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PROCEEDINGS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 108, Number 4, April 1990 

A TOTALLY REAL THREE-SPHERE IN C3 
BOUNDING A FAMILY OF ANALYTIC DISKS 

FRANC FORSTNERIC 

(Communicated by Irwin Kra) 

ABSTRACT. We construct a smoothly embedded totally real three-sphere S in 
C3 and a one-parameter family of analytic disks in C3 that have boundaries 
in S. 

1. INTRODUCTION 

Denote by D the open unit disk {z E C: zI < l}' in C, by D the closed 
unit disk and by bD its boundary {z E C: Izl = l}. Let A(D) be the algebra 
of all continuous functions on D that are holomorphic on D. An analtyic 
disk with boundary in a subset M c Cn is a map f = (f1 , ... , fn): D - C , 
If E A(D) (j = 1, .I . , n), such that f(bD) is contained in M. 

Recall that a real submanifold M of Cn of class C' is called totally real if 
for each x E M the tangent space T,M of M at x contains no nontrivial 
complex subspace, i.e., TxM n iTxM = {O} 0 In this note we shall construct 
an embedded totally real three-sphere S in C3 which bounds a one-parameter 
family of analytic disks. More precisely, we prove 

Theorem 1. There is a smooth totally real submanifold S of C3 diffeomorphic 
to {x E R4: xI = I } and an embedding F: D x [- 1, 1]- C3 such that for each 
t f [-1, 1] the map z -- F(z, t), z E D, is an analytic disk with boundary in 
S. 

The first explicit totally real embedding of the real three-sphere into C3 was 
given by Ahern and Rudin [2]. The existence of such embeddings also follows 
from a theorem of Gromov [7, 8, p. 193, 5, Theorem 1.4, 6]. However, it seems 
difficult to find analytic disks with boundaries in a given submanifold; we do 
not know whether there are any such disks in the example of Ahern and Rudin 
[2]. 

We believe that our example is of interest for the following reason. If M c 
Cn is a smoothly embedded compact lagrange submanifold of Cn, i.e., the 
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888 FRANC FORSTNERIC 

pullback of the 2-form X = E1> dz A dA j to M vanishes, then for every 
nonconstant analytic disk f with boundary in M the curve f: bD -+ M 
represents a nontrivial class in the homology group H1 M. To see this assume 
on the contrary that this path bounds a 2-cycle a in M. By a theorem of 
Cirka [4, p. 293] f is smooth on D, and the Stokes's theorem applied to the 
one-form a - En_ z dz1 yields J-I JJ 

0=jw=j de = ID 

f*J/ 
f* . a a f ~~(b) bOD1 

However, since f* f' = Il2dz A dz? on D, the last integral is nonzero, a 
contradiction. This argument was communicated to me by L. Lempert who 
raised the question whether the same is true if M is only totally real. (Recall 
that every lagrange submanifold M C Cn is also totally real.) Our theorem 
shows that this is not the case: the three-sphere S is simply connected, so 
H1S = 0, and yet it may bound analytic disks in C3. 

It is not known whether the three-sphere S admits a lagrange embedding into 
C3. In fact it was conjectured that no compact simply connected n-dimensional 
manifold M admits a lagrange embedding into Cn. As for the immersions, 
every totally real immersion of a compact n-manifold M into Cn is regularly 
homotopic through totally real immersions to a lagrange immersion of M into 
Cn [10, 7, 8, p. 61]. 

Denote by M the polynomially convex hull of a set M C Cn. If M is a 
compact embedded totally real submanifold of Cn of real dimension n, it is 
known [ 1 ] that AM has topological dimension at least n + 1 . It would be of inter- 
est to know whether every such M bounds analytic disks or analytic varieties in 
Cn . If so, is M\M the union of closed analytic subvarieties of Cn\M ? Every 
such subvariety with no zero-dimensional components is contained in the hull 
of M according to the maximum principle. Note that the general technique of 
constructing analytic disks due to Bishop [3] and Hill and Taiani [9] does not 
apply in the totally real case that we are dealing with. Important results in this 
direction were obtained by Gromov [1 1]. 

We shall prove Theorem 1 in ?2. In the construction of S we will need 
an extension theorem for functions that do not annihilate a zero-free complex 
vector field at any point of an n-dimensional cube (Theorem 3). This result of 
independent interest can be proved by different methods; in ?3 we shall prove 
it using techniques of Gromov. (See [7], ?2.4 in [8] and also the exposition in 
[5].) 

I wish to thank L. Lempert for proposing this problem. Thanks also go to 
S. Webster and E. L. Stout. 
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2. PROOF OF THEOREM 1 

We begin with 

Lemma 2. There exists a real-analytic function g: C -* C such that the sub- 
manifold N = {(z, g(z)): z E C} of C2 is totally real and g(z) = 0 for each 
z E bD. 

