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Introduction 

In this paper we obtain results on holomorphic continuation of proper holomorphic 
mappings between pseudoconvex domains with real-analytic boundaries in com- 
plex spaces of different dimensions. Equivalently, we obtain results concerning the 
analyticity of Cauchy-Riemann mappings between real-analytic pseudoconvex 
hypersurfaces in complex spaces of different dimensions. 

To begin with, we recall the corresponding results for mappings of equi- 
dimensional domains. Let D and D'  be bounded pseudoconvex domains with 
smooth boundaries in C". If the boundaries of D and D'  are strictly pseudoconvex 
or, more generally, of finite type in the sense of D'Angelo [15], then every proper 
holomorphic map of D onto D' extends smoothly t o / )  according to the results of 
Bell and Catlin [7, 8] and Diederich and Forn~ess [19]. For mappings between 
strictly pseudoconvex domains this was proved by Fefferman [26] and Nirenberg, 
Webster, and Yang [37]. 

If the boundaries of the pseudoconvex domains D, D ' c  C" are real-analytic, 
then every proper holomorphic mapping of D onto D' extends holomorphically to a 
neighborhood of /3  according to Baouendi and Rothschild [2] and Diederich and 
Forn~ess [21]. This 'reflection principle' was first discovered by Lewy [34] and 
Pin6uk [38] for mappings between strictly pseudoconvex domains. In the case of 
biholomorphic mappings between weakly pseudoconvex domains with real- 
analytic boundaries the result follows from the work of Baouendi, Jacobowitz, and 
Treves [5]. Results in this direction were obtained in recent years by several authors; 
see the papers [4, 6, 18, 22, 33, 47, 49]. 

In this paper we are treating the case when the domains D and D'  have different 
dimensions. To be specific, we assume that D e C "  and D ' c C  N are bounded 
pseudoconvex domains with real-analytic boundaries and N > n > l .  In this 
situation a proper holomorphic map f :  D - - , D '  need not be regular at the boundary. 
For instance, there exist proper holomorphic maps of balls of different dimensions 
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that do not extend continuously to the boundary [27, 35]. Moreover, for each n 
there exist proper holomorphic maps from the unit ball B" c C" to B" + t c C" + ~ that 
extend continuously to the closed ball B", but the extension is not of class g2 on any 
open subset of  the sphere bB" [23, 32]. Furthermore, if N =  N(n) is sufficiently large, 
there exist proper holomorphic m a p s [ :  B " ~ B  N that extend continuously to B" and 
map the sphere bB" onto bB N [30]. 

On the other hand, if we assume thatfextends  to a map which is smooth of class 
~ on L) for some sufficiently large s, thenfwi l l  continue holomorphically across 
large subsets ofbD. A result of  this type has been proved by Webster [48]: l fn  > 3, 
N =  n + 1, D ~ C" is a strictly pseudoconvex domain with real-analytic boundary, 
and f :  D ~ B  "+1 is a holomorphic map which is of class cg3 on/3,  then fex tends  
holomorphically across every point in an open dense subset of the boundary bD. 
Related results for proper holomorphic mappings of balls f :  B"--* B N were proved by 
Faran [24], Cima and Suffridge [11, 12], Cima, Krantz, and Suffridge [l 3], and the 
author [28]. These results were obtained by a generalization of the method 
developed in the equi-dimensional case by Lewy [34] and Pin~uk [38]. The 
codimension N - n  of the mapping was assumed to be low in these results. 

1. Results 

Our first main result is the following. 

1.1. Theorem. L e t M c C " a n d M ' c C N ( N > n > l ) b e s m o o t h r e a l - a n a l y t i c p s e u d o  - 
convex hypersur[aces, M of  finite type, and M '  strictly pseudoconvex. Let D c C" be a 
domain which contains M in its boundary and is pseudoconvex along M. I[" f :  
D w  M-~C N is a mapping of  class cgoo that is holomorphic on D and maps M to M',  
then f extends holomorphically to a neighborhoo'd oJan open, ever)'where dense subset 
Mo of  M. 

Recall that a pseudoconvex real-analytic hypersurface is of finite type in the 
sense of D'Angelo [15] if and only if it contains no germs of positive dimensional 
complex varieties. 

The domain D plays no role in Theorem 1.1. We can formulate the result in 
terms of C-R mappings between real-analytic hypersurfaces. Recall that a mapping 
f :  M-~C N is C-R if it satisfies the tangential Cauchy-Riemann equations on M. 

1.2. Theorem. Let M ~ C " a n d M ' c C N  ( N > n >  l)besmoothreal-analytiepseudo - 
convex hypersurJaces, where M is o f  finite type and M '  is strictly pseadoconvex. I f  f :  
M - ~ M '  is a smooth C-R map, then f is real-analytic at every point of  an open, 
everywhere dense subset M o o f  M. 

Under the conditions of Theorem 1.2 the m a p f e x t e n d s  holomorphically to a 
domain D ~ C "  in the pseudoconvex side of M [3, 45]. The extended map f :  
D u M ~ C  N continues holomorphically to a neighborhood of  a point p c M if and 
only if flM is real-analytic at p. This shows that the above two theorems are 
equivalent. 

We can replace the condition that M '  is strictly pseudoconvex by a somewhat 
weaker condition (A) introduced by (2.4) in Sect. 2 below. In this case we have to 



Extending proper holomorphic mappings of positive codimension 33 

require in addit ion t h a t f m a p s  D to a domain D ' c  C N in the pseudoconvex side o f  
M '  and bounded in part  by M' .  

There is no restriction on the codimension N - n  of the mapping. The above 
theorems are clearly false if n = 1 and N >  1. 

We obtain a somewhat  more precise result, Theorem 6.1, concerning the 
extension of  f at a given point of  M. In Sect. 4 we construct an upper 
semicontinuous, integer valued function v: M---, Z +, called the deficiency of  J; which 
is invariantly associated to f and which measures a type of  degeneracy of  the 
mapping f If  v is constant  on a neighborhood of  a point z e M in M, then fex tends  
holomorphical ly to a neighborhood of  z in C" (Theorem 6.1). In particular, f 
extends holomorphical ly  to a ne ighborhood of  each z ~ M at which v(z)= 0. The 
condition v(z) = 0 is satisfied if the restriction o f f  to a certain complex hypersurface 
Q, ~ C" associated to M has a maximal number  of  linearly independent derivatives 
(of higher order) at z. 

It remains an open problem whether f extends holomorphical ly  across each 
point of  M. Examples in Sect. 8 show that the function v need not  be constant  on M 
even when f is a proper polynomial  map between balls. However,  it seems that for 
'most '  hypersurfaces M '  we have v - 0  for each mapping  f ,  so .f extends 
holomorphically across M. We shall not  pursue this question in the present paper, 

We denote by B" the open unit ball in C", 

~j - j  
j= l  

and by bB" its boundary,  the unit sphere in C". In the special case when the 
hypersurface M '  is the unit sphere bB N we can prove a similar extension result under 
a weaker smoothness assumption on the mapping f. 

1.3. Theorem. L e t D a n d M b e a s i n T h e o r e m l . l .  l f f : D u M ~ C N i s a m a p p i n g o f  
('lass ~N ,+ J that is f inite holomorphic on D and satisfies lf(z)l = l Jbr each z ~ M, 
then f extends holomorphically to a neighborhood o f a n  open, everywhere dense subset 
Mo o f  M. 

In the special case when both  domains are unit balls we have the following 
stronger result. 

1.4. Theorem. Let U be an open ballcenteredat apoin tp  ~ bB n, and let M = Uc~ bB". 
I J N >  n > 1 and.f: [I n ~ U ~ C  N is a mappin9 o f  class ~N-n+ 1 that is holomorphic on 
B" ~ U and takes M to the unit sphere bB N, then f is rational, f =  (Pl . . . . .  pu)/q, where 
the pj and q are holomorphic polynomials o f  degree at most N 2 ( N - n +  I). The 
extended map is holomorphic on B", it maps B n to B N, and it has no poles on bB". 

In particular, if f :  B"--*B N is a proper  holomorphic  map ( N >  n > l) that  extends 
to a ~ N - , + I  map on Bn, then f is rational. This theorem shows that the space of  all 
rational proper  mappings f :  B " ~  B N is finite dimensional. The bound  N 2 ( N -  n + 1) 
on the degree o f  f is not  sharp. 

An  unpublished result due to Pin~uk implies that the extended rational map has 
no singularities on Bn. 
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The equidimensional case N = n of  Theorem 1.4 is due to Poincar6 [41 ], Tanaka 
[44], Alexander [1 ], and Pin6uk [38]. The mapfextends  to an automorphism of B". 
Poincar~ and Tanaka considered the case when f is biholomorphic on a neighbor- 
hood of a point p 6 bB". Alexander assumed that f is ~ ~ on [1" c~ U. Pin6uk reduced 
the smoothness requirement to ~f~. Alexander proved as well that every proper 
holomorphic map f :  B"--.B" is an automorphism of  B". See also [42, p. 313]. More 
generally, every proper holomorphic map between strictly pseudoconvex domains 
with smooth algebraic boundaries in C" is a branch of an algebraic map according to 
Webster [47]. He also found sufficient conditions on the two boundaries that force 
the map to be rational. 

If N >  n, there exist non-rational proper holomorphic maps of B" into B N [23, 27, 
30, 32, 35]. Such a map need not be continuous at the boundary [27], and even when 
it is continuous, it may take the boundary bB" onto bB N [30]. Hence some regularity 
of f at the boundary is necessary for f to be rational. 

Proper mappings of balls of small codimension N - n  were studied by Webster 
[48], Faran [24, 25], Cima and Suffridge [11, 12], and the author [28]. In the case 
when N < 2n - 1, Theorem 1.4 was proved by the author in [28, Theorem 1.3], using 
inductively the method of Cima and Suffridge [11]. Their method, which is a 
generalization of the reflection principle of Lewy [34] and Pin~uk [38], shows that f 
is rational provided that it satisfies certain nondegeneracy condition at a point of 
bB". The examples in Sect. 8 show that the required condition fails in general. 

For the results on classification of proper mappings between balls see the papers 
[1, 11, 12, 16, 17, 24, 25, 28, 48]. 

Although Theorem 1.1 is of local nature, we can combine it with the main result 
of  [29] to obtain the following result under global hypotheses on the mapping. 

