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On totally real embeddings into C"

Franc Forstneric*

Summary. An immersion or embedding f: M—C" of a smooth real manifold into a
complex Euclidean space C" is called totally real if for each point peM the tangent space
to f(M) at f(p) contains no nontrivial complex linear subspace. In this paper we will apply
a theorem of Gromov on convex integration of differential relations [5, p. 331, 1.3.1.] to
the problem of constructing totally real embeddings of smooth n-dimensional manifolds
into @©" for n>3. Our main result (Theorem 1.2 and Corollary 1.3) is that a totally real
immersion which is regularly homotopic to an embedding is also regularly homotopic to a
totally real embedding. This result was stated by Gromov [5, p. 332], but to our knowl-
edge no proof was ever published. Corollary 1.3 turns the problem of constructing totally
real embeddings into a problem in homotopy theory. Since totally real embeddings are of
considerable interest to complex analysis, we shall prove the result in this paper and obtain
some applications.

To prove Theorem 1.2 we combine Gromov’s main theorem in [5] with Whitney’s method
[16] to show that one can remove certain pairs of double points of a totally real
immersion without losing total reality. This method was suggested by Gromov in [5, p.
332]. Thus each totally real immersion f: M — C" can be changed by a regular homotopy
through totally real immersions into a totally real immersion f, with the minimal number
of double points. In particular, if the self intersection number of f equals zero, then f| is a
totally real embedding. As an application we prove that every orientable compact three
dimensional manifold admits a totally real embedding into C>.

1. Results

We first recall some terminology. Let M be a smooth n-dimensional manifold. A
regular homotopy of immersions of M into R™ is a parametrized family {f},
te[0,1], of C' immersions f,;: M —IR™ whose derivatives df,: TM - f*(TR™ =M
x R™ depend continuously on .

An immersion f: M — @™ is called totally real if for each point p in M the n-
dimensional real-linear subspace df (T,M) of C” contains no nontrivial complex

subspace; this requires m>n. Equivalently, f is totally real if the complexified
derivative df®: TM ® C=T®M — M x €™ defined by
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df F(w+iw)=df,(v) +idf,(w), peM, v,weT,M

is one-one on each fiber, ie, a complex vector bundle map. If m=n, the above
implies that df®: T°M - M x C" is an isomorphism of complex vector bundles
over M. A regular homotopy f: M —C" which is totally real at each stage
induces a homotopy of complex bundle isomorphisms df,f: T°M - M x C".

We denote by G,, , the Grassman manifold of n-dimensional real subspaces of C"
and by G, , the open subset of G,, , consisting of totally real n-dimensional
subspaces, ie., subspaces that contain no complex line. To every immersion f:
M — C" we associate its Gauss map ;0 M—G,, . defined by T,(p)=df (T, M).
The work of Gromov [5, p. 332] and Lees [9] yields the following results. (See

also Section 2 below.)
1.1 Theorem. Let M be a smooth n-dimensional manifold.

(a) The regular homotopy classes of totally real immersions of M into C" are in
one-one correspondence with the homotopy classes of complex bundle isomorphisms
TCM+— M x C".

(b) Let f: M — Q" be an immersion. If there is a homotopy 1,: M —G,, , starting
at to =1, such that the image of t, is contained in GY. . then there is a regular

2n,n°

homotopy of f into a totally real immersion of M into C".

When T®M is trivial the set of homotopy classes of complex bundle isomor-
phisms T*M+— M x C" is in one-one correspondence with the elements of the
complex K-group K'(M) [3]. Thus the totally real immersions of M into C" are
classified by K*'(M).

Suppose now that M is compact and without boundary. We can approximate
every immersion f: M —€" by an immersion with only finitely many regular
double points. (Whitney called such an immersion completely regular [16, p.
2217].) Whitney introduced the self-intersection number I , of such immersion [16,
p- 233]; I, counts algebraically the number of double points of f and is invariant
under regular homotopy. I, is an integer if M is orientable and » is even and is
an integer modulo 2 otherwise. If n>3 and f: M—C" is an immersion whose
number of double points exceeds |1 sl Whitney proved that we can remove a pair
of double points of f by a regular homotopy, thus reducing their number by two.
Hence every immersion is regularly homotopic to an immersion with the minimal
number of double points. We will show that the same holds for totally real
immersions. More precisely, we have

1.2 Theorem. Let f: M —C" be a totally real immersion of a smooth compact
manifold M of dimension n>3 into C". There exists a regular homotopy f,: M — C"
of totally real immersions with Jo=1 such that the number of double points of fi
equals the self-intersection number || If f is regularly homotopic to an embedding,
then f is also regularly homotopic to a totally real embedding by a homotopy
through totally real immersions.



