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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 295, Number 1, May 1986 

EMBEDDING STRICTLY PSEUDOCONVEX DOMAINS 
INTO BALLS 

FRANC FORSTNERIC1 

ABSTRACT. Every relatively compact strictly pseudocc)nvex domain D with 
C2 boundary in a Stein manifold can be embedded as a closed complex sub- 
manifold of a finite dimensional ball. However, for each n > 2 there exist 
bounded strictly pseudoconvex domains D in Cn with real-analytic boundary 
such that no proper holomorphic map from D into any finite dimensional ball 
extends smoothly to D. 

0. Introduction. In this paper we study the representations of bounded 
strictly pseudoconvex domains D c cn. If the boundary of D is of class Ck, 
k E {2, 3, . . ., oo}, then, by a theorem of Fornaess [8] and Khenkin [13], D can be 
mapped biholomorphically onto the intersection xn Q of a bounded strictly convex 
domain Q c CN with Ck boundary and a closed complex submanifold X defirXed in 
a neighborhood of Q in CN, X intersecting the boundary of Q transversally. More- 

over, the map f: D X n Q extends to a holomorphic map on a neighborhood of 

D. The convex domain Q depends on D; hence a natural question is whether a 
similar result holds with Q replaced by the unit ball 

B = (z = (Z1L, * , ZN) E CN ||Z||2 = E |Zjl2 < t} 

provided that N is sufficiently large. Since the sphere blBN is real-analytic and 
the intersection X n blEtN is transversal, the boundary of D must necessarily be 
real-analytic in order for such a representation to exist. Thus our question is: 

(Q) Given a bounded domain D in Cn with real-analytic and strictly pseudoconvex 
boundary, does there exist a complex submanifold X of CN for some N > n that 
intersects bBN transversally such that D is biholomorphically equivalent to xn E3ff? 

This question has been mentioned by Lempert [14], Pinduk [20], Bedford [2] and 
others. Our main result is that the answer to this question is negative in general. If 
D is as above, then every biholomorphism of D onto XnE3N extends smoothly to D 
according to [3]. However, we will show that not all such domains D admit a proper 
holomorphic map into a finite dimensional ball that is smooth on D (Theorem 1.1). 
A similar local result was obtained independently by Faran [7]. We shall show that 
the answer to the question (Q) is positive if we allow the intersections of complex 
submanifolds with strictly convex domains Q c CN with real-analytic boundaries 
(Theorem 1.2). ThetheoremsofFornaess [8] andKhenkin [13] onlygiveanQwith 
smooth boundary. 
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FRANC FORSTNERIC 348 

If we do not require that the embedding be smooth to the boundary of D, then 
the answer is positive: Every relatively compact strictly pseudoconvex domain 
with c2 boundary in a Stein manifold can be embedded into a ball (Corollary 
1.4). Theorem 1.3 shows that, for every sufficiently big N, there are plenty of 
proper maps from D into BN, and these maps need not extend continuously to 
the boundary of D. The same result was proved simultaneously by L0w [16], who 
showed that the embedding can be made continuous on D. He also showed that 
every such domain can be embedded into a polydisk [15, 16]. 

The paper is organized as follows. In §1 we state our main results. In §2 we 
prove a local version of the nonembedding result, and in §3 we prove Theorem 1.1. 
Theorem 1.2 is proved in §4. In §§5-7 we prove Theorem 1.3. 

I wish to thank my adviser, Professor Edgar Lee Stout, for several helpful dis- 
cussions and suggestions concerning these results. I also thank Professor Robin 
Graham and the referee who pointed out several mistakes. 

1. Resultse Our first main result is that not all strictly pseudoconvex domains 
with real-analytic boundary can be mapped properly into a finite dimensional ball 
if the map is to be smooth up to the boundary. More precisely, we have 

1. 1 THEOREM. Let Q be a bounded domain in Cn, n > 2, with CS boundary, 
s > 1. In every neighborhood of Q in the Cs topology on domains there exists a 
domain D with smooth real-analytic boundary such that no proper holomorphic map 

f: D 03N, N > n, extends smoothly to D. Here, smooth means C°°. Note that if a proper map f: D SN is to exist, D 

must be pseudoconvex. 
This theorem shows that the answer to the question (Q) above is negative in 

general. The main idea involved in the proof of Theorem 1.1 is to study the con- 
ditions on the power series defining a germ of a real hypersurface M in Cn which 
imply that M admits a C-R embedding into a sphere blEIN. For each fixed integer 
N there are obstructions for such embeddings in terms of the Taylor polynomial 
of M of sufficiently high order. We then use the Baire category theorem to find a 
germ M that does not embed into any sphere (Theorem 2.2). A similar method 
was used by Faran [7]. It is not clear whether any of these germs extends to a 
compact real analytic hypersurface in cn, but we can use the same idea to prove 
the global nonembedding result (§3). The obstructions on the power series defining 
M do not require convergence, and hence they also apply to the C°° case. This 
idea goes back to Poincare [21], who used it to argue that there are biholomorphic 
invariants of real hypersurfaces in cn, n > 2. He found these invariants in the case 
n = 2. Chern and Moser found the invariants in the general case [6]. 

We could seek a positive answer to the question (Q) for a more restricted class 
of domains. In particular, we do not know what the answer to (Q) is for domains 
in Cn with strictly pseudoconvex real-algebraic boundary, i.e., for domains whose 
defining function is a real polynomial. 

A result of Pincuk [20, Theorem 6.2] implies that for a bounded domain D in cn, 
n > 2, with real-analytic, strictly pseudoconvex and simply connected boundary, 
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the following assertions are equivalent: 
(i) there exist a neighborhood U of a point p E bD in Cn and a smooth map 

f: U CN that is holomorphic and nonconstant on U n D such that 

f(UnD) c SN and f(UnbD) c blElN, 

(ii) there exists a proper holomorphic map f: D SN that is smooth on D. 

In fact, Pincuk proved that a map f satisfying (i) continues analytically along 
every path in bD starting at p. Since bD is simply connected, we get a well-defined 
C-R map f: bD ) blElN which extends to a holomorphic map on D. Thus the local 
embedding problem is equivalent to the global problem (Q) when the boundary of 
D is simply connected. One can see that the same is true if D is simply connected 
[9, PP 37-39]. 

If we allow the intersections with arbitrary strictly convex domains with real- 
analytic boundary, then the answer to the question (Q) is positive. The following 
theorem is an extension to the real-analytic case of the embedding theorem of 
Fornaess [8, p. 543] and Khenkin [13, p. 668]. 

1.2 THEOREM. Let D be a relatively compact strictly pseudoconvex domain in 
a Stein space S, and suppose that the boundary bD is a real-analytic submanifold 
of S consisting of regular points of S. Then there exist an open neighborhood U of 
D in S, a holomorphic map F: U ) CN for some integer N, and a bounded strictly 
convex domain Q in CN with smooth real-analytic boundary such that the following 
hold: 

(i) F is biholomorphic onto a closed subsariety X of CN, 

(ii) F(D) = X n Q and F(U\D) = X\Q, and 
(iii) X intersects bQ transversally. 

We now turn to the problem of embedding strictly pseudoconvex domains into 
balls, dropping the requirement that the map be regular on the boundary. Our 
main result is the following. 