1.5. Corollary. Let D c C" and D'  c C N, N > n > 1, be bounded strictly pseudocon- 
vex domains with smooth real-analytic boundaries, and let 1" ~ bD' be a closed ~ ~ 
submanifold of  real dimension 2n -1 .  I f  f :  D--* D' is a proper holomorphic map with 
nontangential boundary values f*(z )  ~ F for almost every z c bD, then f extends 
holomorphically across every point in an open, everywhere dense subset of  bD. 

We proved in [29] that the map f extends smoothly to the closure of D. 
Therefore Corollary 1.5 follows immediatelly from Theorem 1.1. 

We mention another consequence of Theorem 1.1. In [27] we proved that for 
each n > t there exist real-analytic strictly pseudoconvex hypersurfaces M ~  C" that 
do not admit analytic C-R embeddings to any finite dimensional sphere. A similar 
result was established independently by Faran (unpublished). Theorem 1.3 implies 

1.6. Corollary. For each N > n >  1 there exist bounded strictly pseudoconvex 
domains D c C" with reaLanalytic boundary such that no proper holomorphic map 
f : D ~ B  u extends to a map of  class c~N-,+~ on ID. 

The present work leaves several open questions. In the context of Theorem 1.1 
one would like to know whether f extends holomorphically across each point of M. 
Second, our method does not cover the case when M '  is an arbitrary real-analytic 
pseudoconvex hypersurface of finite type in C N. Third, it is not known how much 
smoothness of the map f on D ~ M  one needs in order to obtain a holomorphic 
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extension. We have mentioned above that the continuity o f f  on D w M  is not 
sufficient. It seems that Theorem 1.1 should hold under the assumption 
f r  but at the moment  we do not know how to prove this. On the 
other hand, it is an open problem to construct a proper holomorphic map f :  B " ~ B  N 

(N> n > 1) that is of class qq~([l") for some s with 0 < s < N - n  + 1, but which is not 
rational. 

Although most strictly pseudoconvex real-analytic hypersurfaces do not admit 
smooth C-R embeddings into any finite dimensional sphere according to [27], it 
would be of interest to construct such embeddings with a finite degree of 
smoothness, say ~2. 

We shall now explain the main idea in the proof  of Theorems 1.1, 1.3, and 1.4. 
The proof  of  Theorem 1.1 relies on methods developed by Webster [47, 49], 
Diederich and Webster [22], and Diederich and Fornaess [21]. Our proof  of 
Theorems 1.3 and 1.4 uses similar ideas, but it is much simpler. 

Let M be an analytic real hypersurface in C". For each point z ~ ~ M there is a 
neighborhood U of z ~ in C" and an analytic real function r(z,z-) on U with 
nonvanishing gradient such that 

M c~ U= {z ~ U : r(z,~)=O} . 

If M '  c C N is another analytic real hypersurface defined locally by 

M '  c~ U '={z '  ~ U': r '(z ' ,  ~ ' )=0} ,  

and if f :  U ~  U'  is a holomorphic mapping taking M c~ U into M '  c~ U', then we have 
a relation 

r ' ( f ( z ) , f ( z ) ) = p ( z , ~ r ( z , ~ ,  z6  U, (1.1) 

where p is a real-valued analytic function on U. 
Let z=x+~v ,  where x and y are the real coordinates on C " = R  2". Since the 

functions in (1.1) are represented by convergent power series in x and y in a 
neighborhood of z ~ they are still defined for complex valued x and y in a suitable 
domain, and the relation (1.1) persists. Equivalently, we may set Y= # and vary z 
and w independently to obtain the identity 

r ' ( f  (z), f ( w ) ) = p  (z, ~)r(z,  ~) (1.2) 

for z, w in a neighborhood U 0 of z ~ in C". 
We define for each w ~ U o a complex hypersurface Qw c U o by 

Qw= {z a Uo : r(z, @)=0}. (1.3) 

These hypersurfaces were first introduced by Segre [43] and were later used by 
several authors [21, 22, 47, 49]. Let Q ' ,  c U~ c C N be the analogous hypersurface 
associated to M' .  We assume also that f ( U o ) c  U~. The identity (1.2) implies 
f(Qw)cQ]~w) for each we U o. I f N = n  and f :  U o ~ U  ~ is a biholomorphic map, we 
can apply the same argument to its inverse to conclude that f maps each Qw 
biholomorphicaUy onto Q](w). Hence the family of complex hypersurfaces {Qw} is 
invariantly attached to M. 
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Since r(z, ~) is real-valued, we have 

r (= ,  ~') = ~(~,, z) = r(w, ~), 

so z~Qw if and only if w~Qz. Moreover, z~Qz  if and only i f z e M .  Hence the 
inclusion f ( Q , , ) c  Q}~,.~ is equivalent to 

f ( w ) ~  0 {Q},z, : z~Q, ,} .  (1.4) 

Suppose now that M resp. M '  is a part of the boundary of a pseudoconvex 
domain D resp. D ', f is defined on D u M, it maps D holomorphically into D ', and it 
takes M into M'.  Let w be a point outside D t J M  but close to M. If  ./ extends 
holomorphically across M, its value f ( w )  lies in the set 

X , =  0 {Q}(~,: zeQwc~O } (1.5) 

according to (1.4). This is the crucial observation on which the proof  of Theorem 1.1 
is based, It was used in a similar way by Webster [47, 49], Diederich and Webster 
[22], and Diederich and Forn~ess [21]. 

We shall prove in Sect. 5 (Proposition 5.1) that the set X c ( C " \ / 3 ) •  C u with 
fibers X w for w close to M is a complex variety of dimension at least n. In the 
equidimensional case N =  n treated by Diederich and Forn~ess [21 ] the fibers X w are 
finite, and the variety X extends the graph 

r(f)={(z,f(z)): zeD} 

of . /across  M x M' .  Therefore f extends holomorphically across M according to 
[6, Lemma 1 ]. 

In the case N > n  the fibers X,v may be positive dimensional. We will show that 
near almost every point pO = (zOf(zO)), z o e M, the top dimensional part  Y of X is a 
branched analytic cover over a suitable domain in (C"\ / ) )x  C ' ,  where m is the 
dimension of the fibers X~ for w close to z ~ Locally nearp ~ the analytic extension 
of Y across the pseudoconvex hypersurface M x C N intersects M x M'precisely in 
the graph F(flM) = {(z, f (z ) ) :  z e M}  of the restriction f [  M. This implies that F(fIM) 
is real-analytic near p0 and hence flM is real-analytic near z ~ Consequently f 
extends holomorphically to a neighborhood of z ~ The details are given in Sect. 6. 

In the special case when the hypersurface M '  is the unit sphere {z' e CN: Iz'[ = 1 }, 
the associated complex hypersurface Q~, is the hyperplane 

Hence each fiber Xw (1.5) is also an affine complex subspace of C s. In this case we 
have a simpler proof  of  the fact that X is a nonempty complex variety; the proof  in 
Sect. 7 can be read independently of  the Sect. 3-6. 

A few words concerning the organization of the paper are appropriate. In Sects. 
2 -4  we develop the necessary tools: the Segre varieties in Sect. 2, the preimage map 
f *  in Sect. 3, and the deficiency function v in Sect. 4. In Sect. 5 we construct an 
analytic variety X in (C"\/)) x C N associated to f,  and we show that X behaves well 
near most points of  the graph of fIM. In Sect. 6 we extend a part  of  X across the 
hypersurface bD x C N as a branched covering, and we prove Theorem 1.1. In Sect. 7 
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we prove Theorems 1.3 and 1.4 with the ball  as the target domain .  Section 7 does not  
depend on the deve lopment  in Sects. 3 -6  and can be read independent ly .  In Sect. 8 
we calculate the variety X for several po lynomia l  p roper  maps  o f  balls. 

Remark. After  the comple t ion  of  this work  I was informed by Pin~uk that  he had 
obta ined  results s imilar  to Theorem 1.1 and 1.3 a round  the year 1978, but  he had not  
published them. In the context  of  Theorem 1.3, with M ~ C "  strictly pseudo-  
convex, he proved that  the mapp ing  f extends ho lomorph ica l ly  to each poin t  of  M. 
If M is compact  and non-spher ical ,  and if f :  M ~ b B  ~ is a smooth  C-R map  that is 
initially defined near  a poin t  z �9 M, then . /  cont inues  hoIomorph ica l ty  a long each 
path in M star t ing at 2. Similar  results for mappings  o f  equi -d imensional  
hypersurfaces  were ob ta ined  by Pineuk [40] and Vitushkin [46]. 

Acknowled, qements. This work was done during my visit to the Institut Mittag-Leffter. I wish to thank 
this institution for its hospitality, and l thank C. Kiselman and J. E. Fornmss for their kind invitation. 
Also, 1 wish to thank D. Barrett, J. E. Forn~ess, N. Sibony, and W. Zame for several helpful discussions 
and remarks. 

2. lnvariant complex hypersurfaces 

In this section we shall consider  more carefully the complex  hypersurfaces  Q,, 
in t roduced by (1.3). Our  exposi t ion  is s imilar  to Sect. 1 of  [21]. 

F ix  a point  z ~ �9 M and  let r be a rea l -analyt ic  local defining funct ion of  M near  z ~ 
In suitable local ho lomorph ic  coord ina tes  we have z ~ = 0, and  the Tay lo r  expans ion  
of r at 0 is 

i 
r ( z , ~ = ~  (z I -51)+ L CjkZjf'k+h(z'~)" (2.1) 

j . k = l  

where h conta ins  no purely  ho lomorph ic  terms and [h[=O(lz[3). 
Choose  a small  polydisc  U o of  the form 

Uo = Uo(O, a) = {z E C" : ]z I ] < Q, [2j] < a for 2 <j<n}  (2.2) 

such t h a t / )  c~ U o = (D w M)c~ Uo, and the power  series expans ion  o f  the complexi -  
fication r(z, t?') at (0, 0) converges  in U 0 x U 0. Choos ing  U 0 sufficiently small  we 
have ?~r/~q +0 on Uo • U0, so the complexi f ica t ion  

Mc={(:,w)�9215 Uo: ,-(=, w)=0} 

of M in U 0 x U o is a smoo th  complex  hypersurface  of  complex  d imens ion  2n - 1. 
Clearly (z, w) is in M c if  and only if z is in Q~. 

