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Discs in pseudoconvex domains

FRANC FORSTNERIC AND JosiP GLOBEVNIK

1. Introduction

Let D = C" be a domain in the complex Euclidean space CY (N > 1), and let y
be a point in D. There exist many closed complex one-dimensional subvarieties
(curves) V < D passing through y. For instance, it suffices to take the common zero
set fi =f,=---=f, =0 of suitably chosen holomorphic functions on D that vanish
at y.

A special class of closed complex curves in D are the proper analytic discs, i.e.,
the images F(4) of proper holomorphic maps F: 4 - D from the open unit disc
A4 < C into D. A natural question appears [6]: Given a point y € D, can we find a
proper analytic disc in D passing through y?

In this article we give a positive answer to this question for all bounded
pseudoconvex domains in CV with €2 boundary, and a counterexample for non-
pseudoconvex domains with disconnected boundary. More precisely, we prove the
following results:

THEOREM 1. Let D = = CV be a strongly pseudoconvex domain with boundary
of class €*, with N,k 2 2. Given a point y € D and a vector X € CV, there is a
mapping F : A - D of class €*~°(4) that is holomorphic on the open disc A and
satisfies F(b4) < bD, F(0) =y, and F'(0) = AX for some A > 0.

Stated informally, the theorem asserts that through each point of a strongly
pseudoconvex domain in any given direction there passes a proper analytic disc that
is smooth up to the boundary. Here, as usual, €* —° = €* if k is not an integer, and
F*0={)ocu<1 € " if k is an integer.

We have a similar result for smoothly bounded weakly pseudoconvex domains,
except that we are not able to get smoothness up to the boundary:

THEOREM 2. Let D =« = CY (N 2 2) be a pseudoconvex domain with boundary
of class €*. Given a point y € D and a vector X € CV there is a proper holomorphic
map F : A4 — D satisfying F(0) =y and F'(0) = AX for some A > 0.
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If D admits a defining function that is plurisubharmonic near D, then one can
of course apply Theorem 1 to get a proper analytic disc in D through y that is of
class €2~ ° up to the boundary.

By technical modifications of our method one can construct proper analytic
discs as above satisfying various additional properties. For instance, if N = 3, there
exist proper holomorphic embeddings F: A — D < CV satisfying F(0) =y and
F'(0) =AX, and for N =2 there exist holomorphic immersions with the same
properties. Moreover, we shall see from the construction that one can prescribe, up
to a positive scalar, any finite number of derivatives F’(0), F”(0), ... of the map F
at the origin. We leave out the details.

From Theorems 1 and 2 and from our Main Lemma in section two it follows
immediately that there exist proper analytic discs in D containing a given finite
subset of D:

COROLLARY 3. Let D c<= C" (N>1) be a pseudoconvex domain with
€2 boundary. For each finite set of points y,,¥,,...,y, € D and vectors X,
X;,...,X,€CV there are a proper holomorphic map F:A— D and points {,,
{5, ..., C, € Asuch that for each j, 1 < j < n, we have F((;) = y; and F'({;) = 4, X; for
some ;> 0. If D is strictly pseudoconvex with €* boundary, there is an F as above
that is of class €*=° on A.

If D «cc CV is a convex domain, then according to [6] there exist proper
analytic discs in D passing through any given discrete subset of D. It is very likely
that by combining the techniques of this paper with those in [6] one can prove the
same result for all bounded pseudoconvex domains with ¢? boundary.

Virtually the same technique can be used to prove Theorems 1 and 2 for
relatively compact pseudoconvex domains with ¢? boundary in an N-dimensional
Stein manifold. For strongly pseudoconvex domains one can use the embedding
theorem of Fornass and Henkin [9]. Again we shall not go into details of this.

We show by an example that pseudoconvexity cannot be entirely deleted from
our hypothesis:

THEOREM 4. For each N 2 2 there exist a smoothly bounded domain D < < CV
and a point x € D such that there is no proper holomorphic map F : A — D with x € F(A).

Here are some related open problems:

1. When D is a weakly pseudoconvex domain with smooth boundary that does
not admit a plurisubharmonic defining function, can we find discs as in
Theorem 2 that are smooth up to the boundary?
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2. Does Theorem 2 still hold if we assume no boundary regularity of D?