1.3 THEOREM. If D is a bounded strictly convex domain with C2 boundary in 
cn, there is a positive integer s with the following property. If 

h= (h1,h2,...,hp):D CP 

is a holomorphic map such that llhll2 = X-1 Ihjl2 extends continuously to D and 
llh(z)ll < 1 for all z E D, then there is a holomorphic map a = (fl) . . . ) f2s) of D 

to C28 such that F = (f) h): D C28+P maps D properly into the unit ball 28+p. 

If we apply Theorem 1.3 to the map h(z) = sz for a small E > 0, we obtain a 
proper holomorphic embedding of D into BN, N = n+2s. The embedding theorem 
of Fornaess [8, p. 543] and Khenkin [13, p. 668] implies the following result. 

1.4 COROLLARY. If X is a Stein space and D a relatively compact strictly 
pseudoconvex domain in X whose boundary bD is of class C2 and is contained in 
the set of smooth points of X, then D can be mapped biholomorphically onto a closed 
complex subsariety of a ball BN. 

In particular, every bounded strictly pseudoconvex domain D of class c2 in 
Cn can be embedded properly into a high dimensional ball. Previously Lempert 
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FRANC FORSTNERIC 350 

proved [14] that every such D can be embedded into the unit ball of the infinite 
dimensional Hilbert space 12. 

The integer N depends on the domain D. More precisely, if D is strictly convex, 
N depends on the curvature of bD, and N will blow up if we deform D to a weakly 
pseudoconvex domain. However, if we have a family of strictly convex domains that 
form a compact set in the c2 topology on domains, all domains in the family embed 
in the same ball BN (see §5). For example, all domains D which are sufficiently 
close to the ball Bn in the c2 sense embed in the same ball. It is known that most 
such domains are pairwise biholomorphically inequivalent [4]. 

The idea of this construction of proper mappings is due to L0w [15]. It is very 
similar to the construction of inner functions due to Hakim and Sibony [12] and 
L0w [17]. After this work has been completed I received the preprint [16] from 
L0w which contains a similar result. 

Using our Theorem 1.3 one can construct proper maps of balls that do not extend 
continuously to the boundary. The question whether such proper maps exist was 
mentioned by Bedford [2, p. 171]. 

1. 5 COROLLARY. For each integer n > 1 there is a proper holomorphic embed- 

ding F: Bn BN, N = n + 1 + 2s, where s = s(n) is as in Theorem 1.3, such that 

F does not extend continuously to 1H1 . 

To construct such an embedding, we choose a continuous real-valued function 
u on the circle bl\ whose harmonic conjugate v is not continuous, and we let g 
be the holomorphic function on l\ with boundary values eU+iV. We extend g to a 
holomorphic function on l\ x Cn-1 by letting g be constant in the other variables, 
and we put h(z) = s(z, g(z)) for z E Sn and E > O sufficiently small. Then llhll 
extends continuously to 1H1 but h does not. We apply Theorem 1.3 to obtain a 

holomorphic map f: Bn 28 such that F = (h, f ) Bn BN is proper. Clearly 

F is an embedding that does not extend continuously to 1H1 . 
It would be interesting to know the minimal dimension N(n) for which there 

exist proper holomorphic maps F: Bn BN(n) which do not extend continuously 

to 1H1 . Recently Hakim and Sibony announced that they have constructed such 
maps for N(n) = 4n. Could it be N(n) = n + 1? 

Globevnik and Stout [10] constructed a proper map 9 1\ B2 whose cluster 

set Eg = 9(Z\)\9(/\) c bEI2 is the entire three-sphere blEl2. More generally, Eg can 
be the closure of any open connected subset Q of blEl2. There exist similar proper 
maps from l\ to higher dimensional balls. If we apply Theorem 1.3 to the map 9, we 
obtain a proper map from Bn into a ball whose restriction to the disk l\ x (O) c Sn 

has large cluster set. 
It is an interesting question how large can the cluster set Ef = f(lE}n)\n(lEln) of 

a proper map f: Bn BN be. Can we have Ef = bBN when n > 1? 

In a different direction we can ask whether every bounded strictly pseudoconvex 
domain can be embedded into a ball by a holomorphic map that is of class Ck on 
D for some low value of k, say k = 1 or k = 2. 

In view of Corollary 1.4 we may ask whether smoothly bounded weakly pseudo- 
convex domains also embed into balls. If we remove the smoothness hypothesis, the 
answer is no. The domain D = {(z,w) G c2 o < Izl < Iwl < 1} is pseudoconvex, 
but every bounded holomorphic function on D extends to a holomorphic function 
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on the bidisk t2 = {(Z) W): IZl, IWI < 1}. This implies that D does not embed 
properly into a ball. 

A necessary condition for a complex manifold M to embed into a ball is that 
the bounded holomorphic functions H°°(M) separate points in M, that each point 
z G M has a local chart (G1, . . ., fn) consisting of functions fj E H°°(M), and that 
the H°°(M)-hull 

A f A 

K = lz G M: If(z)l < sup If l for all f E H°°(M)J 
k 

of each compact subset K of M is itself compact. These are precisely the conditions 
which define a Stein manifold, except that we have replaced the algebra of all 
holomorphic functions on M by the algebra of bounded functions. Does every 
manifold of this kind embed into a ball? 

2. A local nonembedding result. Let M c cn, n > 2, be a germ of a real 
hypersurface at the point O in cn. We choose the coordinates z = (Z1, , Zn-1) 
and w = u + iv in Cn such that the tangent space of M at O and its maximal 
complex subspace are 

ToM = {v = O} and TCM = {w = O}, 

respectively. 
We shall assume that M is of class C°°. The equation of M may be written in 

the form 

(2.1) v = F(z, -z, u), 

where F is a real-valued smooth function that vanishes at O together with its first 
order partial derivatives. The germ of M = MF is strictly pseudoconvex at O if 
and only if the (n - 1) x (n- 1) Hermitian matrix 

(2.2) ( <3 s3- (°)) 

is positive definite. 
Since F is smooth, we may associate to it the Taylor series 

(2.3) F E Ft,p,jz-z:uj, Ft,p,j E C, 
(> pn-1 

j2+ 

satisfying the conditions: 

(2.4) Ft,p,j = O if 1a1 + 1d1 + j < 1, 

(2.5) Ft,p,j = F:,a,j. 

Conversely, a theorem of Borel [19, p. 30] asserts that for each formal power 
series of the form (2.3) there exists a smooth function F whose Taylor series at O is 
given by (2.3). If the series (2.3) also satisfies the condition (2.5), the corresponding 
F may be chosen real-valued. Such an F is not uniquely determined by its Taylor 
series at 0. However, a convergent series (2.3) uniquely determines a real-analytic 
function in a neighborhood of 0. 
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We denote by S the algebra of all formal power series of the form (2.3) that 
satisfy the conditions (2.4) and (2.5). Let FI2, M E ;Z+, be the subset consisting of 
all F E Z for which Ft,p,j = O whenever 1a1 + 1p1 + i > >. In other words, iv is 
the set of all polynomials of order not exceeding M contained in i. We denote by 
plJ the canonical projection of S onto FI2. 