By the implici t  funct ion theorem we can find a polydisc  U c  Uo of  the form (2.2) 
such that  

M c n ( U 0  x U)={( z ,w)cUox  U: z i  = (/)(,~, w)}  , 

where q) is a h o l o m o r p h i c  funct ion of  5 =  (z 2 . . . . .  z,,) and w. The funct ion q) has a 
power  series expans ion  

a,(e, w)= 
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with the coefficients q~ holomorphic on U. For each fixed w e U we have 

Q,,={~Uo. ~l= ~ qS~(~)~}. (2.3) 
~eZ"+ t 

i 
Our choice of r implies r(z, O) = ~  zl, so 

Qo={  Vo: 
Definition. We say that the hypersurface M c  C" satisfies condition (A) if for each 
z ~ e M there is a neighborhood V of z ~ and an z > 0 such that 

Mc~QznB(z,e)={z }, zzVc~M. (2.4) 

Here B(z, ~.) is the open ball of  radius e centered at z. In other words, we require 
that {Q~ : zeM} is a family of  supporting complex hypersurfaces for M. 

If  M is strictly pseudoconvex, the local defining function r (2.1) may be chosen 
strictly plurisubharmonic, and the condition (A) is satisfied in this case. The 
hypersurface Q~ for z s M lies in the pseudoconcave side of M and has second order 
contact with M at z. We shall omit the details. Condition (A) holds on some but not 
all weakly pseudoconvex hypersurfaces of finite type. There is a pseudoconvex 
hypersurface in C 2 with an isolated weakly pseudoconvex point of D'Angelo type 
four at which condition (A) fails. We shall not investigate this further. 

For every z~C"  and e5>0 we denote by ~ ( f i )  the set of all formal complex 
hypersurfaces at z of  the form 

Q = { ~ l - z ~ =  ~ c~(~-zT)~}, (2.5) 

where the coefficients c = (c~ : c~ = (e2 . . . . .  c~,)) satisfy the conditions 

Co = 0 ,  Ic~l < (5 when I~1 = e2 + . . .  +c~,= 1 . (2.6) 

Here, J =  (z 2 . . . . .  z,), and similarly for ~. The condition involving 6 means that the 
tangent plane of Q at z is not tilted too far away from {~1 = 0 } = Q o -  

Since the spaces ~ ( 6 )  for different z are naturally isomorphic, we shall drop z in 
our notation. It will always be clear from the context at which point a given 
hypersurface is based. We shall refer to the elements of  ~(~)  as the jets (of infinite 
order) of  complex hypersurfaces. 

For each k e Z +  we denote by ~k(6) the space of jets (2.5) for which c~=0 
whenever [c~]>k. The elements of Nk(5) are called jets of order k of complex 
hypersurfaces. Notice that .~gk(6) is a complex manifold with complex coordinates 
c~, ]c~[<k; in fact it is a product of the polydisc A"-~(5) centered at 0 with C ~ for 
certain l =  l(k). There is a natural projection 

~ :  ~ ( ~ ) - , % ( ~ ) ,  

~(c)={c~, for I~l<k, 
0, for I~l>k. 

We shall sometimes write N(?i)=N~(6) to make the notations consistent. 
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For a given 6 > 0 and for U and U o sufficiently small we can define a mapping 

g : M c c ~ ( U  o x U)--+U o x c,~(~), 
(2.7) 

g (z, w) = (z, zQ~,). 

Here, :Qc~cc.~(6) is the jet of the complex hypersurface Qw at the point z. 
To obtain an explicit expression for g we fix a point Z e Q w ,  we insert 

= z + (~ - z )  into the equation (2.3) and reorder the power series according to the 
powers of (~ - z ) :  

~ Q , ; = { ( t - z l =  ~ G(z,w)(~-5)~}.  (2.8) 

Each coefficient c~(z, w) is a holomorphic function of( : ,  w) since it is a holomorphic 
expression in z and {~ba(w)}. Thus the mapping g (2.7) is holomorphic. 

Let rig: U o • ,~((~)~ U o • ~k(6) be the projection 

nk(Z,C)=(Z,~k(C)) ,  k ~ Z + .  

For each k ~ Z + we also consider the holomorphic mapping 

g k = n k  ,g : Mcc~(U o x U ) ~ U  o x (r (2.9) 

Notice that rl(zQ~) is just the tangent space T=Q,; of the Q~, at z. For z in M, 
zl(=Q=) = T=Q z = T ~ M  is the maximal complex subspace of T~M. 

Assuming that the hypersurface M contains no germs of positive dimensional 
complex varities, Diederich and Formess proved [21, Lemma 3] that for k suf- 
ficiently large and U c  U 0 sufficiently small the map gk (2.9) is finite holomorphic, 
i.e., a branched holomorphic covering onto its image 

~ k = g k ( M c C ~ ( U o  X U ) ) c  U 0 x ~.r 

If M is strictly pseudoconvex (or Levi nondegenerate), the above already holds for 
k = l ,  and 91 is biholomorphic near ( O , O ) e M  c. This follows from a result of 
Webster [49]. We shall not go into details since these properties ofgk will not be used 
in the sequel. 

R emar k .  The constructions of this section can also be applied to the hypersurface 
M '  = b D ' c  C N in a neighborhood off(z~ We will use the same notation for objects 
associated to M',  only adding a prime. 

3. The preimage map 

Let f = ( J ;  . . . . . .  fN) :DwM--+CN be a g'~ mapping which is holomorphic on D and 
maps M to a smooth real-analytic pseudoconvex hypersurfaces M'  c C N. Assume 
that M'  satisfies the condition (A) defined by (2.4) above. This holds in particular 
when M'  is strictly pseudoconvex. Let D'  be a pseudoconvex domain in C N bounded 
in part by M'.  If M '  is strictly pseudoconvex, then every point of M'  has a local 
holomorphic peak function for D', so the maximum principle implies f ( D ) c  D', 
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provided that D is chosen sufficiently small. In general we shall assume this as a part 
of  our hypothesis. 

We fix a point z~ Our goal is to prove tha t f ex t ends  holomorphically to 
points of M arbitrary close to z ~ By translation of coordinates we may assume that 
z~  0 and f ( 0 ) =  0 e M'. Choose local coordinates and local defining functions r 
resp. r '  for M resp. M '  of the form (2.1). Let U~Uo~C" and U ' ~ U ~ C  N be 
polydisc neighborhoods of 0 as in Sect. 2 such that /3c~ Uo=(DuM)c~ U o, 
.f(Uoc~D)c Ud, and f (Uc~D)c  U'. 

By pulling back b y f a  bounded strictly plurisubharmonic exhaustion function 
on D '  of the form 0 ( z ' ) = - ( - r ' ( z ' ) )  1-" with t />0  arbitrarilly small [20] and 
applying the Hopf  lemma to e of  we conclude that the normal derivative of f is 
nonvanishing at each point of  M. At z = 0 this just means ~fl/~Z 1 (0)+ 0. Thus the 
preimage by fo feve ry  smooth complex hypersurface at f (z )  e U~ with tangent space 
close to {z' 1 = 0} is again a smooth complex hypersurface at z e D c~ U o. 

On the basis of the above observation we shall associate to f a mapping of jets of 
complex hypersurfaces as in [21]. Fix a point z e D c~ Uo and set z' = f ( z )  e D'c~ U o. 
Choose a jet Q'  ~ ~ ' ( 6 ' )  at z' of the form (2.5): 

= . 

Assume for a moment  that the power series is convergent, so Q'  is a complex 
hypersurface at z'. Our aim is to find the jet of its preimage f -  I(Q ,) of the form (2.5) 
at z. We set ~ '= f (~ )  and substitute the power series expansion 

; 

+terms  of order=>2 in ( t - z )  

into the equation of  Q'. Let ej = (0 . . . . .  1 . . . . .  0), with I on j-th spot. The coefficient 
of ((~1 --Z1) is 

atz) = ~ z l  ( z ) -  ~ c' 
i = 2  ~  ( z ) ,  

and the equation becomes 

+ te rms  of order > 2  in ( ~ - z ) .  (3.2) 

At z =0  we have 8fl/Szl(O ) 4=0 and 8J)/Szl(O ) =0  for 2 <=j<N, so a(0) 4=0. Choosing 
U o sufficiently small we may assume that a(z)4=O for all z s  Uo c~/5. We divide the 
Eq. (3.2) by a(z) and solve the resulting equation for (~ - Z l )  by iteration. The result 
is a power series 

~ 1 - z 1 =  • ct~(~-z')tJ. (3.3) 
//ez"+-' 
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Since the power series involved contain no constant term, the required operations 
increase the order of terms. Therefore each coefficient c~ is obtained by only I[~1 
iterations, so it is a universal polynomial in the following quantities: 

c',, I~l < I/~1 ; 

~l~l t ) /&~(z) ,  I~I<1/~1, 1 <=j<=n ; 

1/a(z). 

A detailed explanation of this argument can be found in [27]. 
The procedure described above works also if Q ' i s  a formal hypersurface, i.e., it 

is defined by a formal power series, and f (~)  - f ( z )  is given by a formal power series 
in (~ - z). Since f is smooth on D u M, it has a formal power series expansion of the 
required type at each point z e D u M .  Of course, if both Q '  and f ( ~ ) - f ( z )  are 
given by convergent power series, the resulting series (3.3) is also convergent. 

Let z e Uo n (D w M). For each jet Q '  e .~ '(8 ') of the form (2.5) based at the point 
f (z )  we denote by f* ( z ,  Q ') the jet of the formal hypersurface (3.3) at z obtained by 
the above procedure. Given positive numbers 6 and 6 ', we can choose U 0 sufficiently 
small such that f *  gives a mapping 

f *  : (U0 c~/3 ) x ~'(6')--*c5(6). (3.4) 

Similarly we define for each k e Z +  the mapping 

f *  = rk o f *  :(Uo ~ l ) )  x ~ ' ( 6 ' ) + % ( a ) .  (3.5) 

We have seen above that the k-th order jet of f*(z ,  Q ') only depends on z and on 
the k-th order jet rk(Q') of Q '  at f (z ) .  Thus we have 

rk f * = A - f  ~ ,  

where rcs is the natural projection of (Uo n / )  ) x c5,(6,) onto (U0 n / )  ) x c51(6' ). The 
map fk* is smooth on ( U 0 n / ) )  x N'(6 ' )  and holomorphic on ( U o n D ) x  ~ ' (6 ' ) .  
Although the space on which it is defined is infinite dimensional, f f l  only depends 
on a finite number of coordinates, so the notions of smoothness and holomorphy 
make sense. 

