Polynomial Hulls of Sets Fibered Over
the Chrcle

FRANC FORSTNERIC

0. Introduction. Let D = {z € C:|z| <1} and T=bD={z€C: |2| =

1}. We denote by A(D) the algebra of all continuous functions on D that are
holomorphic in D.

Let M be a two-dimensional, connected, compact, totally real C2 subman-
ifold of T x C. Then for each ¥ € R the fiber

Mg ={2€C:(e"2) € M}

is a simple closed curve in C bounding a simply connected region Yy C C.
We assume, in addition, that each Yy contains the point 0, and we set ¥ =

U19 {e“’} X Y,9 .
Our main result is a precise description of the polynomially convex hull M
of M. Recall that

M = {z € C?:|f(2)| < supy |f| for all f € O(C?)}.

Clearly M projects onto the closed disc D C C. If the boundary values of a
function f € A(D) satisfy the condition

(0.1) f(e®)e My  foralld e R,

then its graph
Gs ={(2,f(z)) : z € D}

is an analytic variety with boundary in M, so Gy is contained in M by the

maximum principle. We shall prove the converse to this: for each point (a,b) € M
with a € D there exists an f € A(D) satisfying (0.1) and f(a) = b. In other
words, the graphs of solutions of (0.1) fill the entire polynomial hull of M except

the set Y C OM. We shall prove, moreover, that the topological boundary of
M is piecewise smooth. The part of dM over D, denote it by X, is a smooth
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Levi flat hypersurface foliated by the graphs G of those solutions of (0.1) that

are nonvanishing on D. Thus, oM =YUM U3%, where Y and ¥ are smooth
hypersurfaces with common boundary M.

These results generalize our previous work [10] where each fiber My was
assumed to be the boundary of a convex set Yy. The proof in [10] was based on
the work of Alexander and Wermer [2] and Slodkowski [22] who gave a similar

description of the hull M when M C bD x C is compact and each fiber My is

convex (no smoothness of M was required). The hull M is then filled by the
graphs of bounded holomorphic functions f € H* (D) with boundary values
f(e*?) € MYy almost everywhere on T'.

In this paper we find solutions of (0.1) by the continuity method. To solve
the problem for small perturbations of the initial manifold M we consider an
analogue of the Bishop equation [6] for finding analytic discs with boundaries in
M. We combine this with the a priori Holder estimates to obtain a homotopy
lifting theorem for solutions of (0.1). (See Theorem 1.)

The problem of finding functions f € A(D) with boundary values f(e*’) in
prescribed curves My C C is known as the Hilbert boundary value problem. The
special case where each My C C is an affine real line in C was mentioned by
Riemann in 1951 and was solved by Hilbert in 1905 [16] by an explicit integral
formula. For the history and results concerning this linear Hilbert problem, con-
sider Chapter 4 of [12], containing historical remarks, as well as the monographs
(14, 15, 19, 20, 21]. A survey of results on the general nonlinear Hilbert problem
can be found in the introduction to [15] and in [24]. In our case, when each fiber
My is a smooth closed Jordan curve, the solutions of (0.1) were found before by
Shnirelman [23] by a method that is substantially different from our method. He
used the so-called quasilinear Fredholm operators. Moreover, Shnirelman did
not consider the polynomial hull of M and the regularity of its boundary.

Acknowledgment. I wish to thank Josip Globevnik for stimulating discus-
sions on the subject. This work was supported in part by the Science Foundation
of the Republic of Slovenia.

1. Rgsults. Let D be the unit disc and T = bD the unit circle in C. If K
is either D or T and 0 < a < 1, we denote by C*(K) = C%*(K) the space of
all continuous functions on K with finite norm

fulla = sup u(a)] + sup lu(z) ~u(y)]
z,y€K |$_y|
z#y

< oo

For every k € Z we define the space

Ch*(K) = {u € C*(K) : ullka = Y [ID°ulla < 00}
1BI<k
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The space C**(K) is a Banach algebra. Our functions can be either real or
complex valued; it will be always clear from the context which one we use.

Let A(D) be the algebra of all continuous function on D that are holomor-
phic in D (the disk algebra) and A(T) = {f|T: f € A(D)}. We also set

ARe(D) = C**(D)n A(D)
and

ARX(T) = C**(T)NA(T).

If f € A(D), then f € Ab%(D) if and only if f|,€ A%*(T) [14, pp. 363-364].
AF~0(D) denotes the intersection g,y A¥~1%(D), and similarly A¥=0(T).

Denote by 7 : C?2 — C the projection m(¢,2) = ¢. Throughout this paper
M will denote a subset of C? satisfying

(i) M is a compact connected submanifold of C?
of class C* (k > 2), dimgr M = 2.
(ii) 7(M) =T, and 7 : M — T is a submersion.
(iii) For each ¥ € R, the fiber
(1.1)
My={z€eC: (e,2) € M}

is a simple closed curve in C with 0 in the
bounded part Yy of C\ My.

