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1. Introduction and statement of the results. If F c U(n) is a finite unitary
group, the quotient (n/F can be realized as a normal algebraic subvariety V in
some G according to a theorem of Cartan [4]. In order to do this we choose a
finite number of homogeneous F-invariant holomorphic polynomials ql,..., q
that generate the algebra of all F-invariant polynomials [17]; the induced map
Q (ql,..., q): cn--)CS is proper and induces a homeomorphism of C/I"
onto the image V Q(cn). The restriction of Q to the unit ball B maps the ball
properly onto a domain G in V.
Rudin proved a partial converse to this [22]: If f: B--> G is a proper

holomorphic map from the ball onto a domain in Cn, n > 2, that extends to a C
map on El", then there are a finite unitary group F and an automorphism of B
such that f=n o Q o , where Q:Bn---yBn/ is the quotient projection and
/: Bn/F---)G is a biholomorphic map. The group F is generated by reflections,
i.e., elements of finite order which fix a complex hyperplane. A result of Bedford
and Bell [2] implies the same result even whenf does not extend to the closure of
Bn; moreover, we may replace G by an arbitrary normal complex space of
dimension n. See also [19]. The quotient c,n/ is nonsingular if and only if the
group F is generated by reflections, i.e., elements of finite order in U(n) that fix a
complex hyperplane [12, 20, 22]. The boundary of the image G is never smooth
in this case [22].

In this paper we shall study the structure of proper maps from balls into
strictly pseudoconvex domains G in complex manifolds. A finite unitary group
F c U(n) is call fixed point free if is not the eigenvalue of any , F\( ).
Equivalently, F is fixed point free if it acts without fixed points on C"\ (0).

1.1. THEOREM. Let f: B--) G, n > 2, be a proper holomorphic map into a
relatively compact, strictly pseudoconvex domain G in a complex manifold. If f
extends to a C map on , then there exist a finite fixedpoint free unitary group F
and an automorphism q of B such that

f=,/o Oo, (1.1)

where Q:BnB"/F is the quotient projection and /:Bn/F---)f(8) is the
normalization of the subvariety f(Bn) of G.
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Conversely, given a finite unitary group I" c U(n), let q q be a basis of
invariants. The associated polynomial map Q (ql, qs) :(n --> C’s induces a
biholomorphism of the quotient /F onto the algebraic subvariety V Q(()
of C;. If F is fixed point free, the point Q(0) 0 is the only possible singularity of
V, and therefore the image Q(B) of the ball is a strictly pseudoconvex
domain with real-analytic boundary in the Stein space V. Hence there is a
bounded, strictly convex domain G with real-analytic boundary in some Cs and
a proper holomorphic embedding /: Vo Gs that maps properly into G [10,
11]. The composition f /o Q:Go Gs maps B properly into G and satisfies
(1.1). This shows that every fixed point free unitary group arises in the context of
Theorem 1.1.
At this point a natural question is what are the fixed point free unitary groups.

It is more appropriate to talk about the unitary representations of finite groups.
Recall that a unitary representation of an abstract finite group I" is a
homomorphism r:I’- U(n). The number n is called the degree of or. (See [26,
Chapter 4] for a concise account of the theory of representations of finite
groups.) A representation r:I’- U(n) is called fixed point free if 0 C; is the
only fixed point of any or(),), ? I’\ ). There exists a complete classification of
such groups which was carried out in order to solve the Clifford-Klein spherical
space form problem. A beautiful exposition of this can be found in Chapters 5-7
of Wolf’s book [26]. If r:I’-O(n) is a fixed point free orthogonal
representation, then the quotient of any sphere S, (x FV:Ilxll r) modulo
I’ is a spherical space form, i.e., a complete connected Riemannian manifold with
constant positive Gauss curvature K 1/rE. Conversely, every spherical space
form is obtained in this way [26, Theorem 5.1.2]. Every unitary ’epresentation is
also orthogonal under the standard identification of C;" with F:. Thus, if
r I" - U(n) is a fixed point free unitary representation, the quotient B/cr(F) is a
complex space with smooth boundary bB/or(F) that is a spherical space form.
The condition that a finite group I" admit a fixed point free representation

