

A Totally Real Three-Sphere in C³ Bounding a Family of Analytic Disks Author(s): Franc Forstnerič Source: *Proceedings of the American Mathematical Society*, Vol. 108, No. 4 (Apr., 1990), pp. 887-892 Published by: <u>American Mathematical Society</u> Stable URL: <u>http://www.jstor.org/stable/2047942</u> Accessed: 07/11/2013 15:54

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at http://www.jstor.org/page/info/about/policies/terms.jsp

JSTOR is a not-for-profit service that helps scholars, researchers, and students discover, use, and build upon a wide range of content in a trusted digital archive. We use information technology and tools to increase productivity and facilitate new forms of scholarship. For more information about JSTOR, please contact support@jstor.org.

American Mathematical Society is collaborating with JSTOR to digitize, preserve and extend access to Proceedings of the American Mathematical Society.

http://www.jstor.org

A TOTALLY REAL THREE-SPHERE IN C³ BOUNDING A FAMILY OF ANALYTIC DISKS

FRANC FORSTNERIČ

(Communicated by Irwin Kra)

ABSTRACT. We construct a smoothly embedded totally real three-sphere S in C^3 and a one-parameter family of analytic disks in C^3 that have boundaries in S.

1. INTRODUCTION

Denote by D the open unit disk $\{z \in \mathbb{C} : |z| < 1\}$ in \mathbb{C} , by \overline{D} the closed unit disk and by bD its boundary $\{z \in \mathbb{C} : |z| = 1\}$. Let A(D) be the algebra of all continuous functions on \overline{D} that are holomorphic on D. An *analtyic* disk with boundary in a subset $M \subset \mathbb{C}^n$ is a map $f = (f_1, \ldots, f_n) : \overline{D} \to \mathbb{C}^n$, $f_j \in A(D)$ $(j = 1, \ldots, n)$, such that f(bD) is contained in M.

Recall that a real submanifold M of \mathbb{C}^n of class \mathbb{C}^1 is called *totally real* if for each $x \in M$ the tangent space $T_x M$ of M at x contains no nontrivial complex subspace, i.e., $T_x M \cap iT_x M = \{0\}$. In this note we shall construct an embedded totally real three-sphere S in \mathbb{C}^3 which bounds a one-parameter family of analytic disks. More precisely, we prove

Theorem 1. There is a smooth totally real submanifold S of \mathbb{C}^3 diffeomorphic to $\{x \in \mathbb{R}^4 : |x| = 1\}$ and an embedding $F : \overline{D} \times [-1, 1] \to \mathbb{C}^3$ such that for each $t \in [-1, 1]$ the map $z \to F(z, t)$, $z \in \overline{D}$, is an analytic disk with boundary in S.

The first explicit totally real embedding of the real three-sphere into C^3 was given by Ahern and Rudin [2]. The existence of such embeddings also follows from a theorem of Gromov [7, 8, p. 193, 5, Theorem 1.4, 6]. However, it seems difficult to find analytic disks with boundaries in a given submanifold; we do not know whether there are any such disks in the example of Ahern and Rudin [2].

We believe that our example is of interest for the following reason. If $M \subset \mathbb{C}^n$ is a smoothly embedded compact *lagrange* submanifold of \mathbb{C}^n , i.e., the

©1990 American Mathematical Society 0002-9939/90 \$1.00 + \$.25 per page

887

Received by the editors October 3, 1986 and, in revised form, April 10, 1987.

¹⁹⁸⁰ Mathematics Subject Classification (1985 Revision). Primary 32E20; Secondary 57R40. Research supported in part by a grant from Rāziskovalna skupnost SR Slovenije.