On totally real embeddings into C" 245

Part (b) of Theorem 1.1 and Theorem 1.2 imply

1.3 Corollary. Let M be a smooth compact manifold of dimension n>3. If the
Gauss map ©,: M—G,, , of an embedding f: M — C" is homotopic to a map with
image in GY_ ., then f is regularly homotopic to totally real embedding.

2n,n>

In a footnote on page 332 in [5] Gromov claims that the same result holds also
for n=2. We do not know how to prove this since Whitney’s method only works
for n>3.

As an application we shall prove that all compact orientable three-manifolds
admit totally real embeddings into C>.

1.4. Theorem. Every immersion of a compact orientable three dimensional manifold
M into €2 is regularly homotopic to a totally real immersion. There exists a totally
real embedding of M into C>.

It is known that for n different from one and three the n-sphere $” does not admit
totally real embeddings into €* [8, 14]; hence Theorem 1.4 only holds in dimen-
sion three (and of course in dimension one). Explicit totally real embeddings of S 3
and certain quotients of S, including the real projective space RIP3, can be found
in [1] and [4]. For n different from 1, 3 or 7 the projective space RIP" does not
admit a totally real embedding into €". Since RRIP” is parallelizable, it admits a
totally real immersion into €7, but we do not know whether this immersion is
regularly homotopic to an embedding. We shall prove that

1.5 Proposition. All totally real immersions of RIP7 into €7 are regularly homo-
topic.

There are two distinct regular homotopy classes of immersions RIP’ — C7; one of
them can be represented by an embedding, the other one by an immersion with
exactly one double point. (See Section 4.) The problem is to decide which class
contains a totally real immersion. For a survey of known totally real embeddings
of other manifolds see [15].

The paper is organized as follows. In Section 2 we recall the theorem of Gromov,
and in Section 3 we outline Whitney’s method of removing pairs of double points
of an immersion. In Section 4 we prove Theorem 1.2. In Section 5 we discuss
classification of immersions of n dimensional manifolds into €", we prove Theo-
rem 1.1(b), Theorem 1.4, and Proposition 1.5.

I wish to thank Edgar Lee Stout for several helpful conversations about this
problem and Rob Thompson for his help in homotopy theory.
2. The theorem of Gromov.

We recall Gromov’s theorem [5]. Let n: X — M be a smooth fibre bundle with n-
dimensional base manifold M and g-dimensional fiber. Denote by X' the man-
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ifold of 1-jets of sections of n: X - M, and let n,: X' > X and n,: X' > M be
the natural bundles, the first of which is an affine bundle. An open subset Q of X*
is called an open differential relation of order one. A solution of the relation Q is a
C! section 6: M—X whose one-jet j'(c): M — X' has values in Q. Clearly a
necessary condition for the existence of solutions of Q is the existence of sections
of Q over M. Gromov proved [5, p. 231, 1.3.] that under certain condition on Q
which we shall describe below the natural map from the space Io(M,X) of
solutions of Q into the space I'(M,Q) of sections of Q is a weak homotopy
equivalence, i.e., the path connected components of both spaces are in one-one
correspondence and the map induces isomorphism of all homotopy groups of the
two spaces.