If  Q~ is a complex hypersurface (1.3) and z e Qw, we denote by :Q~ e ~(6)  the jet 
of Q,, at the point z. 

3.1. Proposition. For each point z ~ M c~ U we have 

f*(z ,  ~,Q;,) = =Q~, 

where z' = f ( z ) ~  M ' n  U', and Q~ resp. Qs are the hypersurfiTces (1.3). 

Proof. By translation of coordinates we may assume that z = 0 and f ( 0 ) =  0. We 
extend f smoothly f rom/3 to a neighborhood of 0. There is a smooth nonvanishing 
real function p(~, ~-) near 0 such that we have the identity 

r' ( / ( ~ ) , f ( ~ ) ) = p ( C  C)r(~, ~-) 

for small (. When we develop all the functions involved into formal power series 
centered at ~ = 0, the above becomes a formal power series identity in ( and ~-. The 
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identity persists if we vary ~-independently of~. Setting ~-= 0 we obtain the following 
identity in ~: 

r '(./ '(O, o)=p(~, O)r(L 0). 

Both sides of the equation contain the term a~l for some a:l:0, so we can solve the 
equations r ' ( f (~ ) ,0 )=0  and p(~,0)r (~ ,0)=0 for ~1 by iteration. Since the two 
equations are identical, we obtain in both cases the equation of the same formal 
hypersurface 

To prove the proposition we will show that R is the equation of both f*(0 ,  Q~) and 

oQo" 
The hypersurface equation of  Q0 of the form (2.5) is obtained by solving 

r'(z', 0)= 0 for z I by iteration" 

~szN+ - , 

Into this equation we substitute the formal power series expansion z '= f (~ )  and 
solve for ~, by iteration to obtain 

~eZ"+ ' 

On the other hand. we obtain the equation of R by first substituting z' =f (~)  into 
r'(z', 0)= 0 and then solving for {1. 

We claim that the order of operations does not matter and we get the same result 
in both cases. Clearly this is so if,['(~) is a convergent power series in ~. The key point 
now is that the power series involved contain no constant terms, hence coefficients 
b~ and c a do not depend on the terms of order more than I~I of the power series f({). 
Thus, if we replace the full series for f(~) by its convergent Taylor polynomial P,(~) 
in the above procedures, the conclusion is that b~ = c a for ]~[ __< I. This proves that R 
- - f*(0 ,  Q;). 

The proof  of the second case is completely analogous: oQo is obtained by solving 
r(~, 0)= 0 for ~, by iteration, and R is obtained by solving p(~, 0)r(~, 0)= 0. Recall 
that the constant term o f p  is nonzero. Ifp(~, 0) is a convergent power series, the 
result is the same in both cases. However, the terms of order < l of R do not depend 
on the terms of order more than l of p({,0), so R=oQ 0. 

Consequently oQo=f*(0 ,  Qo) and Proposition 3.1 is proved. 

4. Deficiency of the mapping 

In this section we shall introduce the deficiency function associated to the mapping 
f and prove some technical results. 

Since we have c)r'/(~w' 1 :#0 on U o x U', the set 

X= {(z, w'):z6 UonD, w' 6 U', r'(f(z), w') =0} 
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is a complex  mani fo ld  with smooth  boundary .  Under  the na tura l  projec t ion  
X ~ U o c ~ D ,  X is a smooth  fiber bundle  that  is ho lomorph ic  over Uoc~D. We 
associate to X the mapp ing  

gS : Z ~ ( U o c ~ D )  x .~'(~') ,  

gS(z, w') = (z, f,zlQ,~,) �9 

F rom (2.8) in Sect. 2 we know that  the mapp ing  

g ' : M c ~ U o x f # ' ( b ' ) ,  g ' ( z ' ,w ' )=(z ' ,~ ,Q~ , )  

is ho lomorphic .  Therefore  gX is smooth  on -Y and ho lomorph ic  on its in ter ior  Int X. 
Fo r  each k e Z +  we define the mappings  

hk(Z, W') = .[~ :, g~C(z, }t ) = Jk* (z, f(z)O~,) 
and 

F~ : Y,--,(UoC~O) • % ( ~ ) ,  

Fk(z, w') = (z, h~(z, w')) .  

Every F k is a smooth  m a p  on S that  is ho lomorph ic  in the inter ior  of  Z and on each 
fiber 

zz={w'eC':(,-,w')ez}, : e  u0~z~. 

For  each poin t  z e M c~ U we have r ' ( f ( z ) ,  f ( z ) )  = 0, so (z, f ( z ) )  e Y,. The fibers 

Z~. k = {w' 6 Z~ :gk(z,  W') = g k ( z , f ( z ) )  } , k ~ Z+ 

form a decreasing sequence of  complex  subvariet ies of-Y': conta in ing  the poin t  f ( z ) .  
Let 

Vk(Z)=dim ~ Z~,k, z e M c ~ U .  

Since F k is ho lomorph ic ,  the funct ion v k is upper  semicont inuous  on M, and we have 

Vl ~ V2 ~ V3 ~ . . . .  

Definition. The number  v(z) = inf  Vk(Z ) is called the deficiency of  f a t  the point  z ~ M. 
k 

This funct ion plays a very impor t an t  role in our  proof.  Since v : M ~ Z +  is the 
inf imum of  a decreasing sequence of  upper  semicont inuous  funct ions on M c~ U, it is 
upper  semicont inuous .  We set 

M o = {z ~ M c~ U : v  is cons tan t  in a ne ighborhood  of  z in M } .  (4.1) 

We shall prove in Sect. 6 that  f extends ho lomorph ica l ly  across M o. This will imply 
Theorem 1.1. 

Fix a po in t  z~  M c~ U and let m = v(z~ If  k 0 ~ Z+  is sufficiently large, then 
m = Vk(Z ) for k >_k o. Let  ( = ((1 . . . . .  (N- 1) be local ho lomorph ic  fiber coord ina tes  on 

S near  the po in t  ( z~176 (We may  take f f i=wj+ l . )  Then (z,~) are local ~o~ 
coord ina tes  on Z that  are ho lomorph ic  on I n t S .  Af ter  an affine change of  

coordina tes  we may  assume tha t  f ( z  ~ cor responds  to ( = 0, and  that  0 is an isolated 
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point  of  the intersection 

Zzo,ko  = 0  . . . . .  

Consequently there are arbitrary small polydiscs P = P'  x P" in the r with 
P ' c C "  and P " c C  N-m-l ,  satisfying Zzo koC~(/5'X ~?P")=9. It follows that for a 
sufficiently small ne ighborhood V of  z ~ we have 

Zz,kC~(P'xOP")=O, z e M m V ,  k > k  o. (4.2) 

This shows that Vk(Z)<m for all z e M c ~ V ,  so the function Vk is upper semi- 
continuous.  

Suppose now that z ~ ~ M 0 . Shrinking Vif necessary we may assume that v(z) =m 
for all z ~ M ~ V, so the variety Z~. a c~ (P' x ~P") is m-dimensional for each z ~ M c~ V 
and for all large k. F rom (4.2) it follows that Z~, k C~ P is a branched analytic covering 
onto P '  with respect to the coordinate projection P--*P' [31, p. 108]. 

F rom Proposi t ion 3.1 it follows that 

Fk(z , f (z ) )=(z ,  rk(zQz)), z e m c ~ u ,  k e Z + .  

We have thus proved 

4.1. Lemma.  Let z ~ ~ Mo, and let V and P = P'  x P" be as above. Then .['or each 
z 6 M c ~  V and ( '  ~ P '  there is a point (" ~P"  satisfyin9 

Fk(Z,(~',~"))=gk(Z,~), k e Z + .  

We shall consider the fibers o f  F~ over points o f  the set ~k =gt(Mcc~(Uo x U)). 
For  each point  (z, w ) e M  c close to (z~176 with z e D w M ,  we define a complex 
subvariety of  S= by 

S(z,w)={~ES~:Fk(Z,()=gk(Z,W), k e Z + } .  (4.3) 

For  z e M n  U we have S(z,~-)= (-] Z~,k, so (4.2) implies S(~,w)C~(P' x OP") =0 
when (z, w) is close to (z ~ z~). Thus S(~,~)c~(P'x P") is at most m-dimensional 
complex subvariety of  P. Apriori  these varieties may be empty. The main result of  
this section is 

4.2. Proposition. I f  z ~ ~ M o and m = v(z~ there exist arbitrary small polydiscs 
P ~ C  N-I centered at 0 and neiyhborhoods W of  (z~ ~ in C 2" such that 

dimS(~,w)C~P=m , ( z , w ) e M c c ~ W ,  z e D .  

Before we turn to the p roo f  we introduce the not ion of  an A o~ variety. Let D ~ C" 
be a smoothly bounded domain  and let V c C "  and f 2 ~ C  ~ be open subsets. 
We denote by A ~ ( ( V n / 5 ) x f 2 )  the space of  all functions that are smooth  on 
(Vc~/)) x f2 and holomorphic  on (Vc~D) x g2. 

Definition. A set d c ( V c~/)) x f2 is said to be an A oo variety if for each p ~ f2 there is 
a ne ighborhood V ' x  ~ '  o f  p in C " x  C ~ and a finite collection of  functions 
ajeA~ n D )  x 0 ' )  such that 

sr  x ~2')= {(z, ~): a~(z, O = 0  for all j } .  
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We say that  ~ '  is an A ~~ subvariety of  (Vc~/3)x  ~ if, in addition, d is a closed 
subset of  (Vr~/3) x ~2. 

Clearly d r~ ((Vr~ D)  x f2) is a complex variety in the usual sense, and each fiber 
d Z of  .~/' is a complex variety in #2, even when z ~ bD. 

Prool 'ofProposi t ion 4.2. Choose a polydisc P = P ' x  P", a ne ighborhood V o f z  ~ 
and an integer k o such that  (4.2) holds. For  each k > k  o we consider the mappings  

Hk : ( V r~D ) X P--*(VF~D) x (#k(6) X P' ,  

Hk (Z, ~) = (Fk (Z, (), ( ' )  = (z, hk (Z, ~), ~') 
and 

Bk : (Vr~D)  x P-- , (Vr~D) x (#k(6) X P,  

FIk (z, ~) = (z, hk(z, O, O . 

Let ~ k  resp. ~),  be the images of  H k resp. /)k. The set ~ ,  is an A ~ subvariety 
since it is the graph of  the A ~ mapp ing  hk. 