FRANC FORSTNERIČ

pullback of the 2-form $\omega = \sum_{j=1}^{n} dz_j \wedge d\overline{z}_j$ to M vanishes, then for every nonconstant analytic disk f with boundary in M the curve $f: bD \to M$ represents a nontrivial class in the homology group H_1M . To see this assume on the contrary that this path bounds a 2-cycle σ in M. By a theorem of Čirka [4, p. 293] f is smooth on \overline{D} , and the Stokes's theorem applied to the one-form $\alpha = \sum_{j=1}^{n} z_j d\overline{z}_j$ yields

$$0 = \int_{\sigma} \omega = \int_{\sigma} d\alpha = \int_{f(bD)} \alpha = \int_{bD} f^* \alpha = \int_{D} f^* \omega.$$

However, since $f^*\omega = |f'|^2 dz \wedge d\overline{z}$ on D, the last integral is nonzero, a contradiction. This argument was communicated to me by L. Lempert who raised the question whether the same is true if M is only totally real. (Recall that every lagrange submanifold $M \subset \mathbb{C}^n$ is also totally real.) Our theorem shows that this is not the case: the three-sphere S is simply connected, so $H_1S = 0$, and yet it may bound analytic disks in \mathbb{C}^3 .

It is not known whether the three-sphere S admits a lagrange embedding into C^3 . In fact it was conjectured that no compact simply connected *n*-dimensional manifold M admits a lagrange embedding into C^n . As for the immersions, every totally real immersion of a compact *n*-manifold M into C^n is regularly homotopic through totally real immersions to a lagrange immersion of M into C^n [10, 7, 8, p. 61].

Denote by \hat{M} the polynomially convex hull of a set $M \subset \mathbb{C}^n$. If M is a compact embedded totally real submanifold of \mathbb{C}^n of real dimension n, it is known [1] that \hat{M} has topological dimension at least n+1. It would be of interest to know whether every such M bounds analytic disks or analytic varieties in \mathbb{C}^n . If so, is $\hat{M} \setminus M$ the union of closed analytic subvarieties of $\mathbb{C}^n \setminus M$? Every such subvariety with no zero-dimensional components is contained in the hull of M according to the maximum principle. Note that the general technique of constructing analytic disks due to Bishop [3] and Hill and Taiani [9] does not apply in the totally real case that we are dealing with. Important results in this direction were obtained by Gromov [11].

We shall prove Theorem 1 in §2. In the construction of S we will need an extension theorem for functions that do not annihilate a zero-free complex vector field at any point of an *n*-dimensional cube (Theorem 3). This result of independent interest can be proved by different methods; in §3 we shall prove it using techniques of Gromov. (See [7], §2.4 in [8] and also the exposition in [5].)

I wish to thank L. Lempert for proposing this problem. Thanks also go to S. Webster and E. L. Stout.

2. Proof of Theorem 1

We begin with

Lemma 2. There exists a real-analytic function $g : \mathbb{C} \to \mathbb{C}$ such that the submanifold $N = \{(z, g(z)): z \in \mathbb{C}\}$ of \mathbb{C}^2 is totally real and g(z) = 0 for each $z \in bD$.

Proof. The manifold N is totally real when the derivative $\partial g/\partial \overline{z}$ has no zeroes on **C**. Instead of simply giving the formula (2.1) for g we will show how to find such a function.

We set $g(z) = (z\overline{z} - 1)h(z)$ in order to have g(z) = 0 when |z| = 1. Then

$$\partial g / \partial \overline{z}(z) = zh(z) + (z\overline{z} - 1)\partial h / \partial \overline{z}(z).$$

When |z| = 1, $\partial g / \partial \overline{z}(z) = zh(z)$. Since $\partial g / \partial \overline{z}$ is zero free on **C**, its winding number on the circle $bD = \{|z| = 1\}$ equals zero, so the winding number of h on bD is -1. To achieve this we set $h(z) = \overline{z}e^{k(z)}$. Then

$$\partial g / \partial \overline{z}(z) = e^{k(z)} ((2z\overline{z} - 1) + (z\overline{z} - 1)\overline{z} \,\partial k / \partial \overline{z}(z)).$$

If we choose $k(z) = iz\overline{z}$, $\partial k/\partial \overline{z}(z) = iz$, and set $t = z\overline{z}$, the expression in the parentheses equals (2t-1) + i(t-1)t which does not vanish for any real t. Thus the function

(2.1)
$$g(z) = (z\overline{z} - 1)\overline{z}e^{izz}$$

satisfies Lemma 2. This concludes the proof.