As a set we may identify S with a subset of C2+ , and we can use the product 
topology to induce a topology on F. It is the metrizable topology induced by the 
seminorms dao given, for each multi-index ao = (ogo, o, jo), by 

dao ( Ft,p,jZa z:ui) = IFto,do,io | 

Thus, S is a Frechet space [22, p. 8]. The relative topology induced on FIJ agrees 
with the standard topology of a finite dimensional vector space. Each projection 

plJ S SIJ is continuous and open. 

For each t = (tl) . . . ) t2n_l) E R+n-l we define the t-norm of 

F = E Ft,p,jZa-ZP 

to be the nonnegative number 

IIFIlt = E IFt,p,j lt(R p i) . 

We denote by Xt the set of all F E S for which IIFIlt < x. Then 11 * git is a norm on 
the vector space gt that makes gt into a Banach algebra [ll, p. 15]. If t E R+, we 
shall also write gt = g(t,...,t) The inclusions iv > gt and gt ' > S are continuous. 
For each integer M the projection plJ gt ) iv is onto, continuous and open. The 
condition of strict pseudoconvexity (2.2) defines an open subset in S and in each 
gt- 

We shall now explain what we mean by an embedding of a hypersurface into 
a sphere. We will distinguish three types of embeddings: holomorphic, A°° and 
formal embeddings. 

2.1 DEFINITION. (a) The germ at O of a real hypersurface M = {V = F(z, z, u)} 
admits a holomorphic embedding into a sphere if there are a neighborhood U of O in 

Cn, an integer k E Z+ and a holomorphic map f: U Ck such that the following 

hold: 
(i)f(UnM)cbBk, 
(ii) the rank of df (O) equals n, and 
(iii) f is transversal to blElk at 0. 
(b) The germ of M at O admits an A°°-embedding into a sphere if there exists 

a neighborhood U of O in Cn and a C°° map f: U Ck that is holomorphic on 

either {v > F} n U or on {v < F} n U such that the conditions (i)-(iii) of part (a) 
hold. 

(c) Let F E i be a formal power series. The formal hypersurface MF admits a 
formal embedding into a sphere if there exists a formal power series f = ( f l v * * * v fk) 
in the variables (w,zl,..., Zn-l) for some k E Z+ such that 

k 
, fj(u + iv, z) fj(u + iv, z) = 1 
=1 
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is a formal power series identity when we replace v by the series F(z,-z, u), and the 
conditions (ii) and (iii) of part (a) hold. 

Notice that the conditions (ii) and (iii) in part (a) are meaningful in the context 
of formal power series, as is the condition (2.2) of strong pseudoconvexity. Clearly 
a holomorphic embedding is also an A°° embedding, and an A°° embedding gives 
rise in a natural way to a formal embedding. A germ M that admits a holomor- 
phic embedding is necessarily real-analytic and strictly pseudoconvex, and one that 
admits an A°° embedding is of class C°° and strictly pseudoconvex. 

Our aim is to show that very few germs of hypersurfaces admit even a formal 
embedding into a sphere. The theorem below is similar to a result of Faran [7]. 

2.2 THEOREM. The set S of all F E S for which the germ at O of the formal 
hypersurface MF = {V = F(z,-z,u)} admits a formal embedding into a sphere is 
a set of the first category in the Frechet space i. Moreover, for each t E R2+n-1, 
S n gt is a set of the first category in the Banach space gt. 

PROOF. Write k = n + 1, 1 E ;Z+, and let the coordinates on Ck be w = u + iv, 
Z = (Z1v * * * v Zn-l )v '¢ = ('¢1v * * * v ';1) Instead of the unit sphere blElk it will be more 
convenient for us to use the Heisenberg group S c Ck given by the equation 

n-1 1 

(2.6) v = E lzjl2 + E lfjl2 
j=l j=l 

that is biholomorphically equivalent to blBk minus a point via the Cayley transform 
[22, p. 31]. 

Let f = (fl ) ... ) fk) be a formal power series in the variables (w,z) that rep- 
resents a formal embedding of a real hypersurface M G Cn into S. Composing f 
with an automorphism of S we may assume that 

f(0) = 0 and df(0)(Cn) = {f1 = = f1 = °} 
(See [1, p. 277] for a description of the automorphism group of S.) After a formal 
holomorphic change of coordinates on Cn at 0 we can represent the same embedding 
in the form 

(2.7) w=w, z=z, fj=fj(w,z), l jl, 
where the fj's are formal power series in (w, z) with no constant or linear terms. 
Substituting (2.7) into (2.6) gives the equation 

n-1 1 

(2.8) v = E Izjl2 + E If j(u + iv, Z)12 j=l j=l 
This is not of the form (2.1) since the right-hand side contains v. However, it does 
not contain any linear terms in v, and hence the tangent space ToM of the formal 
hypersurface defined by (2.8) is {v = 0}. We can bring the equation (2.8) in the 
form (2.1) by solving (2.8) for v using iteration: 

n-1 1 

(2.9) vo = °, Vr+l = E |zjl + E |fj(u + ivr, z)12, r G ;Z+. j=l j=l 
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Notice that for each M E ;Z+ we ony need finitely many iterations (2.9) to find the 
terms of order not exceeding M in the series (2.1). Thus, the iteration converges in 
the Frechet space F. 

We choose an F E S and ask whether we can find a formal power series f = 
(S1, . . ., fi) such that the hypersurface (2.8) is equivalent to the one given by (2.1) 
under a change of coordinates 

(2.10) w = ho(w*, z*), Zj = hj(w*, z*), 1 < j < n - 1, 

where h = (ho) hl, . . ., hn_l) are formal power series in the coordinates w*, z* with 
no constant terms and rank of dh(O) equal to n. Since the change of coordinates 
(2.10) should preserve the tangent space of M at 0 given by {v = 0}, ho is of the 
form 
(2.11) ho(w*, z*) = cw* + g(w*, z*), 

where c E 1R\{0} and 9 has no constant or linear terms. We factor h as h = ¢) o h, 
where X is given by 

(2.12) w cw, z +/gz, 

and ho is of the form (2.11) with c = 1. 
Substituting (2.12) into (2.9) we obtain 

CV = lCl E IZjl2 + E f ( E ) 2 

j=l j= 
Divide by c and let E = Icl/c = i1: 

n-1 1 2 

V = E E IZjl2 + EE afj (cw, z) 

This shows that up to the sign E = 41 we may absorb c into f. It suffices to consider 
the strictly pseudoconvex hypersurfaces, so we replace w by -w if necessary and 
assume that E = 1. Therefore we start with the equation 

n-1 1 

v = E IZjl2 + E If j(W z)12 
j=l j= 

and substitute 

w = w* + g(w*, z*), Zj = hj(w*, z*), 1 < j < n - 1, 
where hj contains no constant term and g contains no constant or linear terms. 
Dropping the stars we have 

n-1 1 

(2.13) v = E Ihj(w, z)12 _ Img(w, z) + E |fj(w + g(w, z), h(w, z))12 
j=l j=l 

We solve this equation for v by iteration of the form (2.9), again convergent in i, 
and obtain an equation 

v = F(z, -z, u), F E i, 

where the power series F E i depends on f, g and h. 
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Choose an integer M E ;Z+. We remark that the coefficients of F of order < M are 
polynomial functions of the coefficients of (f, 9, h) of order < M and their conjugates, 
and they do not depend on the higher order terms in the power series (f, 9, h). To 
see this, we observe that each term in F is obtained from those in (f, 9, h) by a 
finite succession of the following operations with formal power series: 

* . 

conJugatlon, 

addition, 
multiplication, 
substitution of one power series into another. 

