
Stability of Polynomial Convexity of Totally Real Sets
Author(s): Franc Forstnerič
Source: Proceedings of the American Mathematical Society, Vol. 96, No. 3 (Mar., 1986), pp.
489-494
Published by: American Mathematical Society
Stable URL: http://www.jstor.org/stable/2046601 .

Accessed: 07/11/2013 15:44

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at .
http://www.jstor.org/page/info/about/policies/terms.jsp

 .
JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of
content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms
of scholarship. For more information about JSTOR, please contact support@jstor.org.

 .

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to
Proceedings of the American Mathematical Society.

http://www.jstor.org 

This content downloaded from 193.2.68.232 on Thu, 7 Nov 2013 15:44:45 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/action/showPublisher?publisherCode=ams
http://www.jstor.org/stable/2046601?origin=JSTOR-pdf
http://www.jstor.org/page/info/about/policies/terms.jsp
http://www.jstor.org/page/info/about/policies/terms.jsp


PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 96, Nuimber 3, March 1986 

STABILITY OF POLYNOMIAL CONVEXITY 
OF TOTALLY REAL SETS 

FRANC FORSTNERI(1 

ABSTRACT. We show that certain compact polynomially convex subsets of C' 
remain polynomially convex under sufficiently small C2 perturbations. 

1. Statement of the results. Let M be a Stein manifold. Denote by (9(M) the 
algebra of all holomorphic functions on M with the standard topology of uniform 
convergence on compact subsets. A compact subset K of M is said to be (9(M)-con- 
vex if for every point x E M \ K there is a holomorphic function f E (9(M) such 
that 

If(x) I> sup If(y) 1 
yE K 

Since the holomorphic polynomials are dense in the algebra (9(C n) of holomorphic 
functions on Cn , an (9(Cn)-convex subset of CCn is just a polynomially convex 
subset. 

Given a compact (9(M)-convex subset K of M, an open neighborhood U of K 
and a Ck diffeomorphism ' of U onto an open subset I(U) in M, we ask whether 
the set I(K) is also (9(M)-convex provided that ' is sufficiently close to the 
identity on U in the Ck sense. In other words, is (9(M)-convexity a stable property 
under smooth perturbations? In general this is not so as the following example 
shows. 

EXAMPLE 1. Let M = C2 and K= {(z,O) E C2: Izi 1}. Clearly K is convex 
and hence polynomially convex. The diffeomorphisms '': C2 C2 given by 

'I'(z,W) = (Z,W + El ) E >? 0, 

are close to the identity in the C' sense for small E, but the set 

*e(K) = {(z,lzl2): |zL 1} 

is not polynomially convex for any E > 0 since it contains the boundary of the 
analytic disk Av6 6 = {(Z,E82eio): Izi< I8} for each 8 E [0,1] and G Eli R. These 
disks fill an open subset of C2 that is contained in the polynomial hull of ''(K) 
according to the maximum principle. 
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490 FRANC FORSTNERIC 

Recall that a C' submanifold E of a complex manifold M is called totally real if 
for each point x E E the tangent space TxE contains no nontrivial complex 
subspace. If K is a compact subset of a totally real submanifold E, then by [2, p. 
300] there is an open neighborhood U of K in M and a C2 strictly plurisubharmonic 
function p: U -I R such that 

(1.1) K= {x c U I p (x) = 0}, p > O strictly plurisubharmonic on U. 

Conversely, every compact subset K of M of the form (1.1) is locally contained in a 
C' totally real submanifold of M [3]. Therefore we shall say that a compact subset 
K of M is totally real if it is of the form (1.1). 

1.1 THEOREM. Let M be a Stein manifold and K a compact totally real subset of M 
that is (9(M)-convex. Then every sufficiently small C2 perturbation of K in M is also 
(9 (M)-convex. 

We need to specify what we mean by a small C2 perturbation of K. We embed the 

Stein manifold M in a Euclidean space C n [4, p. 125]. Let U be an open 
neighborhood of K in C n, and denote by E the Banach space C2(U) n of all n-tuples 
of complex valued functions 'I = ('I',. n) of class C2 on U which have finite 
norm 

(1.2) 11 *IIE SU I sutDoj(z) 1: z E- U, I a I< 2) j=l 

Theorem 1.1 asserts that the set I(K) is ((M)-convex for each ' in an open 
neighborhood of the identity map in E such that I(K) c M. 

1.2 COROLLARY. Let M be a Stein manifold, let N be a manifold of class C2 and let 
B be an open neighborhood of 0 in some R; m. Suppose that F: N x B -4 M is a C2 

map such that Fo = F( , 0) is a totally real embedding of N in M. If K is a compact 
subset of N such that Fo(K) is ((M)-convex, then F,(K) is (9(M)-convex for all t in 
a neighborhood of 0 in R m. (Here, F, = F(., t).) 