Choose any smooth function $h: R \to [0, \infty)$ which equals 0 on $(-\infty, 2]$ and is strictly convex on $(2, \infty)$. The real hypersurface $\Gamma \subset \mathbb{C}^2$ defined by

(2.2)
$$\Gamma = \{(z, w) \in \mathbf{C}^2 : r(z, w) = h(z\overline{z} + u^2) + (v - 1)^2 = 1\}$$

(here w = u + iv) is smooth, diffeomorphic to the real three-sphere, and it contains the set $\overline{D} \times [-1, 1]$.

Let g be as in Lemma 2. Define f(z, w) = g(z) + w on $z \in \overline{D}$, $w \in [-1, 1]$ and extend f smoothly to \mathbb{C}^2 . We will show that the extension of f to Γ can be chosen in such a way that the real submanifold

(2.3)
$$S = \{(z, w, f(z, w)) \in \mathbf{C}^3 : (z, w) \in \mathbf{\Gamma}\}$$

of \mathbf{C}^3 satisfies the conclusion of Theorem 1.

Clearly S is a smoothly embedded three-sphere which bounds the one parameter family of analytic disks $F: \overline{D} \times [-1, 1] \to \mathbb{C}^3$, F(z, t) = (z, t, t) since g vanishes on |z| = 1.

It remains to show that S is totally real for an appropriate choice of f. Let L be the tangential $\overline{\partial}$ operator on Γ . Then S is totally real if and only if Lf has no zeros on Γ . We have

$$Lf(z,w) = \frac{\partial r}{\partial \overline{z}\partial f} \frac{\partial \overline{w}}{\partial \overline{w}} - \frac{\partial r}{\partial \overline{w}\partial f} \frac{\partial \overline{z}}{\partial \overline{z}}$$

= $h'(z\overline{z} + u^2)z\partial f \frac{\partial \overline{w}}{\partial \overline{w}} - (h'(z\overline{z} + u^2)u + i(v-1))\partial f \frac{\partial \overline{z}}{\partial \overline{z}}.$

FRANC FORSTNERIČ

On the set $(z, w) \in \overline{D} \times [-1, 1]$ we have $h'(z\overline{z} + u^2) = 0$, so $Lf = i\partial g/\partial \overline{z}$ which is nonvanishing. Thus the part of S lying over $\mathbf{D} \times [-1, 1]$ is totally real. There is an open subset U of Γ containing $\overline{D} \times [-1, 1]$ such that Lfhas no zeroes on \overline{U} and $\Gamma \setminus U$ is diffeomorphic to a closed three dimensional cube $I^3 \subset \mathbf{R}^3$. According to Theorem 3 in §3 there is an extension of f from \overline{U} to Γ such that Lf has no zeroes on Γ . For such f the manifold S given by (2.3) is totally real and Theorem 1 is proved.

3. FUNCTIONS NOT ANNIHILATING A COMPLEX VECTOR FIELD

We denote by I^n the closed *n*-dimensional cube $[0,1]^n$ in \mathbb{R}^n . Let $x = (x_1, \ldots, x_n)$ be real coordinates on \mathbb{R}^n . A complex vector field on I^n with continuous coefficients is an expression $L = \sum_{j=1}^n a_j(x) \partial/\partial x_j$, where a_j are continuous complex functions on I^n . If f is a complex \mathbb{C}^1 function on I^n , then $Lf(x) = \sum_{j=1}^n a_j(x) \partial f/\partial x_j(x)$. The vector field L is zero-free on I^n if for each $x \in I^n$ at least one number $a_j(x)$ is nonzero.

Theorem 3. Let L be a zero-free complex vector field with continuous coefficients on I^n $(n \neq 2)$. For each \mathbb{C}^1 function f_0 on I^n such that Lf_0 is zero-free on the boundary of I^n there is a \mathbb{C}^1 function f on I^n which coincides with f_0 near the boundary of I^n such that Lf is zero-free on all of I^n .

Remark. Theorem 3 is false for n = 2 as the following example shows. Take $L = \partial/\partial \overline{z} = (\partial/\partial x + i\partial/\partial y)/2$ and $f(z) = z\overline{z} = x^2 + y^2$. Then Lf(z) = z is nonvanishing on the boundary of $[-1, 1]^2$, but it can not be extended to a nonvanishing function on $[-1, 1]^2$ since it has positive winding number.