Denote  by 

I k : ( V m D )  x (#k(6) X P - ~ ( V r ~ D )  x (#k(6) X P '  

the coordinate  projection which deletes the last variable ~ " e P " .  We have 
H~ = ~ko/~, so xe; = ~ ( ~ ) .  

I f  the point  (z,w) satisfies tko(fflko(Z,())=Hko(zO, O), then z = z  ~ ( ' = 0 ' ,  and 
Fko(ZO, o ', (")=Fko(20, O), i.e., (0', ~")EZzok O. Hence (4.2) implies that the fiber 

l; o' (H~o(Z ~ 0))c~ ~ko 
is finite. 

Since ~ko is closed in (Vc~D) x Nko(6) X P, there are polydiscs Vtm V c C "  and 
P~ = P[ x P~'m P centered at z ~ resp. at O, and there is a ne ighborhood  Gko of  
Tko(~oQ~o ) in C5ko(6 ) such that  

((I/1 c~D) x Gko x P; x aP~') c~ ~ o  = 0. 

The same is then true for all k > k  o if we define 

Gk = Zk-o t (Gko) n Nk(6).  

If  follows that  for k > k  o the restriction of  the projection i k to the A ~ subvariety 

s)k = #k  r~((F~ n # )  x Gk x & )  

is a proper  mapp ing  of  ~ k  into (V1 r~/5) x G k x P; with image 

We claim that,  as a consequence,  d k is an A ~~ subvariety of(V1 n O )  x G k x P~. 
In the case of  complex varieties this is a special case of  the proper  mapp ing  theorem 
due to Remmer t .  The p roo f  given by Qirka [14, p. 30] for this special case also 
applies to A oo varieties, with only trivial modificat ions in the s ta tement  and proof .  
The p r o o f  depends on the Weierstrass prepara t ion  theorem for functions of  class 
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A ~, but only with respect to the fiber variables. Again, the standard proof  [31, p. 68] 
or [14, p. 11 ] applies with only trivial modifications. We shall not go into the details. 

If  W is a sufficiently small neighborhood of (z ~ 2 )  in C 2", we have 

gk(Z, W)~(V t chO) • G k 

whenever k _>_ k o, z ~ O, and (z, w) ~ M c ch W. Let W be a product W = W' x W", with 
W', W " c  C". Denote by R the smooth manifold with boundary 

R = ( M c n ( ( W '  c~O ) x W")) x P; . 

Its interior is a complex manifold of dimension (2n - 1 +m).  We may assume that R 
is connected. The boundary of R contains the smooth generating submanifold 

T = { ( z , i , ~ ' ) :  z e M c ~  W',  ~' eP~} .  

By a theorem of Pin6uk [39] Tis a uniqueness set for continuous functions on R that 
are holomorphic in the interior of  R. 

For each k_>_k o we consider the associated A ~ mapping 

gk : R--*(V1 n O )  x G k x P~, 

~k((z, w), ~')= (0Az, w), ~'). 

For z e M n  W'  we have ( z , f ) e M  c and 

~k((Z, ~ ,  ~') =(Z, Zk(zQz), ( ' ) .  

By choosing the polydisc Px = P~ x P~' correctly we may assume that Lemma 4.1 
holds for P1. Hence for each ( ' e  P~ there is a point ( " e  P~' such that 

gk( z , e )=Fk(z ( ( ' , ( " ) ) ,  k >=k o. 

The definition of Hk now implies 

gk((Z, 2 - ) , ( ' )=Hk(Z , ( ( ' , ( " ) )G~k ,  k >=k o . 

By pulling back the local A oo defining functions of  s~' k by the mapping gk we 
obtain local A ~ functions on R that vanish on the submanifold T. The conclusion is 
that ~k(R) is contained in d k for all k > k  o. 

Since H k is a finite mapping for k > k o and the fibers of H k are decreasing with k, 
we can find for each (z, w, ( ' )  e R a finite set of points (" e P~' satisfying 

Hk(z , (~ ' , (") )=Ok((z ,w) ,~ '  ),  k e Z + .  

This equation is equivalent to (~',~")eS(~,w)C~P~. Hence the fiber S(~,w)nP~ is 
m-dimensional and Proposition 4.2 is proved. 

5. Construction of an analytic variety 

We now have all the necessary tools to construct the analytic variety X c C  "+N 
associated with f that will be used to extend f .  
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Let U c  U o be polydisc neighborhoods of 0 as in Sects. 2 and 3. By the implicit 
function theorem we can solve the system of equations 

r(z,~)=O, 

z j=wj ,  2<j<=n, 

for z = z(w) when w is in a smaller neighborhood U 1 c U of 0. The resulting mapping 
w~z(w)  is real-analytic and has the properties 

(i) z(w) e Qw- 
(ii) we Ul\/3 implies z(w)~ Uc~D. 

(iii) w e M c ~ U  1 implies z(w)=w. 
The properties (i) and (iii) are obvious. Observe that z(w) is antiholo- 

morphic in the variable w~, so the restriction of z(w) to every complex line 
L = {w 2 = a 2 . . . . .  w n = a,} is the antiholomorphic reflection across the curve M c~ L. 
This implies (ii). 

Let z'(w) = f (z (w)) for w e U 1 \D. Let F, "Z ~ (Up c~ D) • ~qk (6) be the mapping 
defined in Sect. 4, and let 9k be as in (2.9). We define 

X =  {(w, w') e (UI\D) x U':  r'(z'(w), ~') = 0 ,  
(5.1) 

Fk(Z(W), ~')=gk(Z(W), ~) for all k e Z + } .  

Notice that the first condition in the definition of Xrequires that the point (z(w), if~) 
lies in the manifold Z where the maps F k are defined. 

An equivalent definition of X is 

x={(w,w')e(Ul\D)xU':z ' (w)eQ~, ,J*(z(w) ,Q;, )=~(,~,)Qw} (5.2) 

From the second definition of Xand the construction of f *  in Sect. 3 it follows that 
for each (w, w')e X, w E U1\/3, f m a p s  the germ of the complex hypersurface Qw at 
z(w) into Q~,, so f maps the whole connected component Qw of Q~c~Dc~U 
containing z(w) into Q' , .  Conversely, if f ( 0 ~ ) c  Q~,,, then (w, w')e X. This shows 
that for each w e U~\/3 the fiber X,, of X equals 

X,,={w' e U' : f(O~,)cQ~,,}. (5.3) 

This definition of X,, is almost the same as (1.5) in Sect. 1, except that Qw is replaced 
by Qw. The following proposition contains the relevant properties of X. 

5.1. Proposition. (a) The interior Int X=Xc~((Ul\O ) • U') is a closed complex 
subvariety of  ( UI \D ) x U'. 

(b) The fiber Xw is a closed complex subvariety of Q ~,(w ) n U ' for each w e UI \D. 
(c) I f  wemc~  U t, then f ( w ) e X w  ~Q'r(w ). 
(d) I f  z belongs to the set M o defined by (4.1) and v(z)=m, there exist arbitrary 

small neighborhoods V= V' • V" of (z,f(z)), with V ' c C "  and V " c C  N, such that 

d imXwc~V"=m,  w e V ' \ D .  

Proof. Recall that 9k is holomorphic on the complexification Mc, and F k is of class 
A~(Z). Hence for each fixed weUt \D  the defining equations (5.1) of X are 
antiholomorphic in w 'e  U'. This proves (b). 
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Property (c) follows immediatelly from Proposition 3.1 and the definition of X. 
We shall now prove (a). For each point w 1 6 U1\/3 we can find a neighborhood 

Uz c UI\D of w 1 and an anti-holomorphic mapping ~:U 2 ~  Uc~D satisfying 

~(w)~Q,, and ~(wl)=z(wl) .  

If  we write a =z(wt),  we can obtain a ~ as above by solving the system of equations 

~ = a j ,  2<j<=n, 

r (C  ~)  = o 
in a neighborhood of (a, wl). 

If  the neighborhood U 2 is chosen sufficiently small, the points ~(w) and z(w) lie 
in the same connected component  Q,~ of Q w n D n  U for each we U2. 

We now define a subset Xa of U2 x U' by the same equations as X (5.1), except 
that we replace z(w) everywhere by ~(w) and z'(w) by f(~(w)).  Since ~ is anti- 
holomorphic in w, the new equations are anti-holomorphic in both variables (w, w'), 
hence X 1 is a complex subvariety of  U 2 • U'. 

From the expression (5.3) for the fiber X~ it follows that X1 coincides with 
Xc~(U2 x U'). Thus Xn(U2  x U') is a complex variety, and (a) is proved. 

It remains to prove (d). Let 

r] : ( U I \ D )  X U'-~(U\D) • U', 

r/(w, w ' ) = ( z ( w ) ,  ~,') . 

Recall that U' is symmetric with respect to 0, so VW s U'  when w' e U'. For  each fixed 
w~U~\D the map q(w,.) provides an anti-holomorphic equivalence of the 
subvariety Q',(w) n U'  onto the fiber Z~iw) of 27. The fiber Xw corresponds under 
q(w, ") to the variety S(~(~),w) defined by (4.3). Property (d) now follows from 
Proposition 4.2. This completes the proof  of  Proposition 5.1. 

6. Proof of the main result 

In this section we shall prove the following 

6.1. Theorem. Assume that the hypotheses of  Theorem 1.1 hold. Suppose that the 
defi'ciency function v defined Sect. 4 is constant in a neighborhood of a point z ~ ~ M in 
M (i. e., z ~ ~ Mo). Then f extends holomorphically to a neighborhood of  z ~ in C". 

Since M o is open and dense in M, this will also prove Theorem 1.1. We may 
assume that z~  0, f ( 0 ) =  0, and v(0)= m. Let X be the set defined by (5.1). Choose 
a neighborhood V = V ' x  V" of ( 0 , 0 ) ~ C ' x C  N satisfying Proposition 5.1 (d). 
Since the fiber X0n  V" is an m-dimensional subvariety of V", there is an 
(N-m)-d imens iona l  complex subspace L of C N such that 0 is an isolated 
point of  X o n L. After a unitary change of coordinates in C N we may assume that 
L = { w i = 0  . . . . .  w;.=0}. 

We can find a polydisc P = P ' x P " c  V" centered at 0, with P ' c C  m and 
P " c C  u - " ,  such that 

Xoc~(P' x ~P")=O. 
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Since X is a closed subset of (UI\D)  x U', there is a neighborhood W of 0 in C', 
W\D ~ V', satisfying 

X r ~ ( ( W \ D )  x P '  x ~P")=O.  