EXAMPLE 2. If E is a totally real affine subspace of C n then every compact subset 
K of E is polynomially convex. This follows from the Stone-Weierstrass approxima- 
tion theorem and from the fact that the general linear group GL(n, C) acts 
transitively on the set of totally real subspaces of C n of dimension k for each 
1 < k < n. Hence, by Theorem 1.1, every small C2 perturbation of a compact subset 
K c E is polynomially convex. 

We shall consider the same question in the case when K is a subset with 
nonempty interior in a Stein manifold. Suppose that D is an open relatively compact 
subset of M whose topological boundary D \ D contains a strictly pseudoconvex 
hypersurface F such that D lies on the convex side of F. More precisely, we assume 
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POLYNOMIAL CONVEXITY OF TOTALLY REAL SETS 491 

that there is an open subset V of M and a strictly plurisubharmonic function p: 
V -I R of class C2 such that 

(i) D n V= {x E VI p(x) < O}, 
(ii) F n V= {x e VIp(x) = O} c c F, and 
(iii) dp # 0 on the set F n V. 
We define the support of a diffeomorphism 'I: M -- M to be the closure of the 

set { x E M I I(x) * x } where I differs from the identity map. 

1.3 THEOREM. Let D be an open relatively compact subset of a Stein manifold M that 
satisfies the properties (i), (ii) and (iii) above. If the set K = D is (9(M)-convex, then 
for every sufficiently small C2 perturbation : M - M supported in V the set '(K) 
is also (0(M)-convex. 

1.4 COROLLARY. If D is a relatively compact strictly pseudoconvex domain in a Stein 
manifold M such that D is 0(M)-convex, then every sufficiently small C2-perturbation 
of D in M is also 0(M)-convex. 

In ?2 we prove Theorem 1.1 and Corollary 1.2; in ?3 we prove Theorem 1.3 and 
Corollary 1.4. 

I wish to thank Professor Edgar Lee Stout for several helpful conversations. 

2. Polynomial convexity of totally real sets. 
PROOF OF THEOREM 1.1. If we embed the Stein manifold M in a complex 

Euclidean space C n [4], then a compact subset K of M c C n is 0(M)-convex if and 
only if it is polynomially convex. Therefore it suffices to prove the theorem in the 
case when M = C '. Let U be an open subset of C n, p a nonnegative strictly 
plurisubharmonic function on U, and let K = { z E U I p(z) = 0} be a compact 
polynomially convex subset of C n. Choose a smooth function X on C n, 0 s< X < 1, 
such that X = 1 on a neighborhood of K and X = 0 outside a compact subset of U. 
Let E = C2(U)n be the Banach space with the norm (1.2). Given a GE E we 
consider the map I: C"n - C given by 

(2.1) I(z) = z + X(Z)+(Z)) 

Clearly I is proper. If the E-norm of 4 is sufficiently small, then ' is also regular 
and hence a covering projection. Since I is one-to-one outside a compact subset of 
C ", it has only one sheet and therefore it is a diffeomorphism of C " onto C ". Every 
small perturbation of K can be achieved within U with a map of the form (2.1). 

Choose a neighborhood V of K, V contained in U, such that X = 1 on a 
neighborhood of V. There exists a C' strictly plurisubharmonic exhaustion function 
4 on C n such that < 0 on the set K but 4 > 0 on Cn \ V [4, p. 110]. Choose a 
C function h: R- [0, oc) that is equal to 0 on (-xc, 0] and is strictly convex on 
(0, oc). Then the function 

p' = Xop + cho,: C" [0, c) 

is a strictly plurisubharmonic exhaustion function of class C2 on C" provided that 
the constant c > 0 is chosen sufficiently big, and K = { z E n I p'(Z) = 0). 
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If A c E is small, the function T = p'o i-' is a small C2 perturbation of p', and 
T = p' outside a large compact subset B of Ct'. Hence the Levi form LT = 

(O 2p/Izajazk) dzj X dzk of p is a small perturbation of the Levi form LP of p', and 
they agree outside B. Since the eigenvalues of L are positive on the compact set B, 
the same is true for LT. This says that T is a nonnegative strictly plurisubharmonic 
exhaustion function on Ct. The approximation theorem [4, p. 119, Theorem 5.2.8] 
implies that the zero set of T is polynomially convex. Since I(K) = {Z C Cn T(z) 

= O}, Theorem 1.1 is proved. 
PROOF OF COROLLARY 1.2. We may take M = C'n as before. Choose an open 

relatively compact neighborhood V of K in N. For each t E R m close to 0 the set 

V, = F,(V) is a totally real submanifold of Cn, and the map FD: Vo - Vt, t = 

F, o F-', is close to the identity map on VO in the C2-sense. Since IDt(FO(K)) = Ft(K), 
it suffices to show that there is an open neighborhood U of FO(K) such that for each 
t the map FDt can be extended to a map V' on U that is close to the identity in the 
C 2-sense on U. 