Proof. This result follows from Gromov's Lemma 3.1.3 in [7]. See also §2.4 in [8]. Let $L = L_1 + iL_2$, where $L_1 = \sum_{j=1}^n a_j \partial/\partial x_j$ and $L_2 = \sum_{j=1}^n b_j \partial/\partial x_j$ are real-valued vector fields on I^n . If f = u + iv, then $Lf = (L_1u - L_2v) + i(L_1v + L_2u)$. We associate to a function f = u + iv the section $x \to (x; u(x), v(x))$ $(x \in I^n)$ of the product bundle $\pi : X = I^n \times \mathbf{R}^2 \to I^n$. Let X^1 be the manifold of one-jets of sections of the bundle $X \to I^n$. X^1 is isomorphic to the product $X \times R^{2n}$; the point $(\alpha, \beta) \in \mathbf{R}^{2n}$ corresponding to a section $x \to (x; u(x), v(x))$ of X is determined by $\alpha_j = \partial u/\partial x_j$, $\beta_j = \partial v/\partial x_j$ $(1 \le j \le n)$.

Let $\Omega \subset X^1$ be the set of all points $(x;q;\alpha,\beta)$ in X^1 $(x \in I^n, q \in \mathbb{R}^2, \alpha, \beta \in \mathbb{R}^n)$ for which at least one of the real numbers

(3.1)
$$\sum_{i=1}^{n} a_i(x)\alpha_i - b_i(x)\beta_i,$$
$$\sum_{i=1}^{n} b_i(x)\alpha_i + a_i(x)\beta_i$$

is nonzero. In Gromov's terminology the set Ω is an open differential relation of order one on the bundle $\pi: X \to I^n$.

890

Lemma 4. The relation Ω defined above is ample in the coordinate directions x_1, \ldots, x_n on I^n .

Note. For the definition of ampleness see [7, p. 331] or §2 in [5] or [8, p. 180]. *Proof.* By symmetry it suffices to prove ampleness in the coordinate direction x_1 . Fix a point $x^0 \in I^n$, $q^0 \in \mathbf{R}^2$, $\alpha' = (\alpha_2, \ldots, \alpha_n)$, $\beta' = (\beta_2, \ldots, \beta_n)$ and consider the set

$$\boldsymbol{\Omega}' = \{ (\alpha_1, \boldsymbol{\beta}_1) \in \mathbf{R}^2 : (x^0; q^0; \alpha_1, \alpha_2, \dots, \boldsymbol{\beta}_1, \boldsymbol{\beta}_2, \dots) \in \boldsymbol{\Omega} \}.$$

To prove that Ω is ample in the direction x_1 we must show that either Ω' is empty or else the convex hull of each of its connected components in \mathbb{R}^2 equals all of \mathbb{R}^2 .

If $a_1(x^0) = b_1(x^0) = 0$, then (3.1) shows that Ω' is either empty or \mathbb{R}^2 . If on the other hand at least one of the numbers $a_1(x^0), b_1(x^0)$ is nonzero, then the system of linear equations

$$a_1(x^0)\alpha_1 - b_1(x^0)\beta_1 = c,$$

$$b_1(x^0)\alpha_1 + a_1(x^0)\beta_1 = d$$

has determinant $a_1(x^0)^2 + b_1(x^0)^2 > 0$ whence it has precisely one solution for each $(c, d) \in \mathbf{R}^2$. In this case Ω' is the complement of a point in \mathbf{R}^2 . This proves that Ω is ample.

Lemma 5. If $n \neq 2$ and if α_j, β_j are continuous real-valued functions on the boundary of I^n such that the expression

(3.2)
$$F(x) = \sum_{j=1}^{n} \left(a_j(x) \alpha_j(x) - b_j(x) \beta_j(x) \right) + i \cdot \sum_{j=1}^{n} \left(b_j(x) \alpha_j(x) + a_j(x) \beta_j(x) \right)$$

is zero-free on the boundary of I^n , then there exist continuous extensions of α_j , β_j , $(1 \le j \le n)$ to I^n such that F is zero-free on I^n .