imposes severe restrictions on its structure. In particular, all Sylow p-subgroups
of F for odd p are cyclic; the Sylow 2-subgroups are either cyclic (groups of type
A) or generalized quaternionic (groups of type B) [26, p. 161]. Fixed point free
representations of groups of type A can be found in [26, p. 168]. Groups of type
B are subdivided into five subtypes, and their fixed point free representations are
described in Section 7.2 of [26]. The finite subgroups of SU(2), which are all fixed
point free, play a special role in the representation theory of groups of type B.
Besides the cyclic groups, SU(2) contains binary dihedral and binary polyhedral
groups which arise as the preimages of the rotation groups of regular solids in F
under the two-to-one homomorphism SU(2)- SO(3). Each finite subgroup of
SU(2) has a basis of invariants ql,q2,q3 satisfying one relation; these invariants
can be found in Klein’s book [13, pp. 50-63]. They are also treated in Chapter 4
of [24]. We do not know of any systematic treatment of the invariant theory of
other fixed point free groups. In contrast, the problem of invariants is



PROPER HOLOMORPHIC MAPS FROM BALLS 429

satisfactorily solved for finite reflection groups. (See [24] and the references in
[221.)
A fixed point free representation r:F+U(n) completely determines the

biholomorphic type of B/rr(F). Recall that two representations rr, % F- U(n)
are equivalent if there exists an ,4 GL(C") such that

A A for all 7F.
A result of Prill [20, p. 382] implies that the quotients Bn/Crl(r) and B"/%(F) are
biholomorphically equivalent if and only if there exists an automorphism
h" F---)I’ such that the representation rr is equivalent to % h.

In view of Theorem 1.1 we may ask further which fixed point free groups arise
from proper maps of balls f: Bn---) BN, N > n. Since every strictly pseudoconvex
domain can be embedded holomorphically into a ball [11, 15], every finite fixed
point free unitary group F arises in this way if we do not require that the map f is
smooth on B". On the other hand, we shall show that in general there is no
F-invariant proper rational map into a ball.

1.2. THEOREM. Let r F--) U(n), n > 2, be a fixed point free representation. If
there exists a r(F)-invariant rational proper map f:Bn--) [N for some integer N,
then the group F is of type A, i.e., all of its Sylow subgroups are cyclic, and the
irreducible fixedpoint free representations of F are of odd degree. If n 2k for some
integer k, then the group F is cyclic.

Except for some examples involving certain representations of cyclic groups
(see Section 3) we do not know which groups of type A actually arise in this
connection. It would be of interest to pursue this question at least in the case
when the codimension N- n is sufficiently low. Also we do not know what the
answer is if we require that the map f be of class Cp on B for some p > 0. (The
result of Low [15] implies that f can be made continuous on

Let f" B ---) [u, n > 2, be a proper holomorphic map. Two such maps fl, f2 will
be called equivalent if there exist automorphisms q (resp. p) of B (resp. [U) such
that f o q q of2. If f extends to a C2 map on n and N n + 1, then f is
rational; If n > 3, f is equivalent to the embedding z (z, 0) [25, 6]. There are
precisely four nonequivalent rational proper maps of B2 into I [8, p. 441]. Two
of these maps have nontrivial structure groups" f(z,w)=(z2,/zw, w) is
invariant with respect to the cyclic two-group generated by the central inversion

(z, w) -(z, w), and g(z, w) (z3,f5 zw, w3) is invariant with respect to the
cyclic three-group generated by the linear map with the matrix ( ,2), where
e exp(2ri/3). We shall give some other examples of such embeddings in
Section 3 below.
We shall use the idea of Cima and Suffridge [6] and apply induction to prove

1.3. THEOREM. Let U be a neighborhood of a point p bl in C" such that
f) U is connected, and let f" Uo GN be a CN-"+ map that is holomorphic and



430 FRANC FORSTNERI(

nonconstant on B 0 U, f(B" f) U) c BN, and f(bB f3 U) cbBu. If n > 2 and
N < 2n 1, then f extends to a rational map on G that is holomorphie on B" and
maps B into BN.