3. Let .# be a Stein manifold of dimension n = 2. Given a point p € #, does
there exist a proper holomorphic map F : 4 —» .# with F(0) =p? If so, can
one also prescribe the direction of F’(0) as above? Can one find analytic discs
in ./ that contain any given finite (or discrete) subset of .#?

Another related problem is the following. Suppose that for each { € b4 we are
given a strongly pseudoconvex domain D, < < C" containing the origin. Suppose
also that the boundaries 6D, depend continuously or even smoothly on { € 4. The
problem is to construct continuous maps F : 4 — C", holomorphic on 4, such that
F({) € bD, ({ € bA). Such maps are known to exist when all D, are convex [1], [4],
[7], [11], and in this case their graphs fill up the interior of the entire polynomially
convex hull of the set K = );.,, D,. In the non-convex case the problem is well
understood only for N =1, see [3], [8], and [12]. Using the methods of this paper
one can solve this problem under suitable additional assumptions on a defining
function P : b4 x CY—R satisfying D, = {z € CV: P({, z) <0}.

The paper is organized as follows. In section two we state our Main Lemma,
and based on this Lemma we prove Theorems 1 and 2 and Corollary 3. Section
three contains technical results required in the proof of the Main Lemma in section
four. In section five we construct the example claimed by Theorem 4.

This research was supported in part by grants from the Research Council of the
Republic of Slovenia.

2. Proof of Theorems 1 and 2

We first show that it suffices to prove Theorems 1 and 2 and Corollary 3 for
N=2.

Let D =« = C" be a pseudoconvex domain with €2 boundary, y € D and
X € C"\{0}. Choose a complex basis X, =X, X,,..., X,y of CY. On the space
C? x C*V we use the coordinates z =(z;,2,), A=(A1,...,4x), V=0V, ..., Vy).
Let @ : C?> x C*¥ - C" be the entire map defined by

N
Bz, V) =y +2, X, + 2,Xo+ Y, (423 +v,23)X,.

i=1

Notice that @(0, -, ) =y and 09/0z,(0,-, ) =X, for j=1, 2.

If &(z,4,v) =pebD, then at least one of the variables z,,z, is nonzero,
hence @ is a submersion here. It follows that @ is transverse to bD. By the trans-
versality theorem we conclude that for almost all values 4,,v,€ CV the map
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D( -, A, vy) : C2— C¥ is transverse to bD. Choosing 4, and v, sufficiently small we
insure that the connected component ©, of the preimage {z € C*: &(z, 4y, v,) € D}
containing the origin is a bounded pseudoconvex domain in C? with 2 boundary.
If D is strongly pseudoconvex then so is €.

Suppose that Theorems 1 and 2 and Corollary 3 hold in dimension two. If
Fy,: 4 - Q, is a proper holomorphic map satisfying F,(0) =0 and F;(0) = (4, 0),
then

F(0) = ®(Fy(0), 40, v0)  ((€d)

is a proper holomorphic map of 4 into D satisfying Theorem 1 resp. 2. Similarly
one proves Corollary 3.

From now on we shall only consider the case N=2. Let D c<= C? be a
pseudoconvex domain with ¥? boundary. According to [2] there is a €2 defining
function 7 for D such that D = {r <0}, V7 #0 near bD, and there is a negative
strictly plurisubharmonic function p on D such that near 6D we have p = —( — 1)“.
In particular, there is a T <0 such that the gradient (Vp)(z) is nonvanishing for
T < p(z) <0, and the domains

D(t)={zeD:p(z) <t} (T<t<0)

are strongly pseudoconvex with €% boundary. When D itself is strongly pseudocon-
vex we can of course choose a defining function p for D satisfying these properties.
For each t,,t,, T <t, <t,<0, let

V(tl, tz) = {Z eD: t‘ <p(Z) < 12}.

MAIN LEMMA. Let T <t,<t,<0. There is a u, > 0, depending only on t,, t,,
with the following property: Let 0 <r <1 and let F : A\rA — ¥ (t,, t,) be a continu-
ous map satisfying p(F({)) > ¢ ({ € A\rA). Suppose that u is a positive continuous
Sunction on bA such that W) < py (( € bA), let € >0, and let 0 < R < 1. Then there
exists a continuous map G : A — C? that is holomorphic on A and satisfies

(i) F(Q) +G(Q) € D( e 4\ra),

(i) p(F() + G(©) > c ({ € 4\r4),

(iii) |p(F(C) + G() — p(F(0)) — u(Q)| < e({ € ba),

(iv) |G| <e(|t| = R), and

(v) G(0) =0,G’(0) =0.
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Remark. The Lemma also holds if we choose finitely many points {,,
{5,...,(, = 4 and replace (v) by the following stronger condition:
(v) G¢;)=0and G'({;) =0for 1 <j<n.