Hence the restriction of the coordinate projection 

a: ( W \ D )  x P '  x P"--+(W\D) x P '  

to the subvariety X' = X ~  ((W\L)) x P) is a proper holomorphic mapping of  X '  into 
(W~/)) x P'. 

Denote by Y the top dimensional part of the variety X'. Since each fiber Xw n V" 
is m-dimensional for wcC" close to 0 according to Proposition 5.1 (d), we have 
dim Y = n + m .  It follows that 

a: Y ~ ( W \ O )  x P '  

is a branched analytic covering onto ( W \ / ) ) x  P '  [31, p. 108]. Let 

4)~(z, w ' )  = y ,  a~,p(z ,  w' l ,  . . .  , w ; )  (w'm+ ~ . . . .  , w'~)~ 

be the canonical defining functions of this analytic cover, see [50, p. 369] or [14, 
p. 40]. The coefficients a~,a are holomorphic functions on (V~/3)x P' ,  so they 
extend across the Levi pseudoconcave hypersurface ( M n V ) x P ' c C  "+m to 
holomorphic functions in a neighborhood W~ of the origin in C "+" [3, 45]. We 
denote by ~ the corresponding extension of q~. The set 

~'={(z,w'):  ql~(z,w')=0 for all ~} 

is a purely (n+m)-dimensional analytic subvariety of a neighborhood of 
(0, 0) E C" + • which we again denote by W x P. By construction ~" extends Y, i.e., 

Y(~ ((W\/5) x P ) =  Y. 

We claim that for each w ~ M n  W we have 

f (w)E  17" w and YwcQ~(w). (6.1) 

The first property holds since (w , f (w) )  lies in the closure 17 of Y in Wx P by 
Proposition (5.1) (d), and certainly Y~ Y. To prove the second inclusion we first 
note that ~',,, c f for w e M n W since ~" is a branched covering extending Y. The set 
Xis closed in W x  P, so f o X ,  and therefore ~-~,,cX,,,. By Proposition 5.1 (c) we also 
have Xw~Q}(,,,), so (6.1) is proved. 

Suppose now that the hypersurface M'  = bD'  satisfies Condition (A) defined by 
(2.4). Denote by 

F(.fIM) = {(z, f ( z ) ) : z e M }  

the graph o f f  over M. Since f i s  smooth on D u M, F( f lM)  is a smooth submanifold 
of C "+N. Condition (A) and (6.~) together imply that for sufficiently small 
neighborhoods U of 0 in C "+N we have 

~'c~(M • M ' )  ~ U = F( f lM)  ~ U. 
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Since Y is a complex subvariety and M and M '  are real-analytic subsets, the above 
identity exhibits the smooth manifold F(flM)c~ U as a real-analytic subset of  U. 
It follows that F(flM)c~ U is a real-analytic submanifold of C "+N according to 
[36, p. 96], so f lM~V is real-analytic by the implicit function theorem [10]. Con- 
sequently f extends holomorphically to a neighborhood of 0 in C". This concludes 
the proof  of  Theorem 6. I. 

7. Extension of proper holomorphic maps to balls 

In this section we shall prove Theorem 1.3 in which the hypersurface M '  is the unit 
sphere {z 'eCN: Iz'l= 1}, the boundary of the unit ball B N c C  N. Our assumption 
is that the holomorphic map f : D ~ B  N extends to a map of class ~S(D w M), with 
s = N - n  + 1, and f ( M )  ~ M '  = bB N. At the same time we shall prove Theorem 1.4 
in which M =  bB". 

Fix a point z ~  and assume that z~  Choose polydisc neighborhoods 
U c  U0 of 0 of the form (2.2) as in Sect. 2. 

We denote by M the set 

M = { ( z , w ) : z e U o n ( D u M ) ,  weU,  r(z ,w)=O}.  

The interior of  ~ / i s  a complex manifold of  dimension 2 n - 1 ,  an open subset of the 
complexification M c. The part  of  the boundary of_~r contained in (U 0 r~ M) x U is 
smooth real-analytic and contains the totally real submanifold 

7"= 

of  real dimension 2n - 1. By choosing U and U o sufficiently small we may assume 
tha t /~ / i s  connected. 

We denote by A (]17/) the algebra of  all continuous functions on M that are 
holomorphic in the interior of M. By a theorem of PinSuk [39] every nonempty open 
subset of  T is a uniqueness set for functions in A (~r 

Let Qw be the complex hypersurface in C" defined by (1.3). Recall that for each 
point (z, w) e M c we have z e Q~. Let x = (x 2 . . . . .  x,) e C"-  1 According to (2.8) we 
can parametrize the germ of the complex hypersurface Q~ at the point z by a 
mapping 

 l(x)=zl+ c (z,w)x 
I~I>O 

~j (x )=z j+x j ,  2 < j < n .  (7.1) 

Each coefficient c~(z, w) is a holomorphic function of (z, w)e  M c. 
Let (z, w) e~r ,  so z e D u M .  We extend f to a (g~ map on a neighborhood of 

D u M  in C". Consider the restriction of f to Q~ in the coordinates x, i.e., the 
function f (~(x)) .  Its Taylor expansion of order s at the point x = 0  is of the form 

f ( ~ ( x ) ) =  ~ ap(z,w)x~+o(txI~). (7.2) 

7.1. Lemma. For each fleZ~_ -1, Ifll<s, we have a~eA()~I). 
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Proof. We only need to observe that the coefficient ate(z, w) is a linear combinat ion 
of  the derivatives 0 I~l f/~z ~ (z) of  order [7[ < ]ill whose coefficients are polynomials in 
the terms co(z, w) for I~]<]flt. The lemma follows. 

In the case when M = bB" is the unit sphere, the associated complex hypersurface 
Qw is the hyperplane 

Q w = {  z e C " : ; = l  ~ zJ '~=l}  =w/'wl2+w• w:#O. 

By a rotat ion we may assume that the initial point z ~ e bB" is (1,0 . . . . .  0), and w~ 4:0 
on the neighborhood U of  z ~ For  each w e U the vectors 

t, (w) =(w2,  - w l ,  0 . . . . .  0) 

t z (w) = (w 3 , 0, - w 1 . . . . .  0) 

t,_l(w)=(w,,O,O, ..., -wi )  

form a complex basis o f  ri ~• For  a fixed z ~ Qw we can parametrize Q ;  by the map 

n--1 

~ ( x ) = z +  y~ x i t /w) ,  x : ( x ,  . . . . .  x . _ , ) ~ C  "-~.  
j = l  

In this case the coefficients ate(z, w) in the Taylor expansion (7.2) are homogeneous  
polynomials of  order Ifi] < s  in the second variable w. 

We return to the general case. Denote  by (z, w) the complex bilinear form 

<Z, W> ~- ~ ZjWj. 

7.2. Lemma.  For each z ~ M c~ U we have 

l ,  , f / ~ = 0 ;  
(ae(z 'e) ' f (z )}= o, if J<l/~l__<s. (7.3) 

Proof. By translation o f  coordinates we may assume that  z = 0 .  Recall that  f is a 

map o f  class cg~ near 0 e C" that satisfies < f(~),f(~) } = 1 for ~" e M. Hence there is a 
function p(r o f  class g*-*  near 0 such that 

for all ~ near O. 
We write 

( f (~ ) , f ( { )  } - I =p({)  r({, ~-) 

f ( ~ )  = f s ( r  + o(lr 

p(r =p~- i  (~, ~-) + o(1r 

where f~  a n d p  ~- 1 are Taylor  polynomials  o f  order s resp. s - 1 at O. Since r vanishes 
at O, we have 

< J's(~),.l"~(~)} - i =pS-  1 (~, ~-) r (~, ~-) + o(l~?) �9 

As usually we complexify this identity by varying { and ~-independently. The error 
term remains small of  order s even in the complexified identity. 
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We now set ~-= 0 and ~ = ((x)  e Q0 (7.1). Then r(ff (x), 0) = 0 and F ( x ) l  = O(Ix l ) ,  so 
we have 

( f ~ ( ( . ( x ) ) ,  f s ( o )  ) - 1 = o(Ixl~).  
Recall that  

f ~ ( ~ ( x ) ) =  ~ a~(O,O)x~+o(IxIS). 
Ipl<s 

If  we insert this into the above identity and compare  the coefficients of  the powers  
x ~, we obtain the Eqs. (7.3) at the point  z = 0 .  This proves L e m m a  7.2. 

We now define an integer-valued function k : 37/--,Z+ by 

k(z, w) = r a n k  {a~(z, w): 1 < ]ill < s } .  (7.4) 

Clearly k is lower semicontinuous,  so its restriction to T is locally constant  on an 
open, everywhere dense subset T o c T. Let 

k 0 = min {k(z, f) : (z, i)  ~ To}. 

7.3. Lemma. (a) k o < N - 1 .  
(b) k(z, w)<=k o for each (z, w)eM.  
(c) k = k  o on T O . 

Proof. F r o m  (7.3) it follows that  k (z, Z)< N - 1  for each z e M n U, so k 0 < N -  1. 
This proves (a). Part  (c) follows f rom (b) and the lower semicontinuity of  k. It 
remains to prove (b). 

Denote  by A (z, w) the matr ix  with entries in the algebra A (37/) whose columns 
are the functions {a~: 1 <[fl[<s} given by (7.2). Let 6(z, w) be the de terminant  of  
any (ko+  1) minor  o f A  (z, w); ~ is a function in A(3 ) )  that  vanishes on a nonempty  
open subset o f  T, according to the definition of  k 0. The uniqueness theorem of  
Pineuk [39] implies that 6 -- 0 on/I~/. This shows that  the rank  of  the matr ix  A (z, w) 
does not exceed k o and the l emma is proved.  

Remark. We shall see tha t  k is related to the deficiency function v defined in Sect. 4 
above by 

v(z )=N-(k ( z , z - )+  l).  

The funct ion k is not  necessarilly constant  on 37/. The subset of  the interior o f  
defined by k < k o is a complex subvariety.  