This theorem, together with a result of Faran [9], implies

1.4. COROLLARY. Let f: B" --)Bu be a proper holomorphic map that is of class
cN-, + on n. If n > 2 and N < 2n 2, then there are automorphisms q) of B and
p of BN such that for all (z l, z,) B"

q f q)(z, z,) (zl Zn, 0,..., 0).

An example shows that Corollary 1.4 is false for N 2n- [6, p. 499]. It
would be interesting to know whether Corollary 1.4 holds under weaker
smoothness assumption on f, e.g., when f is of class C

I wish to thank Professor Edgar Lee Stout for several helpful conversations
and suggestions.

2. Proof of Theorem 1.1. Although the existence of a group F satisfying (1.1)
follows from the work of Bedford and Bell [2], there is a much simpler proof in
our case. Since f is of class C on n and both bB and bG are strictly
pseudoconvex, the Hopf lemma implies that f has maximal rank n at every point
of bB [10, p. 549; 18, p. 378]. Thus the branching locus L of f is a compact
subvariety of B and therefore finite [21, p. 294]. The image f(Bn) is a subvariety
of D according to a theorem of Remmert [16, p. 129]. Let /: V-f(B") be its
normalization [16, p. ll4], and let F:Bn--) V be the induced map such that

f o F. The branching locus L of F is also finite. Denote by W the subvariety
F(L) U Vsing of V. The restriction

F ln\F- l( W) -) V\ W (2.1)

is a nondegenerate proper map of complex manifolds and therefore a finite
covering projection. Since L is finite and the complex codimension of Vsing in V
is at least two [16, p. 115], the preimage F-I(W) also has codimension at least
two in Bn. Thus B"\ W is simply connected [1, p. 355], and hence (2.1) is the
universal covering projection. Therefore the group F of deck transformations of
(2.1) acts transitively on each fiber. Each 3’ 1’ extends holomorphically across
W to an automorphism of B, and these extensions form a group I" c Aut(B).
The map F factors as h Q, where Q:B" Bn/F is the quotient projection.
Outside a proper subvariety of Bn/F the map h is one-to-one and onto; since
both spaces B"/F and V are normal, it follows that h is biholomorphic. Thus we
can replace /by /o h and take r/: Bn/I’ f([n) to be the normalization of f(ln).
Thus far we proved that f=,/o Q, where Q is the quotient projection

IBn--- [Bn/ for a finite subgroup F c Aut(IBn). There is a common fixed point
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a B of all 3’ F [22]; interchanging 0 and a by an automorphism
maps F into a finite unitary group, and we have f

It remains to show that the group F is fixed point free. Since the branching
locus of f is finite, the branching locus Le of the quotient projection
Q:B Bn/F is also finite. On the other hand, Q is branched on the set
Hr (z G 3’(z)= z} for every 3’ F\(1} because Q is not locally one-one
near Hr. Since Hr is a linear subspace of Gn, finiteness implies Hr (0} for
every 3’ F\ (1). This means that 0 is the only fixed point of any 3’ F\ (1 }.
Theorem 1.1 is proved.

3. Proper maps of balls and fixed point free groups.
proof of Theorem 1.2 is the following

The main step in the

3.1. PROPOSITION. If Fk is the cyclic subgroup of U(2) generated by the matrix

Ak (’o _o), where e ri/2k, then there exist no proper Fk-invariant rational maps
from B2 to any finite dimensional ball.