We defer the proof of the Main Lemma to section four below.

Proof of Theorem 1. 1t suffices to prove the following: If T' <, <0, y € D(t,),
and X € C?, there is a map F :4 — D(t,) of class €2~ ° that is holomorphic on
4, F(0) = y, and F’(0) = AX for some 4 > 0. (If p is of class €*, the same proof will
give F e €%~ %4).)

Choose ¢, and ¢, such that T <, <t,<t,<0, and let u, be as in the Main
Lemma, chosen small enough such that ¢, — u, = t,. Denote by B? the open unit
ball in C2. There is an € > 0 such that

D(ty) +2¢B* = D(t;),  bD(to) + 2eB* < ¥ (tg — o, 1,). (1
We show the following:

LEMMA 1. Suppose that f: A4 — D(t,) is a continuous map that is holomor-
phic on A and satisfies f(0) € D(t,) and f(bA) = ¥ (t,,1,). Given x € D(t,),
|x —f(0)| <, there is a continuous map f, : 4 — D(t,), holomorphic on A, satisfying
f1(0) = x, £1(0) = Af’(0) for some A >0, and f,(bA) = ¥ (t,, t,).

Proof. Let ty,t,<ty,<t,, be so close to ¢, that f(b4) = ¥(¢3, t,) and
D(?) = D(1,) + €B?, bD(t) = bD(t,) +eB?> (1, <t <t)). (2)

By Sard’s theorem there is a ¢, t, <t <1, such that Q ={{ e 4 : p(f({)) <t} is a
relatively compact domain in 4 with €2 boundary. By the maximum principle,
applied to the subharmonic function p o f, each connected component of Q is
simply connected, thus conformally equivalent to the disc. Let ¢ : 4 - Q, be the
conformal map onto the connected component 2, of Q containing the origin,
chosen such that ¢(0) =0 and ¢’(0) > 0. Since the boundary of €, is of class €2,
¢ extends to be of class 2~ ° on 4. The composition & = fo ¢: 4 — D(¢) is of
class €2~ °, holomorphic on 4, and satisfies $(0) = f(0), ®'(0) = ¢’(0)f7(0), and
D(b4) < bD(2).
Let x € D(t,), |x — f(0)| < €. Then by (1) and (2),

(e d-gl) =D + (x — 20)
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is a continuous map from 4 into D(t,) + 2¢B? < D(t,) that is holomorphic on 4 and
satisfies g(bA4) < ¥ (ty — po, t;). Choose an r,0<r <1, such that g(4\rd)c
¥ (to — Ho, t2). Choose n > 0 so small that g(r4) + nB? = D(¢,). By the Main Lem-
ma applied to g there is a continuous map 4 : 4 —» C2, holomorphic on 4, satisfying
h(0) =0, h’(0) =0, |A()|<n for |{|<r, such that the map f, =g + h satisfies
fild\rd) € D(t,) and fi(b4) =¥ (to,1,). If (erd, then |h({)|<n, hence
f,1(4) = D(t,). This proves Lemma 1.

We can now complete the proof of Theorem 1. Without loss of generality we
may assume that the domain D(t,) is connected. There is a point y, € bD(t,) such
that the complex tangent space to bD(t,) at y, is spanned by the given vector
X e C2\{0}.

We claim that there are a point y, € D(z,) close to y, and a map f; : 4 — D(t,),
holomorphic on 4, satisfying f,(0) = y,, f5(0) = AX for some A >0, and f,(b4) =
¥ (o, t,). This can be seen immediately from the proof of Narasimhan’s lemma [9,
p. 111]: locally near y, we convexify the domain D(¢,) by a local biholomorphic
change of coordinates, we take a suitable linear disc in the convexified domain, and
then pull it back to a disc in D(z,) satisfying the required properties. Of course it
is essential that X is complex tangent to bD(t,) at y,!

