F (ζ) = (cos ζ, sin ζ,−iζ) ∈ C3, ζ = x + iy ∈ C.

Consider the following family of minimal surfaces in R3 for t ∈ R:

ut(ζ) = <
(

eitF (ζ)
)

= cos t

cos x · cosh y
sin x · cosh y

y

+ sin t

 sin x · sinh y
− cos x · sinh y

x


At t = 0 we have a catenoid and at t = ±π/2 a helicoid.



Helicatenoid (Source: Wikipedia)

The family of minimal surfaces ut(ζ) = <
(
eitF (ζ)

)
, t ∈ R:



Connection with Oka theory

It is not a big exaggeration to say that the theory of minimal surfaces in
Rn, and the companion theory of holomorphic null curves in Cn, is an
application of the fact that the punctured null quadric

A∗ = {z = (z1, . . . , zn) ∈ Cn
∗ :

n

∑
j=1

z2j = 0}

is an elliptic manifold, and hence an Oka manifold.

In fact, the linear (hence complete) holomorphic vector fields

Vi ,j = zi
∂

∂zj
− zj

∂

∂zi
, 1 ≤ i < j ≤ n

span the tangent space to A∗ at every point.



Riemann-Hilbert method for null discs in C3

Lemma

Let F : D→ C3 be a null disc of class A 1(D). Assume that

I is a proper closed segment in the circle T = bD,

r : T→ [0, 1] is a continuous function supported on I , and

σ : I ×D→ C3 is a map of class C 1 such that for every ζ ∈ I the
map D 3 z 7→ σ(ζ, z) is an immersed null disc with σ(ζ, 0) = 0.

Let κ : T×D→ C3 be given by

κ(ζ, z) = F (ζ) + σ
(
ζ, r(ζ)z

)
.

Given numbers ε > 0, 0 < ρ0 < 1 and an open neighborhood U of I in
D, there exist a number ρ′ ∈ [ρ0, 1) and a null holomorphic immersion
G : D→ C3 such that G (0) = F (0) and

i) dist(G (ζ),κ(ζ, T)) < ε for all ζ ∈ T,

ii) dist(G (ρζ),κ(ζ, D)) < ε for all ζ ∈ T and all ρ ∈ [ρ′, 1), and

iii) G is ε-close to F in the C 1 topology on (D \ U) ∪ ρ′D.



Riemann-Hilbert lemma for null discs in Cn, n > 3

Let Θ denote the holomorphic bilinear form on Cn given by

Θ(z , w) =
n

∑
j=1

zjwj ,

so An−1 = {z ∈ Cn : Θ(z , z) = z21 + . . . + z2n = 0}.

We prove the same lemma also for n > 3 provided that the null discs,
attached to F (ζ) at boundary points ζ ∈ T, have constant null direction:

κ(ζ, z) = F (ζ) + σ
(
ζ, r(ζ)z

)
u

and the direction null vector u ∈ An−1
∗ satisfies

Θ(u, F ′(ζ)) 6= 0 ∀ζ ∈ D.



Riemann-Hilbert method for minimal surfaces

Two further generalizations are used in our constructions:

1 The central null disc D→ Cn can be replaced by a null curve
F : M → Cn, where M is any compact bordered Riemann surface.

The stated lemmas are used on small discs abutting boundary arcs in
bM, and the deformations furnished by these lemmas are glued with
the identity map on the rest of M by the gluing-of-sprays technique.

2 By considering real parts of null curves we also get the
corresponding Riemann-Hilbert lemma for conformal minimal
immersions u : M → Rn, n ≥ 3.



Outline of proof of Theorem 1

Theorem 1 is obtained by a recursive application of the following lemma.

Lemma (1)

Let M be a compact bordered Riemann surface, let n ≥ 3 be a natural
number, and let u : M → Rn be a conformal minimal immersion.

Given a point p0 ∈ M̊ and numbers ε > 0 (small), λ > 0 (big), there is a
conformal minimal immersion û : M → Rn such that

||û − u||0,M < ε, distû(p0, bM) > λ.

Furthermore, we use that for a generic conformal minimal immersion
u : M → Rn (n ≥ 3) the boundary u : bM → Rn is embedded;
if n ≥ 5 then a generic such u is an embedding M ↪→ Rn.

A. Alarcón, F. F., F.J. López, arxiv.org/abs/1409.6901.



The main lemma

Lemma 1 follows by a recursive application of the following result.

Lemma (2)

Consider a conformal minimal immersion u : M → Rn (n ≥ 3), a smooth
map g : bM → Rn, and a number δ > 0 such that

‖u − g‖0,bM < δ.

Fix a point p0 ∈ M̊. For each d > 0 there is a conformal minimal
immersion û : M → Rn satisfying the following properties:

(a) ‖û − g‖0,bM <
√

δ2 + d2.

(b) distû(p0, bM) > distu(p0, bM) + d.

(c) û is arbitrarilly close to u on a given compact K ⊂ M̊.



Lemma 2 =⇒ Lemma 1

Let ε > 0 be as in Lemma 1. Pick δ0 with 0 < δ0 < ε and set

d0 = distu(p0, bM), c =

√
6(ε2 − δ20)

π
> 0.

