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Introduction

In this paper we obtain results on holomorphic continuation of proper holomorphic
mappings between pseudoconvex domains with real-analytic boundaries in com-
plex spaces of different dimensions. Equivalently, we obtain resuits concerning the
analyticity of Cauchy-Riemann mappings between real-analytic pseudoconvex
hypersurfaces in complex spaces of different dimensions.

To begin with, we recall the corresponding results for mappings of equi-
dimensional domains. Let D and D’ be bounded pseudoconvex domains with
smooth boundaries in C". If the boundaries of D and D' are strictly pseudoconvex
or, more generally, of finite type in the sense of D’Angelo [15], then every proper
holomorphic map of D onto D’ extends smoothly to D according to the results of
Bell and Catlin [7,8] and Diederich and Fornass [19]. For mappings between
strictly pseudoconvex domains this was proved by Fefferman [26] and Nirenberg,
Webster, and Yang [37].

If the boundaries of the pseudoconvex domains D, D'< C" are real-analytic,
then every proper holomorphic mapping of D onto D’ extends holomorphically toa
neighborhood of D according to Baouendi and Rothschild [2] and Diederich and
Fornass [21]. This ‘reflection principle’ was first discovered by Lewy [34] and
Pin¢uk [38] for mappings between strictly pseudoconvex domains. In the case of
biholomorphic mappings between weakly pseudoconvex domains with real-
analytic boundaries the result follows from the work of Baouendi, Jacobowitz, and
Treves [5]. Results in this direction were obtained in recent years by several authors;
see the papers [4, 6, 18, 22, 33, 47, 49].

In this paper we are treating the case when the domains D and D' have different
dimensions. To be specific, we assume that D=C" and D' C" are bounded
pseudoconvex domains with real-analytic boundaries and N>n>1. In this
situation a proper holomorphic map f: D— D’ need not be regular at the boundary.
For instance, there exist proper holomorphic maps of balls of different dimensions
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that do not extend continuously to the boundary [27, 35]. Moreover, for each n
there exist proper holomorphic maps from the unit ball B*"c C" to B"*1 = C"*! that
extend continuously to the closed ball B*, but the extension is not of class 4% on any
open subset of the sphere AB" [23, 32]. Furthermore, if N= N(#) is sufficiently large,
there exist proper holomorphic maps f: B"—B" that extend continuously to B* and
map the sphere #B" onto HBY {30].

On the other hand, if we assume that fextends to a map which is smooth of class
&* on D for some sufficiently large s, then f will continue holomorphically across
large subsets of bD. A result of this type has been proved by Webster [48]: 1f n =3,
N=n+1, DcC” is a strictly pseudoconvex domain with real-analytic boundary,
and /1 D—B"*! is a holomorphic map which is of class €* on D, then f extends
holomorphically across every point in an open dense subset of the boundary bD.
Related results for proper holomorphic mappings of balls £: B"—B" were proved by
Faran [24], Cima and Suffridge [11, 12], Cima, Krantz, and Suffridge {13], and the
author [28]. These results were obtained by a generalization of the method
developed in the equi-dimensional case by Lewy [34] and PinCuk [38]. The
codimension N —n of the mapping was assumed to be low in these results.

1. Results

Our first main result is the following.

1.1. Theorem. Let M = C"and M' = CN (N >n > 1) be smooth real-analytic pseudo-
convex hypersurfaces, M of finite type, and M’ strictly pseudoconvex. Let D= C"bea
domain which contains M in its boundary and is pseudoconvex along M. If f:
DU M-—-CY is a mapping of class € that is holomorphic on D and maps M to M,
then fextends holomorphically to a neighborhood of an open, everywhere dense subset
M, of M.

Recall that a pseudoconvex real-analytic hypersurface is of finite type in the
sense of D’Angelo [15] if and only if it contains no germs of positive dimensional
complex varieties.

The domain D plays no role in Theorem 1.1. We can formulate the result in
terms of C-R mappings between real-analytic hypersurfaces. Recall that a mapping
f: M—C" is C-R if it satisfies the tangential Cauchy-Riemann equations on M.

1.2. Theorem. Let M = C" and M' < C¥ (N > n> 1) be smooth real-analytic pseudo-
convex hypersurfaces, where M is of finite type and M ' is strictly pseudoconvex. If |-
MM’ is a smooth C-R map, then [ is real-analytic at every point of an open,
everywhere dense subset M, of M.

Under the conditions of Theorem 1.2 the map f extends holomorphically to a
domain D< C" in the pseudoconvex side of M [3, 45]. The extended map f:
DU M—C¥ continues holomorphically to a neighborhood of a point pe M if and
only if f|y is real-analytic at p. This shows that the above two theorems are
equivalent.

We can replace the condition that A’ is strictly pseudoconvex by a somewhat
weaker condition (A) introduced by (2.4) in Sect. 2 below. In this case we have to
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require in addition that f maps D to a domain D' <=C" in the pseudoconvex side of
M’ and bounded in part by M'.

There is no restriction on the codimension N —n of the mapping. The above
theorems are clearly false if n=1 and N> 1.

We obtain a somewhat more precise result, Theorem 6.1, concerning the
extension of f at a given point of M. In Sect.4 we construct an upper
semicontinuous, integer valued function v: M —Z., , called the deficiency of f, which
is invariantly associated to f and which measures a type of degeneracy of the
mapping f. If vis constant on a neighborhood of a point ze M in M, then fextends
holomorphically to a neighborhood of z in C" (Theorem 6.1). In particular, f
extends holomorphically to a neighborhood of each ze M at which v(z)=0. The
condition v(z) =0 is satisfied if the restriction of f to a certain complex hypersurface
Q. < C"associated to M has a maximal number of linearly independent derivatives
(of higher order) at z.

It remains an open problem whether f extends holomorphically across each
point of M. Examples in Sect. 8 show that the function v need not be constant on M
even when [ is a proper polynomial map between balls. However, it seems that for
‘most” hypersurfaces M’ we have v=0 for each mapping f. so f extends
holomorphically across M. We shall not pursue this question in the present paper.

We denote by B" the open unit ball in C",

B":{ZEC"Z Y z;5< 1}.

J=1

and by bB" its boundary, the unit sphere in C". In the special case when the
hypersurface M is the unit sphere 5B" we can prove a similar extension result under
a weaker smoothness assumption on the mapping f.

1.3, Theorem. Let D and M be as in Theorem 1.1.If f: DuUM-CY is a mapping of
class €N ~"1! that is finite holomorphic on D and satisfies | f(z)|=1 for each ze M,

then f extends holomorphically to a neighborhood of an open, everywhere dense subset
M, of M.

In the special case when both domains are unit balls we have the following
stronger result.

1.4 Theorem. Let U be an open ball centered at a point p e bB", and let M = U nbB".
IfN>n>1and f:B"~U—>C" is a mapping of class €~ "* that is holomorphic on
B"~ U and takes M 1o the unit sphere bBY, then fis rational, f={p;, ..., py)/q. where
the p; and q are holomorphic polynomials of degree at most N*(N—n+1). The
extended map is holomorphic on B", it maps B" to BY, and it has no poles on bB".

In particular, if f: B"—>B" is a proper holomorphic map (N > n > 1) that extends
toa ¥ ""! map on B", then f is rational. This theorem shows that the space of all
rational proper mappings f: B"->B" is finite dimensional. The bound N*(N —n +1)
on the degree of f is not sharp.

An unpublished result due to Pin¢uk implies that the extended rational map has
no singularities on B".
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The equidimensional case N =# of Theorem 1.4 is due to Poincaré {41), Tanaka
{441, Alexander {1], and PinCuk [38]. The map fextends to an automorphism of B".
Poincaré and Tanaka considered the case when f is biholomorphic on a neighbor-
hood of a point p € bB". Alexander assumed that f is ¥ © on B" A U. Pincuk reduced
the smoothness requirement to ¢!, Alexander proved as well that every proper
holomorphic map f: B"—>B" is an automorphism of B". See also {42, p. 313]. More
generally, every proper holomorphic map between strictly pseudoconvex domains
with smooth algebraic boundaries in C"is a branch of an algebraic map according to
Webster [47]. He also found sufficient conditions on the two boundaries that force
the map to be rational.

If N > n, there exist non-rational proper holomorphic maps of B" into B¥ [23, 27,
30, 32, 35]. Such a map need not be continuous at the boundary [27], and even when
itis continuous, it may take the boundary 5B" onto bB" [30]. Hence some regularity
of /" at the boundary is necessary for f to be rational.

Proper mappings of balls of small codimension N —n were studied by Webster
[48], Faran [24, 25], Cima and Suffridge [11, 12}, and the author [28). In the case
when N<2n—1, Theorem 1.4 was proved by the author in [28, Theorem 1.3], using
inductively the method of Cima and Suffridge [11]. Their method, which is a
generalization of the reflection principle of Lewy [34] and Pin¢uk [38], shows that f
is rational provided that it satisfies certain nondegeneracy condition at a point of
bB". The examples 1n Sect. 8 show that the required condition fails in general.