The last operation consists of successive applications of the first three. Each of these 
operations is given by a polynomial map of the coefficients and their conjugates, 
and none of them lowers the order of terms. This justifies the remark above. 

Denote by 3zk the set of all formal power series (f, 9, h) with complex coefficients 
in the variables (w, z) such that f = (fl, . . ., fi) and h = (hl ) . . . ) hn_l )) n + I = k, 
have no constant term, and g has no constant or linear terms. Let XkL' be the set of 
all (f, 9, h) E Xk that contain no nonzero terms of order > v, and let Qk: Xk > XkL' 
be the canonical projection of Xk onto XkL'. The equation (2.13), when solved for 
v, determines a map 4?k: Xk > F. Since the terms of order lower or equal v of 
F E S do not depend on terms of order higher than v of (f, 9, h) E XkX we have a 
commuting diagram: 

N bk i 

(2.14) l QkU 1 PU 

XkLo o FM 

By the remark we made above, 4?lk' is a polynomial map on coefficients. 
We shall determine the dimensions of the vector spaces XkL' and FL9. In XkL' we 

have n+l = k polynomials of order v with complex coefficients in n variables, so the 
leading term in the expression for dimr XkL' is Ckvn for some constant C = C(n) 
depending only on n. In fLJ we have a single polynomial of order v with real 
coefficients in 2n- 1 variables, so the leading term in dimr FLJ is c/V2n-l for some 
C' = C'(n). Since 2n- 1 > n, we have for each fixed k 

(2.15) dimr fLJ > dimr XkL' 

for all sufficiently big v E Z+. 
Fix a v = v(k) for which (2.15) holds and consider the diagram (2.14). Be- 

cause of (2.15) the image of the polynomial map 4?lky is a set of the first category 
in fL9. Since the projection pLJ Z , fLJ is continuous and open, its preimage 
K = (PL')-l(Im4XLk') is a set of the first category in the Frechet space F. The 
commutativity of (2.14) implies Im4>k c K, and hence the set Imbk of all F E Z 
for which the hypersurface MF admits a formal embedding in blBk is of the first 
category in F. Taking the countable union over all k E Z+ we still have a set of the 
first category in i. The same argument applies to each space gtX t E 2+n-1. This 
concludes the proof of Theorem 2.2. 

3. Proof of the global nonembedding result. In this section we give a 
proof of Theorem 1.1 that was stated in §1. We shall use the notation introduced 
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in §2. Let s E Z+, s > 1. Given a bounded domain D in Cn with Cs boundary, we 
may approximate its defining function by a real polynomial arbitrarily close in the 
C8-sense [19, p. 33] and thus obtain a domain with real-analytic boundary which 
is a small Cs perturbation of D. Therefore we may assume that bD is real-analytic 
to begin with. 

Assume that there exists a proper map f: D > Elk for some integer k. Then 
Ek Ifjl2 is a bounded plurisubharmonic exhaustion function on D and hence D 
is pseudoconvex. Fix a point p E bD and choose coordinates w = u + iv, z = 
(Z1 ) * * * X Zn- 1 ) on Cn such that 

p= O and TobD = {v = O}. 
Let p be a real-analytic defining function for D. Multiplying p with a constant 

we may assume that near O we have 

p(w, z, w, z) = -v + r(u, v, z,-z), 
where r is a convergent power series that contains no constant or linear terms. 
Since D is pseudoconvex, the complex Hessian (02r/0ziazj(O)) has nonnegative 
eigenvalues. Replacing r by r + 6 1-l Izjl2 for a small 6 we may assume that the 
Hessian of r is positive definite whence bD is strictly pselbdoconvex at 0. 

Choose t E R+ large enough such that D is contained in the open polydisk 

|w| < t, |Zil < t, 1 < j < n- 1. 
For each power series F(z,-z, u) E st we consider the germ at O of the real-analytic 
hypersurface defined by p + F = O. We write this equation in the form 

(3.1) v = r(z,-z, u, v) + F(z,-z, u). 

Since the right-hand side of (3.1) contains no constant or linear terms, we can solve 
(3.1) for v by iteration as explained in §2. We obtain an equation 

(3.2) v = F(z, z, u), 

where F E Z depends on F E st. This defines a mapping 4>: gt Z sending F 

to F. The terms of order < v of F depend only on the terms of order < v of F 
(see the remark in §2). Hence we get an induced map LJ FLJ > fLJ such that the 
following diagram commutes: 

gt @ i 
pu lpu 

3.1 LEMMA. The map IJ is a real-analytic diffeomorphism onto FIJ. 

PROOF. We choose for the basis of the vector space SLJ the monomials z-z:ui, 
1a1 + 1p1 + j < v, and we denote the corresponding coefficients of F E fIJ by Fo,,,g,; . 
Similarly we denote by r,>,p,j the coefficient of the term z-zdui in r. 

Consider the equation for the term z-zdui in (3.1) and (3.2). It is of the form 

(3.3) F,>,p,j + r,>,p,j + = Fo,,,s,;, 

where the dots indicate the terms which depend polynomially on the coefficients of 
Fandroforderlessthan lal+lpl+j. ForeachFwecansolve (3.3) uniquelyforF 
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by induction on the order 1a1 + IpI +i Thus LJ is one-to-one and onto. Moreover, 
(3.3) shows that the determinant of the derivative d@L' is identically equal to 1 in 
the chosen basis. This proves Lemma 3.1. 

Choose an integer k and consider for each v E Z+ the commuting diagram: 

gt i Xk 

(3-4) 1 Pu l Pu l Pu 

> > tU Xk 

We have seen in §2 that for all sufficiently big integers v we have dim fLJ > dim XkL' 

Hence the image °f bkv is a subset of the first category of F>, and by Lemma 3.1 
the set (@L')-1(Im bk) is a subset of the first category of F>. The same is then true 
for the set Kk = (pLJ) - 1 (@L9) - 1 (Im 4XLk') in gt . The commutativity of (3.4) implies 

@ l(Imbk) c Kk. 

Taking the countable union over all k > n we see that the set 
00 

St= U l(Im4>k) 

k=n 

is of the first category in gt. Notice that St consists of precisely those F E st for 
which the germ at O of the real-analytic hypersurface v = F(z, z, u) with F = @(F) 
admits a formal embedding into a finite dimensional sphere. In particular, we may 
choose an DF E Xt\St arbitrarily close to O in the Cs sense on a neighborhood of 
D, and therefore p + F is a real-analytic defining function for the domain DF = 

{p + F < O} which is a small CS perturbation of D. Moreover, we may choose an 
F E gt\St such that DF is strictly pseudoconvex at the point 0. 