Using Lemma 1 a finite number of times we can slide the initial disc f; to a disc
fi: 4 = D(t,) satisfying the same conditions, except that the new center is f,(0) = y.
By a generic perturbation of f; we insure that f, intersects the boundary of D(t,)
transversely. Replacing f, by f, ° ¢, where ¢ is a suitable conformal map of 4 onto
the connected component of {{ € 4 : f,({) € D(t,)} containing 0 (see the proof of
Lemma 1), we obtain the final map F satisfying Theorem 1.

Proof of Theorem 2. Choose t,, T <1t,<0, such that ye D(t,). We
choose sequences f, <t <t,<:--<0, lim;, £,=0, and ¢ >¢, >¢ >+ >0,
lim, , ,¢;=0, such that

D(t,) +€e_ B cD(t,,) (n=12...). (3)

We show that there are an increasing sequence of radii ry<r, <r,<---<1 with
lim; , ,r,=1 and a sequence of continuous mappings f,: 4D (n=1,2,...),
holomorphic on 4, such that for each n =1, 2,. .. the following hold:

(i) fu(d) < D(t,, 1),

(D) p(fo@Q) > t,_y (( € A\r,_, 1),

(iii) 2, < p(fo(D) <ty (€ 4\r,4),

(V) [fo1Q) =£uD] <€, /2" ( €r,4), and

v) £,0) =y,1,(0) = AX for some A > 0 independent of n.
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The construction is by induction on n. By Theorem 1 there is a continuous
map f; : 4 - D(t,), holomorphic on 4, such that £,(0) =y, f1(0) = AX, and #, <
p(f1(©) < t, for { € bA. Choose ry, r;, 0 <ry<r, <1, such that (i), (ii), (iii), and (v)
are satisfied for n = 1.

Suppose that f; and r; have been constructed for 1 < j < n so that (i), (ii), (iii), and
(v) are satisfied. Using the Main Lemma a finite number of times we get a contin-
uous map f, ., , =f, + g, : 4 - D, holomorphic on 4, and a number r,, , 7, <7n,,
< 1, such that (iv) holds and (1), (ii), (iii), and (v) hold with n replaced by n + 1.

Now, (iv) shows that the sequence f, converges uniformly on compact sets in 4
to a holomorphic map F. By (v) we have F(0) =y and F'(0) = AX. For { e r,4 we
have |F({) —f£,({)| <e, by (iv), hence (i) and (3) imply

F(r,4) = D(t,,,) +¢,B* = D.

Thus F(4) = D.

It remains to show that Fis a proper map into D. Let { € r,, ,4\r,4. By (ii) we
have p(f,,1(0)) > 1,, and by (iv) |F({) — £, 1(D)| <é€,. 1. Since €, <e€,_», (3)
implies p(F({)) 2 t,_,. This proves that for each n, p(F({)) 21,_, (r, <[(| < 1),
which shows that F: 4 — D is a proper map. Theorem 2 is proved.

Proof of Corollary 3. Choose t,, T <1, <0, such that y; e D(t,) (1 <j<n).
Let 4; = C be the open disc of radius one with center at 3j € C. By Theorem 1
there exist continuous maps F;:4; > D(4), holomorphic on 4;, satisfying
F;(b4) = bD(t,), F;(3j) = y;, and F;(3j) = 4,X; (1 <j<n). Let K be the union of
the closed discs 4; (1 <j <n) and the interval [3,3n] = C. Let F: K— D(t,) be a
continuous map that equals F; on 4, and satisfies F(bK) < bD(t,). Here, bK is the
topological boundary of K in C.

Since the complement of K in C is connected and F is holomorphic in the
interior of K, we can apply Mergelyan’s theorem to approximate F uniformly on K
by a polynomial mapping F,:C—C* satisfying Fy(3)) =y, Fo(3)) = 4X]
(1 <j<n). Let U be a small simply connected neighborhood of K with smooth
boundary. If the approximation is close enough on K and if U is chosen sufficiently
small, then F,(U) < D and F,(bU) < ¥ (T, 0).

Since U is conformally equivalent to the disc 4, we can now proceed as in the
proof of Theorem 2 to modify the given map F,, to a proper map F : U — D, without
changing the values of F, and its first derivative at the points 3j, 1 <j < n. (See the
remark following the Main Lemma). If D is strictly pseudoconvex, we can make F
smooth up to the boundary as in the proof of Theorem 1. This proves Corollary 3.