Consider the following sequences defined recursively:

dj := dj−1 +
c

j
> 0, δj :=

√
δ2j−1 +

c2

j2
> 0, j ∈N.

Then limj→∞ dj = +∞ and limj→∞ δj = ε.

Lemma 2 furnishes a sequence uj : M → Rn of conformal minimal
immersions satisfying

‖uj − u‖0,bM < δj < ε, distuj (p0, bM) > dj .

Thus distuj (p0, bM) > dj > λ for any large enough j ∈ Z+.



Outline of proof of Lemma 2, part 1

By general position we may assume that

u(p)− g(p) 6= 0 for all p ∈ bM.

The key idea is to push the u-image of each point p ∈ bM a
distance approximately d in a direction approximately orthogonal to
the vector u(p)− g(p) ∈ Rn. Conditions (a) and (b) will then
follow from Pythagoras’ Theorem.

However, this procedure by itself will likely create shortcuts in the
new induced metric. Hence we divide bM to finitely many very short
arcs I1, . . . , Ik so that both g and u vary very little on each Ij when
compared to the size d of the desired displacement.

At each of the endpoints xj = u(pj ) ∈ Rn of these arcs we attach
to u(M) ⊂ Rn a smooth arc λj which remains near xj , but is
spinning fast and has projection of length > d on each line spanned
by one of the vectors u(pi )− g(pi ), i = 1, . . . , k .



Outline of proof, part 2

By the method of exposing boundary points we modify u locally
near pj so that the new immersion ũ follows the arc λj very closely
up to the other endpoint ũ(pj ) = qj of λj . Hence any curve in M
terminating on bM near pj is elongated by approximately d .

To this new u = ũ we apply the Riemann-Hilbert method to find a
conformal minimal immersion û : M → Rn which at a point x ∈ Ij
adds a displacement for approximately d in a direction approximately
orthogonal to the vector u(pj )− g(pj ) ∈ Rn.

The intrinsic boundary distance with respect to the metric û∗ds2

increases by approximately d (Pythagoras), while

|û(x)− g(x)| ≈
√
|u(x)− g(x)|2 + d2 ≤

√
δ2 + d2.



A few remarks

1 In our construction the vector û(x)− u(x) is spiralling very fast as x
traces the arc Ij , due to the nature of solutions of Riemann-Hilbert
boundary value problems.

2 The idea of enlarging the intrinsic boundary distance by
spiraling is reminiscent of Nash’s 1956 construction of C 1 isometric
immersion of Riemannian manifolds Mn into Rn+2. Due to
curvature obstructions, his immersions can not be C 2 unless the
target dimension is sufficiently big.

3 In our case, complete immersions can be continuous but not C 1 (not
even Lipschitz) up the boundary of M. Furthermore, if u : M → Rn

is a complete conformal minimal immersion then the curves in
u(bM) are non rectifiable due to the isoperimetric inequality.

4 Analogous results can be proved for complex curves in Cn, n ≥ 2,
and for holomorphic null curves in Cn, n ≥ 3.



Proper conformal minimal surfaces in convex domains

The same tools are used to prove the following results on proper
complete conformal minimal immersions.

Theorem (2)

Let D be a convex domain in Rn for some n ≥ 3, and let M is a compact
bordered Riemann surface.

(a) Every conformal minimal immersion u : M → D of class C 1(M) can
be approximated, uniformly on compacts in M̊, by conformal
complete proper minimal immersions ũ : M̊ → D.

(b) If n ≥ 5 then ũ can be chosen an embedding.

(c) If D has smooth strongly convex boundary then ũ can be chosen
continuous on M.

In the proof we alternately apply Lemma 1 above (to enlarge the intrinsic
boundary distance) and the Riemann-Hilbert method.



Minimally convex domains in R3

Definition

A domain D ⊂ R3 is minimally convex (or mean convex) if it admits a
smooth exhaustion function u : D → R which is 2-plurisubharmonic, in
the sense that the sum of the smallest two eigenvalues of Hess u is
positive at every point of D.

Let D be a domain in R3 with C 2 boundary. Denote by κ1(x) and κ2(x)
the principal curvatures of bD from the interior side at x ∈ bD. Such D
is minimally convex if and only if bD is mean-convex in the sense that

κ1(x) + κ2(x) ≥ 0 ∀x ∈ bD.

The domain D is said to be strongly minimally convex if
κ1(x) + κ2(x) > 0 for every x ∈ bD.

A domain bounded by a minimal surface Σ ⊂ R3 is minimally convex
since in this case κ1(x) + κ2(x) = 0 for every x ∈ Σ.



Conformal minimal surfaces in minimally convex domains

Theorem (3)

Let D be a minimally convex domain in R3 and let M be a compact
bordered Riemann surface.

Every conformal minimal immersion u : M → D of class C 1(M) can be
approximated, uniformly on compacts in M̊ = M \ bM, by conformal
complete proper minimal immersions ũ : M̊ → D.

If D is bounded and bD is C 2 strongly mean-convex, then ũ can be
chosen continuous on M.

Minimal convexity is an optimal condition for this result:
if bD is strongly mean-concave near some point p ∈ bD then, by
maximum principle, there exist no proper conformal minimal surfaces
M → D in a small neighbourhood of p in D.
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