Note that such an M is a torus embedded as a totally real submanifold of
C2. For such M we consider the problem of finding functions

(1.2) f € A(D), f(e?) e My  for all ¥.

Each solution of (1.2) is of class A¥~°(D) according to Cirka [7], so we shall fix
an o € (0,1) and look for f € A*(S) solving (1.2).

We shall first prove that certain families of solutions of (1.2) satisfy the
homotopy lifting property. Suppose that {M t:0<t< 1} is a homotopy of
class C* such that each M? satisfies the conditions (1.1). More precisely, there
is a C* function

r:TxCx[0,1]— R

satisfying
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(i) M = {(e”,2) € C? : r(9,2,t) = 0} satisfies
(1.1) for each ¢ € [0,1].
(ii) The gradient

1.3
(1.3) v(V,x +iy,t) = (rg + iry)(d,x + iy,t)

of 7 with respect to = + 4y is nonzero on M?,
telo,1].

Let S = R/Z. We also choose a C* map ¢ : §x [0,1] — C such that for
each t € [0,1],

(1.4) @(-,t): § — M¢ is a C* diffeomorphism.
Under these hypotheses we have:

Theorem 1. Suppose that f* : S — A(D) (0 < a < 1) is a continuous
map satisfying

(i) fO(s)(e®) = fOs,9) € M.

(i) £9(s,0) = p(5,0) € M.

(iii) fO(s) has no zeros on D for some (hence for all) s € S.
Then there exists a map f : S x [0,1] — A%(D) of class C*~! such that

(a) f(s,t)(e®®) = f(s,t,9) € M}.

(b) f(s,t,0) = ¢(s,t) € M.

(c) f(8,0,-) = fo('sa')'

Given any M satisfying (1.1), there exists a C* homotopy {M?:0 <t <1}
satisfying (1.3) such that M? = T x T is the distinguished boundary of the bidisc
D x D and M! = M. Applying Theorem 1 with the initial family of solutions
of (1.2) for M©

fO(s)(z) = e*is s€S,zeD,

we obtain:

Corollary 2. For each M satisfying (1.1) and each C* diffeomorphism
@ : 8 — My there exists a C*~* map f: S — A*(D) such that

(a) F(s)(e¥) = f(s,9) € My.

(b) f(s,0) = ¢(s) € My. .

(c) f(s) € A*(D) is zero—free on D for alls€ S.

This family of solutions of (1.2) has a number of other properties which we
formulate in the next theorem.
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Theorem 3. Let M and f be as in Corollary 2. Denote by ¥ the set
{(2,f(s)(2)) : z€ D, s € S}. Then the following hold:

(i) T is an embedded hypersurface of class C*~1.

(ii) £ =2 UM, and the pair (Z,M) is a C*~1 hypersurface with boundary.

(iii) Let M denote the polynomially conver hull of M. Then ¥ = OMN
7~ YD).

(iv) For each (ab) € ]/\/I\, a € D, there erists a solution g of (1.2) such that
g(a)=b. .

(v) If g € A(D) is a solution of (1.2) that is zero-free on D, then g = f(s)
for some s € S.

Thus, the hull M is the compact set over D bounded by the hypersurfaces
Yand Y = Ul,{e“’} x Yy, where Yy is the region in C bounded by My. The

hypersurfaces ¥ and Y have the common edge M, and &M is smooth away from
M . For related results on M see [1, 3, 10].

Our solutions of (1.2) are obtained by the continuity method and are not
explicit. In certain cases we have explicit formulas for solution. E.g., if each
fiber My is a circle of radius 7(9) > 0 centered at 0, the outer functions

T il
(1.5) f(2) = €* exp (/ Z Rk log () g) , s€ER

o u9_z

solve (1.2). In fact, these are the only solutions that are nonvanishing on D. It
would be of interest to have such explicit expression for solutions in general. See
also [2].

Some smoothness of M is needed for our results to hold. Indeed, if the
function 7 in our example above is merely continuous, the harmonic conjugate
of log r may be discontinuous everywhere on T, so the solutions (1.5) have dis-
continuous argument. There are even no local solutions of (1.2) in this case. It
is likely, however, that the smoothness requirement M € C? could be weakened,
but this would only result in additional technical complications which are not
central to our problem.