Assuming this for a moment we shall prove Theorem 1.2. Since every fixed
point free representation r:F U(n) is a direct sum of irreducible representa-
tions of the same degree m, it follows that m divides n. Thus, if n 2k and m is
odd, we have m 1, and hence F is cyclic. This proves the last assertion of
Theorem 1.2 provided that the rest of the theorem holds.
To prove the first part of the theorem we may assume that the given

representation r:F U(n) is irreducible. We shall identify F with its image
r(F) c U(n). If F’ is a subgroup of I’, then every F-invariant map is also
F’-invariant. Moreover, if Y. is a complex linear subspace of Cn that is
F’-invariant, then the restriction off to : is also F’-invariant. To prove that there
is no rational, proper, F-invariant map f" B BN it therefore suffices, in view of
Proposition 3.1, to find a subgroup F’ of F and a two-dimensional complex
subspace X c C such that the action of F’ on is equivalent to the action of the
group F on 02.

Suppose first that F is of type A, i.e., all of its Sylow subgroups are cyclic. The
general form of such groups is given in [26, p. 168]. If F is not cyclic, it contains a
cyclic subgroup generated by a matrix of the form

0
0

where 8 is a root of 1. The eigenvalues of U are 8 l/n, 1/n, l/nn--l, where

’ is a primitive nth root of 1. If n is even, n 2r, then U has eigenvalues
1/2, l/2ffr 1/2, Hence there is a 2-dimensional complex subspace
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of G in which U acts as the matrix T ( _0,), with e 1/2. The group
generated by T is fixed point free if and only if e is a primitive 4kth root of for
some integer k. Hence we obtained the group F,. Proposition 3.1 implies that
there is no F-invariant map B"oBN. Thus the degree of irreducible
representations of I’ is odd in this case.

If F is of type B, its Sylow 2-subgroups are isomorphic to a generalized
quaternionic group Q2 given by [26, p. 171, Lemma 5.6.2]. Each irreducible
representation of Q2 contains a cyclic subgroup generated by the matrix (_ ).
Its eigenvalues are _+ i, and hence this subgroup is conjugate to the group I’ I.
Proposition 3.1 implies that there is no F-invariant map B"--)Bu.

This shows that Theorem 1.2 will be proved when we prove Proposition 3.1.

Proof of Proposition 3.1. Recall that I"k c U(2) is the group of order 4k
generated by the matrix ( _0), e ei/2k. The proof of the Hilbert basis theorem
due to Noether [17] shows that the polynomials M,(z)= vrm, o-/(z),
where m,(z) is the monomial zz of order c + fl < IFkl 4k, generate the
algebra of holomorphic F,-invariant polynomials. We have

 to,e(z) E
j=l j=l

where e(-e) is a 4kth root of one. Clearly E.k (j 0 unless which
happens if and only if (a, fl) equals: (4k, 0), (2k 1, 1),..., (1,2k- 1),(0,4k);
(4k- 2,2),..., (2, 4k- 2). It follows that the monomials

ql z41 :, q2-- Zk- 21k-3z32 Zk-I Zklz2 q: z qg z q, +

(3.1)

generate the algebra of Fk-invariant polynomials.
Suppose that f= (Pl/q,..., Ps/q) is a proper rational map from BE into

Composingf with an automorphism of B we may assume that f(0) 0. We may
also assume that the constant term of q equals 1. Thus

d d’

Pi(z)= _, pig(z) and q(z)= 1+ qj(z),
j=l j=l

where p;, and qj are homogeneous polynomials of degree j. We choose d and d’
such that qd’ and at least one of Pi,d’S are nonzero. Since f" B2o Bs is proper, we
have

Pi(z) Pi(z) q(z) q(z) if ZI, "[" Z2,2 1. (3.2)
i=1

We claim that (3.2) implies d’ < d. Fix a point z b[2 for which qd,(Z)4:0 and
consider the equation =l Ie;(xz)/q(Xz)l=-- which holds on the circle IXl-- 1,
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Rewrite this as

Pi(Xz) Pi(z) q(q) q(z). (3.3)
i=l

The right hand side of (3.3) is a polynomial in and of degree d’. On the other
hand, since Pi contains no constant term and v 1, the left hand side is a
polynomial of degree at most d- in and . Since the higher powers of and
X are independent of the lower powers on the circle I1 1, the degrees on both
sides must agree, and hence d’ < d- as claimed.
We let w and 2 w2 be independent variables. From (3.2) it follows that