Sections three and four are devoted to the proof of the Main Lemma.
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3. Technical lemmas

Recall that the disc algebra o/(4) is the set of all continuous functions on 4 that
are holomorphic on 4.

LEMMA 2. Let V be a compact set and let F: 4 x V- C be a continuous
function such that for each v € V the function { — F ({, v) belongs to the disc algebra.
Given € > 0 there are n € Z.. and a continuous map G : 4 x V — C such that for each
veV,{ -G, ) is a polynomial of degree <n satisfying |G({,v) — F({, v)| <€ for
all ({,v)ed x V.

Proof. There is an r,0<r <1, such that |F(rC, v) — F((, v)| <¢/2 for all
(¢, v) € 4 x V. By the Cauchy formula we have

b [ F({,v)
Fe, U)_Zm' Joa (—z

1 [_2:+_C_Z§+...+_~Z£_T]F(C’v)dC+zn+1_l_J F({,v) dt

" 270 ¢ 2mi Jp, 0" — 2)

= G,(2) + R, (2).

d¢

Since F is bounded on b4 x V, the remainder R,(z) tends to zero uniformly on
rd x V as n— oo, hence |F—G,| < ¢€/2 (|z| <r,v € V) if n is sufficiently large. Since
G, is a polynomial of degree at most » in z, Lemma 2 is proved.

Remark. If F(0,v) =0 for all v € V then we may take G(0,v) =0 forallv e V.
If V< RY and F is smooth on 4 x Int V, then G will be smooth on 4 x Int V.

COROLLARY. Let A:bA x bAd - C be a continuous map such that for each
{ebd, L, ={A(n,{) :nebd} is a Jordan curve with the origin contained in the

bounded part of its complement. Given € >0 there is a function f € o/ (A) satisfying
f() € L, + €4 for each { € b4, f(0) =0, and f'(0) =0.

Remark. The Corollary gives an approximate solution of the Riemann-Hilbert
boundary value problem with the data L, ({ € b4). The exact solution, i.e., the
existence of functions f € &(4) satisfying f({) € L, ({ € b4), is a much deeper result;
see the papers [3] and [12].

Proof. For each { € b4 let D, be the domain bounded by L,, and let &, : 4 —» D,
be the conformal map that satisfies ¢,(0) =0, ®;(0) >0. Then the map



Discs in pseudoconvex domains 137

F(n, {) = ®,(n) is continuous on 4 x b4, and n — F(n, {) is in the disc algebra for
each { € b4. By Lemma 2 there are n € Z, and a continuous map G: 4 x b4 - C
such that for each { € b4, n - G(n, {) is a polynomial of degree at most n» without
constant term, satisfying

|G, O) —F(n, 0| <e/2, (. 0)edxba.

Write

n

G, ) =Y a@n  ((ebd,ned).

Jj=1

For each j there are polynomials P; and Q; satisfying

|4, () — P;(0) — Q;(1/0)|<e/2n (C € bA).
Let m € Z . be greater than the degree of each polynomial Q;, 1 <j <n, and set

n

O =Y [P+ Q,(1/OIC™Y.

i=1

Then fis a polynomial in { that vanishes at 0 to arbitrary finite order (by choosing
m sufficiently large). If { € b4 then |f({) —G(™, {)|<e/2 which implies that
| /() — F(™, 0)|<e. In particular, f; € L, +ed. This completes the proof of the
Corollary.

Remark. If 0 < R < 1 then, by choosing m large enough, we can get f as above
with the additional property |f({)| <e (|¢] < R).

As before we denote by B? the open unit ball in C2.

LEMMA 3. Let T<t;<t,<0 and let L = {(w,, w,) € B>: w, =0}. There is a
vo > 0 and for each z € ¥'(t,, t,) there is a biholomorphic map ¥, : B> - ¥,(B?) < C?
satisfying
(1) P.(0)=0(ze (1, 1)),
(i) z+P,(B) =D (z e ¥(ty, 1),
(iii) (z, w) = ¥, (w) is smooth on ¥ (t,, t,) x B,
(iv) for each z € ¥'(t,, t,) and for each v, —vy < v < v,, the set

P(z,v) ={weB?: p(z + ¥,(w)) <p(z) + v}
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is a convex domain and
S(z,v) ={weB*:p(z + P.(W)) = p(2) + v}
is a smooth surface,
(v) for each z € ¥'(t,, t,) and for each v, — vy < v <0, we have P(z, v) "L = {J,

(vi) for each z € ¥'(t,, t,) and for each v,0 <v < v,, S(z, v) N L is a simple closed
curve.