We can justify the hypothesis that 0 lies in the region Yy for each J. If

M= {(ew,z) €C?:z—e | =¢}
and ¢ < 1, every f € C(T) satisfying f(e*?) € My has winding number —1, so

it is not in A(T'). In the limit case ¢ = 1 the only solution of (1.2) is f =0 [11,
Proposition 14]. There are plenty of solutions for ¢ > 1.
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A more general condition which yields the same results is: There exists a
g € A(D) with g(e*’) € Yy for all 9. This later condition can be reduced to the
former by a simple change of coordinates ({,2) — ({2 — g(¢)) -

We shall outline the construction of the map f in Theorem 1. First, we
extend the initial map f°: S — A%(D) given at t = 0 to an interval 0 < ¢t < t;
using the implicit function theorem in an appropriate Banach space (Section
2). In Section 3 we show that, with a suitable choice of parametrization, the
resulting map is of class C*~! and satisfies Theorem 1 on 0 <t < t;.

This well-known method of constructing so—called analytic discs with
boundaries in a given submanifold of C" was initiated by Bishop [6]. Subse-
quently, it has been used by several authors ([17, 3, 4, 5, 11, 18], to mention just
a few). We include a brief exposition to make the paper self contained and to
obtain the specific result we need.

The main part of the paper is Section 4, where we obtain a priori estimates
on solutions of (1.2) in Holder norms. The estimates enable us to extend the
map f continuously to the closed interval 0 < ¢t < t;. If t; < 1, we can again
extend f past t = t; using Sections 2 and 3. Continuing this process, we extend
f to the whole interval 0 <t <1.

Similar a priori estimates in certain related problems were obtained in [4,
5, 18].

2. A local perturbation theorem. Let S = % be the circle. For each Banach
space E we denote by QF the Banach space of all continuous maps g : § — E
equipped with the norm ||g|log = sup,cg|l9(s)|lg. If U is an open subset of E,
QU is the open subset of QF consisting of all g € QF with image in U.

Given a continuously differentiable map F : U C E — E’ into a Banach
space E’, the induced map

F:QFE — QF', (Fg)(s) = F(g(s)) for s€ §
is also continuously differentiable, with the derivative
(DF(g)h)(s) = DF(g(s))h(s), s€S.

This follows easily from the fact that each continuously differentiable map is also
strictly differentiable [8, pp. 53-54]. If F is a bounded linear map, so is F.

In the sequel we shall use spaces of functions on T = bD instead of on D.
Let {M? :0 <t < 1} be a C* homotopy (k > 2) satisfying (1.3). Given a
g° € QA%(T) satisfying

(2.1) g°(s)(e*) = g°(s,9) € My°

for all values of s and ¥ and for a fixed ¢, € [0,1], our aim is to find a C?
map t — g(s,t,9) from a neighborhood J of ¢¢ in [0,1] into the space QA*(T)
satisfying
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(i) g(s,t,9) € Mf for t € J, and

(2.2) :
(i) g(s,t0,9) = g°(s,9).

We shall assume in addition that ¢°(s) has winding number 0 for some
(hence for all) s € S. Equivalently, its holomorphic extension to D is nonvan-

ishing.

We define

Y(s,9) = V(ﬂ,g°(s,19),to) ,

where v is as in (1.3). Since v is of class C*~1, Y(s,-) is in C*(T) for each s,
and s — Y (s,-) € C*(T) is continuous [17, p. 340]. Thus, Y € QC*(T).

The geometrical assumptions (1.1) on M?® imply that the winding number
of Y (s,-) equals that of g°(s) which is zero. So

Y(s,19) — ea(s,0)+ib(s,t9)

for some continuous maps

a:8— C¥T), b: R— C¥T).

Recall that the harmonic conjugate u — @ is a bounded linear map of
C*(T) into itself [13, p. 106] which annihilates the constants. Since b satisfies
the periodicity condition

b(s+1,9) = b(s,9) + 2w, teZ,

its harmonic conjugate b(s,-) with respect to 9 is a well-defined continuous map

S — C*(T), ie., b € QC*(T). Multiplying Y by the positive function e“"s,
we obtain the function )
X(S,’l?) — e—b(s,ﬂ)+ib(s,19)

in QA%(T) such that X(s,9) is real orthogonal to the curve M} at the point
9°(s,0).
Let G : QC*(T) — QA*(T) be the linear map

G(u)(s,0) = g°(s,9) + (u(s,9) +ii(s,9)) X (s,9), u € QC*(T).

Here @(s,9) is the harmonic conjugate of u(s,9) with respect to 9.
Consider the composition

@ : QC*(T) x [0,1] —» QC*(T),
B(u,t)(s,9) = r(9,G(u)(s,9)t)

where 7 is as in (1.3). Since 7 is of class C?, the map @ is of class C! in (u,t)
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according to [17, p. 340]. Condition (2.1) is equivalent to
<I>(0,t0)(s,19) = 7‘(’19,90(3,’(9),&)) =0.

