# Complete bounded submanifolds in different geometries

Franc Forstnerič

University of Ljubljana Institute of Mathematics, Physics and Mechanics

Varietà reali e complesse: geometria, topologia e analisi armonica SNS Pisa, 24–26 February 2017

We survey recent constructions of **complete bounded submanifolds** in several geometries (directed systems):

- holomorphic submanifolds (the problem of Paul Yang, 1977)
- null holomorphic curves and conformal minimal surfaces in Euclidean spaces (the Calabi-Yau problem, 1965 & 2000)
- Legendrian curves in contact complex manifolds.

A noncompact submanifold M (immersed or embedded) of a manifold X is said to be **bounded** if it is relatively compact.

Let  $\mathfrak{g}$  be a Riemannian metric on X. A submanifold  $M \subset X$  is said to be **complete** if the pull-back of  $\mathfrak{g}$  to M is a complete metric on M. Equivalently, every divergent curve in M (i.e., one that leaves every compact subset of M) has infinite  $\mathfrak{g}$ -length in X.

If M is bounded, this notion is independent of the choice of  $\mathfrak{g}$ .

# Part I: Complete bounded complex submanifolds of $\mathbb{C}^n$

**Paul Yang 1977** Do there exist complete bounded complex submanifolds of complex Euclidean spaces?

**Peter Jones 1979** There is a bounded complete holomorphic immersion  $\mathbb{D} = \{\zeta \in \mathbb{C} : |\zeta| < 1\} \to \mathbb{C}^2$ , embedding  $\mathbb{D} \to \mathbb{C}^3$ , and proper embedding  $\mathbb{D} \to \mathbb{B}^4$ . (Based on **C. Fefferman**: Every  $\phi \in BMO_{\mathbb{R}}(\mathbb{T})$  equals  $\phi = u + \tilde{v}$  where  $u, v \in L^{\infty}(\mathbb{T})$ ,  $\tilde{v}$  the Hilbert transform of v.)

Martin, Umehara and Yamada 2009 There exist complete bounded holomorphic curves in  $\mathbb{C}^2$  with arbitrary finite topology.

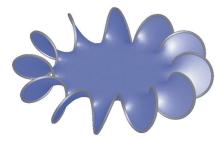
#### Theorem

Alarcón and Forstnerič 2013 Every bordered Riemann surface admits a complete proper holomorphic immersion to  $\mathbb{B}^2$  and a complete proper holomorphic embedding to  $\mathbb{B}^3$ .

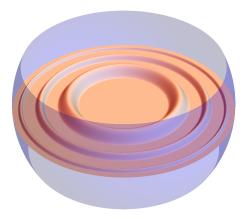
We introduced stronger complex analytic methods: The **Riemann-Hilbert method**, **exposing of boundary points**, and **gluing holomorphic sprays** (a nonlinear version of the  $\bar{\partial}$ -problem).

# A disc on the way of becoming complete

The illustration shows a **minimal disc** solving a **Plateau problem**. By twisting the boundary curve enough to make it everywhere non-rectifiable, the disc becomes complete (if it exists). Holomorphic disc are minimal, in fact, absolute area minimizers.



# Ripples on a disc increase boundary distance



◆□ → ◆□ → ◆ 三 → ◆ 三 → のへぐ

## Complete bounded surfaces abound in nature



## Idea of the construction - Pythagora's theorem

Let *M* be a bordered Riemann surface (a smoothly bounded domain in an open Riemann surface *R*). Let  $ds^2$  denote the Euclidean metric on  $\mathbb{C}^n$ .