Since Gromov’s condition on  is local on X , it suffices to describe it in the case
when n: X =M xR?— M is a trivial bundle. There is a natural decomposition of
each tangent space T X, xeX, into a direct sum TwMOTR'=T, M®R? of
horizontal and vertical subspaces. Every section ¢ of X is of the form a(p)
=(p,f (p)) for some map f: M —»R% If we choose local coordinates Uy,...,U, in an

open subset U of M, then the one-jet j'(6) of a section a(p)=(p,f(p)) is de-
0
termined by f: U—1R? and by the partial derivatives %: U—-R% 1<j<n. Thus

J
each one-jet x*eX"' over U is given by x! =(x;v,,...,0,), where x is a point in X
and {v;} are vectors in R The restriction of a one-jet to the hyperplane u, =u?
through a point u°cU is determined by

X =(X; 01, s By eeny 0,), n(X) =u,, (2.1

where the hat indicates that the k-th component is omitted. The relation Q< X!
is said to be ample in the coordinate direction u if for each restricted one-jet x! of
the form (2.1) the set of all vectors velR? for which the one-jet x!
=(x;vy,...,0,...,v,) (v on the k-th spot) lies in Q is either empty or else the
convex hull of each of its path connected components equals RY The relation Q
is called ample in the coordinate directions if each point xeX has an open
neighborhood Y and local coordinates Uy,...,u, in the projection U=n(¥Y)c M
such that Y U is a trivial bundle over U and the relation Qnng'(Y) is ample in
all coordinate directions u; at all points of Y. Gromov’s main result in [5, p- 231]
is that for every open differential relation Q< X* which is ample in the coordinate
directions the map I(M, X)— I'(M, Q) is a weak homotopy equivalence.

If X=MxC"— M is a trivial bundle with fiber C", then we can define an open
differential relation Q< X' as follows. Choose local coordinates u,,...,u, on
Uc=M. A one-jet x' =(x;v,,...,v,) is in Q if and only if the vectors v,,...,v,eC"
are complex linearly independent, i.e., the real n dimensional space spanned by
them contains no nontrivial complex subspaces. In this case a section o(p)
=(p,f (p)) of X is a solution of Q if and only if the map f: M — " is a totally real
immersion of M into C€". It is easy to see that Q is ample in the coordinate
directions. Thus part (a) of Theorem 1.1 follows from Gromov’s theorem.
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The essential step in the proof of Gromov’s theorem is the following lemma which
we state here for the sake of completeness. (See [5, p. 339, Lemma 3.1.3].)

2.1 Lemma (Gromov). Let V be the cube [0,1]" with coordinates u,,...,u,, X =V
«xR9—=V the trivial bundle and Qc X' an open subset, ample in the coordinate
directions. Let fy: V—X and ¢,: V—>Q be smooth sections such that on the
boundary of the cube j'(fy)=¢,. Then for any £>0 one can find a C' section f:

V— X with the following properties:

(a) On the boundary of the cube V the one-jet jU(f) coincides with ¢,.

(b) 1f —fol<e.

(c) The jet j*(f) carries V into Q.

(d) There exists a deformation ,, te[0, 1], consisting of sections V— £, coinciding
on the boundary of the cube with ¢, such that Y,=¢, and ¥, =j*(f).

We shall prove a lemma which we will need in the proof of Theorem 1.2. Let n:
X =M xR"— M be a trivial bundle over an n-dimensional manifold M. Suppose
that we have an almost complex structure J on the total space X, i.e., an operator
J: TX->TX such that —J? equals the identity operator on TX. We define a
relation Q,c X! as follows: A one-jet x'€X' belongs to Q if and only if the
tangent plane V,cT,X to the graph of any section o: M — X representing x>
contains no nontrivial J-linear subspaces. Notice that V, is independent of the
choice of representative of the jet x'.

2.2 Lemma. The relation Q, defined above is ample in the coordinate directions.

Proof. Choose a point x,eX and a system of local coordinates uy,...,u, near
0 .

n(xo)=u’eM. Let e; = for 1<j<n. The tangent plane at the point xeX to a
u.

section of X whose one-jet is x' =(x;v,,...,v,) is spanned by the vectors e;+v;,
1 <j<n. Fix an index k and a restricted one-jet Xy =(x;0q,...,0, ..., ,). Denote by
W’ the real (n—1)-dimensional subspace of T, X spanned by the vectors e;+v;,
je{l,...,k,...,n}. For every v,eR" letW(v,) be the real n-dimensional subspace of
T, X spanned by e;+v;, 1 <j<n; thus W' W (v,) for each v eR".