For the results on classification of proper mappings between balls see the papers
[1, 11, 12, 16, 17, 24, 25, 28, 48].

Although Theorem 1.1 is of local nature, we can combine it with the main result
of {29] to obtain the following result under global hypotheses on the mapping.

1.5. Corollary. Let D=C" and D’ < C", N>n> 1, be bounded strictly pseudocon-
vex domains with smooth real-analytic boundaries, and let I’ <bD’ be a closed €
submanifold of real dimension 2n—1.If - D—D' is a proper holomorphic map with
nontangential boundary values f*(z)e@ for almost every zebD, then f extends
holomorphically across every point in an open, everywhere dense subset of bD.

We proved in [29] that the map f extends smoothly to the closure of D.
Therefore Corollary 1.5 follows immediatelly from Theorem 1.1.

We mention another consequence of Theorem 1.1. In [27] we proved that for
each n>1 there exist real-analytic strictly pseudoconvex hypersurfaces M < C" that
do not admit analytic C-R embeddings to any finite dimensional sphere. A similar
result was established independently by Faran (unpublished). Theorem 1.3 implies

1.6. Corollary. For each N>n>1 there exist bounded strictly pseudoconvex
domains D < C" with real-analytic boundary such that no proper holomorphic map
f:D—BY extends to a map of class €Y "1 on D.

The present work leaves several open questions. In the context of Theorem 1.1
one would like to know whether f extends holomorphically across each point of M.
Second, our method does not cover the case when M’ is an arbitrary real-analytic
pseudoconvex hypersurface of finite type in C¥, Third, it is not known how much
smoothness of the map f on Du M one needs in order to obtain a holomorphic
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extension. We have mentioned above that the continuity of f on DuUM is not
sufficient. It seems that Theorem 1.1 should hold under the assumption
fe€N "1 (DU M), but at the moment we do not know how to prove this. On the
other hand, it is an open problem to construct a proper holomorphic map f: B*—BY
(N>n>1) that is of class €*(B") for some s with 0 <s< N —n+ 1, but which is not
rational.

Although most strictly pseudoconvex real-analytic hypersurfaces do not admit
smooth C-R embeddings into any finite dimensional sphere according to [27], it
would be of interest to construct such embeddings with a finite degree of
smoothness, say €2

We shall now explain the main idea in the proof of Theorems 1.1, 1.3, and 1.4.
The proof of Theorem 1.1 relies on methods developed by Webster [47, 49],
Diederich and Webster [22], and Diederich and Fornass [21]. Our proof of
Theorems 1.3 and 1.4 uses similar ideas, but it is much simpler.

Let M be an analytic real hypersurface in C". For each point z° e M there is a
neighborhood U of z° in C" and an analytic real function r(z,Z) on U with
nonvanishing gradient such that

MnU={zeU:r(z,7)=0}.
If M’'<C" is another analytic real hypersurface defined locally by
M AU'={z'eU ¥, 2)=0},

andif f: U- U'is a holomorphic mapping taking M n Uinto M'n U’, then we have
a relation

r'(f @, f(N=p.Dr(z2), zeU, (1.1

where p is a real-valued analytic function on U.

Let z=x+iy, where x and y are the real coordinates on C"=R2". Since the
functions in (1.1) are represented by convergent power series in x and y in a
neighborhood of 2% they are still defined for complex valued x and y in a suitable
domain, and the relation (1.1) persists. Equivalently, we may set Z=Ww and vary z
and w independently to obtain the identity

r'(f ), (W) =p(z, W)r(z, ) (1.2)

for z, w in a neighborhood U, of z° in C".
We define for each we U, a complex hypersurface @, < U, by

Q,={zelUy: r(z,w)=0}. (1.3)

These hypersurfaces were first introduced by Segre [43] and were later used by
several authors [21, 22, 47, 49]. Let Q.. < U; < C" be the analogous hypersurface
associated to M'. We assume also that f(U,)<Uj;. The identity (1.2) implies
£Q,)<cQ}, foreachwe U,. If N=nand f: U,—Uj is a biholomorphic map, we
can apply the same argument to its inverse to conclude that f maps each Q,
biholomorphically onto Q. Hence the family of complex hypersurfaces {Q,,} is
invariantly attached to M.
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Since r(z, 2) is real-valued, we have
iz, W)y=r(w,2)=r(w,2),

so ze Q,, if and only if we Q,. Moreover, ze @, if and only if ze M. Hence the
inclusion f(Q,)<Q/,, is equivalent to

S eV {Qw :2€0Q.,}. (1.4

Suppose now that M resp. M’ is a part of the boundary of a pseudoconvex
domain Dresp. D', fisdefined on DU M, it maps D holomorphically into D', and it
takes M into M’. Let w be a point outside DU M but close to M. If f extends
holomorphically across M, its value f(w) lies in the set

X.=1{Q}w: z2€Q,nD} (1.5)

according to (1.4). Thisis the crucial observation on which the proof of Theorem 1.1
is based. It was used in a similar way by Webster [47, 49], Diederich and Webster
{22], and Diederich and Fornass [21].

We shall prove in Sect. 5 (Proposition 5.1) that the set X =(C"\D)x C" with
fibers X,, for w close to M is a complex variety of dimension at least »n. In the
equidimensional case N = n treated by Diederich and Fornass [21] the fibers X, are
finite, and the variety X extends the graph

I'()={(z f(): ze D}

of facross M x M’. Therefore f extends holomorphically across M according to
[6, Lemma 1].

In the case N> n the fibers X, may be positive dimensional. We will show that
near almost every point p° = (z°, f(z°)), z° € M, the top dimensional part Y of X isa
branched analytic cover over a suitable domain in (C"\D) x C™, where m is the
dimension of the fibers X,, for w close to z°. Locally near p° the analytic extension ¥
of Y across the pseudoconvex hypersurface M x CV intersects M x M ‘precisely in
the graph I'(f15) = {(z, f(2)): z€ M} of the restriction f1,,. This implies that I'(f|)
is real-analytic near p° and hence f1,, is real-analytic near z°. Consequently f
extends holomorphically to a neighborhood of z°. The details are given in Sect. 6.

In the special case when the hypersurface M is the unit sphere {z'e CV: |z'| =1},
the associated complex hypersurface Q.. is the hyperplane

N
Q;V,z{z’ec’v: Y z;w;=1}.
=
Hence each fiber X, (1.5) is also an affine complex subspace of C¥. In this case we
have a simpler proof of the fact that X is a nonempty complex variety; the proof in
Sect. 7 can be read independently of the Sect. 3-6.

A few words concerning the organization of the paper are appropriate. In Sects.
2—-4 we develop the necessary tools: the Segre varieties in Sect. 2, the preimage map
f* in Sect. 3, and the deficiency function v in Sect. 4. In Sect. 5 we construct an
analytic variety X in (C"\D) x C¥ associated to f, and we show that X behaves well
near most points of the graph of f],,. In Sect. 6 we extend a part of X across the
hypersurface D x CY as a branched covering, and we prove Theorem 1.1. In Sect. 7
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we prove Theorems 1.3 and 1.4 with the ball as the target domain. Section 7 does not
depend on the development in Sects. 3—6 and can be read independently. In Sect. 8
we calculate the variety X for several polynomial proper maps of balls.

Remark. After the completion of this work I was informed by Pincuk that he had
obtained results similar to Theorem 1.1 and 1.3 around the year 1978, but he had not
published them. In the context of Theorem 1.3, with M < C" strictly pseudo-
convex, he proved that the mapping f extends holomorphically to each point of M.
If M is compact and non-spherical, and if /: M—»bB" is a smooth C-R map that is
initially defined near a point ze M, then f continues holomorphically along each
path in M starting at z. Similar results for mappings of equi-dimensional
hypersurfaces were obtained by Pinc¢uk [40] and Vitushkin [46].

Acknowledgements. This work was done during my visit to the Institut Mittag-Leffler. I wish to thank
this institution for its hospitality, and I thank C. Kiselman and J. E. Forness for their kind invitation.
Also, 1 wish to thank D. Barrett, J. E. Fornass, N. Sibony, and W. Zame for several helpful discussions
and remarks.

2. Invariant complex hypersurfaces

In this section we shall consider more carefully the complex hypersurfaces Q@
introduced by (1.3). Our exposition is similar to Sect. 1 of [21].

Fix a point z° € M and let r be a real-analytic local defining function of M near z°.
In suitable local holomorphic coordinates we have z° =0, and the Taylor expansion
of rat 01s

r(;,f):%(zl—z_l)-%- Y cpziE+h(z ), 2.1)

jk=1

where / contains no purely holomorphic terms and h}=0(|z[*).
Choose a small polydisc U, of the form

Up=Uy(0.0)={zeC":|z)| <o, |z;| <o for 2<j<n} (2.2)
such that D U, =(Du M) U,, and the power series expansion of the complexi-

fication r(z, W) at (0,0) converges in U, x U,. Choosing U, sufficiently small we
have or/¢z, 0 on Uy x Uy, so the complexification

Me={(z,w)e Uy x Uy: r(z,w)=0}
of M in Uy x U, is a smooth complex hypersurface of complex dimension 2n —1.
Clearly (z,w) is in M if and only if = is in Q.