Suppose that for some integer k there exists a proper holomorphic map f: DF > 
Bk, f E C(DF). The strict pseudoconvexity of DF at O implies that rank of df (O) 
equals n and that f intersects the sphere blBk transversally at 0. Thus f induces 
a formal embedding of the germ v = F with F = @(F) into the sphere blBk. This 
contradicts our choice of F, and hence there is no proper holomorphic map, smooth 
on DF, from the domain DF into any ball. This concludes the proof of Theroem 
1.1. 

4. Embedding into convex domains with real-analytic boundaries. In 
this section we shall prove Theorem 1.2. Let the notation be as in the statement 
of the theorem. The embedding theorem of Fornaess [8, p. 543, Theorem 9] and 
Khenkin il3, Russian p. 112 or English p. 668] gives U, F and Q as in Theorem 1.2, 
with bQ of class C°°. The real-analytic boundary bD is mapped by F onto the real- 
analytic submanifold S = F(U)XbQ of CN, which is contained in the C°° boundary 
bQ. We shall show how to perturb bQ slightly in the C2-sense while keeping it fixed 
along S to obtain a strictly convex domain Q with smooth real-analytic boundary 
satisfying the properties (i)-(iii) of Theorem 1.2. 

Let p be a C°° strictly convex defining function for Q: 

Q = {z E CNlp(Z) < O}, dp XO on bQ. 

The first step in the proof is to find real-valued real-analytic functions f1, f2, . . ., fk 

on CN such that f; = O on S for 1 < j < k and such that on a neighborhood of Q 

This content downloaded from 193.2.68.232 on Thu, 7 Nov 2013 15:47:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


358 FRANC FORSTNERIC 

the function p can be written in the form p = k.=l pjfj for some C functions 
py. The second step is to approximate each pj by a real-analytic function pj, to let 
p = Epjf; and let Q = {p < 0} be the strictly convex domain with real-analytic 
boundary that satisfies the conclusions of Theorem 1.2. 

To find the functions fj we consider the sheaf fl of germs of real-valued real- 
analytic functions on 2N = CN and its subsheaf J of all germs that vanish on 
S. Since S is a real-analytic submanifold Of 2N, the sheaf J is a coherent sheaf 
of ideals in M. Choose a large ball B c [R2N contaning Q. Since B is compact, 
Cartan's Theorem A for real-analytic manifolds [5, p. 710, Theoreme 2] implies 
that there are finitely many sections f1, . . ., fk of J that generate the ideal Jx as 
an Rx-module for each point x E B. In other words, the map 4>: Rk , J given by 

k 

(4.1) (Cl,x,...,Ckbx) = E cj,zfj,x 
j= 

is onto on each stalk Rx, x E B. 
Let E be the sheaf of germs of real-valued C°° functions on 2N, and let J c E 

be the subsheaf of E consisting of all germs that vanish on S. We define the map 
- . - 

: Ek > J by the formula (4.1), where the f;'s are the same sections as above. We 
claim that 4> is onto on each stalk ExkX x E B. To see this, we fix a point x E S and 
choose a set (hl, . . ., h) of real-analytic functions near x such that near x we have 

S = {hl = = hs = O} and dhl A A dh3 f O. 

Every germ hx E Jx can be expressed in the form 

(4.2) hx = E dyxhyx, dy,x E Ex, 
j=l 

where hj,X is the germ of hj at x [18, p. 32, Lemma 2.1]. Moreover, since hj,X E Jx 
and since the germs fyx of fj at x (1 < j < k) generate Jx over MxX each germ hjx 
can be expressed in the form 

(4.3) hj,x = E c(E)flzX c(J) E Mx 
1=1 

From (4z2) and (4z3) we get an expression for hX in terms of the germs fyzX with 
- - 

coefficients in Ex This proves that the map 4> is onto at point x E S. Clearly 4> is 
onto at the points x E B\S. 

This gives a short exact sequence of sheaves on B: 

0 )ker4> pEk ¢ J ,0 

and the corresponding long exact sequence at the cohomology level: 

(4 4) H°(B Ek) ¢* H°(B, J) ) H1 (B, ker b) ) 

The sheaf ker4> admits a smooth partition of unity, i.e., it is a fine sheaf, and 
consequently H1 (B, ker 4>) = 0. From (4.4) it follows that the map 4>* is onto, and 
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hence we can write the defining function p of the domain Q in the form 
k 

P= EPJfi 
j=l 

on B, where pj E C(B) for 1 < j < k. Shrinking the ball B slightly we may 
assume that the functions pj are C°° on a neighborhood of B. 

By the generalized theorem of Weierstrass il9, p. 33] we can approximate each 
pj by a real polynomial pj such that pj-pj is arbitrarily small in the c2 sense on 
B. The function 

k 

P=EPifi 
j=l 

is still strictly convex provided that our approximations are close enough, and it 
is real-analytic and equal to O on S. The domain Q = {z G Blp(z) < O} is 
therefore strictly convex with real-analytic boundary, S c bQ, and F(U) intersects 
bQ transversally along S. Hence Q satisfies the conclusions of Theorem 1.2, and 
the proof is complete. 

5. Embedding into balls: Some lemmas. Let z = (z1,..., Zn) be coordi- 
nates on cn. We denote by (z, w) = SXn=l ZjWj the usual inner product on Cn and 
by llZIg = (Z,z)1/2 the usual norm. 

If Q is an open subset of Cn and p: Q ) R is a c2 function, we define 

N(z) = (tP (Z), . . ., a P (Z)), Z E Q, 

and 

azz8zj(z)wiwj) + E aZ APZ (Z)wiWj, Z E Q W E Cn 

The quadratic form Qz is the real Hessian of p. 
Throughout this section D is a bounded strictly convex domain in cn and S = 

bD is its boundary. There is a c2 defining function p: Cn > 6) D = {z E Cn i p(z) < 
O}, such that the vector N(z) does not vanish for any z in S and the Hessian of p 
is positive definite: 

QW(Z) ?£ O for all z,w G cn, z + O. 
This implies that for each compact set K there are constants c1, c2 > O such that 

(5.1) c1llzll2 < Qw(Z) < c2llzll2, w E K, Z E cn. 

If we write N(w) = tlN(w)ll * v(w), then v(w) is the outward unit normal vector to 
S at the point w E S. 

5 . 1 LEMMA. There are constants (X1, QE2 > O such that for all npoints z, w G S 
we have 

(5.2) oe1llw - zll2 < Re(w - z, v(w)) < a211w _ zil2* 

Note. If D is the unit ball lHln and S = bE]n, then (5.2) holds with R1 = a2 = 2 
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PROOF. Put h(t) = p((1 - t)w + tz), t E R. Then h(O) = p(w) = O and 
h(1) = p(z) = O. By the chain rule, 

h'(O) = 2Re(z - w,N(w)) and h"(t) = 2QU(W - z), 

where u = (1 - t)w + tz. We insert these data into the Taylor formula 

h(1) = h(O) + h'(O) + 2h"(t) 

which holds for some t E (0,1) to obtain 

2 Re(w - z, N(w)) = Qu(w - z) 

for some point u E D. We used here the hypothesis that D is convex. If c1, c2 > O 
are such that (5.1) holds, then (5.2) will hold if we put 

(5 3) t1 = c1(2maxt ||N(z) 11 z E D})-1, (X2 = C2 (2mint 10 N(z) 11 z G D})-1. 