Pi(z,)ffi(w)= q(z)Y:t(w) if z1w "" Z2W2 1, (3.4)
i=1

where f(w)= f(). If we substitute w (1 zw)/z_ into (3.4), we obtain an
identity among the independent variables z, z2, and w. Notice that the terms of
degree l in (3.4) give rise only to terms of degree not exceeding 1 after the
substitution. Since q has no terms of maximal degree d, we have

Pi,d(Z)ffi,d(W) (terms of degree < 2d). (3.5)
i=1

Consider a typical term c,,zz?.,w’{w of maximal degree in Pi,d(Z)i,d(w);
hence a +/3 = + d. We substitute w. (1- ZlW)/z:z and consider the
terms of maximal degree 2d of the form const Z laWd. We only obtain such terms
when a and fl ; the corresponding term is

Ic..alZ(z,w)( z,w,)a= (-1)alc.alZ(z,w)a. (3.6)

Suppose now that the map f is F,-invariant. We may assume that q and the
Pi’s are Fk-invariant [24, p. 73]; hence each monomial zz that appears in one
of the Pj’s is a product of the monomials (3.1):

ZZ2fl (zZk)Ot’(zk- lz2)O- (ZlZk-- l)tk (zk)etk+’"

This implies d 4ka + 2ka2 + + 2kotk + 4kak+ and fl O2 if" 333 +
+ (2k 1)ak + 4kak+ It follows that

k + 2(-a + 23 + + (2k- 1)ak+,),

which shows that fl is determined by d modulo 2. Thus (-1)t only depends on
d; hence the coefficients of all terms (3.6) in (3.5) are either all positive or all
negative, depending on d. This shows that the left side of (3.5) contains a nonzero
term const(zwl)d which is a contradiction. This proves Proposition 3.1.
We shall conclude this section by two examples of fixed point free groups

F c U(n) for which there is a proper precisely F-invariant polynomial map from
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13" into a higher dimensional ball. It seems that these are the only presently
known examples of such embeddings.

Example 1. Let Ck be a cyclic group of order k > 2. Choose a generator A of
Ck, and let r’Ck U(n) be the representation given by

E
e2ri/k

" of orderThe monomials z z’ z,,
of invariants of r(Ck). If we let

k form a basis

ca=( k! )/a! a.! > O,

then the map f" C;" .._)(N, whose components are the monomials c,z for all
]a k, induces a proper holomorphic embedding of B"/r(Q,) to BN. Here N is
the number of all such monomials. In the case when n 2 we obtain the
following maps"

f(x, y) (x2,fxy, y-) B--- B,
k=3, (x, y) (x3,vxy,Vxy, y3). B2 + B4,

k 4, f4(x y) (x4,2x3y,fx2y2,2xy3, y4). B2

etc. The components of these maps are homogeneous polynomials of the same
degree k. Rudin proved [23] that these are essentially the only proper maps of
balls whose components are linearly independent homogeneous polynomials of
the same degree.

Example 2. Let k 2r + 1, e e2;/, and let r" C - U(2) be the representa-
tion

0)r(A
0 e2

A basis of invariants is

X2r+ l, x2r- l, x2r-- 32, xy r, y2r+ 1.

We denote Ixl== a and lyl== b. Then a + b for (x,y) bB2. We can
expand (a / b)2+ in the form

(a + b)2r+l= a2r+’ + b2r+’+ k aja2(r-J)+’bJ(a + by (3.7)
j=l
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for some uniquely determined real constants ak. If the aj’s are all nonnegative,
the map

is precisely z(Ck)-invariant and maps B2 properly to Br+2. To see this, observe
that on the sphere (Ixl" / [yl== 1) we have

[f,.(x, y)[- a2"+’ + b2r+l + k [aj[ a:’-(r-j)+ ’bj
j=l

which equals in view of (3.7). In the special cases r 1, 2, 3, 4 we get the maps

f(x, y) (x,qxy, y) B2-+

f2(x y) (XS,Vlx3y,vXy2 y5). B2__)B4,

f3(x, y) (xT,-xSy,lx3.,v2,l’{xy3, yT). B
__
B,

f4(x ),) (X9,3xT.j;, 2X2, 3X3);3,3xy4, ),9) B2_+B6.