The partial derivative of ® with respect to u at the point u = 0, t = o, applied
to v € QC*(T(), equals

(2.3) D, ®(0,tp)v(s,9)
= Re((u(s,9) +5(s,)) X (5,9) ¥(5.9°(5:9), 1))
= h(s,9)v(s,9)

where
h(s,'ﬂ) = X(Sv'ﬂ) I/(S,g° (Saﬁ)atﬂ)

= 0+ X (5,9) 2

is a positive function in QC(T). Here we used the fact that iX(s,9) is real
orthogonal to u(s,g°(s,19),t0), so ¥ does not enter into (2.3).

It follows that the derivative (2.3) is a linear isomorphism of QC*(T) onto
itself. By the implicit function theorem in Banach spaces [8, p. 61] there is a C!
map u : J C [0,1] = C*(T), where J is a neighborhood of ¢ in [0,1], such that

@ (u(t),t) =0 and u(to) = 0.

Then G(u(t)) : J — QA%(T) is a C' map, and the function g(s,t,9) =
G (u(t))(s,0) satisfies (2.2).

3. Uniqueness and regularity of solutions. Let {M*®: 0 <t < 1} and ¢ :
SxI — C be as in (1.3) (resp. (1.4)). In this section we prove that the
family of solutions {g(s,t),")} C A%(T), constructed in Section 2 (2.2), can
be reparametrized such that the resulting family {f(s,t,-)} C A%(T) satisfies
the conclusions of Theorem 1 on the interval J containing t;. A necessary
additional assumption is that the map s € S — g(s,%0,0) € M3° is homotopic to
s — ¢(s,t0) € MY® in M.

Denote by Bt ¢ A*(T) the set of all solutions of (1.2) for M* that extend to
zero—free functions on D. (Equivalently, they have winding number zero.) We
denote by 9 : A%(T) — C the linear evaluation map ¥ (f) = f(0). We also set

B = |J{t} x Bt C J x A*(T), the union over ¢t € J. The main results of this
section are:

(a) B is a one-one immersed C*~! submanifold of J x A%(T) with one-
dimensional fibers B?.
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(b) If C* (t € J) is the connected component of B* containing {g(s,t,") : s €
S}, then the restriction

(3.1) v, 0t - M
is a C¥~1 diffeomorphism.

We shall see in Section 5 that in fact B is connected.
Once we know that (a) and (b) hold, we set

(3.2) f(s,8) = (¥|ge) Towls,t), seS, ted

to obtain a family of solutions satisfying Theorem 1 ont € J.

Fix at; € J and an hg € B¥. As in Section 2, we can find an invertible
function X € A*(T) such that X (d) is real orthogonal to Mj' at the point
ho(9). We can write every function in C*(T') in the form

H(uw) = ho+ (u+ i) X +viX

for some uniquely determined real-valued functions u, v € C*(T).
Since X is invertible and (u + i%t) € A*(T), the function H(u,v) belongs to

A%(T) if and only if v = s € R is a constant. So we shall only consider H on
C*xR.
The image of H(u,s) lies in M? if and only if

(3.3) U(u,s,8)(9) = r(9,Hus)¥)8) =0, deR.

By the hypothesis, this holds at u = 0, s = 0, t = t;. The map ¥ : C*(T) x
R? — C*(T) is of class C*¥~! [17, p. 340]. Its partial derivative D, ¥ at the
point u =0, s =0, t = t; is a linear isomorphism of C*(T') onto itself; we shall
omit the computation since it is similar to the one for ® in Section 2.

By the implicit function theorem [8, p. 61] there is a C*~! map u = u(s,t)
into C%(T) defined near s = 0, t = t;, such that the corresponding C*~! map

h(s,t) = H(u(s,t),s)

into A%(T') satisfies (3.3), and every solution f € B! for t close to ¢; and f close
to hg equals f = h(s,t) for some s € R. In other words, the C¥~! map

(3.4) (t,8) = (t,h(s,t)) € B C J x A%(T)

locally parametrizes the set B in a neighborhood of hg € B*!.
Differentiating (3.3) with respect to s at s = 0, t = ¢;, we conclude that
% (0,#1) = 0 and, therefore,

% (0,61)(8) =iX(®9) #0  for all 9.
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Hence the map (3.4) and also the composition
s = 9 (h(s,1)) = h(s,£)(0) € Mg

are C*~1 immersions near s = 0, t = ¢;. Consequently, ¥ : Bt — M{ is a local
Ck—1 diffeomorphism. This proves (a).