Denote by X the subset of all v,eR" for which W(v,) contains a nontrivial J-
linear subspace. We have to show that the complement Q" of X in R” is either
empty or else the convex hull of each of its connected components equals IR".

If W’ contains a nontrivial J-linear subspace, then so does W(v,) for each v, eR”",
and hence @ =0. Suppose now that W’ contains no nontrivial J-linear subspace.
In this case a vector v,€eR" is in X if and only if the vector e, +uv, lies in the real
(2n —2)-dimensional subspace W’ +JW' of T,X. Here we used the relation J 2=
—I. For simplicity of notation we shall assume that k =n and write v, =v. Let J(e;
+v,)=b; for 1<j<n—1. A vector ¢, +v lies in W if and only if there exist real
numbers «;, f;, 1 <j<n—1, satisfying
n—1

Y a;(e;+v)+B;bj=e,+v. (2.2)

j=1
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Write b; in the form bjzzg;lyj,ieﬁ—b}, where bjeR" is a vertical vector and
7;,:€R. Inserting this into (2.2) and comparing the coefficients of vectors e,...,e,
we obtain a system of n linear equations for the 2n—2 unknowns u, B, (1<j<n
=1)3 e
o+ Y B;7;,;=0, 1<i<n-—I,

j=1 (2.3)

n—1
Z ﬂj Vin= L
j=1
From (2.2) we see that X consists of the vectors v of the form
n—1
v :,-221 o; v+ B by

where the numbers «;, f; solve (2.3).

If all y; , equal zero, the system (2.3) has no solutions whence the set X is empty.
If on the other hand at least one of the numbers V;.» 18 nonzero, the system (2.3)
has rank n and hence its general solution depends on n—2 parameters. Thus ¥
is an affine subspace of IR" of real dimension n—2 and hence the complement
Q' of X is a connected set whose convex hull equals R". This shows that Q is
ample in the coordinate directions and Lemma 2.2 is proved.

3. Whitney’s method of removing pairs of double points.

Let f: M >IR*" be an immersion of a smooth compact manifold M of dimension
n>3 into R*" After a small C! perturbation we may assume that f has only a
finite number of regular double points f(p)=f(p'), p,p’eM, at which the tangent
planes df(T,M) and df (T, M) have trivial intersection. To each double point
Whitney [16] associated the local self-intersection number which is +1eZ in the
case when M is orientable and n is even, and is 1€Z/2 in every other case. The
number I ; equals the sum of local self intersection numbers at all double points.

Suppose that we have a pair of double points

f)=rp)=q, fp)=f2)=¢ (3.1)

with the opposite types of self-intersections. If M is not orientable or if 1 is odd,
then every two self-intersections are of the opposite types. Whitney showed how
one can remove this pair of double points by a regular homotopy of f [16,
Sections 8-12]. His method consists of a homotopic deformation of sections of
certain trivial bundle n: X =V xR" >V whose total space X is diffeomorphic to a
subset of R*" and whose base space V is a closed n-dimensional cube. By
successive applications of this method we can reduce the number of double points
of our immersion to the minimal number |I 7| In the next section we will show
that the same method can be used with totally real immersions f: M — C" in such
a way that we do not loose total reality, thus proving Theorem 1.2.
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We shall outline Whitney’s method; see Sections 8-12 of [16] and Milnor [10, p.
717]. Assume that (3.1) is a pair of self-intersections of the opposite types. Let C,
and C, be non-intersecting curves in M, C; joining p; and p;j, neither passing
through any other point where f has self-intersections. Then B;= f(C,) joins g to
g, and B=B,UB, is a simple closed curve in f(M). We extend each B; smoothly
past the endpoints ¢, ¢’ to an open arc in f(M).

Let A, and 4, be open smooth arcs in R? intersecting transversely in points a
and b and enclosing a disk D with two corners. To be specific, let U, 0<e<0.1,
be the rectangle {(u,,u,)eR*| —e<u,, u,<l+e}, let A, =(Rx{0})nU,, and let
1 3
A, be the intersection with U, of the circle of radius one with center (E, —1/7)
Choose an embedding /,: 4, U4, —>IR>" so that y,(4,) and y,(4,) are the arcs
B, and B, respectively, with the points a and b corresponding to g and ¢'. If n>3
and the self-intersections (3.1) are of the opposite types, we can choose B, and B,
such that the following holds [10, p. 73].