- Let  $F_0: \overline{M} \to \mathbb{C}^n$  be a holomorphic immersion satisfying  $|F_0| \ge r_0 > 0$  on *bM*. We try to increase the boundary distance on *M* with respect to the induced metric  $F_0^* ds^2$  by  $\delta > 0$ .
- To this end, we approximate  $F_0$  uniformly on a compact set in M by an immersion  $F_1: \overline{M} \to \mathbb{C}^n$  which at a point  $p \in bM$  adds a displacement for approximately  $\delta$  in a direction  $V \in \mathbb{C}^n$ , |V| = 1, approximately orthogonal to the point  $F_0(p) \in \mathbb{C}^n$ . The boundary distance increases by  $\approx \delta$ , while the outer radius increases by  $\delta^2$ :

$$|F_1(p)| \approx \sqrt{|F_0(p)|^2 + \delta^2} \approx |F_0(p)| + \frac{\delta^2}{2|F_0(p)|} \le |F_0(p)| + \frac{\delta^2}{2r_0}.$$

• Choosing  $\delta_j > 0$  such that  $\sum_j \delta_j = +\infty$  while  $\sum_j \delta_j^2 < \infty$ , we obtain by induction a limit immersion  $F = \lim_{j \to \infty} F_j \colon M \to \mathbb{C}^n$  with bounded outer radius and with complete metric  $F^* ds^2$ .

# The first main tool – the Riemann-Hilbert problem

This idea can be realized on short arcs  $I \subset bM$ , on which  $F_0$  does not vary too much, by approximately solving a **Riemann-Hilbert problem**.

#### Lemma

Let  $\mathbb{D} = \{\zeta \in \mathbb{C} \colon |\zeta| < 1\}$  and  $\mathbb{T} = b \mathbb{D} = \{\zeta \in \mathbb{C} \colon |\zeta| = 1\}.$ 

Let  $f \in \mathscr{A}(\mathbb{D}, \mathbb{C}^n)$ , and let  $g: \mathbb{T} \times \overline{\mathbb{D}} \to \mathbb{C}^n$  be a continuous map such that for each  $\zeta \in \mathbb{T}$  we have  $g(\zeta, \cdot) \in \mathscr{A}(\mathbb{D}, \mathbb{C}^n)$  and  $g(\zeta, 0) = f(\zeta)$ .

Given  $\epsilon > 0$  and 0 < r < 1, there are a number  $r' \in [r, 1)$  and a disc  $h \in \mathscr{A}(\mathbb{D}, \mathbb{C}^n)$  with h(0) = f(0) satisfying the following conditions:

(i) for any  $\zeta \in \mathbb{T}$  we have  $dist(h(\zeta), g(\zeta, \mathbb{T})) < \epsilon$ ,

(ii) for any 
$$\zeta \in \mathbb{T}$$
 and  $\rho \in [r', 1]$  we have  $\operatorname{dist}(h(\rho\zeta), g(\zeta, \overline{\mathbb{D}})) < \epsilon$ ,  
(iii) for any  $|\zeta| \leq r'$  we have  $|h(\zeta) - f(\zeta)| \leq \epsilon$  and

(iv) if 
$$g(\zeta, \cdot) = f(\zeta)$$
 is the constant disc for all  $\zeta \in \mathbb{T} \setminus J$ , where  $J \subset \mathbb{T}$  is an arc, then  $|h - f| < \epsilon$  outside a neighborhood of J in  $\overline{\mathbb{D}}$ .

### Proof of the Riemann-Hilbert lemma

Write

$$g(\zeta, z) = f(\zeta) + \lambda(\zeta, z), \qquad \zeta \in \mathbb{T}, \ z \in \overline{\mathbb{D}},$$

where  $\lambda$  is continuous on  $\mathbb{T} \times \overline{\mathbb{D}}$  and holomorphic in  $z \in \mathbb{D}$ , with  $\lambda(\zeta, 0) = 0$ . Approximate  $\lambda$  by Laurent polynomials

$$\lambda(\zeta, z) = \frac{1}{\zeta^m} \sum_{j=1}^N A_j(\zeta) z^j = \frac{z}{\zeta^m} \sum_{j=1}^N A_j(\zeta) z^{j-1}$$

with polynomial coefficients  $A_j(\zeta)$ . Choose an integer k > m and set

$$h_k(\zeta) = f(\zeta) + \lambda(\zeta, \zeta^k) = f(\zeta) + \zeta^{k-m} \sum_{j=1}^N A_j(\zeta) \left(\zeta^k\right)^{j-1}, \quad |\zeta| \le 1.$$