By the implicit function theorem we can find a polydisc U <= U, of the form (2.2)
such that

Mo (Uyx U)y={(z.w)e Uy x U: zy=P(Z, W)},

where @ is a holomorphic function of Z=(z,, ..., z,) and w. The function @ has a
power series expansion

PEW)= Y P (W)Z,

-1
aeZ’y
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with the coefficients ¢, holomorphic on U. For each fixed we U we have

sz{CEU03C1= > %(W)Z“} (2.3)

—1
xeZ’y

Our choice of r implies r(z, 0):% I, SO

Qo={CeU,: {;=0}.

Definition. We say that the hypersurface M c C" satisfies condition (A) if for each
z%€ M there is a neighborhood ¥ of z° and an > 0 such that

MAnQ.NnB(z,e)={z}, zeVnM. 2.4)

Here B{z, £) is the open ball of radius ¢ centered at z. In other words, we require
that {Q,:ze M} is a family of supporting complex hypersurfaces for M.

If M is strictly pseudoconvex, the local defining function r (2.1) may be chosen
strictly plurisubharmonic, and the condition (A) is satisfied in this case. The
hypersurface Q, for z € M lies in the pseudoconcave side of M and has second order
contact with M at z. We shall omit the details. Condition (A) holds on some but not
all weakly pseudoconvex hypersurfaces of finite type. There is a pseudoconvex
hypersurface in C* with an isolated weakly pseudoconvex point of D'Angelo type
four at which condition (A) fails. We shall not investigate this further.

For every ze C" and & >0 we denote by %,(5) the set of all formal complex
hypersurfaces at z of the form

Q={C1 —5= ) ca(f—f)“}, (2.5)
ae 2!
where the coefficients c=(¢,:a=(0,,....n,)) satisfy the conditions
=0, Jc)<é when loj=0,+...+0,=1. (2.6)
Here, 7=(z,,...,z,), and similarly for {. The condition involving 5 means that the

tangent plane of Q at z is not tilted too far away from {{; =0} =Q,.

Since the spaces %, (J) for different z are naturally isomorphic, we shall drop z in
our notation. It will always be clear from the context at which point a given
hypersurface is based. We shall refer to the elements of () as the jets (of infinite
order) of complex hypersurfaces.

For each keZ, we denote by %,(5) the space of jets (2.5) for which ¢, =0
whenever |o|>k. The elements of %,(5) are called jets of order k of complex
hypersurfaces. Notice that %, (0) is a complex manifold with complex coordinates
¢, || <k;in fact it is a product of the polydisc 4" ~!(§) centered at 0 with C’ for
certain /=/(k). There is a natural projection

T 9(8)-%,(0),

© ¢,. for |u|=Zk,
T =
Ka 0, for |o]>k.

We shall sometimes write 4(0)=%_(d) to make the notations consistent.
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For a given 6 >0 and for U and U, sufficiently small we can define a mapping
g M (Uygx U)» Uy x%(5),
g(z.w)=(z,.0;).

Here, Q€% () is the jet of the complex hypersurface Q at the point -

To obtain an explicit expression for g we fix a point zeQ;, we insert
{ =z 4({ —z) into the equation (2.3) and reorder the power series according to the
powers of ({ —z):

2.7)

Q= {Cl —n= ), lEw) (Z—:‘)“} : (2.8)

n—1
xeZ’

Each coefficient ¢,(z, w) is a holomorphic function of (z, w) since it is a holomorphic
expression in z and {q&,,(w)}. Thus the mapping g (2.7) is holomorphic.
Let 7, : Uy x %(0)— U, x %4,(06) be the projection

nk(zv(,):(:ark((‘))a keZ+
For each ke Z, we also consider the holomorphic mapping

Gi=m g Mcn(Uyx Uy Uy, x%,(3). (2.9)

Notice that 7,( Q) is just the tangent space 7,0 of the Q; at z. For z in M,
1,(,0.)=T,0.=T M is the maximal complex subspace of T, M.

Assuming that the hypersurface M contains no germs of positive dimensional
complex varities, Diederich and Forness proved [21, Lemma 3] that for k suf-
ficiently large and U < U, sufficiently small the map g, (2.9) is finite holomorphic,
i.e., a branched holomorphic covering onto its image

Br=g (M- (UyxU)) Uy x%,(5).

If M is strictly pseudoconvex (or Levi nondegenerate), the above already holds for
k=1, and ¢, is biholomorphic near (0,0)e M. This follows from a result of
Webster [49]. We shall not go into details since these properties of g, will not be used
in the sequel.

Remark. The constructions of this section can also be applied to the hypersurface
M'=pD’'c C"inaneighborhood of /(z"). We will use the same notation for objects
associated to M’, only adding a prime.

3. The preimage map

Let f=(f;,..., fy): DUM—C" be a ™ mapping which is holomorphic on D and
maps M to a smooth real-analytic pseudoconvex hypersurfaces M'< C¥. Assume
that M’ satisfies the condition (A) defined by (2.4) above. This holds in particular
when M ’is strictly pseudoconvex. Let D' be a pseudoconvex domain in C¥ bounded
in part by M’. If M’ is strictly pseudoconvex, then every point of M’ has a local
holomorphic peak function for D’, so the maximum principle implies (D)< D',
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provided that D is chosen sufficiently small. In general we shall assume this asa part
of our hypothesis.

We fix a point z%e M. Our goal is to prove that f extends holomorphically to
points of M arbitrary close to z°. By translation of coordinates we may assume that
2°=0 and f(0)=0eM'. Choose local coordinates and local defining functions r
resp. ' for M resp. M’ of the form (2.1). Let UcU,=C" and U’'c Uj<=C" be
polydisc neighborhoods of 0 as in Sect.2 such that DnU,=(DuM)nUj,,
fWUynD)c U, and f(UND)cU".

By pulling back by f'a bounded strictly plurisubharmonic exhaustion function ¢
on D’ of the form ¢(z')= —(—r'(z)}* *" with #>0 arbitrarilly small [20] and
applying the Hopf lemma to ¢« f we conclude that the normal derivative of f is
nonvanishing at each point of M. At z=0 this just means ¢f,/dz,(0) % 0. Thus the
preimage by, fofevery smooth complex hypersurface at f (z) € Uj with tangent space
close to {z; =0} is again a smooth complex hypersurface at ze DN Uj,.

Onthe b351s of the above observation we shall associate to f a mapping of jets of
complex hypersurfaces as in [21]. Fixapointze DnUjand set z'=f(z)e D' n Us.
Choose a jet Q'€%'(6") at z' of the form (2.5):

Q’={C{ —5= c;(Z'~5’)“}. 3.1

aeZN !

Assume for a moment that the power series is convergent, so Q' is a complex
hypersurface at z'. Qur aim is to find the jet of its preimage /™ 1(Q ") of the form (2.5)
at z. We set {'=f({) and substitute the power series expansion

n ‘)
H0-10=3 L oG-
k=1 k

+terms of order=2 in ({ —z)

into the equation of Q' Lete;=(0, ..., 1,...,0), with 1 on j-th spot. The coefficient
of ({; —2z,) is

N
a0-L -3 ¢, 2 0.

=

and the equation becomes

n N 8
a(z)({; ~2,)= Z (Z ;J af} (@— fl ( ))(Ck Z)
J

k=2

+terms of order =22 in (C—z). 3.2)

At z=0we have df, /0z,(0) 0 and 0f;/0z,(0)=0for2<j< N, so a(O) +0. Choosing
U, sufficiently small we may assume that a(z)#0 for all ze U, ~D. We divide the
Eq. (3.2) by a(z) and solve the resulting equation for ({; —z,) by iteration. The result
is a power series

L—z= ) @2 (3.3)

fez!
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Since the power series involved contain no constant term, the required operations
increase the order of terms. Therefore each coefficient ¢, is obtained by only ||
iterations, so it is a universal polynomial in the following quantities:

Co o <161
A fijozz), e SIBl, 1S/ S,
1/a(z).

A detailed explanation of this argument can be found in [27].

The procedure described above works also if Q' is a formal hypersurface, i.e., it
is defined by a formal power series, and f({) — f () is given by a formal power series
in ({ —z). Since f'is smooth on DU M, it has a formal power series expansion of the
required type at each point ze Du M. Of course, if both @’ and f({) — f(z) are
given by convergent power series, the resulting series (3.3) is also convergent.