3.1 Lemma. For some ¢>0 we can extend the embedding y,: A, VA, —~>R>" to an
embedding : U xR""'xR""'>R>" such that the preimage y~'(f(M)) is the
union of the submanifolds N,=A, xR""'x {0} and N,=A,x{0}xR"~' of U,
xR?*"~2,

In order to remove the two double points (3.1) of f it suffices to remove the two
intersections of N, and N, by moving N, within U,x R*"~? while keeping its
boundary fixed.

Let u=(u,,u,), x=(x4,...,x,_4), and y=(y,,...,y,_). Let A be the n-plane with
coordinates (u,,y) and let n: R*"— A be the projection n(u,x,y)=(u;,y). Denote

&

by V the closed n-dimensional cube Vz{(ul,y)e/l —%Sulsl—i-z,lyjlsl,

lngn—l} in A, and let X =n~ (V). Then n: X—V is a trivial bundle over the

cube V, with u, and x the fiber coordinates. Lemma 3.1 implies that the sub-
manifold N, "X is the graph of a section h,: V=X of the bundle n: X - V.

Now we can deform h, in the coordinate direction u, through a smooth ho-
motopy {h,} of sections of X to a section h,: = X such that

(a) the homotopy is fixed near the boundary of ¥, and
(b) h,(V) does not intersect N; nX.

To obtain an explicit formula we first represent the arc A, as the graph u, =o(u,)

g
and then choose a function f: R - R, vanishing outside the interval (—%, 1 +§)
and satisfying

—%<oc(u1)—/3(ul)<0 for all u,eA,.
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We also choose a smooth function ¢: R — [0, 1] such that o(s)=0 if s>2 and o(s)
=1if s<}. Define
ht(ul’y):(uba(ul)—tQ(lyl)ﬁ(ul)aosy)a OStSl

Clearly {h} is a homotopy of sections of the bundle X+ V with the required
properties.

Let M, =f~1(y(N,)). For 0<t<1 we define
) f ), if p¢M,;
ﬁ(p)—-{l/”ht"mlﬁ_%f(l)), if peM,.

Then {f;} is a regular homotopy of immersions starting at fo=/f which removes
the two double points (3.1) and does not introduce any new self-intersections.

(3.2)

4. Proof of Theorem 1.2.

Suppose that that f: M —>C" is a totally real immersion. Since total reality is
stable under small C' perturbations, we may assume that f has only regular
double points.

We use the notation established in Section 3. Thus, 7: X =V xR"— V is a trivial
bundle over a cube V'=[0,1]" and ¥: X >y (X)=C" is a diffemorphism onto a
subset of €". Let J: TX ->TX be the almost complex structure on X induced
from the natural complex structure on C" via the diffeomorphism . Explicitly, we
have for every veT X:

dy(Jv)=i-dy(v).
Let Q=0Q,<= X" be the corresponding differential relation on X defined in Section
2 above. If h: V> X is a section, the yoh: V—C" is an embedding. The definition
of Q implies that the embedding yoh is totally real if and only if the section h:

V—>X is a solution of Q, ie, j'(h): V- X' has values in Q. By Lemma 2.2 the
relation Q is ample in the coordinate directions and hence we can use Lemma 2.1.

Let Ny and N, be as in Lemma 3.1, and let N, be the graph of hy: V— X. We will
break the proof of Theorem 1.2 into three steps.

Step 1. We find a section h': ¥— X such that h'=h, near the boundary of V and
W(V) does not intersect N,. This was explained in Section 3 above.

Step 2. The section h,: V— X is a solution of Q since Y(ho(V)=f(M,) is a totally
real submanifold of €". Denote by ¢ =j'(h,): V—Qc X the induced section of €.
We apply Lemma 2.1 to the pair /', ¢ to find a section hy: V—X satisfying:

(a) h; =h, near the boundary of the cube V.
(b) The graph h,(V) does not intersect N,.
(c) The one-jet j'(h,) is a section of Q.
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(d) There exists a deformation 6,, te[0, 1], consisting of sections V— Q, coinciding
on the boundary of V with j!(h,) =, such that 0,=j'(h,) and 0, =j'(h,).

