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Abstract

We will show how complex analytic methods can be used for
constructions of orientable and also non-orientable minimal surfaces
in Rn for any ≥ 3. In particular, we obtain

the Runge-Mergelyan approximation theorem for conformal minimal
surfaces in Rn;

general position and properness theorems;

complete minimal surfaces in Rn bounded by Jordan curves;

(complete) proper minimal surfaces in convex domains in Rn

(n ≥ 3) and in minimally convex domains in R3.

Based on joint work with

Antonio Alarcón and Francisco J. López, University of Granada

Barbara Drinovec Drnovšek, University of Ljubljana



A brief history of minimal surface theory

1744 Euler The only area minimizing surfaces of rotation in R3 are planes
and catenoids.

1760 Lagrange: A graph z = f (x , y) is area minimizing if and only if

div

(
∇f√

1 + |∇f |2

)
= 0.

1776 Meusnier A smooth surface S ⊂ R3 satisfies locally the above
equation iff its mean curvature function H vanishes identically.
The helicoid is a minimal surface.

1873 Plateau Minimal surfaces can be obtained as soap films.

1932 Douglas, Radó Every Jordan curve in R3 spans a minimal surface.

1965 Calabi’s Conjecture: Every complete minimal surface in R3 is
unbounded. (Complete: every divergent curve has infinite length.)
This conjecture, which is wrong as stated, opened a major direction.

2000 S.-T. Yau: The Calabi-Yau Problem.



Conformal minimal = conformal harmonic

Theorem (Classical; see e.g. Osserman, A survey of minimal
surfaces, Dover, New York,1986)

Let M be a surface endowed with a conformal structure. The following
are equivalent for a conformal immersion X : M → Rn (n ≥ 3):

X is minimal (a stationary point of the area functional).

X has identically vanishing mean curvature vector: H = 0.

X is harmonic: 4X = 0.

Indeed, direct calculations show that

4X = 2ξH

where
ξ = |Xu |2 = |Xv |2

and ζ = u + iv be a local holomorphic coordinate on M.



Weierstrass representation

Let M be an open Riemann surface and X = (X1, . . . ,Xn) : M → Rn be
a smooth immersion. Fix a nonvanishing holomorphic 1-form θ on M.

Conformality of X is equivalent to the nullity condition

(∂X1)
2 + (∂X2)

2 + · · ·+ (∂Xn)
2 = 0.

Hence ∂X = fθ, where the map f : M → Cn assumes values in

A∗ = {z = (z1, . . . , zn) ∈ Cn \ {0} :
n

∑
j=1

z2j = 0} (null quadric).

Since ∂̄∂X = ∂̄f ∧ θ, X is harmonic iff f = ∂X/θ is holomorphic.

Conclusion: Every conformal minimal immersion M → Rn is of the form

X(p) = X(p0) + 2
∫ p

p0
< (fθ) , p0, p ∈ M,

where f : M → A∗ is holomorphic and the real periods of fθ vanish.



Holomorphic null curves

The flux homomorphism Flux(X) : H1(M; Z)→ Rn:

Flux(X)(γ) =
∫

γ
dcX = 2

∫
γ
= (fθ) , [γ] ∈ H1(M; Z).

If Flux(X) = 0, then

Z(p) =
∫ p

·
fθ ∈ Cn, p ∈ M

is a holomorphic null curve Z = (Z1, . . . ,Zn) : M → Cn, i.e.,

(∂Z1)
2 + (∂Z2)

2 + · · ·+ (∂Zn)
2 = 0.

The real and the imaginary part of a holomorphic null curve
Z = X + iY : M → Cn are conformal minimal immersions M → Rn.
The converse holds on the disk D = {ζ ∈ C : |ζ| < 1}.



Runge-Mergelyan approximation theorem

Let M be an open Riemann surface.

Theorem (1)

If K is a compact Runge subset of M, then every conformal minimal
immersion K → Rn can be approximated by proper conformal minimal
immersions M → Rn; embeddings if n ≥ 5.

The analogous result holds for null holomorphic curves M → Cn, n ≥ 3.

A. Alarcón, F. Forstnerič, Inventiones Math. 196 (2014)
A. Alarcón, F. Forstnerič, F.J. López, Embedded minimal surfaces
in Rn. Math. Z. 283(1) (2016)

n = 3: A. Alarcón, F.J. López: J. Diff. Geom. 90 (2012)

Open Problem: Does every Riemann surface admit a proper conformal
minimal embedding in R4? Does it admit a proper holomorphic
embedding in C2?