Remark. The convexity of P(z,v) implies that if 0 <v <v, then L intersects
S(z, v) transversely.

Proof of Lemma 3. The proof will be split into three parts.

Part 1. Let e}, e be the standard basis of C>. Fix a point z € ¥(T, 0) =
{zeD:T<p(z) <0}, and choose a new coordinate system in C> by putting
e,(z) = Vp(2)/|Vp(z)| and letting e,(z) be canonically orthogonal to e,(z), that is, if
e,(z) = ae| + Pe5, then e,(z) = — fe; + de;. The Taylor formula gives

p(z +uie,(2) +uye,(2)) = p(2) + zm[‘VP(Z)Iul +12 ) (Djka)(z)ujuk]

k=1

2

+ Y (DDep)@)usiy + o(z, [u?). (4)

jk=1

Since p is of class ¥? we have

2
lim 2@ 1P _ 0,

] =0 'u|2

uniformly with respect to z € ¥°(¢), t,) (since this set is relatively compact in
(T, 0)).
Part 2. For each z € ¥°(T, 0) we define the entire map &, : C*— C? by

D, (u e,(2) + uye,(2)) = wye] + wyes,

where

2

1
Wy = l(VP)(Z)Iul + 5 Y (D; Dy p )2)u;uy,

Jk=1

W2 = uz.



Discs in pseudoconvex domains 139

Note that &,(0) = 0. Since everything in the definition of @, depends smoothly on
z, it follows that (z, w) —» @,(w) is a smooth map on ¥*(T, 0) x C2.
For each z € ¥'(T, 0) we get, using bases {e,(z), e,(z)} and {e}, e3},

0 1

which shows that (D®,)(0) is invertible for each z € ¥'(T,0). Let T <5, <t, <t,<
s, < 0. By the Inverse Function Theorem there is a ball B = C?, centred at the ori-
gin, such that for each z € ¥'(s,, s5,), ®, maps a neighborhood of 0 biholomorphi-
cally onto a neighborhood of 0 that contains B and such that (z, w) —» @, '(w) is
smooth on ¥7(s;, s,) x B. Denote ¥, = & '|;. Passing to a smaller B if necessary
we have

(a) ¥.(0) =0 (z € ¥(s1, 52)),

(b) z+ ¥.(B) =D (z € ¥ (51, %)),

(¢) (z, w) » ¥,(w) is smooth on ¥(s,, s,) X B.

Part 3. Let s, <s} <t <t,<s3<s,. For each z =¥7(s,, 5,) we have

(D®.)(0)e, (2)) = |(Vp)(2)

e,
which implies that L is tangent to S(z, 0) at the origin. By (c) we have
¥.(w) = (DY )0)(w) + o(z, [w]),

where limy,,  ,0(z, |w|)/|w| = 0, uniformly with respect to z € ¥"(s1, 53). In the bases
{e}, e5} and {e,(2), e5(z)} we have

vy ("7 1)

where b(z) = 1/|(Vp)(2)|. If u = ¥.(w) = u,e,(2) + u,e,(z), we thus get

uy = by (z)w, + o(z, W),

u2 = W2.
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It follows that

wy ity = b(z)*w, W, + 0, (z, W],

u, i, = b(z)w, W, + 0,(z, |w}?),

it 4y = b(2)W, w, + 03(z, [w]),

Uy lly = WyW,,
where lim,_,0;(z, |w|?)/lw|>=0 (1<,<3), uniformly with respect to
z € V'(s1,53). Using (4) we get

p(z + P.(w) = p(z + u,(wy, wy)e, (2) + u,(wy, wy)e,(2)

2
=p(2) + 28w, + Y, (D; D p)(2ujiy + olz, [u]?), (5

Jk=1

where lim, _, ; o(z, [u[*)/|u|* = 0, uniformly with respect to z € ¥(s, s3). The ratio
luw)|/[w| is bounded from above and from below away from zero
as w -0, uniformly with respect to z € ¥(s}, s5). It follows that o(z, |u|*) in (5)
is in fact o(z, |w[?), where limy,_,o(z, |w])/|w|> =0, uniformly with respect to
z € ¥'(s1, 53). Thus

p(z + ¥.(W)) = p(z) + 2Rw, + }2: by (D)W, + o(z, W),
k=1
where
B,.2) = (b(z)zu_w}p)(z) b(z)(le‘zp)(z)>
b(z)(D,D,p)z) (D, Dyp)2) )