If hy: V=X, 0<t<1, is any homotopy of h, into h, which is fixed on the
boundary of V, then the maps f,;: M —C" given by (3.2) form are regular ho-
motopy of f, into a totally real immersion f; which has a smaller number of
double points.

Step 3. It remains to show that a regular homotopy {f;} of f, into f; can be
chosen such that every f, is a totally real immersion. Equivalently, we have to find
a homotopy h,: V— X of h, into h, such that

(i) h,=h, near the boundary of V for all ¢, and
(ii) j'(h,) is a section of Q for all t.

Let n': X'=Xx[0,1]-»V'=V x[0,1] be the bundle with the projection ='(x, t)
=(n(x),t), and let X’' be its first jet bundle. There is a natural projection 7:
X'' > X! obtained as follows: If a one-jet x'eX'! is represented by a local section
h of X'— V' near the point (p,t)eV’, then t(x!) is represented by the restriction of
h to the subset ¥ x {t}. The subset @ =t~(Q) of X'! is clearly ample in the
coordinate directions whenever Q is. A section H: V'— X' corresponds to the
homotopy h,=H(-,t): V=X of sections of the bundle X —»V. A section H:
V'—= X' is a solution of @' if and only if the induced homotopy h,=H(-,t) is a
solution of Q for each te[0,1].

Choose an initial homotopy of h, into h; which is fixed near the boundary of V
and denote by H°: V' — X’ the corresponding section. Let 0,: V> X!, 0<t<1, be
as in Step 2(d) above, and denote by @: V'— X'! the induced section. Clearly we
have j'(H®)=0O near the boundary of V. We now apply Lemma 2.1 to the pair
H°, © to find a section H: V'— X’ such that ji(H) is a section of @ and H=H°
near the boundary of V. This gives us the desired homotopy of h, into h,
through solutions of © and hence a regular homotopy of f; into f, through totally
real immersions of M into C". Theorem 1.2 is proved.

5. On the classification of immersions of n-manifolds into C*

Let M be a compact n-dimensional manifold. If /:* M —R* is an immersion, its
derivative induces an injective map of real vector bundles df: TM - M x R*. By a
theorem of Smale [11] and Hirsch [6] the map f—df induces a one-one cor-
respondence between the regular homotopy classes of immersions M+—R* and
homotopy classes of vector bundle injections TM+ M x R¥, provided that k>n.
This result also follows from Gromov’s theorem [5, p. 332].

We recall briefly how the problem of classifiying vector bundle injections TM
M xR* can be turned into the problem of classifying sections of a bundle over
M. (See [6] for the details.) Let FM+— M be the bundle over M whose fiber FM,
over peM is the set of all order n-tuples X =(X,,...,X,) of linearly independent
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vectors in T, M. Every such n-tuple is called an n-frame based at p. The group
GL(n,R) acts on FM by multiplication on the right: To an n-frame X
=(X{,...,X,) and a matrix A=(a; ;) we associate the n-frame XA whose j-th
component is Y 7_, a; . X;- With respect to this action FM is a principal GL(n,R)
bundle [12, p. 35].

Let V, , be the Stiefel manifold consisting of all n-frames in R* [12, p. 33]. The
group GL(n,R) acts on V, , by right multiplication exactly as above. A vector
bundle injection TM—M xR* determines in a natural way a GL(n,R)-
equivariant map FM~— 7V, ,, and the problem is to classify such maps under
equivariant homotopy.

Let E—~M be the bundle with fiber V, , associated to the principal bundle FM
M [12, p. 43]. Its total space E is the topological quotient of FM x ¥, , modulo
the equivalence relation (X,Y)~(XA4,YA), where XeFM, Yer . and
AeGL(n,R). We denote the equivalence class of (X,Y) by [X,Y]. To every
GL(n,R)-equivariant map g: FM -V, , we associate the section f: M — E by the
formula f(p)=[X,,g(X,)], where X ,eFM, is any frame based at p. The equi-
variance of g implies that the definition of f/ does not depend on the choice of X g
Conversely, each section of Er M defines an equivariant map of FM into Vo It
follows that regular homotopy classes of immersions M—R* are in one- one
correspondence with the homotopy classes of sections of the bundle E+— M.