This is an analytic disc satisfying  $h_k(0) = f(0)$ . For  $\zeta = e^{it} \in \mathbb{T}$  we have

$$h_k(\mathbf{e}^{\mathbf{i}t}) = f(\mathbf{e}^{\mathbf{i}t}) + \lambda(\mathbf{e}^{\mathbf{i}t}, \mathbf{e}^{k\mathbf{i}t}) \approx g(\mathbf{e}^{\mathbf{i}t}, \mathbf{e}^{\mathbf{i}kt}),$$

and hence (i) holds. It is easy to verify the other conditions for big k.

## Exposing boundary points on a Riemann surface

The Riemann-Hilbert method could lead to sliding curtains (at least in low dimensions), creating shortcuts in the induced metric on M. We eliminate shortcuts by the exposing of points method.

**Erlend F. Wold & F.F. 2009** Construction of proper holomorphic embeddings of certain bordered Riemann surfaces into  $\mathbb{C}^2$ .

Set  $bM = \bigcup_i C_i$  where  $C_i$  is a Jordan curve. Subdivide  $C_i = \bigcup_j I_{i,j}$  such that any two adjacent arcs  $I_{i,j-1}$ ,  $I_{i,j}$  meet at a common endpoint  $p_{i,j}$ .

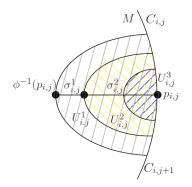
At the point  $x_{i,j} = F_0(p_{i,j}) \in \mathbb{C}^n$  we attach to  $F_0(\overline{M})$  a smooth real curve  $\lambda_{i,j}$  of length  $> \delta$  which increases the outer radius by  $< \delta^2$ . Let  $y_{i,j}$  be other endpoint of  $\lambda_{i,j}$ .

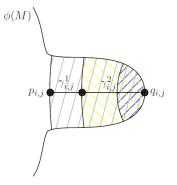
Choose an arc  $\gamma_{i,j} \subset R \setminus M$  attached to M at  $p_{i,j}$ , with the other endpoint  $q_{i,j}$ . Extend  $F_0$  to a smooth diffeomorphism  $\gamma_{i,j} \to \lambda_{i,j}$ mapping  $q_{i,j}$  to  $y_{i,j}$ . Use Mergelyan to approximate  $F_0$  by a holomorphic map from a neighborhood of  $\overline{M} \cup \gamma_{i,j}$  to  $\mathbb{C}^n$ .

### Exposing a boundary point

Each point  $p_{i,j} \in bM$  is pushed to the other endpoint  $q_{i,j}$  of the attached arc  $\gamma_{i,j} \subset R$  by a biholomorphism  $\phi \colon \overline{M} \to \phi(\overline{M}) \subset R$ . Except near the points  $p_{i,j}$ , the map  $\phi$  is close to the identity on M. Define G by

 $G=F_0\circ\phi.$ 

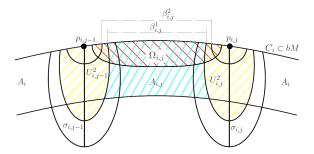




### Increasing the boundary distance

In the metric  $G^*(ds^2)$  on M, the distance to the yellow neighborhoods of the points  $p_{i,j} \in bM$  increased by the length of  $\lambda_{i,j}$  which is  $> \delta$ . Apply the Riemann-Hilbert method on the arc  $\beta_{i,j}^2 \subset bM$  to increase the distance to it by  $> \delta$ . These two deformations are performed in almost orthogonal directions, so they don't cancel each other.

The boundary distance increased by  $> \delta$  and the outer radius by  $< \delta^2$ .



This method works well on any bordered Riemann surface M and allows a complete control of the complex structure (i.e., no part of M needs to be cut away in order to keep its image suitably bounded). This was the main novelty with respect to the previous results in the literature.

#### **Diasadvantages:**

- It does not give complete bounded embeddings into  $\mathbb{C}^2$ , and
- it does not work on higher dimensional manifolds.