We believe that such a map fr exists for each integer r. The first three of these
maps can be found in [6, p. 500], without reference to fixed point free groups.

4. Proper maps of balls in low codimensions are rational. In this section we
shall prove Theorem 1.3. For each point z G", z v 0, we denote by z +/- the
complex hyperplane in G" orthogonal to z"

2-t ( W - C, Z Zj-j O } (4.1)
j---I

Let f" U-+ (3v be as in Theorem 1.3. We denote by Df(z) the Fr6chet derivative
of f of orderj at the point z U. (See [5, Chapter 5].) Recall that D /’(z) is just
the complex Jacobian of f at z. We denote by P,,(., z0) the Taylor polynomial of
order k of f at the point z0 U. Since f is smooth on U and holomorphic on
U f’l Bn, the components of Pk(.,z) are holomorphic polynomials for each
z U N B". A special case of the following lemma was proved in [6].

4.1. LEMMA. Let f" UG" be as in Theorem 1.3, and let zo bB" F) U. Put
s N- n + 1. Then the following hoM:

(i) The Taylor polynomial Ps(.,Zo) maps the affine hyperplane zo + z c C," into
the affine hyperplane f(zo) + f(zo) +/- c Gu.

(ii) If v vj is any set of vectors in z, j < s, then

DJf(zo)(V,, vj) f(zo) +/-.
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(iii) Iff is holomorphic in U, then

f((zo + z-) U) c f(zo) + f(zo) -
Proof. We want to prove that z.20

P(z) Ps(z, zo). The complex submanifold
implies P(z).P(zo)= 1, where

Y,-- ((z,w) C" x C"[z. w-’- Ez./wj= }
is the complexification of the real-analytic submanifold

s= e c"}

The function G(z, w)= f(z).f()- 1, defined on a neighborhood of the point
(z0,20) C2", is of class C and vanishes on S. The function g(z,w)= P(z).
P()- is a holomorphic polynomial of order 2s in the variables (z,w). Since
the derivatives of f and P at z0 agree up to order s, the functions G and g have
the same Taylor polynomial T(z, w) of order s centered at (z0,20).
Choose a system of local real-analytic coordinates (t,..., t,_l) on S

centered at (z0,20) and consider the functions G and g in these coordinates.
There derivatives of order at most s in agree at t---0 since this property does
not depend on the choice of coordinates. Since G(t)=--O, the t-derivatives of T
up to order s all vanish at ---0. If we let t take complex values, we get a system
of local holomorphic coordinates on centered at the point (z0,20). Since T is
holomorphic on , its complex t-derivatives up to order s vanish at t- 0. The
same is then true for g since T is its Taylor polynomial. Therefore the function

z g(z,o) P(z). P(zo) 1, z zo + z-
vanishes up to order s at z z0. But this is a polynomial of degree s in z, and
hence g(z, zo) is identically zero for z z0 + z-. This means that P maps
z0 + z- into f(zo) + f(zo) +/-, and part (i) is proved.

Part (ii) follows from (i) since the derivatives Df(zo)(V,..., vj) are linear
combinations of coefficients of the vector-valued polynomial z ---)’Ps(z, Zo).

If f is holomorphic near z0, the function G(z,w)=f(z).f()-1 is
holomorphic on 2n near (z0, 20) and vanishes on S. Since Y. is a complexification
of S, G vanishes also on E. Substituting w 20 we see that f(z).f(zo)--- for
z z0 + zd- near z0, and (iii) is proved. This proves Lemma 4.1.
We shall also need the following lemma.