Proof. The manifold N is totally real when the derivative a g/laz has no zeroes 
on C. Instead of simply giving the formula (2.1) for g we will show how to 
find such a function. 

We set g(z) = (zz- 1)h(z) in order to have g(z) = 0 when Iz = 1. Then 

d g/9 z(z) = zh(z) + (zz - 1)oh/o z(z). 

When Iz = 1, a g/OZ(z) = zh(z) . Since d g/9z is zero free on C, its winding 
number on the circle bD = {I z = 1I} equals zero, so the winding number of h 
on bD is -1. To achieve this we set h(z) = zek(z) . Then 

ag/9z(z) = e k(z)((2zz - 1) + (zz - l)Thk/lz(z)). 
If we choose k(z) = izz, a k/& z(z) = iz, and set t = zz, the expression in 
the parentheses equals (2t - 1) + i(t - l)t which does not vanish for any real 
t. Thus the function 

(2.1) g(z) = (zz - lyfeIzz 

satisfies Lemma 2. This concludes the proof. 
Choose any smooth function h : R -* [0, oo) which equals 0 on (-oc, 2] 

and is strictly convex on (2, oo) . The real hypersurface r C C2 defined by 

I 1~~~~~ ~2 U2)+ V _ 1 2 = (2.2 r 1(ZW) F (zw)EC C2: r(z,w) = h(zz?u )+(V-l) = 1} 

(here w = u + iv ) is smooth, diffeomorphic to the real three-sphere, and it 
contains the set D x [-1 , 1]. 

Let g be as in Lemma 2. Define f(z, w) = g(z)+w on z E D, w E [-1, l] 
2 and extend f smoothly to C . We will show that the extension of f to F can 

be chosen in such a way that the real submanifold 

(2.3) S = {(z,w,f(z,w)) C C3 : (z,W) E F} 

of C3 satisfies the conclusion of Theorem 1. 
Clearly S is a smoothly embedded three-sphere which bounds the one pa- 

rameter family of analytic disks F: D x [-1,I] -1 C3, F(z, t) = (z, t, t) since 
g vanishes on I z I = 1 . 

It remains to show that S is totally real for an appropriate choice of f. Let 
L be the tangential a operator on F. Then S is totally real if and only if Lf 
has no zeros on F. We have 

Lf(z, w) = ar/laf/aaT - ar/OaTaf/laz 

=h'(z-u + )Z&f/&W -(h'(zf + u )u + i(v - l))&f/&z. 
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On the set (z,w) E D x [-I,1] we have h'(z-z + u2) =0, so Lf = iOgIOz 
which is nonvanishing. Thus the part of S lying over D x [-1, 1] is totally 
real. There is an open subset U of F containing D x [-1, 1] such that Lf 
has no zeroes on U and F\U is diffeomorphic to a closed three dimensional 
cube I3 c R3 . According to Theorem 3 in ?3 there is an extension of f from 
U to F such that Lf has no zeroes on F. For such f the manifold S given 
by (2.3) is totally real and Theorem 1 is proved. 

3. FUNCTIONS NOT ANNIHILATING A COMPLEX VECTOR FIELD 

We denote by In the closed n-dimensional cube [0, ]n in Rn . Let x - 

(xI , ... , xn) be real coordinates on . A complex vector field on In with 
continuous coefficients is an expression L = E>n=1 a (x) 0/0xJ , where a1 are 

continuous complex functions on Infl If f is a complex C1 function on In 

then Lf(x) = En=> a(x) Of/0x (x). The vector field L is zero-free on In if 
for each x c In at least one number aJ(x) is nonzero. 

Theorem 3. Let L be a zero-free complex vector field with continuous coefficients 
on In (n $& 2). For each C1 function fo on In such that Lfo is zero-free on 
the boundary of In there is a C1 function f on In which coincides with fo 
near the boundary of In such that Lf is zero-free on all of In . 
Remark. Theorem 3 is false for n = 2 as the following example shows. Take 
L = /0z -= (a/0x + iO/9y)/2 and f(z) = zz = x2 +y2. Then Lf(z) = z 
is nonvanishing on the boundary of [-1 , 1] 2, but it can not be extended to a 
nonvanishing function on [-1, 1]2 since it has positive winding number. 