The connected component C* of B! is a connected one—dimensional manifold
without boundary, so it is homeomorphic to either R or S. The composition
s — og(s,t,) = g(s,t,0) € M} is homotopic to the homeomorphism s —
¢(s,t) of S onto M¢ for t = t; and thus for all ¢t € J, so we conclude that C* is
homeomorphic to S and 3 : C* — M{ is homotopic to a homeomorphism. Since
this map is a local diffeomorphism, it follows that i is a global diffeomorphism
for each t € J. This proves (b). |

We summarize the results of Sections 2 and 3 in the following:

Theorem 4. Let {M*:0 <t <1} be a C* homotopy satisfying (1.3), and
let ¢ : S x[0,1] = C be as in (1.4). Assume that for some to € [0,1] there exists
a continuous mapping g° : S — A%(T) such that

9°(s)(9) € My°,

9°(8)(0) = ¢(s,t0) € Mg°.

Then there exists a neighborhood J of to in [0,1] and a mapping f : SxJ —
AX(T) of class C*~1 satisfying

(a) f(s,)(9) € My,
(b) £(5,8)(0) = (s,t) € Mg,
(c) f(s,t0) = °(5).

The mapping f is unique in the following sense. If Jy is a connected subset of J
containing ty and if h : Jo — A%(T) is a continuous map satisfying h(t)(9) € M}
and h(ty) = g°(s) for some s € S, then for each t € Jy, h(t) = f(s,t) for a
unique s = s(t).

Proof. The map f(s,t) was defined by (3.2) above. It remains to prove the
uniqueness part. Since Jy is connected and h is continuous, the image of h is a
connected subset of B. The assumption h(tg) = g°(s) € C? implies that the
image of h is contained in the connected component C = |J{t} x C* of B. Since
the map (3.2) is a diffeomorphism, the result follows. This concludes the proof
of Theorem 4. 0O

Remark. If we replace the space A*(T) by A™*(T) for some
m € {0,1,...,k — 2},

the same methods yield amap f: S x J —» A™*(T) ofclass C* ,n=k—m—1,
satisfying the conclusions of Theorem 1 on a neighborhood J of o in [0,1]. The
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uniqueness part of Theorem 4 implies that this map coincides with the previously
constructed map into A*(T') if we consider A™“(T) as the natural subspace of
A%(T). We shall omit the details. (See also [11].)

4. The a priori estimates.

Theorem 5. Let M C C? be a submanifold of class C* (k > 2) satisfying
(1.1). For each £ € {0,1,....,k—1} and 0 < a < 1 there is a constant Cyo such
that every solution f of (1.2) which is nonvanishing on D satisfies

(4.1) Iflle,a < Copr

Moreover, if {M?:0 <t <1} is a C* homotopy satisfying (1.3), the constants
Cp,a can be chosen to be independent of t.

Note. In the case when M = T x T is the distinguished boundary of the
bidisc, the finite Blaschke products show that no estimate (4.1) is possible for
solutions of (1.2) which have zeroes on D.

Proof. Let r: T x C — R be a C* defining function for M (see (1.3)) whose
gradient
v(9,x +iy) = (rz +iry)(d,x +iy)

is nonvanishing at every point (e?®,x +iy) € M. The function f(e!?) = f(¥) is
of class A¥=°(T) [7] and satisfies

r(9,f(¥)) =0.

Differentiating with respect to 9, we obtain
Of ———
re(9,£(9)) + Re 99 v(9,f(¥)) ] =0.

We shall now use the hypothesis that f is nonvanishing on D, so f = e9 for
some g € A¥~°(T). We also introduce the function

(4.2) n(9,2) = zv(¥,z)

on T x C whose restriction to M is nonvanishing. With this notation we have

(4.3) ro(9,£(9)) + Re (g—% (9, f(v))) =0.
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The geometric hypotheses (1.1) on M imply that n : M — C\ {0} is null
homotopic in C\ {0}, so

n(d,z) = £a(9,2)+ib(d,2)

We denote by b(9,f (1)) the harmonic conjugate of the function b(¥,f(¥)). Mul-
tiplying (4.3) by e~o—b , we obtain our main identity

(4.4) Re (g% (ﬂ)e—éw,fw»wbw,fw»> = —e BTN =a0 TN 1y (9, £(9))

which we shall exploit to prove the estimates (4.1).

Notice that the function g% e~b+ib extends to a holomorphic function on D
with value 0 at 0 € D (since 3 = ie??g(e*?) extends to izg’(2)), so its imaginary
part is precisely the harmonic conjugate of the real part. If we can estimate the

right-hand side of (4.4) in a L? (1 < p < 00) or a Hélder norm on T, then the
boundedness of the harmonic conjugation in these norms will give a bound on

gl%e‘i’“'b and on —g% in the same norm. This will in turn yield a better estimate
on f itself.
First, there is a constant C; such that

(4.5) |(9,2)| < C1, on (e¥,2) € M,
le=a@Fpy(9,f(9))| < C1.

Further, we will prove that for each p € (0,00), there is a constant Cy =
Cs(p) such that

(4.6) “e:hl"r(ﬁyf(ﬁ)) “LP(T) <G

for all f solving (1.2). The proof will be split into three lemmas.