Since we are interested in totally real immersions M— C", we take k=2n from
now on and identify R*" with €" in the usual way. Assume also that n>2. Every
n-frame XeV,,  is represented by a complex n x n matrix (x;,;) whose columns are
linearly independent over R. An n-frame X = (x;, ) is called totally real if the real
n-plane spanned by X is totally real. Equlvalently, det(x; ;)#0. Thus the set V7
of totally real n-frames equals the group GL(n, €). The group GL(n, €) also acts
on the bundle E according to the formula B[ X, Y]=[X, BY], where BeGL(n, C),

[X,Y]eE, and BY is the matrix product.

For each peM we denote by E! the subset of E, consisting of all [X, Y]eE, with
Y a totally real n-frame in (E" Clearly E} is 1som0rphlc to GL(n, €), and E*

=Jpem EY is an open subbundle of E. A section of the subbundle E”"—> M
corresponds to a totally real immersion of M into C". The theorem of Gromov
(Theorem 1.1(a)) implies that the regular homotopy classes of totally real immer-
sions are in one-one correspondence with the homotopy classes of sections of the
bundle E'"+ M. Moreover, an immersion f: M —C" is regularly homotopic to a
totally real immersion if and only if the associated section f: M — E is homotopic
to a section of the subbundle E".

If fo,f1: M— E" are two sections of E", there is a unique map h: M — GL(n, €)
such that f; =h-f;,. Thus, if M admits a totally real immersion into C", the
regular homotopy classes of totally real immersions M+ C" are in one-one
correspondence with the homotopy classes of maps of M into GL(n, C), i.e., with
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elements of [M,GL(n,€C)]=[M,U(n)]=K*(M). This argument is due to Du-
champ [3].

Consider now the problem of homotopy classification of sections of the bundle
E—M. (See Part III of [12].) Recall that m,(V,, ,)=0 if 1<i<n—1, and =,(V,, )
equals Z if n is even and Z/2 if n>3 is odd [12, p. 132]. Denote by {=, (E)}—M
the bundle whose fiber over peM is the n-th homotopy group = (E,). Since the
fibers E, are simply connected, we do not need to specify a base point in = n(EL)-
We represent the compact n-manifold M as a finite cell complex [12, p. 100]
Since the first nontrivial homotopy group of the fiber V,, , occurs in dimension n,
every section of E over a lower dimensional skeleton M of M can be extended
to a section over M [12, p. 178], and every two sections f,,f;: M —E are
homotopic over the (n—1)-skeleton M"~1 of M [12, p. 181]. The obstruction to
extending this homotopy to the n-th skeleton M™ =M is an element d(f,,f,) of
the n-th cohomology group H"(M, {=,(E,)}) with coefficients in {n,(E,)}, called the
primary difference of f, and f;.

Choose a closed oriented n-cell o, in the given cellular decomposition of M. Since
M is an n-dimensional manifold, every (n—1)-cell lies in the faces of exactly two
n-cells. This implies that every element of H*(M, {n,(E,)}) can be represented by a
cocycle « which is nontrivial only on the reference cell ,; its value on o, is an
element of =, (E,) for a fixed reference point p,ec,. (See [12, p. 201].) The
construction of E implies that the bundle of coefficients {rn,(E,)} is twisted along a
closed path in M precisely when the path reverses the orientation of M; in other
words, {n,(E,)} is isomorphic to the orientation bundle of M. This implies that
for every compact n manifold

/4 if nis even;

Hn(M,{nn(Ep)})=nn(E,,)={Z/2’ B wieadd md s

Thus there are Z distinct regular homotopy classes of immersions of M into IR2"
if n is even and two distinct classes if n>3 is odd.

Proof of Theorem 1.1(b). Recall that GZM is the Grassman manifold of real n-
dimensional subspaces of €", and GY, , is the subset consisting of all totally real
subspaces. The map V,, ,—G,, , which sends each n-frame to its linear span is a
fibration. Since this map is invariant under the action of GL(n,RR) on V,,,, it
induces a map @: E—M xG,, , which is also a fibration and maps E” onto M
X G’{n . If f- M—E is a section corresponding to an immersion f: M — C", then

Pof: M —G,, , is the Gauss map of f, ie, &(f(p)= (p,df (T,M)). If there is a
homotopy of diof to a section of M xGY, ., then the homotopy lifting property
implies that f is homotopic to a section of E”. The converse is obvious, and

part (b) of Theorem 1.1 is proved.