This proves Lemma 5.1. 
For each point a in Hn or Cn and each r > O we denote by B(a, r) the open unit 

ball of radius r centered at a. We shall need the following covering lemma. 

5.2 LEMMA. If S is a compact hyperslbrface of class C1 in R1+1 and if A > 1, 
there exists an integer s with the following property. For each r > O there are s 
families of balls 51, . . ., 5, Zi = {B(ai,j, Ar) 11 < j < Ni}, with centers ai,j in S, 
slbeh that the balls in each family are pairwise disjoint and S c U B(ai,j, r), i.e., 
the small balls of radilss r cover S. 

PROOF. Let U1, . . ., Uk be open subsets of 1Rl+1 such that S C Ujk=l Uj. If we 
can solve the covering problem for each Sj = S n Uj with some integer sj, then 
we can solve the problem for S with s = s1 + + Sk since we can put the balls 
corresponding to different Sj's into different families. Thus, by compactness of S, 
it suffices to solve the covering problem locally on S. 

Choose a point a E S and make an affine change of coordinates in IFRt+l such 
that a = O and ToS = 1R1 x {O}. Choose a constant O < 6 < 1. Let x' = (xl, . . ., xl) 
and x = (x',xl+1) be coordinates on IFRt and 1R1+1, respectively. There is a small 
neighborhood U = {x G 1R1+l: Ixjl < , 1 < j < I + 1} of O and a C1 function 

h: U' = U n 1 R such that 

S n u = {x E Ulxl+l = h(xt)} 

and the gradient Vh of h vanishes at the point 0'. Since Vh is continuous, we can 
choose U so small that 

(5.4) 1 + glVh(x') 112 < (1 + 6)2 

for all x' E U'. 
Given points a',b' E U' we estimate the distance between the corresponding 

points a = (a', h(a')) and b = (b', h(b')) on S. By the Taylor formula we have 

a - bll2 = lla' - btll2 + gh(a') - h(b')l2 

= lla' - btll2 + IVh(u') (a' - b') l2 
< lla' - btll2(1 + glVh(u')ll2) 
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361 for some point u' on the line segment between a' and b'. Thus (5.4) implies 
(5.5) lla' - btll < lla - bll < (1 + b)lla' - btll, a, b E S n u. 

If we have a family of balls B(aj, r/(l + b)) with centers aj in U' that cover U, 
thenbytherightestimatein(5.5)theballsB(aj,r),aj=(aj,h(aj)),coverSnU. 
Similarly, if the balls B(aj, Ar) are pairwise disjoint, then by the left estimate in 
(5.5) the balls B(aj, Ar) are also disjoint. 

This shows that it suffices to solve the covering problem for an open ball U' in 
1R1, with A replaced by A1 = A(1 + b). It is easier to work with cubes than with 
balls. Let C(a, r) be the open cube with side 2r centered at a. For each r > 0 and 
a E FRl we have 

(5.6) C(a,rl-l/2) c B(a,r) c B(a,Alr) c C(a,'Alr). 

We start in one vertex of the cube U' and put small open cubes of side 2r/ next 
to each other so that they overlap just barely, and they cover U . One can see that 
the large cubes of side 2A1r can be arranged into 

s=([>(1+a)W]+1)1 
families such that the cubes in each family are pairwise disjoint. Because of (5.6) 
the same constant s is good for balls. Lemma 5.2 is proved. 

Let a1 and cx2 be as in Lemma 5.1. We determine the number A > 1 by 

(5 7) X = 2\/cx2/cel 
If D is the ball Bn, then A = 2. Choose an integer s such that Lemma 5.2 holds for 
S and A. Thus for each r > 0 we can find s families 51, . . ., 5 of balls with radii 
Ar, ii = {B(zi,j, Ar) | j = 1, . . ., Ni}, Zi,; E S, satisfying 

(P) The balls in each family Zi are pairwise disjoint, and S c UB(zi,j,r), i.e., 
the small balls of radius r cover S. 

For each 1 < i < s we let Zi+,; = zi,j and Zi+ = Zi, so that we have 2s families 
of balls. For z E S and 1 < i < 2s we define 

Vi,k(Z) = {Zi,j | kAr < llZ - Zi,; || < (k + l)Ar}, k = O, 1, 2, .... 
For large k, Vi,k(z) is empty. Denote by Ni,k(z) the number of points in Vi,k(Z) 
Since the balls in ii are disjoint, it follows that 
(5.8) Ni,k(z) < Clk2n 
for some constant C1 independent of A and r. 

For each fixed point w in S = bD and m > 0 the entire function 

vw (z) = e-m(W-Z,LJ(w)) 

is a peaking function on D for the point w. Using (5.2) we can estimate its modulus 

Ivw (z) | = e-m Re(w-ZLJ(w)) 

for each z, w E S by 

e 2milz Wll < Ivw(z)l < e-almilz-Wll2 (5.10) 
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For each i E { 1, . . ., 2s} and j E { 1, . . ., Ni } we write vi, j = vzi J . Notice that 
oi,j = vi+,j for each 1 < i < s. Let 9i be an entire function of the form 

Ni 
__ 

(5.11) 9i(Z) = ,:i,j4)i,j(Z), lpi,il < 1. 
j=1 

5 . 3 LEMMA. For each slbff eiently small r1 > O there are m, r > O slbeh that for 
each family of balls {Xi} satisfying (P) above and for each fisnction 9i of the form 
(5.11) the following hold. 

(a) If a point z E S lies in no ball in Zi, then Igi(z)l < . 
(b) If z E S n B(zi,j, Ar) for some j, then Isi(z)-di,ivi,i(z)l < t1 
(c) If z E S n B(zi,j, r), then lvi,i(z)l > Ct1l/42 where the constant C > O is 

independent of r and r1. 

PROOF OF (a). If z E S lies in no ball in ii, then (5.7), (5.8) and (5.10) imply 
00 00 00 

|gi(z)l < E E lvi,i(z)l < C1 E k2ne-k > C>lmr2 = C E k2n -k24sk m 2 

k=l zi,jEVi,k(z) k=l k=l 

Put p = 4a2mr2. We have 
00 00 

E k2ne-k2: = e-,5 1 + E k2ne-k2,+: I . 
k= 1 k=2 

If p > 43 X then -k2: + p < -k2 for each k > 2 and hence k2ne-k2:+: < k2ne-k2 . 
If we put 

( k-2 ) 

then 
(5.12) Igi(Z)l < C2e 2 

provided that p = 4a2mr2 > 43. 

Given an n > 0, we adjust m and r such that C2e-: = . This is equivalent to 

(5.13) mr2 = 4l log (C2) 

Given a fixed r, m is determined by (5.13). We can choose r arbitrarily small and 
make m as large as we want. If we choose n < C2e-4/3, then p > 43 SO that the 
estimate (5.12) holds. This proves (a). 

PROOF OF (b). If z E B(zi,j, Ar), then z lies in no other ball in ii since these 
are disjoint. Therefore we can estimate the difference 9i (z) - di,joi,j (z) by part (a) 
above. This proves (b). 