Complete minimal surfaces with Jordan boundaries

Theorem (2)

Assume that M is a compact bordered Riemann surface.
Every conformal minimal immersion X0 : M → Rn (n ≥ 3) can be
approximated, uniformly on M, by continuous maps X : M → Rn such
that X : M̊ → Rn is a complete conformal minimal immersion and
X : bM → Rn is a topological embedding.

If n ≥ 5 then X : M → Rn can be chosen a topological embedding.

A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López,
Proc. London Math. Soc. (3) 111 (2015)

This result answers a long standing problem. Previous constructions are
due to Nadirashvili (1996) (for the disk) and several other authors.
However, earlier attempts to obtain complete conformal minimal
surfaces with Jordan boundaries were inconclusive.

The main new ingredient used in our construction is a suitable version of
the Riemann-Hilbert boundary value problem.



Proper minimal surfaces in (minimally) convex domains

Theorem (3)

Let M be a compact bordered Riemann surface and D be a convex
domain in Rn for some n ≥ 3. Then, every conformal minimal immersion
X0 : M → D can be approximated, uniformly on compacts in M̊, by
proper (and complete) conformal minimal immersions X : M̊ → D.

If D is bounded with smooth strongly convex boundary, then X can be
chosen continuous on M, hence mapping bM to bD.

The same result holds if D is minimally convex, i.e., if it admits a
smooth exhaustion function ρ : D → R such that for every point x ∈ D,
the sum of the smallest two eigenvalues of Hessρ(x) is positive.

A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič, F.J. López:

Proc. London Math. Soc. (3) 111 (2015);

Minimal surfaces in minimally convex domains, arxiv:1510.04006



What about non-orientable minimal surfaces?

Assume that N is a non-orientable surface endowed with a conformal
structure.

There is a 2-sheeted covering π : M → N by a Riemann surface M and a
fixed-point-free antiholomorphic involution I : M → M (the deck
transformation of π) such that N = M/I.

Every conformal minimal immersion Y : N → Rn lifts to a I-invariant
conformal minimal immersion X : M → Rn, i.e.,

X = Y ◦ π and X ◦ I = X.

Conversely, a I-invariant conformal minimal immersion X : M → Rn

descends to a conformal minimal immersion Y : N → Rn.
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Main theorem for non-orientable minimal surfaces

Theorem (A. Alarcón, F. Forstnerič, F.J. López, 2016)

Let M be an open Riemann surface (or a bordered Riemann surface) with
a fixed-point-free antiholomorphic involution I.

Then, Theorems 1–3 mentioned above hold also for I-invariant conformal
minimal immersions M → Rn.

Hence, all mentioned results also hold for conformal minimal immersions
N → Rn from any non-orientable surface N endowed with a conformal
structure, without having to change the conformal structure.

Non-orientable surfaces lie at the very origin of minimal surface theory.
For instance, one can easily find a Möbius strip as solution to a Plateau
problem; that is, non-orientable minimal surfaces do appear in nature.



Example: A properly embedded Möbius strip in R4

Let I : C∗ → C∗ be the fixed-point-free antiholomorphic involution on
the punctured plane C∗ = C \ {0} given by

I(ζ) = −1

ζ̄
, ζ ∈ C∗.

The harmonic map X : C∗ → R4 given by

X(ζ) = <
(
i
(
ζ +

1

ζ

)
, ζ − 1

ζ
,
i

2

(
ζ2 − 1

ζ2
)

,
1

2

(
ζ2 +

1

ζ2
))

is an I-invariant proper conformal minimal immersion such that
X(ζ1) = X(ζ2) if and only if ζ1 = ζ2 or ζ1 = I(ζ2).

Hence, X(C∗) ⊂ R4 is a properly embedded minimal Möbius strip in R4.

This seems to be the first known example of a properly embedded
non-orientable minimal surface in R4. There is a well known example of
a properly immersed minimal Möbius strip in R3 (Meeks, 1981).



Example: A properly embedded Möbius strip in R4

Two views of the projection into R3 = {0} ×R3 ⊂ R4 of the properly
embedded minimal Möbius strip in R4 in the above example.



Topological structure of non-orientable surfaces

Every closed non-orientable surface N is the connected sum

N =

g︷ ︸︸ ︷
P2 ] · · · ]P2

of g ≥ 1 copies of the real projective plane P2. The number g is called
the genus of N and equals the maximal number of pairwise disjoint
closed curves in N which reverse the orientation.