Let z=z(w) be the mapp ing  /-s c U ~ U  defined at the beginning of  Sect. 5. 
Recall that  z(w) satisfies the propert ies  (i)-(iii) in Sect. 5, and it is an t i -holomorphic  
in the variable w 1 . In the case when M =  bB" we take z(w)= w/lw] 2. For  ~ e C\{0} we 
have 

z ( ~ w )  = ~w/~( Iwl  2 = z ( w ) / ( ,  

so in this case z(w) is an t i -ho lomorphic  on each complex line through 0 in C". 
Let ate(z, w) be as in (7.2) above.  We define a subset X c ( U ~ \ D ) x  C N by the 

equat ions 

, ~ (1 ,  for f l=O;  (7.5) 
( a ~ ( z ( w ) ,  r ~ 

) = ( 0 ,  for  l__<Lfll_<_s. 

Here,  w e UI\D and w' e C N. 
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Note that ao(Z(W ), ~ ) = f ( z ( w ) ) T O  provided that U is sufficiently small. Also, 
the vectors {at; : 1 < I/t1< s} have rank k(z(w), ~) < k  o < N -  1 according to Lemma 
7.3. Hence, for each fixed wc UI\D, the fiber 

Xw={W'eCN:(w,w')ex} 
is a nonempty  affine complex subspace of  C u of  complex dimension 

dim X w = N - k (z (w), ~,) - 1 > N - k 0 - 1. 

The intersection Xc~((U~\D) x C N) is a real-analytic subset o f  (U1\/5) x C N. 
If  weMc~U1, then z(w)=w. Thus Lemma 7.2 implies 

f ( w ) e X  w and X w c f ( w ) + f ( w )  • (7.6) 

We now restrict our attention to a point z ~ e M such that (z ~ 5 ~ e T o, so that 
k=ko on a ne ighborhood of  (z ~ 2 ~ in 3~/. Such points form an open dense subset 
M 0 c M. We shall prove that f extends holomorphical ly  to a ne ighborhood of  z ~ 
This will prove Theorem 1.3. We may assume that z ~ = 0. In the case when M = bB" 
we shall assume that z ~  (1,0 . . . . .  0). 

Choose a ne ighborhood V 0 of  0, VocU 1, such that k(z(w),l f ' )=k o for all 
we Vo\D. Because of  (7.4) the system of  linear equations (7.5) in w' has rank ko + 1 
for all points w e V\D in a smaller neighborhood V=  V 0 of  0. 

We shall distinguish two cases. 

Case 1. k o + l = N. 

In this case the system (7.5) of  linear equations in the variables w' has maximal 
rank N for all w e V\D. Solving the system for w' by Cramer 's  formula we obtain a 
continuous mapping w' =.]'(w) : V\D--+C u, so that 

x =  { ( w , y ( w ) ) :  w e  v \ D }  . 

Because of  (7.6) we have f(w)=J~'(w) for all we Vc~M, so the mapping 
F :  V--->C N defined by 

{ S  (~;) if w e  Vc~/3; 
F(w) = ' (7.7) 

( if w e  V\D 

is cont inuous in V and holomorphic  in VmD, 
We claim that  the restriction of  F to each complex line L = { w 2 = c 2 . . . . .  w, = c,} 

for sufficiently small c2 . . . . .  c, e C is holomorphic  in Lc3 V. A theorem of  Har togs  
[9, p. 139] then implies that  Fis  holomorphic  in all variables in a ne ighborhood of  0. 

To prove the claim, recall that  the mapping z(w) is ant i -holomorphic  in w 1 , so 
the functions ae(z(w), ~) are ant i -holomorphic  in L\D. Hence the solution w' =.F(w) 
of  (7.5) is holomorphic  in L\D. Thus the restriction F i t  is cont inuous on L c~ V and 
holomorphic in L c~ V\M. Morera ' s  theorem implies that  F is holomorphic  in L c~ V 
which establishes the claim. 

This completes the p r o o f  o f  Theorem 1.3 in Case 1. The p roo f  is similar to the 
original reflection principle in C" discovered by Lewy [34] and Pin~uk [38]. 

We now look at the case M = b B "  and z(w)=w/iwt 2, assuming still that 
k0 + 1 = N. Using Morera ' s  theorem on the family of  complex lines passing through 
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the origin in C" we see as above that  the extended mapping F (7.7) is holomorphic.  
The solution j ' (w)  of  the system (7.5) obtained by Cramer 's  formula is of  the form 

f (w) = 0 (~/Iw] 2, w)/h(~/Iwl 2, w), 

where 9 = (9~ . . . . .  9u) and h are sums of  products  o f  functions a~(v~/[wl 2, w). Hence 9 
and h depend holomorphical ly  on the first variable ~/Iwl 2 and are polynomials  of  
degree at most  K = N s = N ( N - n +  1) in the second variable w. 

Cima and Suffridge proved in [11] that  holomorphic  functions of  this type are 
rational : 

f (w) = (Pl (w) . . . . .  ps (w) ) /q (w) ,  

where t h e p f s  and q are holomorphic  polynomials o f  degree at most  K. Since ./'is an 
analytic cont inuat ion of  f ,  it follows that f = p / q  is a rational mapping. 

Case 2. k o + l < N. 

Now the system (7.5) has rank k 0 + 1 < N. Let m = N -  (k 0 + 1). Renumerat ing 
the variables w' we may assume that this systm has rank k 0 + 1 in ~,,+~ . . . . .  w u, so 
the solution is of  the form 

W'm+k=bk,o(W)+ bk,j(W)W s, 
j=l 

w e  V\D,  1 < k < N - m ,  (7.8) 

provided that we shrink V if necessary. These equations represent X as a graph over 
( V \ D )  x C ~. The functions bk, s are continuous in V\D. 

7.4 P r o p o s i t i o n .  The functions bk, s in (7.8) are holomorphic in V\D,  so Xc~(UI\D ) is 
a complex subvariety o f  dimension n + m. 

Proo f  This is not  obvious since the functions aa(z(w), ~) contain both holomorphic  
and ant i -holomorphic  terms. All we know at this point is that the bk,fS are 
holomorphic  in wa, for the reason explained in the p roof  of  Case I. 

The p r o o f  depends on the following two lemmas. 

7.5. Lemma.  Let h �9 U--*C N be a holomorphic map deft'ned on an open connected 
subset U o f  C". For each xE  U a n d j 6 Z +  we set 

O~ = span {ol~lh/Oxa(x)" 1 ~ 10~[ < j } .  

Assume that Jor some j ~ Z + we have O~ = O~+X for  all x ~ U. Then there is a point 
x o ~ U such that the image o f h  is contained in the aJfine sub,space h(xo) + 0~o o f C  N. 

Proof. Choose a point  x o 6 U such that dim O~ is constant  for all x in an open 
ne ighborhood Uo OfXo. This is possible since the function x - , d i m  O~ is lower semi- 
continuous.  Shrinking U o if necessary we can find a collection o f  vectors of  the form 

X,(x)=O=rh/Ox=r(x), 1 < [ ~ r l < j ,  1 < r_<d imO~ 

that  form a basis of  O~ for all x ~ U o. Let X ( x ) =  O'h/Ox'(x) for some multiindex 
- �9 .-,j ~ j + l  t h a t X ( x ) = ~  ot~(x)Xr(x) for some with [~[ = j +  1. Our  hypothesis tJ~ = t,~ implies 
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analytic functions a r. Differentiating with respect to the coordinate xi we have 

OX/~xi (x) = Y~ ~ar/Ox~(x) Xr (x) + ~ ar(x) ax,/ax+(x). 
r r 

Since --xOi-OJ+l---x , each term on the right lies in O~ whence OX/Ox~(x)EO~. Since c~ 
k _ _  and i were arbitrary, it follows that O ~ + 2 :  O~. By induction we have O x -  O k for 

each k >=j. The lemma now follows from the Taylor  expansion of  h at x 0. 

7.6. Lemma. For each w e V\D we denote by Q,w the connected component ofQ,,w U 
containing z(w). Then .f (Q~,) is contained in the aJfine complex subspace 

A,, = f (z (w))  + span {a~(z(w), ~) : 1 < 1/~1 <s} c C N (7.9) 

~?f dimension k o . 

Proq[i Note that .f(Q,.) can not be contained in any proper  subspace o f  A~. 

Choose a connected open set Q c C  "-~ with coordinates x and a holomor-  
phic mapping ~ : f 2~Q, .  that parametrizes Q~ in a ne ighborhood of  z(w). Set 
h(x) = f(~(x)) .  Denote  by O~ the subspace of C N defined in the preceeding lemma. 
In view of  (7.2) we also have 

O~ = span {a~(~ (x), +~') : 1 < I/?1 < J } ,  

S " s �9 o dim O~ = k o . Since f was assumed to be finite holomorphic  on D, h has rank n - 1 
at a generic point of~2, so we have dim O~ = n  - l for all x in an open dense subset g2 o 
of  ~. 

Consider the increasing flag 0+~ ~ 0 ~ . . . 0 ] ,  o f s = N - n + l  subspaces o f  C u. 
We have 

dim ~ ' 1 O ~ - d l m  O x = k o - ( n - l ) < ( N - 1 ) - ( n - 1 ) = s - I  . 

j ( ) j + l  Hence there is an integerj=j(x) such that O ~ = _ ~  . Since x - . d i m  O~ is a lower 
semicontinuous function of  x, we can shrink ~2 o and assume that j (x)  is constant  
in f20 . 

Lemma 7.5 implies that h((2o) and consequently h(Q) is contained in the affine 
subspace h (x) + O~ o f C  N for some x e~o-  Fix any such x, and set A = h(x) + O~. The 
definition ofh  implies that f ( 0 + )  c A, so A~ c A. Since dim A~ = k o and dim A < k 0, 
we have A=Aw, and .['(Ow)~Aw. This proves Lemma 7.6. 

We continue with the p roo f  of  Proposi t ion 7.4. Fix a point w l e  V\D. We 
can find a ne ighborhood  V~ of  w 1, V 1 ~ V\L), and an ant i -holomorphic  map 

: V ~ D c ~ U  satisfying 

~(w)eOw for we Vl, ( ( w t ) = z ( M ) .  

(See the p roo f  of  part  (a) o f  Proposi t ion 5.1.) 
We define a subset X ' c / / 1  x C s by the Eqs. (7.5), except that we replace z(w) by 

~(w). With this replacement the Eqs. (7.5) become ant i -holomorphic  in w e V~ and 
w' e C N, so X '  is a complex subvariety (in fact, a complex submanifold) o f  V~ x C N. 
The fibers of  X '  are affine subspaces o f  dimension m = N - ( k o +  1). 