Lemma 6. Letp € (0,00). For each u € C(T) the function e® is in
LP(T). If pllullc < 5, then

1

e'& P <—
iz < s Talloe)

This lemma is well known; see, for instance, [14, p. 365].
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Lemma 7. Let Q be the set of all functions on T x C of the form

(4.7) q(¥,2) = Z cjee? 2t cje € C.

—Jo<Jj<jo
0<E<ty

Then the set ReQIM = {Req|M : ¢ € Q} is dense in the space C(M) of real-
valued continuous functions on M .

Proof. Note that ReQ| ar 18 @ linear subspace of C (M). Let p be a finite real
Borel measure on M that annihilates ReQI - Under the projection m: M — T

the measure p disintegrates in the sense that there exists a measure p* on T
and, for almost every 9 with respect to u*, there exists a measure gy on My
such that, for all f € C(M),

/fdu= “awr ) [ fdos.
M

-7 My

Since @ contains functions {z‘Z cos j¥, 2t sinjd : j, £ € Z+}, we have

n
0= / cosj9 [ Rez'doydu*(9),
-7 My

0=/ sinjw?/ Rezt - dog du*(9), JEZ,.
My

(/Mo Rez* da,g) du* ()

is the zero measure on T for all £ € Z , so the function

It follows that

9 — Rezldoy
My

is zero almost everywhere with respect to u* for all £. The same is then true of
/ Reh(z)doy
My

for every holomorphic polynomial h(z) on C. Since {Reh| M, h polynomial}
is dense in C(My) by Mergelyan’s theorem, we conclude that o9 = 0 a.e. [p*].
Thus x =0, so ReQIM is dense in C(M). Lemma 7 is proved. O

For each function g of the form (4.7), we denote by R, the operator which
assigns to each f € C(T') the harmonic conjugate of Req(9,f(e®?)).
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Lemma 8. R, is a bounded (nonlinear) operator from A(T) into C(T).

Proof. Since R, is linear in g, it suffices to prove the lemma for the operators
R; 4 associated to the functions g;, = €?2¢. Moreover, since f — f¢ is a
bounded operator of A(T) into itself, it suffices to consider the case £ =1.

An explicit computation with Fourier series shows

R I
and
(R-j1 f)(e”)
=Im [(f(e“’) - 2; f%(—o—) e"“’) e +§) I%Q eI >0,
This proves Lemma 8. O

The estimate (4.6) follows immediately from the preceding lemmas. By
Lemma 7 we can write

b=Req+ (b—Req) =Req+V,
where ¢ is of the form (4.7) and p||b'||oc < 5. Then,
HDB.FB) _ JRea(®,(9) b (9,£(9)
= (Rl 9 (B.F0)

The first term is uniformly bounded by Lemma 8, and the second is bounded in
L?(T) according to Lemma 6. This proves (4.6).

Choose a p € (2,00). Recall that the harmonic conjugation v — % is a
bounded linear map of LP(T') into itself [13, p. 113]. The identity (4.4) together
with the estimates (4.5) and (4.6) implies

09 _pyib
- v < .
Iaﬁe Lp_Cg, all f
Since
Of _ .09 _ 409 _ptiv
a0 T =1 \59° ’
the Holder inequality for the product of two LP functions yields the estimate
of b 99 it
- < — ¢ < .
6’(9 /2 —_ "f”OO"e "Lp 8196 e —_ C4
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Since £ > 1 by the choice of p, a theorem of Hardy and Littlewood implies for
a=1- % € (0,1)

Iflla < Cs.

With this estimate we can go back to the identity (4.4) to obtain a Holder
estimate for gg. Since r is of class C* for k > 2, the functions 7, a, b and
rg are of class C¥~1, so the compositions a(¥9,f(9)), b(9,f(9)), rs(9,f(9)) are
uniformly bounded in the C* norm. Also, the harmonic conjugation is a bounded
operator on C*(T) [13, p. 106]. Thus, (4.4) implies

< Cs

09 _pyib
“ a9

a

and, therefore, ||g§|la < C7. Equivalently,

lfll1,a < Cs.

We can iterate this argument to prove all estimates (4.1).

From our proof it is clear that the constants Cy,q only depend on sup{|z| :
z € My, 9 € R} and on the C*~1 norms of the functions a, b, and ry restricted
to M. Thus, if M is a C* homotopy as in (1.3), the Cy, are independent of ¢.
Theorem 5 is proved. 0O

Let f : Sx[0,t1) — A*(T) be the map constructed in Sections 2 and 3
which satisfies Theorem 1 on 0 < t < t;. We shall obtain a priori estimates on
the derivatives %5 and %Itf.