Furthermore, K = P2 ]P2 is the Klein bottle, and for any non-orientable
surface N we have N ]K = N ]T where T is the torus. This gives the
following dichotomy according to whether the genus g is even or odd:

(I) g = 1 + 2k ≥ 1 is odd. In this case, N = P2 ]

k︷ ︸︸ ︷
T ] · · · ]T, and

k = 0 corresponds to the projective plane P2.

(II) g = 2 + 2k ≥ 2 is even. In this case, N = P2 ]P2 ]

k︷ ︸︸ ︷
T ] · · · ]T.



Geometric model of a 2-sheeted oriented covering

Let ι : M → N be a 2-sheeted covering by a compact orientable surface
with involution (M, I). Then M has genus g − 1, and hence it is a
connected sum of g − 1 copies of the torus T.

We construct an explicit geometric model for (M, I) in R3.

Let S2 be the unit sphere in R3 centered at the origin, and let
τ : R3 → R3 be the involution τ(x) = −x.

Case (I): N = P2 ]

k︷ ︸︸ ︷
T ] · · · ]T. We take M to be an embedded surface(

T−1 ] · · · ]T−k
)
] S2 ]

(
T+
1 ] · · · ]T+

k

)
of genus g − 1 = 2k in R3 which is invariant by the symmetry with
respect to the origin (i.e., τ(M) = M), where T−j , T+

j are embedded tori

in R3 with τ(T−j ) = T+
j for all j = 1, . . . , k . Set I = τ|M : M → M.



Case I – illustration

If k = 0, the model is the round sphere S2 with the orientation reversing
antipodal map I. Identifying S2 ∼= CP1 ∼= C∪ {∞} by the stereographic
projection, we have I(z) = −1/z̄ .

If k > 0, we have M = M− ∪ C ∪M+, where C is a I-invariant cylinder
and M−, M+ are the closure of the two components of M \ C , both
homeomorphic to the connected sum of k tori minus an open disk.
Obviously I(M−) = M+ and M− ∩M+ = ∅.



Geometric model, Case II

Case (II): N = P2 ]P2 ]

k︷ ︸︸ ︷
T ] · · · ]T = K ]

k︷ ︸︸ ︷
T ] · · · ]T.

Let T0 ⊂ R3 be the standard torus of revolution centered at the origin
and invariant under the antipodal map τ(x) = −x . In this case we let
M ⊂ R3 be an embedded τ-invariant surface(

T−1 ] · · · ]T−k
)
]T0 ]

(
T+
1 ] · · · ]T+

k

)
,

where the tori T±j are as above, and set I = τ|M .

If k = 0, the model is the torus T0 with the involution I = τ|T0
.



Case II – illustration

If k > 0, we have M = M− ∪K ∪M+, where K ⊂ T0 ⊂ R3 is a
I-invariant torus minus two disjoint open disks, and M− and M+ are the
closure of the two components of M \K , both homeomorphic to the
connected sum of k tori minus an open disk. Obviously, I(M−) = M+

and M− ∩M+ = ∅.

Conclusion: In either case, there is a homology basis B = B+ ∪ B− for
H1(M; Z) satisfying the following symmetry conditions:

B+ = {δ1, . . . , δ`}, B− = {I(δ2), . . . , I(δ`)}, I∗δ1 = δ1.



Analytic tools: I-invariant functions, 1-forms, and sprays

Definition

Let (M, I) be a Riemann surface with a fixed-point-free antiholomorphic
involution. A holomorphic function f ∈ O(M) is I-invariant if

f ◦ I = f̄ .

A holomorphic 1-form φ on M is I-invariant if

I∗φ = φ̄.

Notation: OI(M), ΩI(M). Note that these are real algebras.
Clearly, a function f = u + iv : M → C belongs to OI(M) iff
u, v : M → R are conjugate harmonic functions satisfying

u ◦ I = u, v ◦ I = −v .

For every f ∈ O(M) we have that f ◦ I ∈ O(M) and

f + f ◦ I ∈ OI(M), f · f ◦ I ∈ OI(M).



I-invariant sprays

Definition

Let BN ⊂ CN be the unit ball for some N ∈N and let r > 0. A
holomorphic spray of maps F : M × rBN → Cn is I-invariant if

F (Ip, z̄) = F (p, z), p ∈ M, z ∈ rBN .