Proof of Theorem 1.4. Since the tangent bundle of an orientable three-dimensional
manifold M is trivial [13], there exists a totally real immersion of M into C3.
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Denote by f,: M — E'" the corresponding section. We will show that any other
section f;: M — E is homotopic to a section of E".

Since every element of H3(M,{n3(Ep)}) can be represented by a cocycle supported
on the reference cell ¢, the definition of the primary difference d(f,,f,) implies
that f; can be changed homotopically into a section which agrees with f, outside
0,. We denote the new section again by f;. We can find a product representation
¢: 0ox Vs 3~ E|, which carries o,x V¢, onto E”|,, and satisfies ¢~ "of,(p)

=(p,X,), P€0y, for some constant frame X 0€Vs! 3. Denote by Y: oo x Vs 3>V, 5
the projection onto the second factor. Then f; =yo¢p~'of,: 0,— Vs 3 maps the
boundary bo, into the point X,eV{"; and hence it defines an element of
13 (Vs, 35 X o)-

We claim that the map m,(Vi ;)= mn;(V; ;) induced by the inclusion is onto.
Recall that V§'; is isomorphic to GL(3,C) and V ; is isomorphic to the quotient
of GL(6,R) modulo GL(3,R). Since U(3) is a retract of GL(3,C) and the Stiefel
manifold V¢ ,=0(6)/0(3) of orthonormal 3-frames is a retract of V 5, the in-
clusion V§";—V; 5 is homotopy equivalent to the composition a: U(3)— V2, of
the inclusion U(3)— O(6) and the quotient projection O(6)— VY ;. Kawashima
proved [8, p. 292] that 7m(x): 73 U(3)—>75(VY,) is onto. This establishes our
claim.

It follows that the map f, is homotopic to a map f: 00— Vs 3 with homotopy
fixed on bg,. Define a section f: ¢,—E|, by the formula f(p) ¢ (p,f(p)) and
extend it to M by letting f equal f, outside 0,. The definition implies that f is a
section of E' satisfying d(f,,f)=d(f,,f;). Thus f is homotopic to f,, and there-
fore the immersion corresponding to f, is regularly homotopic to a totally real
immersion. Theorem 1.4 is proved.

Proof of Proposition 1.5. Since RIP” is parallelizable, the bundle E+—IRIP’ con-
structed above is trivial and hence the immersions of RIP” into €’ are classified
by the homotopy classes of maps [RIP’, V,, ,]. Similarly, totally real immersions
are classified by [IRIP’, V{} ;]. Recall that the Stiefel variety ¥ =0(14)/O(7) of
orthonormal 7-frames in R'* is a retract of V, 4.7 and the unitary group U(7) is a
retract of V{} ,=GL(7,C). Let a: U(7)—>V be the composition of the inclusion
U(7)— O(14) and the projection O(14)— O(14)/O(7)=V. To prove Proposition 1.5
it suffices to show that for every map f: M — U(7) the composition aof: M —V is
null homotopic.

The projective space RIP” has a cellular decomposition C,=C, < ... = C,=RIP’
where C; is obtained from C;_, by attaching an i-cell with a map of degree two.
The quotient C;/C;_, is an i-sphere whose double is contractible in C,/C;_,
when i<7. For i <7 we have

if i1s odd;

Z,
m; U(7)=7t,-U(°O)={0 if iis even
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since we are in the stable range [2, p. 314]. It follows that every map f:
RIP’—>U(7) is null homotoplc on the 6-skeleton C,4. Contracting f'|, to a point

in

U(7) we obtain a map f: C,/Cy=8"-U(7). Smce n4(0): T, (U(7) -, (V) is

the zero map [8, p.292; 14], the composition «of: C,/Cs—V is null homotopic
and consequently oo f: RIP? >V is null homotopic. Proposition 1.5 is proved.
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