The map 4t(z) = (Dt(z) - z, z E Vo, is small in the C2-sense. Using a smooth 

partition of unity we extend 4t to a C2 map 4-t on U such that 

11 i/t JJC2(U) K, CII 4t JJC2(V0, 

where the constant c is independent of t. The map It(z) = z + l4, z C U, is the 

desired extension of IDt. Corollary 1.2 now follows from Theorem 1.1. 

3. Perturbations on strictly pseudoconvex boundary points. We shall first consider 
the perturbations of D that are supported in small subsets of V. Fix a point 
Xe c F n V, an open neighborhood VO of xo such that VO c V, and a strictly 
plurisubharmonic defining function p for D n VO. According to [1, p. 530, Proposi- 
tion 1] there exist a bounded strictly convex open set C C C n (n = dim M) with c2 

boundary, a holomorphic map D: M - C n and an open set U c M, xo E U c c VO, 
such that the following hold: 

(i) ??(D) c C, 
(ii) (D{fZ E- U IP(Z) >0}) CC n\C, 

(iii) -1'(?(U)) = U, and 

(iv) the restriction D I u is regular and one-to-one. 
Let W be a neighborhood of xo such that W c U. If ' is a small C2 perturbation 

of D supported in W, then + = D o o o D-1 I <:>(u) is a small C2 perturbation of C 
supported in ?(U). We choose ' so close to the identity map that the set I(D) is 
still convex. For every point x E U\ I ( D) we have D (x) E C n \ + (C) and hence 
there is a holomorphic function h on Cn such that h(FD(x)) = 1, but IhI < 2 on 
I(C). Because of (i) and (iii) above it follows that the point x does not lie in the 

(9(M)-hull of I(D). 
To simplify the notation we write K = D and K' = '(D). The conclusion we 

just made is that 

(3.1) K' n U= K' n U, 
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where K' is the (9(M)-convex hull of K'. Since the support of ' is contained in W, 
we have K' \ W = K \ W, and hence (3.1) implies 

(3.2) K' n(U\ W) = K n(U\ W). 

We shall prove that K' = K'. Assume that K' # K' in order to reach a 
contradiction. Because of (3.1) the two sets can differ only outside U. Since 
K \ U = K' \ U, the set K' \ U is strictly larger than K \ U. The polynomially 
convex set K has a basis of open neighborhoods Q that are smothly bounded strictly 
pseudoconvex domains with ((M)-convex closure i2. Thus we may choose Q with 
these properties that does not contain the set KA' \ U. By an embedding theorem for 
strictly pseudoconvex domains due to Fornaess [1, p. 543] and Khenkin [5, p. 668] 
there exists a holomorphic embedding F: M -* C N for some N E Z + and a 
bounded strictly convex domain B c ? N such that F(Q) c B and F(M \ Q) c 
C N \ B. We may assume that 0 E B. Let 

(3.3) to = inf{t E ?I R F(K'\ U) c tB} 

and replace B by toB. Then 

(3.4) F(K'\ U) c B, 

and there is a point p E F(K'\ U) nl bB. The set A -N\F(W) is open and 
contains the point p. Moreover, it follows from (3.3) and (3.4) that F(K') n A c B. 

This means that locally near p the polynomially convex set F(K') = F(K') lies on 
the convex side of the smooth strictly convex hypersurface bB. According to [1, p. 
530] there exists a holomorphic function g defined on a neighborhood of F(K') in 
C N such that 

g(p)=1 and |g(q)|<1 forqEF(KA')\{p}. 

If E > 0 is sufficiently small, the set 

F(AK') n{ g| 1 -E} - F(K') 

is polynomially convex and contains F(K'). This is a contradiction since F(K') 
= F( K') is the polynomially convex hull of F(K'). This concludes the proof in the 
case when the support of the perturbation I is sufficiently small. 

It remains to consider the general case. Let F' be an open relatively compact 
subset of F n V. Using the methods introduced by Fornaess in [1] we can show that 
there exist an open set U C c V such that U n F = F', a holomorphic map F: 
M -? CN and a bounded strictly convex domain C c C N with C2 boundary such 
that the properties (i)-(iv) above hold. Moreover, the map F is transversal to bC at 
every point x E F'. It follows that every small perturbation of D supported in U can 
be effected by a small perturbation of C supported in a neighborhood of F(F'). The 
proof can be completed in the same way as above. We omit the details. 
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