**Another idea:** start with a closed complex submanifold  $X \subset \mathbb{C}^n$ .

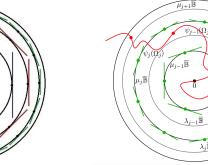
In the ball  $\mathbb{B}^n \subset \mathbb{C}^n$ , choose a suitable labyrinth  $\mathfrak{F} = \bigcup_j K_j$ , where each  $K_j$  is a closed ball (or polytope) in an affine real hyperplane  $\Lambda_j \subset \mathbb{C}^n$ , such that any path in  $\mathbb{B}^n \setminus \mathfrak{F}$  terminating on  $b\mathbb{B}^n$  has infinite length.

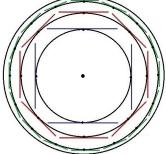
Then, use holomorphic automorphisms of  $\mathbb{C}^n$  to push X away from  $\mathfrak{F}$ .

# A complex subvariety avoiding a labyrinth

A labyrinth consisting of tangent balls. Any divergent curve in  $\mathbb{B}^n$ avoiding all except finitely many of these balls has infinite length. The subvariety  $X \subset \mathbb{C}^n$  is twisted by holomorphic automorphisms so that it avoids the labyrinth  $\mathfrak{F}$ . The image is ambiently complete.

(日)、





This idea was used by **Globevnik**, **Alarcón and López (2016, Crelle)** to prove the following result.

#### Theorem

For every closed complex submanifold  $X \subset \mathbb{C}^n$  and compact set  $L \subset X \cap \mathbb{B}^n$  there exists a Runge domain  $\Omega \subset X \cap \mathbb{B}^n$  with  $L \subset \Omega$  which admits a complete proper holomorphic embedding into  $\mathbb{B}^n$ .

In particular, every open orientable surface S admits a complex structure J such that the Riemann surface R = (S, J) admits a complete proper holomorphic embedding to  $\mathbb{B}^2$ .

This gives an affirmative answer to Yang's original question in all dimensions and codimensions. The shortcoming is that **one cannot control their complex structure by this method**.

Can we find complete bounded complex submanifolds of  $\mathbb{C}^N$  biholomorphic to a given bounded domain  $D \subset \mathbb{C}^n$ ?

#### Theorem

**Barbara Drinovec Drnovšek 2015** For every strongly pseudoconvex domain  $D \in \mathbb{C}^n$  there exists N >> n and a complete proper holomorphic embedding  $F: D \hookrightarrow \mathbb{B}^N$ .

Without *F* being complete, this was proved independently by **Erik Løw** and myself in 1985. The idea is to push *bD* towards  $b\mathbb{B}^N$  using holomorphic peak functions in orthogonal directions. When *N* is big enough, there is sufficient room to make F(D) complete.

# Part II: Holomorphic Legendrian curves

A **directed system** on a complex manifold X is given by a conical complex subvariety  $\mathscr{G} \subset TX$  of the tangent bundle. Holomorphic **integral curves** are curves tangent to  $\mathscr{G}$ .

### Example (Pfaffian and contact systems)

Let  $\xi \subset TX$  be a holomorphic vector subbundle. A complex curve  $F: M \to X$  is horizontal, or isotropic, or an integral curve if

 $dF_x(T_xM) \subset \xi_{F(x)}$  for all  $x \in M$ .

The case of interest is when  $\xi$  is **completely nonintegrable**, in the sense that repeated commutators of vector fields tangent to  $\xi$  span *TX*. When dim X = 2k + 1, rank  $\xi = 2k$  and first order commutators span, we have  $\xi = \ker \alpha$  where  $\alpha$  is a holomorphic 1-form satisfying

 $\alpha \wedge \alpha^k \neq 0$  ... a contact form.

**Darboux 1882:** Locally near each point we have  $\xi = \ker \alpha_0$  with

$$\alpha_0 = dz + \sum_{j=1}^k x_j dy_j.$$

# Standard contact system on $\mathbb{C}^{2k+1}$

Consider the standard contact space  $(\mathbb{C}^{2k+1}, \alpha_0)$ . Holomorphic integral curves are called **Legendrian curves**.