Letze Uyn(DuM). Foreachjet Q'€ %'(d") of the form (2.5) based at the point
f(z)wedenote by f*(z, Q") the jet of the formal hypersurface (3.3) at z obtained by
the above procedure. Given positive numbers d and &', we can choose U, sufficiently
small such that f* gives a mapping

¥ (UgnDYx%(6)V~%(5). (3.4)
Similarly we define for each ke Z, the mapping
JE=ue [*:(UynD)xG'(6")>%,(3). (3.5)

We have seen above that the k-th order jet of f/ *(z, Q') only depends on z and on
the k-th order jet 1,(Q’) of Q" at f(z). Thus we have

e fr=fE=r

where 7;, is the natural projection of (U, D) x 4’(6") onto (Uyn D) x %;(5"). The
map f;* is smooth on (U,nD)x %'(6) and holomorphic on (UynD)x %'(8).
Although the space on which it is defined is infinite dimensional, f;* only depends
on a finite number of coordinates, so the notions of smoothness and holomorphy
make sense.

If Q,,1s a complex hypersurface (1.3)and ze 9, we denote by .0, € %(8) the jet
of O, at the point .

3.1. Proposition. For each point z€ M U we have
.f*(Z’ z’Qz”) = zQz )
where z'=f(2)e M ' nU’, and Q, resp. Q., are the hypersurfaces (1.3).

Proof. By translation of coordinates we may assume that z=0 and f(0)=0. We
extend f smoothly from D to a neighborhood of 0. There is a smooth nonvanishing
real function p({,{) near 0 such that we have the identity

r(fO.SO)=pDr D

for small {. When we develop all the functions involved into formal power series
centered at { =0, the above becomes a formal power series identity in { and (. The
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identity persists if we vary { independently of {. Setting { =0 we obtain the following
identity in {:

(0. 0)=p(,0)r({.0).

Both sides of the equation contain the term a{, for some a+0, so we can solve the
equations r'(f({),0)=0 and p({,0)r({,0)=0 for {, by iteration. Since the two
equations are identical, we obtain in both cases the equation of the same formal
hypersurface

R={c1= ) cﬁ“}.

PLY
To prove the proposition we will show that R is the equation of both f*(0, Q) and
OQO'

The hypersurface equation of Qg of the form (2.5) is obtained by solving
r'(z',0)=0 for z, by iteration:

Qé:{zi: Z aafla}'

xeZi!
Into this equation we substitute the formal power series expansion z'= f({) and
solve for {, by iteration to obtain

J*0,Q¢)= {Cl =X baf“} :
aeZ" !
On the other hand. we obtain the equation of R by first substituting z’ = f({) into
r'(z',0)=0 and then solving for {;.

We claim that the order of operations does not matter and we get the same result
in bothcases. Clearly thisissoif /({)isaconvergent power seriesin {. The key point
now is that the power series involved contain no constant terms, hence coefficients
b, and ¢, do not depend on the terms of order more than || of the power series f({).
Thus, if we replace the full series for f({) by its convergent Taylor polynomial P,({)
in the above procedures, the conclusion is that b, =, for |¢]</. This proves that R
= %0, Q).

The proof of the second case is completely analogous: ,Q, is obtained by solving
r({,0)=0 for {, by iteration, and R is obtained by solving p({,0)r({,0)=0. Recall
that the constant term of p is nonzero. If p({,0) is a convergent power series, the
result is the same in both cases. However, the terms of order </of R do not depend
on the terms of order more than / of p({,0), so R=,0,.

Consequently ,Q, = f*(0, Q5) and Proposition 3.1 is proved.

4. Deficiency of the mapping

In this section we shall introduce the deficiency function associated to the mapping
f and prove some technical results.
Since we have 0r'/dw; £0 on Ujx U’, the set

2:{(z,w’):zermD_, wel’, r'(f(z), W’):O}
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is a complex manifold with smooth boundary. Under the natural projection
Y-U,nD, X is a smooth fiber bundle that is holomorphic over U;nD. We
associate to 2 the mapping

g*: Z->(UynD)x%'(5'),
G )= ;0.
From (2.8) in Sect. 2 we know that the mapping
g M-Uix%' (6, ¢g'(,nw)=("..0%)

is holomorphic. Therefore g* is smooth on ¥ and holomorphic on its interior Int X
For each ke Z . we define the mappings

h(zow)=fFog*(zw)= [}z ;1,05
and
F,:Z—(UynD)x %, (5),
F.(z,wYy=(z, h(z,w).

Every F, is a smooth map on X that is holomorphic in the interior of 2 and on each
fiber

I.=welU:(z,w)eZ}, zelUynD.
For each point ze M n U we have r’(f(:),.ﬁ)zo, SO (:,_ﬁ)ez. The fibers
Z, ={weX, F(, w”)zf*‘k(z,.m)I , keZ,

form a decreasing sequence of complex subvarieties of Z_ containing the point f(z).
Let

v(@)=dimf5 Z,,, zeMnU.

Since F) is holomorphic, the function v, is upper semicontinuous on M, and we have
ViV, 2V32

Definition. The number v(z) =inf v, (z)is called the deficiency of fat the pointze M.
k

This function plays a very important role in our proof. Since v: M—>Z_ is the
infimum of a decreasing sequence of upper semicontinuous functions on M N U, it is
upper semicontinuous. We set

My={zeMnU:v is constant in a neighborhood of = in M}. 4.1)
We shall prove in Sect. 6 that f extends holomorphically across M. This will imply
Theorem 1.1.

Fix a point z°e M nU and let m=v(z°). If ke Z, is sufficiently large, then
m=y,(z)fork=k,. Let{=({,,....{y-,) belocal holomorphic fiber coordinates on
X near the point (2% f(z°)). (We may take {;=wj41.) Then (z,{) are local ¢~
coordinates on X that are holomorphic on IntX. After an affine change of
coordinates we may assume that f(z°) corresponds to { =0, and that 0 is an isolated
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point of the intersection
Z0 40010 =0,....(,=0}.

Consequently there are arbitrary small polydiscs P=P’ x P” in the {-space, with
P'cC™and P"<CVN™ ™1 satisfying Z,0 ,, (P’ x 0P")=4. It follows that for a
sufficiently small neighborhood V of z° we have

Z, . ~(P'x3P") =0, zeMAV, k2k,. (4.2)

This shows that v, (z)<m for all ze MV, so the function v, is upper semi-
continuous.

Suppose how that z° € M,,. Shrinking V if necessary we may assume that v(z) =m
for all ze M AV, so the variety Z, , n (P’ x 8P") is m-dimensional for each ze M NV
and foralllarge k. From (4.2) it follows that Z, , n Pis a branched analytic covering
onto P’ with respect to the coordinate projection P— P’ [31, p. 108].

From Proposition 3.1 it follows that

Fuz.f@)=(1(0.). zeMnU keZ,.
We have thus proved

4.1. Lemma. Ler z2°c M, and let V and P=P' x P" be as above. Then for each
zeManV and ('€ P’ there is a point {" € P" satisfying

Fk(za (C/vC”)):gk(Z’z-), k€Z+‘

We shall consider the fibers of F, over points of the set #, =g, (M- (U, x U)).
For each point (z, w)e M close to (% 2%), with ze DU M, we define a complex
subvariety of X, by

S(Z’W):{CGZZ:Fk(Z,C)ng(Z,W)’ kEZ+}. 4.3)

For ze MU we have S, ;=()Z,,, so (4.2) implies S, ,,N(P'xIP")=0
when (z,w) is close to (2%, z%). Thus SzwmyN(P'x P") is at most m-dimensional
complex subvariety of P. Apriori these varieties may be empty. The main result of
this section is

4.2, Proposition. If z°e M,, and m=v(z°), there exist arbitrary small polydiscs
P<=CY¥ ! centered at 0 and neighborhoods W of (°,2°) in C*" such that

dimS, ,nP=m, (z,w)eM.nW,zeD.

Before we turn to the proof we introduce the notion of an 4® variety. Let D< C"
be a smoothly bounded domain and let V< C" and Q< C" be open subsets.
We denote by A°((VnD)x Q) the space of all functions that are smooth on
(VD) x Q and holomorphic on (VD) x Q.

Definition. A set o/ (VD) x Qissaid to be an 4® variety if for each p e Q there is
a neighborhood V’'x Q' of p in C*xC" and a finite collection of functions
a;€e A (V' D) x Q') such that

AV AD)xQ)={(z,0):a;(z,{)=0 for all j} .
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We say that .o/ is an A® subvariety of (VD) x Q if, in addition, < is a closed
subset of (VD) x Q.

Clearly & n({(Vn D) x Q)1s a complex variety in the usual sense, and each fiber
o, of o/ is a complex variety in £, even when zebD.

Proof of Proposition 4.2. Choose a polydisc P=P’x P" a neighborhood V of z°,
and an integer k, such that (4.2) holds. For each k =k, we consider the mappings

H, :(VADYx P>(VAD)Yx %, (8)x P,
H(z,0)=(F(z,0).{)= (2, h(z,0), ()

and
H :(VAD)xP-(VAD)x%,(5)x P,

ﬁk(Z’ C):(Z’ hk(z’ C)a C) .