By strict plurisubharmonicity of p its complex Hessian is strictly positive definite.
Since b(z) = 1/|(Vp)(z) > 0, the matrix (b;x(2)) 1s also strictly positive definite, and
its eigenvalues are bounded from above and from below away from zero, uniformly
for z € ¥'(sy, 5,). The surface S(z,v) in B is given by the equation

2
28w, + Y. bW + o(z, WD) =,

Jk=1

where

|1§mo o(z, [wP)/|w]* =0,
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uniformly with respect to z € ¥°(s1, s3). This implies the existence of a number
vo > 0, depending only on ¢, t,, satisfying the properties (iv), (v), and (vi) of
Lemma 3, with B in place of the unit ball B>. To complete the proof we simply
rescale B to B2

LEMMA 4. Let T<t,<t,<0. There is a v,,0<vy<t,— T, and for each
z € V' (t,, t,) there is a holomorphic map , : A - C? such that
(1) M, =z +y,(A) is a submanifold of an open neighborhood of z contained in
D, and { -z + y,({) maps A biholomorphically to M,,
(i1) ¥.(0) =0,
(iii) for each v, —vy <v <0, we have {p € D : p(p) < p(z) +v}nM, =,
(iv) for each v,0 <v < vy, M, intersects {p € D : p(p) = p(z) + v} transversely in
a simple closed curve, and
(v) the map (z, () > ,(0) is smooth on ¥'(¢,,t,) x A.

Proof. The maps ¥.({) = ¥,(0,{) ({ € 4), where ¥, is given by Lemma 3,
satisfy all the required properties.

4. Proof of the Main Lemma

Applying Lemma 4 to ¥'(¢7, t5) where T <t] <t, <t,<t; <0 we get vy and the
maps Y., z € ¥ (1, t3). Using the compactness of ¥°(¢7, t5) we see (after replacing
4 by a slightly smaller disc) that in Lemma 4 we may assume that each ¥, extends
holomorphically across b4 and that (z, ) - ¥,({) is smooth on ¥'(¢7, t5) x 4.

To approximate a holomorphic map on 4 smoothly on compact subsets of 4 it
suffices to approximate it by holomorphic maps uniformly on 4. Thus, given a > 0,
there is & > 0 with the following property: If @ : b4 x 4 — C? is a smooth map such
that @((, - ) is holomorphic on 4 for each fixed { € b4, and if

O¢ ) —VYrpm| <o (ebd,ned),

then we have

(a) F(O) +O(, 4) =D ({ € ba), B
(b) p(F(0) + O, 1) > p(F(2)) —a ({ € b4, 4 € 1),
(¢) for each v, a <v <v,, the set

[ ={ied:p(FQ) + O ) = p(F(2)) + )

is a smooth simple closed curve containing 0 in its interior part, and
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(d) the curves I';(v) depend smoothly on { € b4 and v, x <v <.

Set u,=7v, and choose a >0 so small that u({) >a ({ € b4) and p(F({)) >
¢ + o ({ € A\r4). Further, choose d > 0 so small that

x € F(A\rd), |x—y|<d  implies y € D and p(y) >c. (6)
With no loss of generality we may assume that the function u is smooth on b4.

By Lemma 2 there are n € Z, and a function

Q¢ =a,(On +- - +a,On"

such that

Q¢ n) —¥rpm|<d/2  ((ebd,nel).

For each j, 1 < j < n, we choose holomorphic polynomials P; and Q; such that the
function

n

o, n) = Y, [P0 + 1/’

i=1
satisfies
Q¢ m) -0, M| <2 ((ebd,ned).

Consequently |F — @| <8 on b4 x 4, hence the properties (a)—(d) hold.
By (b) we have the inequality -

pPFQ)+0OU, M) >pF) —a (ned) (7)

that holds initially for all { € b4, and after passing to a larger R <1 it also holds
for all { € A\RA.

Choose m € Z, greater than the degrees of all Q;, 1 < < n. Since a < u({) < v,,
the properties (c¢) and (d) imply that

A, ={Aed:p(FQ)+ 0O, 1) =pFQ) + @)}
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is a continuously varying family of smooth simple closed curves enveloping 0. There
is a y > 0 such that for all { € b4 and n € A, + y4 we have

lo(F(O) + @, m) — p(F(Q)) — ()| <e.