Note that F (· , z) : M → Cn is I-invariant if z ∈ RN ⊂ CN .

Example (Invariant sprays given by flows of vector fields)

Let V1, . . . ,VN be holomorphic vector fields on Cn which are real on Rn

(i.e., with real coefficients), and let φj
t denote the flow of Vj . Given a

I-invariant holomorphic map X : M → Cn, the map

F (p, t1, . . . , tN ) = φ1
t1 ◦ · · · ◦ φN

tN
(X(p))

is a I-invariant holomorphic spray of maps M → Cn.



I-invariant homology basis and period map

Lemma (0)

Let (M, I) be a bordered Riemann surface with a fixed-point-free
involution I : M → M. Then there exists a Runge homology basis
B = B+ ∪ B− for H1(M; Z) satisfying

B+ = {δ1, . . . , δ`}, B− = {I(δ2), . . . , I(δ`)}, I∗δ1 = δ1.

Denote by E the union of supports of the curves in B. The Runge
property means that M \ E has no relatively compact connected
components; this guarantees Mergelyan approximation on E .

Let P+ = (P+
1 , . . . ,P+

` ) : O(M)→ C` denote the period map given by

P+
j (f ) =

∫
δj
f θ, f ∈ O(M), j = 1, . . . , `.

Similarly, we define P+(φ) =
(∫

δj
φ
)
j=1,...,` for a holomorphic 1-form φ.



Exactness of I-invariant 1-forms

Lemma (1)

Let φ be a I-invariant holomorphic 1-form on M. Then:

(a) φ is exact if and only if P+(φ) = 0.

(b) <φ is exact if and only if <P+(φ) = 0.

Proof. (a) By I-invariance of φ we have∫
I∗δj

φ =
∫

δj
I∗φ =

∫
δj

φ, j = 1, . . . , `.

Therefore, P+(φ) = 0 implies that φ has vanishing periods over all
curves in B = B+ ∪ B− and hence is exact. The converse is obvious.

(b) Likewise, P+(<φ) = <P+(φ) = 0 implies that <φ is exact. The
imaginary periods (the flux) of φ may be arbitrary, subject to the
conditions ∫

I∗δj
=φ = −

∫
δj
=φ, j = 1, . . . , `.

In particular, we have
∫

δ1
=φ = 0 since I∗δ1 = δ1.



I-invariant period dominating sprays

Lemma (2)

Let B = B+ ∪ B− be a basis of H1(M; Z) furnished by Lemma 1, and
let P+ : A (M, Cn)→ (Cn)` denote the associated period map:

P+(f ) =

(∫
γi

f θ

)
i=1,...,`

∈ (Cn)`.

For every nonflat, I-invariant map f : M → A∗ of class
A (M) = C (M) ∩O(M̊) there exists a dominating I-invariant spray

F : M × rBN → A∗

of class A (M) which is period dominating, in the sense that the
differential

∂

∂ζ

∣∣∣∣
ζ=0

P+(F (· , ζ)) : CN → (Cn)`

maps RN (the real part of CN) surjectively onto Rn × (Cn)`−1.



(Very) special Cartan pairs

Definition
Let M be an open Riemann surface with a fixed-point-free
antiholomorphic involution I : M → M.

A pair (A,B) of compact sets in M is a I-invariant Cartan pair if

(a) the sets A,B,A∩ B and A∪ B are I-invariant with C 1 boundaries;

(b) A \ B ∩ B \ A = ∅ (the separation property).

A I-invariant Cartan pair (A,B) is special if B = B ′ ∪ I(B ′), where B ′

is a compact set with C 1 boundary in M and B ′ ∩ I(B ′) = ∅.

A special Cartan pair (A,B) is very special if the sets B ′ and A∩ B ′ are
disks (hence, I(B ′) and A∩ I(B ′) are also disks).



Gluing pairs of I-invariant sprays

Lemma (3)

Let (M, I) be an open Riemann surface with a fixed-point-free
antiholomorphic involution. Assume that

(A,B) is a special I-invariant Cartan pair in M,

ε > 0 and r > 0 are real number, and

F : A× rBN → A∗ is a I-invariant spray of class A (A) which is
dominating over the set C = A∩ B.

Then, there exist numbers δ > 0 and r ′ ∈ (0, r) such that for every
I-invariant spray G : B × rBN → A∗ of class A (B) satisfying

||F − G ||0,C×rBN < δ

there is a I-invariant spray H : (A∪B)× r ′BN → A∗ of class A (A∪B)
satisfying

||H − F ||0,A×r ′BN < ε.