F rom Lemma 7.6 it follows that Jfc~(V~ x C s) c X'.  Since both sets have affine 
fibers of  dimension m, they are equal. Therefore Xc~(V~ x C N) is complex analytic. 
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Since w 1 was an arbitrary point of V\/), we proved that Xc~(V\/) • C N) is a complex 
variety. Thus the functions bk, j in (7.8) are holomorphic in V\/). This proves 
Proposition 7.4. 

By the theorem of Hartogs the functions bk, j extend across M to holomorphic 
functions in a neighborhood of 0~C"  which we still denote by V. Using the 
Eqs. (7.8) we extend X to a complex submanifold of V• C u of dimension n +m.  

The last step in the proof  is as in Sect. 6. From (7.6) we conclude 
XwnbB N = { J ( w ) } ,  s o  

Xc~((M~ V) • bB N) = { (w, f  (w)) : w ~ M n  V}. 

On the left hand side we have a real-analytic subset of V• C u. Hence ,['IM is real- 
analytic in an open dense subset M 0 ~ Mc~ V, and it extends holomorphically to a 
neighborhood of M 0. This completes the proof  of Theorem 1.3. 

It remains to prove Theorem 1.4 in Case 2. The same argument as given in 
Case 1 above proves that the holomorphic functions bk,j(w) in (7.8) are rational, 

bk,j(W) = Pk,j(w)/Qj(w), 

where Pk.j(W) and Qj(w) are holomorphic polynomials of degree at most 
(k 0 + 1) ( N - n  + 1). Thus the set X extends to a rational subvariety of  C" + s deft ned 
by the equations 

Qj(w)w'~+j=Pj, o(W)+ ~ Pj,,(w)w'~, 1 < j < = N - m .  (7.9) 
r = l  

Recall from (7.6) that for each webB"c~V we have XwnbBN={f (w)} .  This 
implies that the restriction of the function [w'[2 = ~ wjv~,j to X w has precisely one 
critical point w'=f (w) .  

,! t If we use the variables nl . . . . .  w,, as the coordinates on X w and express the 
remaining variables from (7.9), this restriction equals 

--  _ f  
' - '  ' -" Pj, rWr qjQj" wjwj+ ~ ,o+ Pj,rWr 

j = l  j = l  r = l  

The point wj=ji(w) ,  1 < j < m ,  is the unique solution of the system of equations 
that we obtain by differentiating the above expression with respect to the variables 
~ ,  1 < l < m ,  and setting the derivative equal to zero: 

t W~+ Z t i l t  Pj, o + Pj, rWr QjQj=O, l < l < m .  (7.10) 
j = l  r = l  

Cramer 's  formula shows that the solution of the above system is of  the form 

f j(w) =wj=aj(w,  ~,)/b(w, v~), 1 <j<m,  we  Vc~bB", (7.11) 

where Visa  sufficiently small neighborhood of( l ,  0 . . . . .  0), and the functions aj and 
b are polynomials in the variables w and ~. 

We claim that, as a consequence, f~ is a rational function of the variable w for 
1 < j <  m. This follows from Proposition 7.7 below. Inserting the functions .fl . . . . .  J,, 
into (7.9) we see that fm+l . . . . .  fN are rational as well, so f is a rational mapping. 
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7.7. Proposition. Let U c C" be an open ball centered at apoint in bB". [fP(z,  ~) and 
Q(=, 5) are polynomials in z and 5 such that Q 4= 0 on U and P/Q sati,~fies the tangen- 
tial Cauchy-Riemann equations on bBnc~U, then there exists a rational function 
g(:)=p(z)/q(z) that agrees with P/Q on bB"c~U. 

Proof We many replace the sphere bB ~ by the Heisenberg group 

S =  I m z , = ~  zj c C  n 
j = l  

that is rationally equivalent to the punctured sphere by the Cayley map [42, p. 31 ]. 
In P and Q we substitute 

n - - 1  

5 , = z , - 2 i  ~ :S~" (7.12) 
j = l  

The resulting polynomials  P~ and Q1 do not contain 5,, so they are holomorphic  in 
the variable z,. Notice that P~ resp. Q1 agree with P resp. Q on Sc~ U since the above 
is an identity on S. 

Shrinking U if necessary we may assume that  Q1 has no zeros on U. We claim 
that the function g = P1/Q~ is holomorphic  on U. To prove this we fix a point 
z~ and let h(z) be a holomorphic  function on a neighborhood of  =0 that 
agrees with P/Q on S. Such a function exists since P/Q is real-analytic and satisfies 
the tangential J-equations on Sc~U. The restrictions o f  g and h to complex lines 
L={z~-=a I . . . . .  z, ~ = a , _ l }  are holomorphic  in z,, and they agree on Lc~S. It 
follows that g = h  near _o so g is holomorphic  there. Since g is real-analytic, it is 
consequently holomorphic  on all of  U. 

It remains to show that g is rational in z. This follows from the following 
elementary lemma whose p roof  will be ommited. 

7.8. Lemma. Suppose that a rational function 

satLff~es ~['/~x =-OJorx in an open connected subset of  C. Then k = m  and.f-~aJb k. 

To conclude the p roo f  of  Proposit ion 7.7 we write 

where PI, j  and QI,j  are polynomials  not  involving zl. Since 

(~ /~5, ) (P,/Q~) = O, 

the lemma with x =,Yl implies k = m  and P1/Q1 = Pl,k/Ql,k on a suitably smaller set. 
We repeat the same argument  with the variables zTz, ..., 5,_ 1 . After n -  1 steps we 
obtain holomorphic  po lynomia lsp  and q such that g =p/q almost everywhere on U. 
We may assume that p and q contain no c o m m o n  factors. Since 9 is ho tomorphic  on 
U, q cannot  have any zeros on U, so we have P/Q=p/q  on Uc~S. This proves 
Proposit ion 7.7. 
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We have proved that f extends to a rational mapping on C". The fact that f is 
holomorphic on B" and has no poles on bB" was proved in [38] and [28]. 

It remains to estimate the degree of f In Case 1 (k 0 + 1 = N )  we have already 
seen that the degree is bounded by N ( N - n + l ) .  In Case2,  the degree of 
polynomials Pk,y and Qj appearing in the coefficients bk,~ (7.8) is bounded by 
C = ( N - m ) ( N - n +  1). The solution (7.11) of  the system (7.10) contains at most 
2mC holomorphic terms in each numerator  and denominator. Finally, when we 
substitute (7.12) into the (7.11), the number of  holomorphic terms is at most 
doubled to 

4 m C = 4 m ( N - m )  ( N - n  + 1) ~ NZ(N - n  + 1). 

This completes the proof  of Theorem 1.4. 

8. Examples 

In this section we shall illustrate our method by calculating the variety X defined by 
(7.5) for certain proper polynomial maps of balls. 

Let f :  C " ~ C  N be a polynomial mapping that takes B" properly into B N. Recall 
that for each w~C"\{0} we have 

Qw={z~C~ ~wj=l 1 
and 

X w = w' ~ .~(z) wj.= 1 for all z e Qw - 

On the set w 14:0 we express 

z1 = (1 -f2 w2 -... -Z.w.)/wl (8.1) 

and substitute into the equation of X w. The variables z 2 . . . . . .  z, are now free, so we 
can equate the coefficients of the terms ~2...U,-. This leads to the system of defining 
equations of  the form (2.4) for X w. 

Example 1. f:  C " ~ C  N, f ( z ) = ( z ,  0). One finds easily that 

l<=j<=n}, 

so dim Xw = N - n .  

Example 2. Faran [24] and Cima and Suffridge [12] listed all proper maps from B 2 

to B 3 that are of  class ~z on BZ Up to the equivalence with respect to the 
automorphism groups of B 2 and B 3 there are four maps. One of them is 

S . 

Fix (wl, w2)sC 2, w 14:0, and express z 1 as in (5.1). The equation for X~ is 

(1 -f2w 5 , =2 , 
- -  W 1 Z2 W 2 Ar Z2 W3 ~ l 
WI ~ W1 " 
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Equating the coefficients of  1, z 2 ,  ,f2, we obtain three equations 

1 
w; = 1 

w2 w l +  w ; = 0  

1 / 2 w 2  
,, + w;  = 0 - 

Their solution is unique: 

w;=w 2, w =l/2w w , 
We obtain the same result when w 2 4= 0. Hence Xcoincides with the graph o f f  in this 
case. The same holds for the other  two nontrivial  maps  f rom B 2 to B 3. 

Example 3. D 'Ange lo  classified the proper  monomia l  maps  f rom B 2 to B 4 [16, 17]. 
The varieties corresponding to these maps  have rather  diverse behavior.  Perhaps the 
most interesting example  is the one pa ramete r  family of  maps  

f o ( z l , z2 )=(z l , cosO ' z2 , s inO 'qz2 , s inO ' z2 ) ,  OeR .  

Assume that  0 is not a multiple of  7z/2. Then the variety X decomposes  in two 
components  X ~, X 2 of  dimension three. X ~ projects on to  C2\{0} and has one 
dimensional fibers 

X~w = {Jo(W) + 2(0, - s i n  0, cos 0 .w  I , cos 0 '  w2), 2 ~ C} 

2 ,2 projects onto  {w I = 0 ,  %=t=0} and has two dimensional  fibers 

X~o, w2)= {fo( 0, w2) + 2(0, - sin 0, cos 0. % ,  cos 0" w2) 

+ p (  - s i n  0, 0, w 2, 0), 2, p e C } .  

Example 4. Let f :  c n - + c  n(n+3)/2 be the map  

J'(Z) = ~  (Z1 . . . . . .  -n, Z12 . . . . . .  _2n, ~2Z122' ~/2Z1Z3 . . . . .  ]~Zn-IZn) 

whose componen t s  are all linear and quadrat ic  terms. (Deleting the linear terms 
we obtain the Veronese map.)  f maps  the unit  n-ball proper ly  into the unit  
n(n + 3)/2-ball. 

Consider the equat ion for X. After we express z 1 by (5.1) and substitute into the 
equation for X,,, we obtain  l + (n + 2) (n - 1)/2 linear equat ions for w', one for each 
constant,  linear, and quadrat ic  term in the variables z s, 2<j<=n. Since we have 
(n + 3)/2 variables w 5, we conclude that  

d i m X w > ( n + 3 ) n  ( n + 2 ) ( n - l )  l = n  weC"\{O}.  
= 2 2 ' 

Thus we have a m a p  whose image is not contained in any proper  affine subspace of  
C s, and yet the dimension of  X is at least twice the dimension of  the graph of  f 
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