Recall that the extension of f(s,t) to D has no zeros, so f(s,t) = e9(*? for
a C* Y map g: Rx[0,t;) — A%(T). We shall write g(s,t)(e*’) = g(s,t,9).

Let r and v be as in (1.3). The restriction of the function : T x C x [0,1] —
C given by

1(9,2,t) = zv(V,2,t)

to M, is null-homotopic as a map of M; into C\ {0}, so
n(ﬁ,z,t) — ea('ﬂ,z,t)+ib('z9,z,t), z€ Mg

We set
A(s,t,9) = a(ﬂ,f(s,t,ﬁ),t) ,

B(s,t,9) = b(9,f(s,t,9),1).

As a function of s, B is only well-defined on s € R, but its harmonic

conjugate E(s,t,ﬁ) with respect to 9 is well defined on s € S = %.
We differentiate the identity

(4.7) r(t?,f(s,t,ﬂ),t) =0



884 F. FORSTNERIC

with respect to s (see also the proof of Theorem 5) to obtain

Re (g (s,t,ﬂ)n(ﬁ,f(s,t,ﬂ),t)> 0.

Multiplying this by the real-valued function e~4~F we have

09 _piiB _
Re(ase =0.

Since the function under Re extends holomorphically to D, it must be constant.
Consequently,

o] B dg B
- tﬂ ( B+zB)(37t)"9) = = ( B+1B)(3yt70)‘
Multiplying this by f and taking into account

of _ Oy

a(s,t,O) = s (s,t),

we obtain

of _ f(s,t,9) Op (= B+iB)(s,t,0)—(— B+iB)(s,t,9)
(18 atd)= FEPH S s .

Since b(1,z,t) is of class C! and f satisfies the estimates of Theorem 5, the
exp term in the right-hand side of (4.8) is uniformly bounded in C*(T'). Thus,
(4.8) implies that there is a constant Cy such that

< Cy, s€ES,0<t<t.

o

(49) ;|g§<s,t,~>

Similarly, we can differentiate (4.7) with respect to ¢t and use the relation

%Jt: (s,t,0) = %% (s,t) to prove an estimate

< Cho-

a

(4.10) ” %f— (s:t°)

We shall omit the details since they are similar to the proof of (4.9) given
above. a
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5. Proof of Theorems 1 and 3. In Sections 2 and 3 we have constructed a
C*=! map f: S x[0,t;) — A%(T) which satisfies the conclusions of Theorem 1
on 0 <t <t;. (See Theorem 4.) The estimates (4.1), (4.9), and (4.10) imply
that f extends to a continuous map f : S x [0,t1] — A*(T), and we have

f(sytl,o) = f(satl)(eio) = (P(S,tl), ENS S

The uniqueness part of Theorem 4 implies that the extended map is of class
C*=! on S x[0,t1]. If t; < 1, then by the same theorem f can be extended to
the interval 0 < t < t; +¢ for some € > 0. Continuing this process, we extend f
to the whole interval [0,1]. Theorem 1 is proved. O

We now turn to the proof of Theorem 3. We shall write f(s)(z) = f(s,2).
The map

®:DxS — C?, ®(2,8) = (2,f(8,2))

is the composition of the C*~! map (2,s) — (2,f(s)) into D x A%(D) and the
map D x A*(D) — C, (z,h) — h(z). The last map is linear in h € A*(D), and
for each fixed A it is holomorphic on z € D. Thus, ® is of class C*~! on D x S
and ®(-,s) is holomorphic on D.

From the identity (4.8) we conclude that %é (s,2) is nonvanishing on D x S,
so & is an immersion. The map S — My, s — f(s,e?’) is a homeomorphism
at ¥ = 0, so it is homotopic to a homeomorphism for each ¥. Since this is
an immersion according to (4.8), it is a diffeomorphism for all ¥. Thus, & =
®(D x S) is an immersed hypersurface with & = YU M.

To prove that ® is one-to—one, we consider the difference g(s,2) = f(s,2) —
f(s0,2). We know already that g(s,e?®) # 0 for s € S\ {so} and ¥ € R. More-
over, for s close to sg, g(s,2) is close to (s — so)%é (s0,2) which is nonvanishing
on z € D. By the argument principle, g(s,z) is nonvanishing on D for all

s € S\ {so}. This proves that ® is an embedding, and Part (i) of Theorem 3
holds.

Since the hypersurface ¥ = ®(D x S) is foliated by analytic disks, it is Levi
flat and pseudoconvex.