4.2. LEMMA. Let f: UCk be a holomorphic map defined on an open
connected subset U of G, and let zo be a point in U. Denote, for each z U and
for each positive integer j, by VJ the linear subspace of Gk spanned by all partial
derivatives Of/Oz(z) of order I 1, < j, zf there is an integer j such that
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vJ +’ vJ for all z U, then the image f(U) lies in the affine subspace f(zo) + VJo
of .

Proof. In view of the Taylor formula for f at the point z0 we need to prove
that vJ+t= vJ for all 7+. By induction on j it suffices to show that the
hypothesis V+ l__ vj for all z U implies that Vj+2= vj for all z close to zo.
Let the vectors

Xr() (), <r<dimVj,

be a basis of Vj for all points z close to z0, and let X(z)= Of/Oz(z) for some
multiindex a, lal---j + 1. The hypothesis Vj+= Vj implies that there are
smooth functions ar(Z), < r < dim Vj, such that X(z) ar(Z)Xr(z). Differen-
tiating with respect to z we have

a )X __Xoz, (z) E
r

(Z)Xr(Z) + 2r ar(Z) (z).

Since Vzj+l Vzj, each term on the right lies in Vzj whence OX/Oz,(z)
_

vJz for all
z near z0. Since a and were arbitrary, it follows that Vj+2 Vzj and Lemma 4.2
is proved.

Proof of Theorem 1.3. For every point z bB" f3 U we denote by V the
complex subspace of (3u spanned by all vectors of the form DJf(z)(v,..., vj),
where vi -z +/- for < < j < s. Lemma 4.1 implies that V c f(z) +/-. There are
two possibilities" either Vo=f(zo) +/- for some point z0 bB"f3 U or else
V v f(z)x for all z bBn tq U.
Consider first the case when

Vo= f(zo) +/- (4.2)

for some z0 bBn f3 U. We may assume that z0
be the vector

(0,..., 0, 1) bB". Let ui(z)

u,(z) (o,..., o, o, o,i), l<i<n-1,

where the entry -n is in the ith place. Clearly ui(z) z +/-. The assumption (4.2)
implies that there are N- vectors Xl(Z),..., Xv_ l(Z) in G, where each Xi(z)
is of the form DJf(z)(Vl(Z),..., vj(z)) for some integer j < s and for some
vectors v, (ul,..., un_ ), such that X(zo),..., Xu_ l(Zo) form a basis of the
complex hyperplane f(zo) +/-. This implies that the system of linear equations

F(z). f(z/Izl) 1,

F(z). X(z/Izl=) o, I<j<N-1
(4.3)

for the unknown functions F (Fl,..., FN) has rank N at the point z0, and
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hence it has a unique solution F(z) in a neighborhood of z0. By part (ii) of
Lemma 4.1 the function f(z) is a solution of (4.3) when z bB whence
F(z) f(z) for z bl near z0. If we redefine the function f(z) outside B by
taking f(z)= F(z), then f is holomorphic near z0 [14, 25, 18]. The proof of
Theorem in [6] can be applied to conclude that f is rational, f=
(Pl/2, Pu/q). The degrees of the polynomials Pj. and q may differ from
those given in [6].

It remains to consider the second possibility when

V :/: f(z) +/- for all z bB N U. (4.4)

Let pn be the projective space of complex affine hyperplanes in n. We shall
prove that there is an open set of hyperplanes A pn such that A q U B v
and the restriction of f to A is rational. Once this is proved, it follows from
[3, p. 201] that f is rational.
By composing f with an automorphism of [n we may assume that f is defined

on an open neighborhood of the set

B N {z (z,, Zn) cnlzl 0 or z2 0}
and thatfhas maximal rank n at the point 0. Let ej (0,..., 1,..., 0) with
on the jth spot, and consider any set of n vectors of the form

Df(fe,)(e;,,..., ei,.), k < s, 2 < iz < n,

where " A (w O’[w] < ). Since these vectors are holonorphic in " A,
continuous on A, and linearly dependent for " bA by (4.4), they are also
linearly dependent at ’ 0. Hence there is a complex subspace Z c (N of
dimension N 2 such that