Let #, resp. #, be the images of H, resp. ,. The set #, is an 4™ subvariety
since it is the graph of the 4% mapping 4,.
Denote by

L (VoaD)Yx 4, () x P>(VAD)x%,(5)x P’

the coordinate projection which deletes the last variable ("€ P”. We have
H,=1,0H,, so #,=1,(F).

If the point (z,w) satisfies 1 (H,, (z,0))=H,, (z°,0), then z=z° {'=0', and
F (2°,0,{")=F, (z°0), i.e.. (0, (") e Z,0,,. Hence (4.2) implies that the fiber

Ik_ol (Hk0(20~ 0))“«}?%
is finite.
Since fl’ko is closed in (VD) x %, () x P, there are polydiscs ¥, = V< C" and
P,=P{x P/ <P centered at z° resp. at 0, and there is a neighborhood G,, of
T (:0Q0) In %, () such that

(V;aD)x Gy, x P{x OP{) " H,,=1.
The same is then true for all k =k, if we define
Gi=1.'(G, )N %, (D).
If follows that for k =k, the restriction of the projection 1, to the 4® subvariety
A= H,~(V;nDYyx G, x P,)
is a proper mapping of .7, into (¥, nD) x G, x P{ with image
Ay =H,"(V,nD)xG,x P]).

We claim that, as a consequence, 2/, is an 4™ subvariety of (¥, " D) x G, x P{.
In the case of complex varieties this is a special case of the proper mapping theorem
due to Remmert. The proof given by Cirka [14, p. 30] for this special case also
applies to 4 varieties, with only trivial modifications in the statement and proof.
The proof depends on the Weierstrass preparation theorem for functions of class
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A®, but only with respect to the fiber variables. Again, the standard proof [31, p. 68]
or [14,p. 11] applies with only trivial modifications. We shall not go into the details.
If W is a sufficiently small neighborhood of (z°, 2°) in C2", we have

gz, wye (V,nD)x G,

whenever k 2k,,ze D, and (z, w)e Mo W. Let Wbea product W= W'x W”", with
W', W"<=C" Denote by R the smooth manifold with boundary

R=(Mc.n(W nD)x W") x P;.

Its interior is a complex manifold of dimension (2n —1 +m). We may assume that R
is connected. The boundary of R contains the smooth generating submanifold

T={(z,zZ.{):ze MnW', {'eP]}.

By a theorem of PinCuk [39] T'is a uniqueness set for continuous functions on R that
are holomorphic in the interior of R.
For each k =k, we consider the associated 4* mapping

g R->(VinD)x G, x P/,
Gz, w), () =(g,(z,w), ).

For ze M~ W’ we have (z,2)e M, and
4i((z,2), () =(2, 7, (.Q.). {).

By choosing the polydisc P, =P, x P/ correctly we may assume that Lemma 4.1
holds for P,. Hence for each {'e P| there is a point {" € P; such that

9z, ) =F (. ("), kzk,.

The definition of H, now implies

9i((z,2), (N =Hy (2, ({", "D ey, k2ky.

By pulling back the local 4* defining functions of &/, by the mapping §, we
obtainlocal 4* functions on R that vanish on the submanifold 7. The conclusion is
that §,(R) is contained in &/, for all k=k,.

Since H, is a finite mapping for k 2 k, and the fibers of H, are decreasing with &,
we can find for each (z, w,{")€ R a finite set of points {" e P{ satisfying

H(z, (", ") =Gi((z,w), (), kel,.

This equation is equivalent to ({',{")e S|, ,,nP;. Hence the fiber S , NP, is
m-dimensional and Proposition 4.2 is proved.

5. Construction of an analytic variety

We now have all the necessary tools to construct the analytic variety X< C**¥
associated with f that will be used to extend f.
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Let U< U, be polydisc neighborhoods of 0 as in Sects. 2 and 3. By the implicit
function theorem we can solve the system of equations

r(z,w)=0,

Zj=Wi,

25j=n,
for z=z(w) when wisin a smaller neighborhood U, = U of 0. The resulting mapping
w->z(w) is real-analytic and has the properties

i) z(w)e Q-

(i1) we U\D implies z(w)e Un D.

(iil)) we M N U, implies z(w)=w.

The properties (i) and (iii) are obvious. Observe that z(w) is antiholo-
morphic in the variable w,, so the restriction of z{(w) to every complex line
L={w,=a,,...,w,=a,} is the antiholomorphic reflection across the curve M L.
This implies (i1).

Let z'(w)= f(z(w)) for we U\D. Let F,: £ (U, D) x %,(5) be the mapping
defined in Sect. 4, and let g, be as in (2.9). We define

X={(w,w)e(U\D)yx U :r'(z'(w),w)=0,

) (5.1)
F(z(w), w)=g,(z(w), W) for all keZ,}.

Notice that the first condition in the definition of X requires that the point (z(w), w")
lies in the manifold X where the maps F, are defined.
An equivalent definition of X 1s

X={(w,w)eU\D)x U":2'(W)e Q.. [*(z (W), Q1) =00 Ou} (5.2)

From the second definition of X and the construction of f*in Sect. 3 it follows that
for each (w,w’)e X, we U,\D, f maps the germ of the complex hypersurface Q,, at
z(w) into Q/,, so f maps the whole connected component O, of @, "DNU
containing z(w) into Q/,.. Conversely, if £(0,)< Q.. then (w,w’)e X. This shows
that for each we U\D the fiber X, of X equals

X,={welU': f(0,)=0.}. (5.3)

This definition of X, is almost the same as (1.5) in Sect. 1, except that @ is replaced
by 0,,. The following proposition contains the relevant properties of X.

5.1. Propesition. (a) The interior Int X=Xn((U,\D)x U") is a closed complex
subvariety of (U\D)x U’.

(b) The fiber X, is a closed complex subvariety of Q,.,,U" for eachwe U\D.

(©) If weMnU,, then f(W)e X, < Q.-

(d) If z belongs to the set M, defined by (4.1) and v(z) =m., there exist arbitrary
small neighborhoods V="V'x V" of (z, f(2)), with V'<C" and V" <= C¥, such that

dimX, NnV'=m, weV'\D.

Proof. Recall that g, is holomorphic on the complexification M, and F, is of class
A®(Z). Hence for each fixed we U\D the defining equations (5.1) of X are
antiholomorphic in w'e U'. This proves (b).
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Property (c) follows immediatelly from Proposition 3.1 and the definition of X.
We shall now prove (a). For each point w' € U;\D we can find a neighborhood
U,cU\D of w' and an anti-holomorphic mapping ¢: U,— U D satisfying

EwyeQ, and E(wh=z(wh).
If we write a=z{w'), we can obtain a ¢ as above by solving the system of equations
‘fj =daj, 2<jsn,

r(¢, w)=0
in a neighborhood of (a, w').

If the neighborhood U, is chosen sufficiently small, the points ¢(w) and z(w) lie
in the same connected component O, of @, "D U for each we U,.

We now define a subset X, of U, x U’ by the same equations as X (5.1), except
that we replace z(w) everywhere by &(w) and z'(w) by f(&(w)). Since & is anti-
holomorphicin w, the new equations are anti-holomorphic in both variables (w, w’'),
hence X, is a complex subvariety of U, x U".

From the expression (5.3) for the fiber X, it follows that X, coincides with
X (Uyx U"). Thus X (U, x U’) is a complex variety, and (a) is proved.

It remains to prove (d). Let

n:(UND)Yx U'—(U\D)x U",
n(w,w)=(z(w),w).

Recall that U’ is symmetric with respect to 0, so w' e U’ when w’ e U’. For each fixed
weU\D the map n(w,-) provides an anti-holomorphic equivalence of the
subvariety Q.,,"U’ onto the fiber X, of X. The fiber X, corresponds under
n(w,*) to the variety S, ; defined by (4.3). Property (d) now follows from
Proposition 4.2. This completes the proof of Proposition 5.1.

6. Proof of the main result

In this section we shall prove the following

6.1. Theorem. Assume that the hypotheses of Theorem 1.1 hold. Suppose that the
deficiency function v defined Sect. 4 is constant in a neighborhood of a point z° € M in
M (i.e., e M,). Then f extends holomorphically to a neighborhood of z° in C".