For each pair of integers m > 1, n > 0, m+n < k—1, we can consider
s — f(s) as a C™ map of S into the space A™*(D) (0 < a < 1). (See the remark
at the end of Section 3.) The evaluation map D x A™%(D) — C, (z,h) — h(2),
is of class C™ in z € D and is linear in h. It follows that the derivative

am+n
—m‘—ni(s’z)
OMmsO"z
exists and is continuous on D x S. In particular, f is of class C*~2 in both

variables, so ® defined by (5.1) is en embedding of class C*~2 on D x S. This
proves (ii).
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To prove (iii) we choose a C*¥ homotopy {M* : 0 < ¢ < 1} satisfying (1.3)
and
(i) M' =M.
(i) M° = {(e*’,Re*?) : ¥, p € R} for some large R > 0.

(iii) If ¢; < ta, then M,;’ is contained in the region bounded by Mgl for all
9.

(iv) % is nonvanishing, where r is the defining function as in (1.3).

Such a homotopy exists if R is large enough.
Let f : Sx[0,1] —» A*(D) be as in Theorem 1. Choose a smooth, strictly
decreasing function ¢ : [0,1] — R such that (0) > 1, (1) = 1, and define

T ={(W(t)z, f(s,t2):2€D,s€ S}, 0<t<1.
This is a smooth pseudoconvex hypersurface with boundary
{(¥()e® w) :we M, 9 e R}.
Denote by € the pseudoconvex domain in D(3(t)) x C bounded by %;. Here
D(c)={z€C:|z| <c}.
Since the derivatives gf (s,t,2) are uniformly bounded, conditions (iii) and
(iv) above on {M*} imply that, for each ¢ > ¢y, the boundary of ¥; is contained

in Q,, provided that the derivative I’Q/J, (t)| is sufficiently small on [0,1]. We
claim that, as a consequence, ¥;NY¥;, = O, so Q, C Q4,. For a proof consider

the difference
z , z
9(z)=f (S,to,m) -f (8 ’t’d)_(t_))

on |z| < ¢¥(t) (s, s' € S). There is a homotopy H : T x [0,1] — C such that for
alld € R:
(i) H(e™,0)= f(s',t,e”).
(ii) H(e*,1)=0.
(iii) H(e,y) lies in the region bounded by M} for each v € [0,1].
So the winding number of g(z) on |z| = ¥(t) equals that of f(s,to,W’to—))

which is zero. Consequently, f(z) is nonvanishing on {|z| < ¥(¢)}, as claimed.
We recollect the relevant properties of the family of pseudoconvex domains

{Q}:
(1) Q CQ ift > to.
(i) Ussto e = Q-
(i) Upgecr @ = D(9(0)) x D(R).
(V) Nisy, U = Qi -
(v) IntQy = Q.
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Property (i) was proved above. The rest follows from the definition of
and from the smooth dependence of ¥; on ¢.

A theorem of Docquier and Grauert [9] implies that each Q; (¢ > 0) is
holomorphically convex in g, so ; is polynomially convex for each t € [0,1].
This proves (iii) of Theorem 3.

Fix a point (a,b) € M,a€D.If (a,b) lines in OM , part (iii) implies that
f(s,a) = bfor some s € S, so (iv) holds. If, on the other hand, (a,b) is an interior
point of M, we can use Theorem 1 to find an h € A(D) such that h(a) = b and
h(e*?) is in the region bounded by My for all ¥. (This time we apply Theorem 1
to a homotopy {M*} with M? = M and with “shrinking” fibers M}.) We seek
g of the form

9(z) = h(2) + (2 — a)k(2), k € A(D).

If £ is a solution of (1.2) for the manifold contained in T x C with fibers

—a

(i
N,9={-z—wh(—e):z€M,9}, 9eR
€

(such functions exist by Corollary 2 applied to N), then g satisfies Theorem
3(iv).

Finally, suppose that g € A(D) is a zero—free function on D that solves
(1.2). Let {M'} be a homotopy as in the proof of (iii) above. The technique of

this paper allows us to construct a map G : [0,1] — A®(D) which is continuous
and satisfies

(i) G(t)(e*) € M}, and
(i) G(1)(2) = g(2)-
Set
J={te[0,1]:G(t) = f(s,t) for some s € S},

where f(s,t) is as before. Clearly J is a closed subset of [0,1] containing 0 (since
the constants e2™*® are the only nonvanishing solutions of (1.2) for M® = T x T).
The uniqueness part of Theorem 4 in Section 3 implies that J is open in [0,1].
Consequently, J = [0,1], which proves Theorem 3(v). We proved all results
stated in Section 1. 0

Note added in proof. The author is pleased to announce a new and very
strong result by Z. Slodkowski (Polynomial hulls in C? and quasicircles, to ap-
pear), which uses in an essential way the main result of the present paper, to-
gether with some ideas from quasiconformal geometry. Slodkowski describes the
polynomial hull of each compact set X C C? fibered over the circle, whose fibers
are simply connected continua, as the union of graphs of bounded analytic func-

tions in the disc D C C. This is a far-reaching generalization of the results in
(2, 22].
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