PROOF OF (C). Suppose that m and r satisfy (5.13). If z E B(zi,j, r) n S, the 
left estimate in (5.10) implies 

Ivi,i(z)| > e C>2mr = C-1/4n1/4 

Thus (c) holds with C= c2-1/4 This proves Lemma 5.3. 
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6. Embedding into balls: The main lemma. Let D be a bounded c2 
strictly convex domain in Cn and S = bD. Determine A by (5.7), and choose 
an integer s satisfying Lemma 5.2. Given some functions fi, ,f2s, we write 
F = (fi, ,f28+p), where f28+i = hi for 1 < i < p. The following lemma is 
similar to Lemma 1 in [15]. 

6. 1 LEMMA. There is an so > O slbeh that if 
(i) 2 <a< 1, s<so, s< 1-, andK is a compactslsbset of D, 
(ii) F = (f1, . . ., f28+p) is holomorphic in D, 
(iii) the fisnctions fi, 1 < i < 2s, extend continlsolssly to D, and 
(iv) IIFII extends continlsolssly to D and satisfies IIFII < a there, 

then there is an entire mapping G= (91,..., 92s,0, ,O) such that 
(a) IIF(z) + G(z)ll < a + E for each point z E S, 
(b) if IIF(z) + G(z) 11 < a-61/7 for some z E S, then IIF(z) + G(z) 11 > IIF(z) 11 + 

2/3 

, 

(c) IIG(z) 11 < E if z E K, 
(d) IIG(z) ll2 < 1-IIF(z) 11 if z E S. 
PROOF. Let n = s/120s. Since the functions fi, 1 < i < 2s, and IIFII are 

continuous on D, we can find an ro > O such that whenever z,w E D satisfy 
llz - wll < 2Aro, we have 

(6.1) Ifi(Z)-fi(W)l < , 1 < i < 2s, | IIF(z)ll-IIF(w)ll | < . 
Given a number r < ro we choose s families of balls Z1, . . ., 5, 

gi = {B(zi,j, Ar) | 1 < j < Ni}, Zi,; E S, 
such that the balls in each family are pairwise disjoint and the small balls B(zi,j, r) 
cover S (see §5). Let Zi+,; = Zi,; and let Zi+1 = 5 for 1 < i < s, so that we have 
2s families of balls. We shall find entire functions 91, . . ., 928 of the form (5.11) such 
that the map G = (91, . . ., 92s, O, . . ., O) will satisfy Lemma 6.1. 

We now determine the coefficients di,j °f 9i. Let 1 < i < s and 1 < j < Ni. We 
choose di,j and Ai+,j such that 

(6.2) fi (Zi,j):i,j + fi+s (Zi,j):i+,j = ° 
and 

(6.3) 113i jl2 + 113i+ j 12 = (a2 - IIF(zi j) ll2)/2s. 
The condition (6.2) means that the vector (:i,j, di+,j) E C2 is orthogonal to the 
vector (fi(zi,i), fi+8(Zi,;)) E C2. Clearly ldi,il < 1 for all i and j. 

We shall now prove that the entire map G = (91, . . ., 92s, O, . . ., O) satisfies prop- 
erties (a)-(d) of Lemma 6.1, provided that the constant m in (5.9) is chosen suffi- 
ciently large. 

PROOF OF (a). For each point z E S we let I(z) be the set of indices 1 < i < 2s 
such that the point z lies in some ball ER(zi,j, Ar) E Zi. Since the balls in Zi are 
pairwise disjoint, there is at most one such ball and so j is uniquely determined. 
Notice that i and i + s are in I(z) simultaneously for every i, 1 < i < s. Consider 
the function fi + 9i for 1 < i < 2s. If i is not in I(z), then Igi(z)l < n by Lemma 
5.3(a), and therefore 
(6.4) If (Z) + gi(z)l2 < Ifi(Z)12 + 2lfi(z)ln + 2 < Ifi(Z)12 + 3 

This content downloaded from 193.2.68.232 on Thu, 7 Nov 2013 15:47:12 PM
All use subject to JSTOR Terms and Conditions

http://www.jstor.org/page/info/about/policies/terms.jsp


FRANC FORSTNERIC 364 

If on the other hand i E I(z), we have 

Ifi(Z) + gi(z)l ' lfi(z)-fi(Zi,j)I + Ifi(zi,i) + Pi,ivi,i(z)l + E Pi,kvi,k(Z) . 
kij 

The first term on the right is at most n by (6.1), and the last term is at most n by 
Lemma 5.3(b). Therefore 

Ifi(Z) + gi(z)12 ' Ifi(Zi,i) + Pi,ivi,i(z)12 + 8n. 
We assume 1 < i < s and group together the terms with indices i and i + s. Using 
(6.2) and (6.3) we have 

Ifi(z) + gi(z)12 + Ifi+8(z) + gi+8(z)12 
< Ifi(Zi,i) + di,ivi,j(z)12 + Ifi+8(Zi,i) + pi+s,jVi,j(Z)12 + 16 

' Ifi(zi,i)12 + Ifi+8(Zi,i)12 + llii,il + lpi+,il + 16t1 
= Ifi(Zi,i)12 + Ifi+s(Zi,i)12 + (a2 - IIF(zi,j)ll2)/2s + 16n. 

Summing over all indices 1 < i < 2s + p and using (6.4) we obtain 

F(Z) + G(Z)112 ' E (Ifi(ziti)l2 + Ifi+49(zi,j)l2 + (a2 _ IIF(ziti)ll2)l2s) 
iEI (Z) 

i<s 

+ E Ifi(z)l2+22sq. 
i¢I (Z) 

The points z and Zi,j, i E I(z), in the above estimate are distinct. However, since 
z E B(zi,j, Ar) for each i E I(z), (6.1) implies that we may replace these points by 
the point z, making an error not exceeding 8sn. Doing this we have 

|lF(z) + G(z)ll2 < k Ifi(z)l2 + 2 ( ) (a2 - llF(z)ll2) +30st7 

< glF(z)ll2 + (a2-glF(z)ll2) + 30sn < a2 + 30s. 

Since a > 2, we have 

/a2+30sn < a/l + 120sn < a+ 120sn = a+s, 

and hence glF(z) + G(z)ll < a + s. This proves (a). 
PROOF OF (b). Fix a point z E S and let I(z) be as in (a) above. For each i, 

1 < i < s, we will estimate from below the difference 

Di(z) = Ifi(z) + gi(z)12 + Ifi+8(Z) + gi+8(z)12 - Ifi(Z)12 - If (Z)12 

If z is not in I(z), Lemma 5.3(a) implies |gi (Z) | < Igi+ (z) | < , and hence 

Di(z) = O(n) = O(E). If on the other hand i E I(z), then z E B(zi,j, Ar) for some 
j, and (6.1) and Lemma 5.3(b) imply 

Di(Z) = Ifi(zi,j) + gi(Z)i2 + Ifi+8(Zi,j) + gi+8(Z)i2 

- If i(Zi j) 12 _ if i+s (zi,j) 12 + o(E) 
= Ifi(zi,j) + di,jXi,j(z)12 + Ifi+8(zi,j) + di+s,jXi,j(z)12 

- lfi(zisj)I2 - lfi+8(zisj)l2 + °(E) 
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From (6.2) it follows that the above equals 

(6.5) Ditz) = (|di,jl2 + i,Bi+ jl2)l¢,i j(z)l2 + 0(6) 
Thus Di(z) > 0(E) for each 1 < i < s. Summing yields iIF(z)+G(z)ll2 - iIF(z)ll2 > 
0(E) and therefore 

(6.6) iIF(z) + G(z) 11-iIF(z) 11 > 0(6). 