Proof. We claim that for $n \neq 2$ the map $F : bI^n \to \mathbb{C} \setminus \{0\}$ can be extended to a map $F: I^n \to \mathbb{C} \setminus \{0\}$. If n = 1 this holds because $\mathbb{C} \setminus \{0\}$ is path connected. If n > 1, the obstruction to extending F is an element of the group $\pi_{n-1}(\mathbb{C} \setminus \{0\}) = \pi_{n-1}(S^1)$ which is trivial when $n-1 \ge 2$. We fix such an extension of F to I^n .

We subdivide the cube I^n into smaller closed cubes I_1, \ldots, I_r with faces parallel to the coordinate axes such that two distinct cubes have at most a face in common and for each I_k there is an index j_k for which

(3.3)
$$a_{j_k}(x)^2 + b_{j_k}(x)^2 > 0, \quad x \in I_k.$$

We now perform stepwise extension of the functions α_j and β_j to the cubes I_k . On I_k we extend $\alpha_j, \beta_j, j \neq j_k$, arbitrarily, without changing their values on those faces of I_k where they have been defined in previous steps. Because

of (3.3) the values of α_{j_k} and β_{j_k} on I_k are now uniquely determined by (3.2). In a finite number of steps we find the desired extensions and Lemma 5 is proved.

We can now conclude the proof of Theorem 3. Let $f_0 = u_0 + iv_0$ be as in the statement of the theorem. Set $\alpha_j = \partial u_0(x)/\partial x_j$ and $\beta_j = \partial v_0(x)/\partial x_j$ for $x \in bI^n$ and $1 \le j \le n$. We extend the functions α_j , β_j $(1 \le j \le n)$ to I^n using Lemma 5. (Note that $F(x) = Lf_0(x) \ne 0$ for $x \in bI^n$.) The map $\varphi: I^n \to X^1$, $\varphi(x) = (x; f_0(x); \alpha(x), \beta(x))$ is a section of the relation Ω over I^n which coincides with the one-jet j^1f_0 of the section $x \to (x; f_0(x))$ on the boundary bI^n . Since Ω is ample by Lemma 4, Gromov's Lemma 3.1.3 in [7] implies that there is a \mathbb{C}^1 function $f: I^n \to \mathbb{C}$ whose one-jet j^1f is a section of Ω over I^n and $j^1f = j^1f_0$ on bI^n . This means precisely that Lf(x) is nonvanishing on I^n and $f = f_0$ on bI^n . Theorem 3 is proved.

References

- 1. H. Alexander, A note on polynomially convex hulls, Proc. Amer. Math. Soc. 33 (1972), 389-391.
- 2. P. Ahern and W. Rudin, *Totally real embeddings of S*³ *into* C³, Proc. Amer. Math. Soc. 94 (1985), 460–462.
- 3. E. Bishop, *Differentiable manifolds in complex Euclidean spaces*, Duke Math. J. **32** (1965), 1–21.
- 4. E. M. Čirka, *Regularity of the boundaries of analytic sets*, Mat. Sb. (NS) 117 (1982), 291–334; English transl., Math. USSR Sb. 45 (1983), 291–336.
- 5. F. Forstnerič, On totally real embeddings into C^n , Exposition Math. 4 (1986), 243–255.
- 6. ____, Some totally real embeddings of three-manifolds, Manuscripta Math. 55 (1986), 1-7.
- 7. M. Gromov, *Convex integration of differential relations*. I, Izv. Akad. Nauk SSSR 37 (1973); English transl., Math. USSR Izv. 7 (1973), 329–343.
- 8. ____, Partial differential relations, Springer-Verlag, Berlin and New York, 1986.
- 9. D. C. Hill and G. Taiani, Families of analytic disks in \mathbb{C}^n with boundaries in a prescribed CR manifold, Ann. Scuola Norm. Sup. Pisa Cl. Sci. 5 (1978), 327–380.
- 10. J. A. Lees, On the classification of lagrange immersions, Duke Math. J. 43 (1976), 217-224.
- M. Gromov, Pseudoholomorphic curves in symplectic manifolds, Invent. Math. 82 (1985), 307– 347.

Institute of Mathematics, Physics and Mechanics, 61000 Ljubljana, Jadranska 19, Yugoslavia