Since M, is open and dense in M, this will also prove Theorem 1.1. We may
assume that z°=0, £(0)=0, and v(0) =m. Let X be the set defined by (5.1). Choose
a neighborhood V=V'xV" of (0,0)eC”x C¥ satisfying Proposition 5.1 (d).
Since the fiber X, V" is an m-dimensional subvariety of V", there is an
(N —m)-dimensional complex subspace L of CV such that 0 is an isolated
point of X, L. After a unitary change of coordinates in C¥ we may assume that
L={w;=0,...,w, =0}

We can find a polydisc P=P' x P"< V" centered at 0, with P'<C™ and
P"=CN™™ such that

X,n(P'xoP")=§.
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Since X is a closed subset of (U,\D)x U’, there is a neighborhood W of 0 in C",
W\D < V', satisfying
Xn(W\D)x P'xoP")=§.
Hence the restriction of the coordinate projection
g:(W\D)x P'x P"—(W\D)x P’

to the subvariety X' =X ((W\D) x P)is a proper holomorphic mapping of X’ into
(W\D)x P’

Denote by Y the top dimensional part of the variety X”. Since each fiber X ~ V"
is m-dimensional for we C" close to 0 according to Proposition 5.1 (d), we have
dim Y=n+m. It follows that

o:Y-(W\D)yx P’
is a branched analytic covering onto (W\D)x P’ [31, p. 108]. Let

D,z W)= a, gz Wy, W) Waiys o WP
B

be the canonical defining functions of this analytic cover, see [50, p. 369] or [14,
p- 40]. The coefficients a, , are holomorphic functions on (N\D)x P’, so they
extend across the Levi pseudoconcave hypersurface (MnV)x P '<C*™™ to
holomorphic functions in a neighborhood W, of the origin in C"*™ [3, 45]. We
denote by ¥, the corresponding extension of @,. The set

Y={(w):¥,(z,w)=0 for all o}
1s a purely (n+m)-dimensional analytic subvaricty of a neighborhood of
(0,0)e C"*¥ which we again denote by W x P. By construction Y extends Y, i.e.,
Yn(W\D)xP)=Y.
We claim that for each we M n W we have
fwe?, and ¥,cQ},,. 6.1)

The first property holds since (w, f(w)) lies in the closure ¥ of Y in Wx P by
Proposmon (5.1) (d), and certainly ¥Y< ¥. To prove the second inclusion we first
note that Yw <« Y forwe M~ W since ¥ is a branched covering extending Y. The set
Xisclosedin W x P, so Y < X, and therefore ¥, c X,,. By Proposition 5.1 (c) we also
have X Q7. so (6.1) is proved.

Suppose now that the hypersurface M'=bD’ satisfies Condition (A) defined by
(2.4). Denote by

F(f)=1{G f2):ze M}

the graph of f over M. Since fis smooth on Du M, I'(f1,,)is a smooth submanifold
of C**" Condition (A) and (6.1) together imply that for sufficiently small
neighborhoods U of 0 in C"*¥ we have

FAM<xM)YAU=T(fl,)nU.
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Since ¥ is a complex subvariety and M and M are real-analytic subsets, the above
identity exhibits the smooth manifold I'( f|,,) N U as a real-analytic subset of U.
It follows that I'( f],)n U is a real-analytic submanifold of C"*" according to
[36, p. 96], so f|am~u is real-analytic by the implicit function theorem [10]. Con-
sequently f extends holomorphically to a neighborhood of 0 in C". This concludes
the proof of Theorem 6.1.

7. Extension of proper holomorphic maps to balls

In this section we shall prove Theorem 1.3 in which the hypersurface M’ is the unit
sphere {z'e CV:|z'|=1}, the boundary of the unit ball BY=C". Our assumption
is that the holomorphic map f: D—B" extends to a map of class €*(Du M), with
s=N-n+1,and f(M)c M’ =bB". At the same time we shall prove Theorem 1.4
in which M =5bB".

Fix a point z°e M and assume that z°=0. Choose polydisc neighborhoods
U= U, of 0 of the form (2.2) as in Sect. 2.

We denote by A7 the set

M={(z,w):ze Uyn(DUM), we U, r(z,w)=0}.

The interior of A7 is a complex manifold of dimension 2# — 1, an open subset of the
complexification M,.. The part of the boundary of M contained in (Uyn M) x U is
smooth real-analytic and contains the totally real submanifold

T={(z,2):ze MU}

of real dimension 2n —1. By choosing U and U, sufficiently small we may assume
that M is connected.

We denote by A(A) the algebra of all continuous functions on M that are
holomorphic in the interior of #. By a theorem of Pintuk [39] every nonempty open
subset of T is a uniqueness set for functions in 4 (M).

Let Q,, be the complex hypersurface in C" defined by (1.3). Recall that for each
point (z, w)e M. we have ze Q<. Let x=(x,, ..., x,)€ C""}. According to (2.8) we
can parametrize the germ of the complex hypersurface Q, at the point z by a
mapping

Lo=zi4+ Y c(z,w)x*,
la| >0
((0)=z;+x;, 25j=n. a1
Each coefficient ¢,(z, w) is a holomorphic function of (z, w)e M.
Let (z,w)e M, so ze DUM. We extend f to a ° map on a neighborhood of

DuM in C". Consider the restriction of f to O in the coordinates x, i.e., the
function f({(x)). Its Taylor expansion of order s at the point x=0 is of the form

fEEN= 3 agz, wyx’ +o(xf). (7.2)

[B<s
7.1. Lemma. For each BeZ"', |B|<s, we have aBeA(JVI).



Extending proper holomorphic mappings of positive codimension 51

Proof. We only need to observe that the coefficient a;(z, w) is a linear combination
of the derivatives 8"f/0z7(z) of order |y| £1§| whose coefficients are polynomials in
the terms ¢,(z, w) for jo| £|B). The lemma follows.

In the case when M = bB" is the unit sphere, the associated complex hypersurface
Q,, is the hyperplane

sz{zeC": Y zjn"/j=]}=w/|w|2+wl, w0,
i=1

By a rotation we may assume that the initial point z° € 6B"is (1,0, ...,0), and w; %0
on the neighborhood U of z°. For each we U the vectors

ty(wy=(w,, —w,,0,...,0)
Lw)y=(w;,0, —w,...,0)

t"_l(W)Z(Wn,O,D, sees ‘W1)

form a complex basis of w. For a fixed z € Q0 - we can parametrize Q; by the map
n—1
()=z+ Y x;1;(w), x=(x;,...,%,-)eC".
j=1

In this case the coefficients a4(z, w) in the Taylor expansion (7.2) are homogeneous
polynomials of order |f]<s in the second variable w.
We return to the general case. Denote by {z, w)> the complex bilinear form

{z,wy=Y z;w;.
7.2. Lemma. For each ze M nU we have

1, if p=0;
0, f1=Ipl=s.

Proof. By translation of coordinates we may assume that z=0. Recall that fis a

map of class €* near 0 € C" that satisfies ¢ f((),]TC)) =1for{e M. Hence thercisa
function p({) of class €°~* near 0 such that

CLOSOY-1=pOr(.D

Cay(z,2).f(2)) ={ (7.3)

for all { near 0.
We write

SO=1O+o (L),
pO=p O +o (LY,

where f*and p*~! are Taylor polynomials of order s resp. s —1 at 0. Since r vanishes
at 0, we have

SO Oy 1= 1D D +o (L.

As usually we complexify this identity by varying { and { independently. The error
term remains small of order s even in the complexified identity.
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We now set {=0and { ={(x) e @y (7.1). Then r({(x),0) =0 and |{(x)| = O(]x]), so

we have
SN, 50> =T =0(Ix).
Recall that
£oEEN= ) a0,0)0x" +o(x).
181 ss

If we insert this into the above identity and compare the coefficients of the powers
x#, we obtain the Egs. (7.3) at the point z=0. This proves Lemma 7.2.

We now define an integer-valued function k: M—Z, by

k(z,w)=rank {a;(z,w): 1 <|B| <s}. (7.4)

Clearly & is lower semicontinuous, so its restriction to T is locally constant on an
open, everywhere dense subset T, 7. Let

ko=min {k(z,2):(z,D) e T} .

7.3. Lemma. (a) k(SN —1.
(b) k(z,w)<k, for each (z,w)e M.
(¢) k=kyon T,.

Proof. From (7.3) it follows that k(z,2) SN —1 for each ze MU, so ke SN —1.
This proves (a). Part (c) follows from (b) and the lower semicontinuity of k. It
remains to prove (b).

Denote by A(z, w) the matrix with entries in the algebra 4 (M) whose columns
are the functions {a,:1<|B|<s} given by (7.2). Let d(z, w) be the determinant of
any (k,+ 1) minor of A(z, w); § is a function in A (M) that vanishes on a nonempty
open subset of T, according to the definition of k,. The uniqueness theorem of
Pin¢uk [39] implies that 5=0 on . This shows that the rank of the matrix A (z, w)
does not exceed k, and the lemma is proved.

Remark. We shall see that k is related to the deficiency function v defined in Sect. 4
above by
v(z)=N —(k(z,2)+1).

The function k is not necessarilly constant on A7. The subset of the interior of M
defined by k <k, is a complex subvariety.