### Theorem (Alarcón, F., López 2016)

- Every immersed Legendrian curve M → C<sup>2k+1</sup> can be approximated uniformly on compacts by properly embedded Legendrian curves.
- 2 Let M be a compact bordered Riemann surface. Every Legendrian curve M → B<sup>2k+1</sup> can be approximated uniformly on compacts in M by complete proper Legendrian embeddings M → B<sup>2k+1</sup>.
- Let M be a compact bordered Riemann surface. Every Legendrian curve M → C<sup>2k+1</sup> of class A<sup>1</sup>(M) can be uniformly approximated by topological embeddings F: M → C<sup>2k+1</sup> such that F|<sub>M</sub>: M → C<sup>2k+1</sup> is a complete Legendrian embedding.

## Comments about the proof

Consider  $\mathbb{C}^3_{(x,y,z)}$  with the contact form  $\alpha = dz + xdy$ . A Legendrian curve  $(x, y, z): M \to \mathbb{C}^3$  is a holomorphic map such that xdy is an exact 1-form and  $z = -\int xdy$ .

In an approximation problem on a Runge domain  $D \subset M$ , first create a **period dominating spray**  $(x(\cdot,\zeta), y(\cdot,\zeta)): D \to \mathbb{C}^2$  depending holomorphically on  $\zeta \in \mathbb{C}^{\ell}$ ,  $\ell = \operatorname{rank} H_1(M; \mathbb{Z})$ . The approximated spray  $(\tilde{x}(\cdot,\zeta), \tilde{y}(\cdot,\zeta)): M \to \mathbb{C}^2$  then contains an element for which  $\tilde{x}(\cdot,\zeta) d\tilde{y}(\cdot,\zeta)$  is exact on D.

**Change of topology**: extend *x*, *y* smoothly to the arc *E* attached to  $D \subset M$  such that  $\int_E xdy$  has the correct value. In particular, ensure that  $\int_C xdy = 0$  over the new cycle *C* formed in part by *E*. Use period dominating sprays and Mergelyan approximation.

The Riemann-Hilbert lemma holds for Legendrian curves: if the central curve  $f: M \to \mathbb{C}^3$  and all attached boundary discs  $g(p, \cdot): \overline{\mathbb{D}} \to \mathbb{C}^3 \ (p \in bM)$  are Legendrian, we can choose a Legendrian approximate solution  $h: M \to \mathbb{C}^3$  to the Riemann-Hilbert problem.

# A hyperbolic contact system on $\mathbb{C}^{2k+1}$

### Theorem (F., 2016)

For any  $k \ge 1$  there exists a holomorphic contact system  $\xi$  on  $\mathbb{C}^{2k+1}$  which is **Kobayashi hyperbolic**; in particular, every Legendrian curve  $\mathbb{C} \to (\mathbb{C}^{2k+1}, \xi)$  is constant.

Idea of proof: We take  $\alpha = \Phi^* \alpha_0$  where  $\alpha_0 = dz + \sum_{j=1}^k x_j dy_j$  is the standard contact form on  $\mathbb{C}^{2k+1}$  and  $\Phi \colon \mathbb{C}^{2k+1} \to \Omega \subset \mathbb{C}^{2k+1}$  is a Fatou-Bieberbach map whose image  $\Omega$  avoids the union of cylinders

$$K = \bigcup_{N=1}^{\infty} 2^{N-1} b \mathbb{D}_{(x,y)}^{2k} \times C_N \overline{\mathbb{D}}_z.$$

If  $C_N \ge n2^{3N+1}$  for all  $N \in \mathbb{N}$ , then  $\mathbb{C}^{2n+1} \setminus K$  is  $\alpha_0$ -hyperbolic; hence  $(\mathbb{C}^{2n+1}, \alpha)$  is hyperbolic.

**Note:** There exist many proper Legendrian discs  $\mathbb{D} \to (\mathbb{C}^{2n+1}, \alpha)$ .

# Darboux charts around immersed Legendrian curves

Let  $(X, \xi)$  be an arbitrary contact complex manifold.