Proof. This result follows from Gromov's Lemma 3.1.3 in [7]. See also ?2.4 in 
[8]. Let L = L1+ iL2, where L1 = En= 1 aJ a9/0xJ and L2 = En=1 bj a /0xj are 
real-valued vector fields on In . If f u+iv, then Lf = (L1u-L2v)-+-i(L1v+ 
L2u) . We associate to a function f _ u + iv the section x -- (x ; u(x) , v(x)) 

(x c In) of the product bundle z: X = In xR2 + In . Let X I be the manifold 
of one-jets of sections of the bundle X _ In . Xi is isomorphic to the product 
XxR 

2n 
; the point (a, /3) E R2n corresponding to a section x - (x; u(x), v (x)) 

of X is determined by acJ = au/x1J, /3J = &v/&xJ (1 < j < n). 

Let Q c X be the set of all points (x;q;a,fl) in X (x c In, q E R2 
a ,f/ c Rn) for which at least one of the real numbers 

n 
Lal(x)(1 - bl(x)/31, 
i1 1 
n 

(3.1 ) ,l(x) a, + a, (x) ly, 
i1 1 

is nonzero. In Gromov's terminology the set Q is an open differential relation 
of order one on the bundle 7r: X _In . 
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Lemma 4. The relation Q defined above is ample in the coordinate directions 
Xl, I. "'Xn on In. 

Note. For the definition of ampleness see [7, p. 331] or ?2 in [5] or [8, p. 180]. 

Proof. By symmetry it suffices to prove ampleness in the coordinate direction 

XI Fix apoint x 0 In q0 RR2 a =(a2,..2,an)I fl'=(A2''n) and 
consider the set 

n (el fl) R2 
0 0 

Q' ={(a "Bl E 2: x ;q ;cl a2 *5'li A2 ... Q 

To prove that Q is ample in the direction xi we must show that either Q' is 

empty or else the convex hull of each of its connected components in R2 equals 
2 

all of R 
If a,x0) = bjx0) =0, then (3.1) shows that Q' is either empty or R2. If 

on the other hand at least one of the numbers al (x?0), b1 (x0) is nonzero, then 
the system of linear equations 

a,(x 0)a, - b(x0)f3l =c, 

b, (X?) + a,(xa ) (x1 = d 

has determinant al (x0)2 + b, (x0)2 > 0 whence it has precisely one solution for 
2 2 

each (c, d) c R . In this case Q' is the complement of a point in R . This 

proves that Q is ample. 

Lemma 5. If n 7? 2 and if aj , /8 are continuous real-valued functions on the 
boundary of I' such that the expression 

n n 

(3.2) F(x) = Z (a1(x)aj(x) - b1 (x)flj(x)) + i . (b1(x)aj(x) + aj(x)fj(x)) 
1=1 1=1 

is zero-free on the boundary of In, then there exist continuous extensions of aO, 

,8J (1 < j < n) to In such that F is zero-free on In. 

Proof. We claim that for n $& 2 the map F : bIn n- C\{0} can be extended 
to a map F: Inf C\{0}. If n = 1 this holds because C\{0} is path con- 

nected. If n > 1, the obstruction to extending F is an element of the group 

,7_l(C\{O}) = Iln1(S') which is trivial when n - 1 > 2. We fix such an 
extension of F to In . 

We subdivide the cube In into smaller closed cubes I, .Ir with faces 

parallel to the coordinate axes such that two distinct cubes have at most a face 

in common and for each Ik there is an index ik for which 

(3.3) ak (x)2 + bj(x)2 > 0, x C Ik. 

We now perform stepwise extension of the functions a and 8J to the cubes 

Ik . On Ik we extend aj,,8J X i + ik k arbitrarily, without changing their values 

on those faces of Ik where they have been defined in previous steps. Because 
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892 FRANC FORSTNERIC 

of (3.3) the values of aJk and Aik on Ik are now uniquely determined by 
(3.2). In a finite number of steps we find the desired extensions and Lemma 5 
is proved. 

We can now conclude the proof of Theorem 3. Let fo = Uo + ivo be as in 
the statement of the theorem. Set ce = 0uo(x)/0xj and Aj = 0vo(x)/0xj for 

x C bIn and 1 < j < n. We extend the functions a1, /fj (1I < j < n) to 

In using Lemma 5. (Note that F(x) = Lfo(x) $& 0 for x c bin.) The map 
(o: I n _ X1 , (p (x)=(x; fo (x); a((x) ,/ (x)) is a section of the relation Q over 

In which coincides with the one-jet j1 fo of the section x -* (x ; fo(x)) on the 
boundary bIn . Since Q is ample by Lemma 4, Gromov's Lemma 3.1.3 in [7] 
implies that there is a C1 function f: In _, C whose one-jet jIf is a section 
of Q over In and jIf =- jfo on bIn. This means precisely that Lf(x) is 
nonvanishing on In and f = fo on bIn. Theorem 3 is proved. 
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