Let z=2z(w) be the mapping U, =« U- U defined at the beginning of Sect. 5.
Recall that z(w) satisfies the properties (1)—(iii) in Sect. 5, and it is anti-holomorphic
in the variable w, . In the case when M =bB" we take z(w) =w/|w|*. For {e C\{0} we
have

z({w)=Lw/(lwP =z (w)/L,

so0 in this case z(w) is anti-holomorphic on each complex line through 0 in C".
Let az(z,w) be as in (7.2) above. We define a subset X <(U;\D) x C" by the

equations

1, for f=0;

0, for 1ZiB|<s. (7.5

ag(z(w), W), w'> ={

Here, we U,\D and w'e C",
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Note that a,(z(w), W)= f(z(w)) %0 provided that U is sufficiently small. Also,
the vectors {a,, :1<|B|<s} have rank k(z(w), W) £k, < N —1 according to Lemma
7.3. Hence, for each fixed we U;\D, the fiber

X,={weC":(w,w)eX}
is a nonempty affine complex subspace of C¥ of complex dimension
dimX, =N—-k(z(w),w)—1=N—k,—1.

The intersection X n((U;\D) x C") is a real-analytic subset of (U \D)x C".
f weMnU,, then z(w)=w. Thus Lemma 7.2 implies

fwmeX, and X, cf(w)+f(w)* (7.6)

We now restrict our attention to a point z° € M such that (z° %) e T, so that
k =k, on a neighborhood of (z°, %) in . Such points form an open dense subset
M, < M. We shall prove that f extends holomorphically to a neighborhood of z°.
This will prove Theorem 1.3. We may assume that z° =0. In the case when M =5B"
we shall assume that z°=(1,0,...,0).

Choose a neighborhood ¥V, of 0, ¥,cU,. such that k(z(w), W)=k, for all
we V,\D. Because of (7.4) the system of linear equations (7.5) in w’ has rank k, + 1
for all points we V\D in a smaller neighborhood V< ¥, of 0.

We shall distinguish two cases.

Case 1. ky+1=N.

In this case the system (7.5) of linear equations in the variables w’ has maximal
rank N for all we V\D. Solving the system for w' by Cramer’s formula we obtain a
continuous mapping w' = f(w): V\D—-C¥, so that

X={(w.Jo):we N\D}.

Because of (7.6) we have f(w)=f(w) for all we VAM, so the mapping
F:.V-CP" defined by

. fw), f weVnbD;
o) {](W), if weV\D -7
is continuous in ¥ and holomorphic in ¥ D,
We claim that the restriction of F to each complex line L={w,=c¢,,...,w,=c,}
for sufficiently small ¢,, ..., ¢,eC is holomorphic in L~ V. A theorem of Hartogs

[9, p. 139] then implies that Fis holomorphic in all variables in a neighborhood of 0.

To prove the claim, recall that the mapping z(w) is anti-holomorphic in w,, so
the functions a,(z(w), W) are anti-holomorphic in L\D. Hence the solution w’' = f(w)
of (7.5) is holomorphic in L\D. Thus the restriction F|, is continuous on L~ ¥ and
holomorphicin L n V\M. Morera’s theorem implies that Fis holomorphicin LAV
which establishes the claim.

This completes the proof of Theorem 1.3 in Case 1. The proof is similar to the
original reflection principle in C" discovered by Lewy [34] and Pincuk [38].

We now look at the case M=»bB" and z(w)=w/|wf?>, assuming still that
ko+1=N. Using Morera’s theorem on the family of complex lines passing through
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the origin in C" we see as above that the extended mapping F (7.7) is holomorphic.
The solution f(w) of the system (7.5) obtained by Cramer’s formula is of the form

Fo)y=g(v/IwP, w)h(w/Iwf, w),

where g =(g,, ..., gy) and h are sums of products of functions a, (w/|w|>, w). Hence g
and & depend holomorphically on the first variable w/|w|> and are polynomials of
degree at most K=Ns=N(N—n+1) in the second variable w.

Cima and Suffridge proved in [11] that holomorphic functions of this type are
rational:

Fw)y=(p W), ..., py(W))/g(w),

where the p;’s and g are holomorphic polynomials of degree at most K. Since fisan
analytic continuation of f, it follows that f=p/q is a rational mapping.

Case 2. ko+1<N.

Now the system (7.5) has rank ky+1 < N. Let m=N - (k,+1). Renumerating
the variables w’ we may assume that this systm has rank kg +1inw,,_,,...,wy, sO
the solution is of the form

Whak=boW)+ Y, by, wyw;, weV\D,1<k<N-m, (7.8)
j=1
provided that we shrink Vif necessary. These equations represent X as a graph over
(V\D) x C™. The functions b, ; are continuous in ¥\D.

7.4 Proposition. The functions b, ; in (7.8) are holomorphic in V\D, so X (U\D)is
a complex subvariety of dimension n+m.

Proof. This is not obvious since the functions a;(z(w), W) contain both holomorphic
and anti-holomorphic terms. All we know at this point is that the b, ;s are
holomorphic in w,, for the reason explained in the proof of Case 1.

The proof depends on the following two lemmas.

7.5. Lemma. Let h: U—CY be a holomorphic map defined on an open connected
subset U of C". For each xeU and je Z, we set
Oi=span {0"h/ox*(x): 1 S| </} .

Assume that for some jeZ, we have Oi=01*" for all xe U. Then there is a point
Xo € U such that the image of h is contained in the affine subspace h(x,)+ OJ of C.

Proof. Choose a point x,e U such that dim O/ is constant for all x in an open
neighborhood Uy of x,. This is possible since the function x—dim O is lower semi-
continuous. Shrinking U, if necessary we can find a collection of vectors of the form

X, (x)=0%h/0x(x), 1Z||<), 1Sr<dim O]

that form a basis of O/ for all xe U,. Let X(x)=0%/dx*(x) for some multiindex «
with |e|=j+ 1. Our hypothesis O] = OJ* ! implies that X(x) =) a,(x) X,(x) for some
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analytic functions a,. Differentiating with respect to the coordinate x; we have

oX/ox,(x)=Y" da,/0x,(x) X, (x)+ ) a,(x)0X,/0x,(x).

Since O4=0{*", each term on the right lies in O} whence 0X/dx;(x)e O}. Since «
and / were arbitrary, it follows that 0 *?=0J. By induction we have O¥= 0/ for
each k 2j. The lemma now follows from the Taylor expansion of 4 at X,.

7.6. Lemma. For each w e V\D we denote by Q. the connected component of Q,,uU
containing z(w). Then f(Q,) is contained in the affine complex subspace

A= [ (z(w)) +span {ay(z(w), w) : 1 || < s} = CV (7.9)
of dimension k.
Proof. Note that f(Q,,) can not be contained in any proper subspace of A,,.

Choose a connected open set Q<= C" ! with coordinates x and a holomor-
phic mapping ¢:Q—Q,, that parametrizes Q, in a neighborhood of z{w). Set
h(x)= f(&(x)). Denote by OJ the subspace of C" defined in the preceeding lemma.
In view of (7.2) we also have

0f=span {a,(¢(x), %) : 1 < |BI<)}

sodim O} =k, . Since f was assumed to be finite holomorphic on D, Ahasrank 7 — 1
ata generic point of Q, so we have dim O} =n — 1 for all x in an open dense subset Q,
of Q.

Consider the increasing flag Ol =02 ...0f of s=N —n-+1 subspaces of CV.
We have

dim 0% —dim 0! =k, —(n—1) <(N 1) —(n —1)=s5—1.

Hence there is an integer j=j(x) such that 0J=0J**. Since x—dim O is a lower
semicontinuous function of x, we can shrink €, and assume that j(x) is constant
in Q,.

Lemma 7.5 implies that 4(£2,) and consequently #(Q) is contained in the affine
subspace i(x)+ O of CN for some x e Q. Fix any such x, and set A =h(x)+O;. The
definition of # implies that (0, )= A,s0 A, < A. Since dim A, =k, and dim A <k,,
we have A=A, and /(D,)cA,. This proves Lemma 7.6.

We continue with the proof of Proposition 7.4. Fix a point w'e V\D. We
can find a neighborhood ¥, of w!, ¥,<¥V\D, and an anti-holomorphic map
¢:V;»DnU satisfying

Ew)eQ, forweV,, Ewh)=z(w').

(See the proof of part (a) of Proposition 5.1.)

We define a subset X’ = ¥; x C" by the Egs. (7.5), except that we replace z(w) by
¢(w). With this replacement the Egs. (7.5) become anti-holomorphic in we ¥] and
w'eC¥, so X' is a complex subvariety (in fact, a complex submanifold) of ¥, x C".
The fibers of X’ are affine subspaces of dimension m=N —(k,+1).

From Lemma 7.6 it follows that X~ (¥, x C¥)c< X". Since both sets have affine
fibers of dimension m, they are equal. Therefore Xn(¥; x C¥) is complex analytic.
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Since w! was an arbitrary point of ¥\D, we proved that Xn(¥\D x C")is a complex
variety. Thus the functions b, ; in (7.8) are holomorphic in ¥\D. This proves
Proposition 7.4,

By the theorem of Hartogs the functions b, ; extend across M to holomorphic
functions in a neighborhood of 0eC" which we still denote by V. Using the
Eqgs. (7.8) we extend X to a complex submanifold of V' x C¥ of dimension n+m.