### Theorem (Alarcón & F. 2017)

Let R be an open Riemann surface with a nowhere vanishing holomorphic 1-form  $\theta$ , and let  $f : R \to (X, \xi)$  be a holomorphic Legendrian immersion. Then, every compact set in R has a neighborhood  $U \subset R$ and a holomorphic immersion  $F : U \times \mathbb{B}^{2k} \to X$  such that the contact structure  $F^*\xi$  is given by  $(x \in U, the other coordinates Euclidean)$ 

 $\alpha = dz - y\theta(x) - \sum_{j=2}^{k} y_j dx_j.$  Darboux chart

#### Corollary

Let  $M \subset R$  be a compact bordered Riemann surface. Then  $f|_M$  can be uniformly approximated by topological embeddings  $F: M \to X$  such that  $F|_{\mathring{M}}: \mathring{M} \to X$  is a complete Legendrian embedding. Another classical directed system are **null holomorphic curves** and **minimal surfaces**. Let M be an open or bordered Riemann surface.

A null holomorphic curve is a holomorphic immersion  $Z = (Z_1, ..., Z_n) \colon M \to \mathbb{C}^n \ (n \ge 3)$  whose derivative satisfies

 $(dZ_1)^2 + \cdots + (dZ_n)^2 = 0.$ 

An immersion  $X = (X_1, ..., X_n)$ :  $M \to \mathbb{R}^n$  is a **conformal minimal** (=harmonic) immersion, abbreviated **CMI**, iff  $\partial X = (\partial X_1, ..., \partial X_n)$  is a holomorphic 1-form on M satisfying the same equation:

$$(\partial X_1)^2 + \cdots + (\partial X_n)^2 = 0.$$

The real part  $X = \Re Z$  of a null curve is a CMI; converse holds on simply connected domains.

### Weierstrass representation of minimal surfaces

Fix a nowhere vanishing holomorphic 1-form  $\theta$  on M. The above shows that every conformal minimal immersion  $X: M \to \mathbb{R}^n$  is of the form

$$X(p) = X(p_0) + \int_{p_0}^{p} \Re(f\theta), \quad p, p_0 \in M,$$

where  $f: M \to A^{n-1} \setminus \{0\}$  is a holomorphic map into the **null quadric** 

$$A^{n-1} = \{(z_1, \ldots, z_n) \in \mathbb{C}^n \colon z_1^2 + z_2^2 + \cdots + z_n^2 = 0\}$$

such that the  $\mathbb{C}^n$ -valued 1-form  $f\theta$  has vanishing real periods. Similarly, every null curve is of the form

$$Z(p) = Z(p_0) + \int_{p_0}^{p} f\theta, \qquad p \in M$$

where f is as above and  $f\theta$  has vanishing periods.

### Example: the catenoid and the helicoid

#### Example

Consider the null curve

$$Z(\zeta) = (\cos \zeta, \sin \zeta, -i\zeta) \in \mathbb{C}^3, \qquad \zeta = u + iv \in \mathbb{C},$$

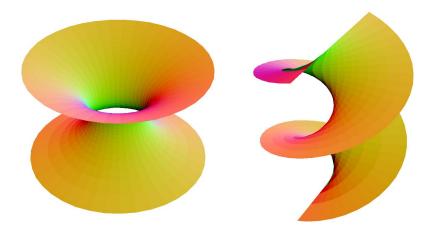
 $\partial Z = (-\sin\zeta, \cos\zeta, -\mathfrak{i})d\zeta, \quad \sin^2\zeta + \cos^2\zeta + (-\mathfrak{i})^2 = 0,$ 

and the associated family of minimal surfaces in  $\mathbb{R}^3$  for  $t \in \mathbb{R}$ :

$$X_t(\zeta) = \Re\left(e^{it}Z(\zeta)\right)$$
  
=  $\cos t \left( \begin{array}{c} \cos u \cdot \cosh v \\ \sin u \cdot \cosh v \\ v \end{array} \right) + \sin t \left( \begin{array}{c} \sin u \cdot \sinh v \\ -\cos u \cdot \sinh v \\ u \end{array} \right)$ 

At t = 0 we have a **catenoid** and at  $t = \pm \pi/2$  a **helicoid**.