Suppose that iIF(z) + G(z)ll < a - 61/7 for some z E S. Choose a ball B(zi,j, r) 
containing z. Then (6.1) and (6.6) imply 

iIF(zi,j)ll < itF(z)ll + E < (a-61/7) + 0(E) < a _ 161/7 

if s0 is sufficiently small. Thus a- iIF(zi,j)ll > 1El/7, and by (6.3) 

lpi,j i + ldi+s,j 12 = 21 (a2 - iIF(Zi j) 112) > 1 1/7 

Since z E B(zi,j,r), we have lNbi,j(z)l2 > Ce1/2 by Lemma 5.3(c). Thus (6.5) 
* E 

mp. .les 

||F(Z) + G(Z)ii2 _ ||F(Z)II2 = E Di(Z) > U 61/7+1/2 + 0(E) > 262/3 
i=l 

Therefore 

iIF(z) + G(z) 11-iIF(Z) 1l = 1l siF() )+ GG() 1 11 SAF(Z) > 62/3 

and (b) is proved. 
PROOF OF (C). If K is a compact subset of D, let 

6 =min{llz-wll:zEK, wE S} > O. 

Then lNbi,j(z)l < e-mE for all z E K. Since each gi contains no more than C3/r2n 
balls and 3ct2mr2 > 1, we have 

l ( )l < C3 _mE < C n -mE 

If m is sufficiently large, the right-hand side is less than s/4 which implies 
G(z)ll < s. This proves (c). 

PROOF OF (d). Fix a point z E S, and let I(z) be as in the proof of (a) above. 
If i is not in I(z), then 19i(Z)i2 < 2 < n by Lemma 5.3(a). If on the other hand 
i G I(z), we assume 1 < i < s, and we group together the terms with indices i and 
i + s. By Lemma 5.3(b), (6.1), and (6.3) we have 

(z) i + igi+ (Z) i < lpi,j 12 + lpi+ j 12 + 67} = 1 (a2 - IIF(Z ) ll2) + 6 

< - (a-11 F(zi,j ) || ) + 67} < - (a-1i F(Z) 11 ) + 7D 

Summing yields 

iIG(z)ll2 < a-iIF(z)ll + 7srB < a-iIF(z)ll + E < 1-iIF(z)ll. 

This proves (d), and Lemma 6.1 is proved. 
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7. Embedding into balls. In this section we shall conclude the proof of 
Theorem 1.3. Let h = (hl, . . ., hp) be as in the statement of Theorem 1.3. Choose 
a sequence {ak} of positive numbers strictly increasing to 1, 2 < ak < 1, and a 
sequence {sk} decreasing to 0 such that E sk is finite, s£ £72k/3 = 00) ak-l +£7k < ak, 
and sups llhll < ao. Using Lemma 6.1 we shall inductively construct a sequence 
{Gk} of entire mappings 

Gk = (91, , 92E,, O, . . ., 0): Cn C28+P 

and an increasing sequence {Kk} of compact subsets of D, Uk Kk = D, such that, 
if we put Fo = (O, . . ., O, h) and Fk = Fo + Ejk=l Gj, the following properties hold: 

(a) iIFk-1(Z)|| > minwes ||Fk-1(w)ll-2 k if z E D\Kk, 
(b) iIFk(z)ll < ak if z E D, 
(c) if ||Fk(Z)ll < ak-1-sk/ for some z E S, then ||Fk(Z)ll > ||Fk-l(Z)|| + sk ) 

(d) iIGk(z)ll < sk if z E Kk, and 
(e) iIGk(z)ll2 < 1-minS ||Fk_1|| if z E D. 
We start with k = 1, Fo = (O, . . . ,0, h), iIFoll < ao on D. Since iIFoll is continu- 

ous on D, we can find a compact subset K1 of D such that (a) holds with k = 1. 
We then apply Lemma 6.1 to the data FoX aO, 61 and K1 to find an entire function 
G1 such that the properties (b)-(e) hold for k = 1. Now we pick a compact subset 
K2 of D containing K1 such that (a) holds for k = 2, and we apply Lemma 6.1 
to find a G2 satisfying (b)-(e) with k = 2. Clearly we can proceed this way to 
construct sequences {Gk} and {Kk} such that Uk Kk = D. 

Property (d) implies that the series F = limFk = Fo + ^°° l Gj converges 
uniformly on every compact subset of D, and hence the limit F is holomorphic on 
D. Property (b) implies that iIFIi < 1 on D. If h is not constant, then F is not 
constant, and the maximum modulus principle implies iIFIi < 1 on D. Hence F 
maps D into B28+p. If h is constant, we can apply the same proof with h replaced 
by (Ez1, h) for a small 6 > 0. 

It remains to show that F maps D properly into B28+p. Let 

Uk(Z)=min{llFk(Z)ii,ak-1-sk/ }, zES. 

Clearly uk is a continuous function on S. We claim that limuk = 1 uniformly on 
S. It suffices to show that for each z E S the sequence Uk(Z) is increasing towards 
one. If ||Fk(Z)ll < ak-l-sk/7, then the property (c) implies 

(7.1) Uk(Z) = ||Fk(Z)ll > ||Fk-l(Z)|| + sk > Uk-1(Z) + sk 

On the other hand, if iIFk (z) 11 > ak- 1 - sk/7, then 

Uk (Z) = ak-1-£k/ > ak-2-sk/-1 > Uk-1 (Z) 

This proves that {Uk(Z)} is strictly increasing. 
Suppose that lim uk (z) < 1 for some z E S. Then 

ak-l-sk/7 > ||F(z)|| for all k > ko 

and hence by (7.1) 

Uk(Z) > Uk-l (Z) + Ek ) k > ko 
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Summing we have for all k > ko 
k 

uk(Z) > Uko(Z) + E 62/3 

j=ko+l 

Since the series 62/3 diverges, it follows that limkOOuk(z) = oo which is a 
contradiction. This proves that the functions uk converge to one uniformly on S 
and consequently lim iIFk 11 = 1 uniformly on S. If we define bk = infs iIFk 11 and 
rk = (1-bk)l/2,then 

(7.2) limbk = 1 and limrk = O. 
Let z E Kk+1\Kk. The triangle inequality gives 

00 

||F(z)|| > ||Fk-1||-|lGk(Z)li- E llGj(z)ll. 

j=k+ 1 

We can estimate the first term on the right using the property (a), the second term 
using (e) and the third term using (d) to obtain 

00 

(7 3) ||F(z)|| > (bk-1 -2 )-rk- E Ej, z E Kk+l\Kk 

j=k+ 1 

Since E Ej is convergent, (7.2) implies 
00 

(7.4) lim bk-1 -2 k _ rk- , Ej = 1. 

j=k+1 

FFom (7.3) and (7.4) it follows that 1i F(z) 1i tends to one as the point z tends towards 
the boundary of D. This means that the map F: D , B28+p is proper. Theorem 
1.3 is proved. 
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