Dkf(0)(ei,,..., e) Z for all k<s, 2< t< n. (4.5)

Let z’= (z2,..., zn). For each 2 < j < n let %. be the number of indices in
(4.5) whose value equals j, and let a (c2 %). Then the expression (4.5) is
simply the partial derivative

--f- (0,z’), la[ a2 + + % k (4.6)az
evaluated at the point z’= 0. For j (1,..., s) we denote by V[, the linear
subspace of CN spanned by all vectors of the form (4.6) for < k < s. (4.5)
implies dim V < N- 2. We may apply the same argument to the map f
where is an automorphism of the ball B that preserves the hyperplane
A (z =0) and is close to the identity map on Bn, to conclude that
dim V], < N- 2 for all points z’ sufficiently close to 0. Such automorphisms
exist, see [21, p. 30].
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Consider the flag Vz! c V c... c Vj, of s N-n + subspaces of CN.
Since f has maximal rank n on G" near O, we have dim Vz! n whence

dimVj,-dimV!<(N-2)-(n- 1)=N-n- l=s-2.

It follows that there is an integerj )(z’) 1,..., s such that VJ, vJ,+ 1.
Choosej(z’) as small as possible. We can find a point z near 0 such that j(z’) is
constant in a neighborhood of z. Let z0 (0, z). Lemma 4.2 implies that

f(A n t3") c f(zo) + V,
ZO

Hence f maps the (n- 1)-ball A O 13n properly into the (N- 2)-ball (f(zo)+
Vj) n BN, and it is of class C to the boundary. By induction on the dimension n
it follows that the restriction of f to A is rational.

Applying the same argument to f q, where is an automorphism of 13n such
that q(A n 13n) is close to A n 13n, we conclude thatf is rational on an open set of
hyperplanes A pn. By [3, p. 201] this proves that the map f is rational.

It remains to show that the map f is holomorphic on B and maps B into BN.
Let f=(Pl,...,PN)/q, where Pl,’..,PN and q are polynomials in z
(zl,..., z,). Since the ring C,[z] is a unique factorization domain, we may
assume that these polynomials have no common factor. Assume that there is a
point a 13" such that q(a) 0, and let q0 be an irreducible factor of q such that
qo(a) O. The condition If[ on b13" n U implies

2 2 2Ip, + + Ipul -Iql (4.7)

first on b13" n U and then by the identity principle on all of bBn. From (4.7) we
see that

(q0 O) n bB" C {pj O) n bB

for all < j < N. There is a point z0 bB such that qo(Zo) 0, and near z0 the
set q0 0) is a complex (n 1)-manifold that intersects bB" transversally. (4.7)
shows that pj 0 on q0 0} near z0 for < j < N. Since the set q0 0) is an
irreducible algebraic variety, this implies that P7 0 on (q0 0) for all j. By the
Nullstellensatz each p7 is divisible by q0 in the ring C,[z]. This is a contradiction to
our initial assumption that Pl,... ,PN,q have no common factor. Thus f is
holomorphic on 13. Moreover, since Ifl on the set of point of bB" where f is
holomorphic, it follows thatf has no poles on b13".
We claim that the restriction of f to every complex line in n intersecting 13n

is holomorphic on a neighborhood of l n 13n. Since q 4 0 on 13", the restriction of
q to can only have a finite number of zeroes al,..., a on the circle l O b13".
Since each f7 is bounded in absolute value by on 1 n bln\(al,... ar) the
restriction_ fjlt has a removable singularity at each ak and so fj is holomorphic on
l n I as claimed. The maximum modulus principle implies that f maps B" into
BN. This concludes the proof of Theorem 1.3.
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Note. In the case when N < 2n- 2 Corollary 1.4 implies that f has no
singularities on the sphere bBn. We do not know whether the same is true when
N 2n 1. Note that there exist rational functions with singularities on bBn that
are bounded on . For example, f(zl,z2)= z/(1 Zl) is bounded in absolute
value by Iz212 on 2 and has a point of indeterminacy at (1,0) bB2.
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