# The catenoid and the helicoid



# The Helicatenoid (Source: Wikipedia)

The family of minimal surfaces  $X_t(\zeta) = \Re (e^{it}Z(\zeta)), \zeta \in \mathbb{C}, t \in \mathbb{R}$ :

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

# The Calabi-Yau problem for minimal surfaces

Calabi 1965 Conjecture: every complete minimal surfaces in  $\mathbb{R}^3$  is unbounded.

Results supporting the conjecture:

**Osserman** A complete minimal surface in  $\mathbb{R}^3$  of finite total Gauss curvature (FTC) is **parabolic** (a punctured compact Riemann surface).

Jorge and Meeks 1983 Complete plus FTC implies properness in  $\mathbb{R}^3$ .

On the other hand, omitting FTC leads to counterexamples:

**Jorge & Xavier 1980** There exist complete minimal surfaces in  $\mathbb{R}^3$  with a bounded coordinate function. (Calabi was somewhat wrong.)

Nadirashvili 1996 The disc is a complete bounded immersed minimal surface in  $\mathbb{R}^3$ . Ferrer, Martin, Meeks 2012 There exist complete bounded immersed minimal surfaces in  $\mathbb{R}^3$  with arbitrary topology. (Calabi was completely wrong.)

**S.T. Yau 2000**: Review of geometry and analysis (the Millenium Lecture). **Calabi-Yau problem**: When is Calabi's conjecture true?

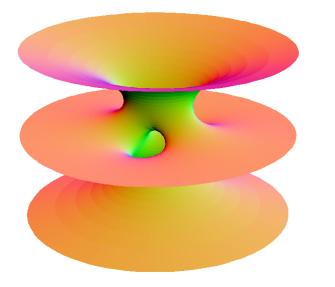
**Colding & Minicozzi 2008** A complete embedded minimal surface M with finite topology in  $\mathbb{R}^3$  is proper; furthermore, M is parabolic. (Calabi was right for embedded surfaces with finite topology.)

Meeks-Rosenberg 2005 The helicoid is the only nonflat, properly embedded, simply connected minimal surface in  $\mathbb{R}^3$ ; its conformal type is  $\mathbb{C}$ .

**Costa 1984** Besides the plane, the helicoid, and the catenoid, **Costa's surface** was the first example of a complete, properly embedded parabolic minimal surface in  $\mathbb{R}^3$ .

It is of finite total curvature and has three ends, two catenoidal ones at the top and the bottom (as all FTC properly embedded minimal surfaces besides the plane have) and a planar end in the middle.

# Costa's surface



# Complete minimal surfaces with Jordan boundaries

### Theorem (Alarcón, F., 2015)

Every bordered Riemann surface M admits a complete proper conformal minimal immersion into the ball of  $\mathbb{R}^3$ .

#### Theorem (Alarcón, Drinovec, Forstnerič, López, 2016)

Let M be a compact bordered Riemann surface, and let  $n \ge 3$ . Every conformal minimal immersion  $f: M \to \mathbb{R}^n$  can be approximated, uniformly on M, by continuous maps  $F: M \to \mathbb{R}^n$  such that  $F|_{bM}: bM \to \mathbb{R}^n$  is a topological embedding and  $F|_{\mathring{M}}: \mathring{M} \to \mathbb{R}^n$  is a complete immersed conformal minimal surface (embedded if  $n \ge 5$ ).

Our surfaces don't have FTC, but we have a complete control of both the conformal structure (any bordered Riemann surface) and of the boundary (a union of Jordan curves).

# Catenoidal cloud over the Sierra Nevada (Granada)

 $\sim$  Thank you for your attention  $\sim$ 



Image Credit & Copyright: Guido Montañés

◆□▶ ◆圖▶ ★ 圖▶ ★ 圖▶ / 圖 / のへで