Main approximation lemma for I-invariant maps

Lemma (4)

Let (M, I) be as above, and let (A,B) be a very special I-invariant
Cartan pair in M. Let P+ denote the period map on A (cf. Lemma 2).

Then, every I-invariant map f : A→ A∗ of class A (A) can be
approximated, uniformly on A, by I-invariant holomorphic maps
f̃ : A∪ B → A∗ satisfying P+(f̃ ) = P+(f ).

Remark: Lemma 4 gives the corresponding approximation theorem for
I-invariant conformal minimal immersions. Indeed, if P+(f ) = 0 then

X̃ = 2
∫
<(f̃ θ) : A∪ B → Rn

is an I-invariant conformal minimal immersion approximating the
immersion X = 2

∫
<(f θ) on A.

Proof. By Lemma 2, there exists a I-invariant dominating and period
dominating spray F : A× rBN → A∗ of class A (A) with F (· , 0) = f .



Proof of Lemma 4

By the definition of a very special Cartan pair, B = B ′ ∪ I(B ′) is the
union of two disjoint disks, and C ′ = A∩ B ′ ⊂ B ′ is a disk.

Pick a number r ′ ∈ (0, r). Since A∗ is complex homogeneous, and hence
an Oka manifold, it is possible to approximate F , uniformly on
C ′ × r ′BN , by a holomorphic spray G : B ′ × r ′BN → A∗.
We extend the spray G to I(B ′)× r ′BN by symmetrization:

G (p, ζ) = G (I(p), ζ̄) for p ∈ I(B ′) and ζ ∈ r ′BN .

It follows that G is an I-invariant spray on B × r ′BN which approximates
F on (A∩ B)× r ′BN . Lemma 3 furnishes an I-invariant spray

H : (A∪ B)× r ′′BN → A∗

for some r ′′ ∈ (0, r ′) which approximates F on A× r ′′BN . By the period
domination of F , there exists ζ0 ∈ r ′′BN ∩RN such that the I-invariant
map f̃ = H(· , ζ0) : A∪ B → A∗ satisfies P+(f ) = P+(f̃ ).



Change of topology of the domain

The following procedure is employed to handle the change of topology.
Let A ⊂ M be an I-invariant domain and X : A→ Rn be a I-invariant
conformal minimal immersion. Attach to A a couple of arcs E = E1 ∪ E2,
with I(E1) = E2 and E1 ∩ E2 = ∅, and proceed as follows.

1 Extend the derivative 2∂X/θ : A→ A∗ to a map f : A∪ E → A∗
satisfying f ◦ I = f and

∫
E1
<(f θ) = X(q)−X(p), where

∂E1 = {p, q}. By Lemma 2, there is a period-dominating
I-invariant spray F : (A∪ E )× rBN → A∗ with F (· , 0) = f .

2 Choose a small tubular neighborhood V1 of the arc E1. Approximate
F over (A∪ E ) ∩ V1 by a spray G defined over V1. Extend G to
V2 := I(V1) ⊃ E2 by setting G (p, ζ) = G (I(p), ζ̄). By Lemma 3

we can glue F and G into an I-invariant spray F̃ : D × r ′BN → A∗
over an I-invariant domain D ⊃ A∪ E for some r ′ ∈ (0, r).

3 The period domination property of F furnishes a parameter value
ζ0 ∈ r ′BN ∩RN such that the map F̃ (· , ζ0) : D → A∗ integrates

to an I-invariant conformal minimal immersion X̃ : D → Rn.



Conclusion

The Runge-Mergelyan approximation theorem (Theorem 1) is proved
recursively, using an I-invariant strongly subharmonic exhaustion function
ρ : M → R. The noncritical case is handled by Lemma 4; this amounts
to attaching bumps. The critical points of ρ (where the topology of the
sublevel set {ρ ≤ c} changes) are handled as explained above.

The general position theorem (also included in Theorem 1) is obtained
by combining these methods with transversality arguments.

To obtain complete conformal minimal surfaces with Jordan
boundaries in Rn (cf. Theorem 2) and proper conformal minimal
surfaces in (minimally) convex domains (cf. Theorem 3), we also use
approximate solutions to the Riemann-Hilbert boundary value
problem for conformal minimal surfaces and holomorphic null curves.