The last step in the proof i1s as in Sect.6. From (7.6) we conclude
X,,nbBY ={f(w)}, so

X(MAVyxbBYY={(w, f(w)):weMnV}.

On the left hand side we have a real-analytic subset of V' x C". Hence f|,, is real-
analytic in an open dense subset My MV, and it extends holomorphically to a
neighborhood of M,. This completes the proof of Theorem 1.3.

It remains to prove Theorem 1.4 in Case 2. The same argument as given in
Case 1 above proves that the holomorphic functions b, ;(w) in (7.8) are rational,

bk,;(W) = Pk,j(w)/Qj(W) >

where P, ;(w) and Q;(w) are holomorphic polynomials of degree at most
(ko +1)(N —n+1). Thus the set X extends to a rational subvariety of C"*¥ defined
by the equations

O, Wh s = Pian)+ Y Py (W), 1<jSN-m. (7.9)
1

r=

Recall from (7.6) that for each webB"nV we have X,,nbBY={f(w)}. This
implies that the restriction of the function jw’'|? =Y wiwj to X, has precisely one
critical point w'= f(w).

If we use the variables w{,...,w,, as the coordinates on X, and express the
remaining variables from (7.9), this restriction equals

m N-m m m
2wt X (P,-,o+ 2 P,-,,w;) <Pj,0+ ) P,-,m‘»;) / 9,0,
J= Jj= r= r=

The point w;=f;(w), 1 £j<m, is the unique solution of the system of equations
that we obtain by differentiating the above expression with respect to the variables
Wy, 1 =/<m, and setting the derivative equal to zero:
N-m m
wi+ Pj‘,<Pj,0+Z Pj,,w;>/QjQ—j=O, 1Z5I€m. (7.10)
ji=1 r=1
Cramer’s formula shows that the solution of the above system is of the form
fiw)y=wi=a;,(w,w)/b(w,w), 1Zj<m, weVnbB", (7.11)

where Vis a sufficiently small neighborhood of (1, 0, ..., 0), and the functions ¢; and
b are polynomials in the variables w and w.

We claim that, as a consequence, fJ is a rational function of the variable w for
1 <j<m. Thisfollows from Proposition 7.7 below. Inserting the functions f;, ..., f,,
into (7.9) we see that f,,.,..., fy are rational as well, so f is a rational mapping.
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7.7.  Proposition. Let U< C" be an open ball centered at a point in bB". If P(z, ) and
Q(z,2) are polynomials in z and =z such that Q &0 on U and P|Q satisfies the tangen-
tial Cauchy-Riemann equations on bB"NU, then there exists a rational function
g(2)Y=p(2)/q(z) that agrees with P/Q on bB"NU.

Proof. We many replace the sphere bB” by the Heisenberg group
n—1
Sr—{lmznz Y zjz_j}CC"
=1

that is rationally equivalent to the punctured sphere by the Cayley map [42, p. 31].
In P and Q we substitute

0y

n—1
W=, — 21 Z Z;Z5. (7.12)
j=t

The resulting polynomials P; and @, do not contain Z,,, so they are holomorphic in
the variable z,,. Notice that P, resp. Q, agree with Presp. Q on SnU since the above
is an identity on S.

Shrinking U if necessary we may assume that Q, has no zeros on U. We claim
that the function g=P;/Q, is holomorphic on U. To prove this we fix a point
e SnU and let A(z) be a holomorphic function on a neighborhood of z° that
agrees with P/Q on S. Such a function exists since P/Q is real-analytic and satisfies
the tangential J-equations on SAU. The restrictions of g and /4 to complex lines
L={z,=a,...,z, ,=a,_,} are holomorphic in z,, and they agree on LnS. It
follows that g =4 near z°, so ¢ is holomorphic there. Since g is real-analytic, it is
consequently holomorphic on all of U.

It remains to show that ¢ is rational in z. This follows from the following
elementary lemma whose proof will be ommited.

7.8. Lemma. Suppose that a rational function

k m
f=3 ajxj>/ Y bj,\'j), a,+0, b,+0,
= —

satisfies Of [Cx =0 for x in an open connected subset of C. Then k=m and [=a, |b,.

To conclude the proof of Proposition 7.7 we write

k m
P1/Q1= 'Zo E{PI.])/(z fol,i)’

=0

where P, ; and Q, ; are polynomials not involving Z;. Since
(0/02)(Py/Q,)=0,

the lemma with x =z, implies k =mand P, /Q, = P, ,/Q; , on a suitably smaller set.
We repeat the same argument with the variables 7,, ..., 7,_;. After n—1 steps we
obtain holomorphic polynomials p and g such that g = p/g almost everywhere on U.
We may assume that p and ¢ contain no common factors. Since g is holomorphic on
U, ¢ cannot have any zeros on U, so we have P/Q=p/q on UnS. This proves
Proposition 7.7.
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We have proved that f extends to a rational mapping on C". The fact that fis
holomorphic on B” and has no poles on bB” was proved in [38] and [28].

It remains to estimate the degree of f. In Case 1 (k,+1=N) we have already
seen that the degree is bounded by N(N—n+1). In Case 2, the degree of
polynomials P, ; and Q; appearing in the coefficients b, ; (7.8) is bounded by
C=(N—m)(N—n+1). The solution (7.11) of the system (7.10) contains at most
2mC holomorphic terms in each numerator and denominator. Finally, when we
substitute (7.12) into the (7.11), the number of holomorphic terms is at most
doubled to

d4mC=4m(N -m)(N-n+1)EN*(N-n+1).
This completes the proof of Theorem 1.4.

8. Examples

In this section we shall illustrate our method by calculating the variety X defined by
(7.5) for certain proper polynomial maps of balls.

Let f: C"—CP" be a polynomial mapping that takes B” properly into BY. Recall
that for each we C"\{0} we have

Qw={zeC": > z"jwj:1}
i=t
and

N
Xw.—_{W'ECNZ Y. fizywi=1 for all zeQw},
j=1
On the set w, +0 we express

=1 —,wy, —... —Z,w,)/w, 8.1

and substitute into the equation of X . The variables z,, ..., z, are now free, so we
can equate the coefficients of the terms Z32...Z%". This leads to the system of defining
equations of the form (2.4) for X,,.

Example 1. /: C">C¥, f(2)=(z,0). One finds easily that
X,={weC" w=w, 1<j<n}, weC"\{0},
so dim X, =N—n.

Example 2. Faran [24] and Cima and Suffridge [12] listed all proper maps from B?
to B? that are of class % on B? Up to the equivalence with respect to the
automorphism groups of B? and B? there are four maps. One of them is

f@.2)=E,)/22,2,.73).

Fix (w;,w,)eC?, w,+0, and express z, as in (5.1). The equation for X, is

(e

5 ’ 2.0
22w2+22w3-1 .
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Equating the coefficients of 1, Z,, 73, we obtain three equations

1 4
3 Wy = 1
1
2W‘2 ’ 1/2 ’
— 3 Wy +— Wy = 0
Wy w,
2 2
w: 1/ w
—;— Wy — wi+wi=0
Wy w,
Their solution is unique:
wi=wi, wy=]/2ww,, wi=w3.

We obtain the same result when w, 0. Hence X coincides with the graph of f in this
case. The same holds for the other two nontrivial maps from B? to B>

Example 3. D’ Angelo classified the proper monomial maps from B? to B* [16, 17].

The varieties corresponding to these maps have rather diverse behavior. Perhaps the

most interesting example is the one parameter family of maps
focy ) =(z1,c080z,,sin0 -z, z,,sin0-23),  OeR.

Assume that 0 is not a multiple of n/2. Then the variety X decomposes in two
components X', X? of dimension three. X' projects onto C*\{0} and has one
dimensional fibers

XL={fo(w)+A(0, —sin6,cos 0 w;,cos 0 w,), AeC}.
X? projects onto {w,; =0, w,+0} and has two dimensional fibers

X& = 1/6(0,wy) + A(0, —sin 0, cos 8w, cos 0 - w,)

+ p( —sin 0,0, w,,0), A, ueC}.

Example 4. Let /: C"»C""*3/2 be the map

f(z)z»l}; (- S 1/52122, 1/52123,..., 1/52,,_12,,)

whose components are all linear and quadratic terms. (Deleting the linear terms
we obtain the Veronese map.) f maps the unit n-ball properly into the unit
n(n+3)/2-ball.

Consider the equation for X. After we express z; by (5.1) and substitute into the
equation for X, we obtain 1 + (n+2) (n —1)/2 linear equations for w’, one for each
constant, linear, and quadratic term in the variables z;, 2<j<n. Since we have
(n+3)/2 variables wi, we conclude that

(n+3)n (n+2)(n—1)
2 2

dim X, = ~1=n, weC"\{0}.

Thus we have a map whose image is not contained in any proper affine subspace of
C", and yet the dimension of X is at least twice the dimension of the graph of f.
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