By the Corollary (Section 2) there is a function w € 2/(4) such that {"w({) e
A, + y4 for each { € bA. Starting with an even larger m we may assume that

|0, {"w(())| < min {e, d} (|¢] < R).

Define

G() =0, ()  (Ced).

Then G is continuous on 4, holomorphic on 4, and by construction it satisfies the
properties (i), (iii), (iv), and (v) in the Main Lemma. To prove (ii), observe that by
(7) we have p(F({) + G(0)) > ¢ (( € A\R4). If { € A\r4, || < R, then |G({)| < d so
by (6), p(F({) + G({)) > c. This completes the proof of the Main Lemma.

Remark. To prove the Main Lemma with the stronger condition (v’) we choose
a Blaschke product P({) that vanishes to second order at each point {; € 4,
1 <j <n, we choose w € (4) satisfying {"P({)w({) € A, + y4 for { € bA, and we
set

GO =0 "POw@) (e 4.

5. An example

In this section we construct for each N = 2 a smoothly bounded domain D < = CV
with a point x € D that is not contained in the image of any proper holomorphic
map f:4 - D.

Let BY be the unit ball in CV. For x € C¥\{0} we denote by H(x) the real
hyperplane through the origin that is perpendicular to x. If p >0 write
K(x,p) ={z € bB" : |z — x| < p}.

There are 6,0 <d <1/2,and {,0 <a < 1, such thatif 1 <R <1+ 4, if x e bBY,
and if Q is the connected component of CM\[RK(x, 1/3) u(ax + H(x))] that contains
x, then

bQ = [RK(x, 1/3) n P| A[(ax + H(x)) n RB"], (8)

where P is a half-space of CV determined by the hyperplane ax + H(x).
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There are n € Z, and points x; € bB", 1 <j <n, such that | JJ_ K(x;, 1/3) =
bB"™. Choose numbers R;,1 <j<n, 1 <R <R,<---<R,<1+4. For each j we
fatten R,K(x;, 2/3) to get a smoothly bounded domain U; = (3/2)B" that contains
R;K(x;, 2/3) and has connected boundary. We can choose the domain U, so small
that their closures are pairwise disjoint and U;,nH(x;) =& (1 <j <n). Define
D =2BM\\J;.., U,

Suppose that f: 4 — D is a proper holomorphic map such that f(0) = 0. Its total
cluster set C(f) =(\o<,<1/(4\rd) is a connected compact set contained in bD.
Since D = b(2B) U[| )7~ bU;] is a disjoint union of » + 1 compact connected
sets, it follows that either C(f) = bU; for some j or C(f) < b(2B"). We will show
that none of these is possible.

Suppose first that C(f) < bU; for some j, 1<j<n. As f is bounded, the
maximum principle implies that f(4) is contained in the closed convex hull of C(f).
However, U, is a connected compact set that misses H(x;), so its convex hull does
not contain the point f(0) =0 € H(x;), a contradiction.

Thus C(f) must be contained in b(2B"), hence f is a proper map from 4 to
2B". Since f(4) is connected and since f(0) = 0, there is a {, € 4 such that f({,) =
x € bB"Y. There is a j,1<j<n, such that x e K(x;, 1/3), hence K(x,1/3)c
K(x;, 2/3), and it follows that R;K(x, 1/3) < U,. Recall that 1 < R; <1+ 4. Denote
by Q the connected component of C*\[R;K(x, 1/3) u(ax + H(x))] that contains x.
Since Q < (3/2)BY, £~ () is an open, relatively compact subset of A. Let G be
the component of f~!(Q) that contains {,. Since f(4) = D, it follows that
f(4) misses U; whence it misses R;K(x, 1/3). Since f(bG) < b€, (8) implies that
f(bG) < ax + H(x) which, by the maximum principle, gives f(G) < ax + H(x).
In particular, f({,) = x € ax + H(x) which contradicts the fact that 0 <a <1.
This shows that there is no proper holomorphic map f:4 — D satisfying
0ef(4).

Remark. The domain D constructed above has disconnected boundary. We do
not know whether there exists a domain D < C" with smooth connected boundary
such that all proper holomorphic maps f: 4 - D avoid certain point x € D.
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