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COMPLEX TANGENTS OF REAL SURFACES
IN COMPLEX SURFACES

FRANC FORSTNERIC

Introduction. In this paper we study the complex tangents of real surfaces in
complex surfaces. More precisely, let M be a closed real surface, i.e., a smooth,
compact, two-dimensional manifold without boundary. Given an immersion resp.
embedding n: M / of M into a complex surface /(a complex manifold of
dimension two), we consider the question to what extent can one simplify the
structure of the set of complex tangents of n by a regular homotopy (resp. isotopy)
of immersions (resp. embeddings).

Recall that a point p e M is called a complex tangent of n if the tangent space
n,(TpM) is a complex linear subspace (a complex line) in Ttp)’. The immersion
is totally real at every point that is not a complex tangent. An immersion without
complex tangents is said to be totally real. When M is orientable and we choose an
orientation on M, then every complex tangent p of n is either positive or negative,
depending on whether the orientation on n,(TpM) induced from TpM by n, agrees
or disagrees with the canonical orientation of n,(TpM) as a complex line.

Recall that a regular homotopy is a family of immersions nt: M /, [0, 1],
such that nt and all its derivatives depend continuously on the parameter t. Immer-
sions no and nl are regularly homotopic if there exists a regular homotopy connec-
ting no to n 1. If all immersions in the family nt are embeddings, we call nt an isotopy
of embeddings.
Thom’s transversality theorem (see [1] or [2]) implies that a generic immersion

n: M ’ only has isolated complex tangents, and its double points are transverse
self-intersections (normal crossings) that avoid the complex tangents of n. In this
paper we shall only study immersions satisfying these properties, and we will not
mention this again.

It is well known that one cannot change the complex tangents arbitrarily by a
regular homotopy since their number, counted with suitable algebraic multiplicities,
is an invariant I(n) of the regular homotopy class of the immersion, called the index
of n (Chern and Spanier [10-1, Eliashberg and Harlamov [24], Webster [33], and
Forstneri [16]). Before proceeding, we must recall the definition of I(n).

First, we recall from [16] and [33] the index I(p; n) Z of an isolated complex
tangent of n. Let U be a small disc neighborhood of p in M. In suitable local
holomorphic coordinates (z, w) on ///near n(p), the surface n(U) is a graph w f(z)
ofa smooth complex functionf defined near the origin in C, with re(p) corresponding
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to z w 0. Since the graph of f is totally real at a point (z, f(z)) if and only if
cf(z) t3f/t3(z)v 0 (see Section 2), the origin z 0 is an isolated zero of the
function df(z).

Definition 1. (a) With the notation as above, the index I(p; r) is defined to be
the winding number of the function Of around the origin z 0. If n is totally real
at p, we set I(p; n) 0.

(b) The index I(n) is the integer

I(70 I(p;70.
p.M

(Thus, if is totally real, we have I(r0 0.)
(c) If M is oriented, we define the positive (resp. negative) index I+_0t) of 7z by

summing the indices I(p, r0 over positive (resp. negative) complex tangents of

According to Lemma 2.3 in Section two, the definition of I(p; r) is independent
of the choice of local coordinates on //. The index I(p; r) can be interpreted as a
local intersection number and also as the index of a suitable normal vector field of
the immersion at p.
When rc is an embedding, we shall identify M with its image in ’ and denote its

index by I(M; #), or by I(M) when it is clear from the context what ’ is.
Recall from Bishop [9] that a generic complex tangent is either elliptic or

hyperbolic; a simple calculation (see [16]) shows that the elliptic points have index
+ and the hyperbolic points index -1. Thus, if only has e elliptic and h
hyperbolic complex tangents, we have I(r0 e h.

Next, we recall the relevant properties of the index I(n). It is related to the Euler
number z(M) ofM and the normal Euler number ;t(n; ’) of the immersion by the
formula

that was proved by Eliashberg and Harlamov [24] and Webster [33]. The special
case when M is an embedded orientable surface in C2 was proved earlier by Bishop
[9]; in that case the normal Euler number vanishes, and hence

I(M) jr(M)= 2- 20

where 0 is the genus of M. See also [12] and [16]. When ’ C2, we also have

I(r0 ;t(M) 2d(r0 (mod 2 if M is unorientable) (2)

where d(n) is the number of double points of the immersion , counted algebraically
as in Whitney [36]. This follows from (1) and from the elementary observation
;t(r; C2) + 2d(n) 0 (mod 2 if M is unorientable); see I-6, p. 597].
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The formulas (1) and (2) provide obstructions to the existence of totally real
embeddings or immersions. For instance, if M is orientable and embedded totally
real into C2, we get z(M)= I(M) 0, and hence M is the torus. Wells proved in
[35] that every closed real n-manifold M that embeds totally real into C" has Euler
number zero. Another consequence of (2) is that a surface with odd Euler number
admits no totally real immersions into C2 (Corollary 1.5(a) below).

IfM is oriented and 7" M -, C2 is an immersion, it is known that the positive and
the negative indices are equal:

I+(:) I_()= I(:)/2. (3)

(See [10], [12], or [24].) We shall give a very simple proof of this fact in Proposition
2.4 below. If g is an embedding into C2, it follows that

I+(n) I_(rc) ;((M)/2 1 g(M).

For embeddings of an oriented surface into an arbitrary complex surface, we have

I_+(rO 1/2(I(:) + c(M)) (4)

where c(M) is the value of the first Chern class of ’ on rr(M)c ’ (see [12],
Proposition 1.4.1).

It is known through the work of Gromov and others that the index I(r0 (or I+_(rr)
when M is orientable) is the only obstruction to deformin9 rc into a totally real
embedding. In Gromov’s terminology, for totally real immersions and embeddings of
real n-manifolds into complex n-manifolds (n > 2), the h-principle holds in the absolute
and the relative form; see Section 2.4.5 in [23]. This allows us, in particular, to con-
struct embeddings of real surfaces into complex surfaces with prescribed number
and behavior of the complex tangents, provided that there are no homotopical
obstructions.
Gromov’s method of ’convex integration’ that is used in the proof of his

h-principle is quite splendid as it yields very many seemingly unrelated results of
analysis and geometry at the same time. However, almost every theory that is so
general has the disadvantage that, when one applies the machine to a given simple
minded problem, one does not see very well why it works and what is behind
it. In our particular problem, we do not get any geometric picture by reading Section
2.4.5 of [23]. Moreover, Gromov’s methods, powerful as they are, do not seem
widely known, nor are they easily knowable.
We hope that this justifies at least somewhat the present paper in which we

provide a more direct and elementary proof of the fact that one can replace a pair
of complex tangents (of the same sign) of a given embedding or immersion by a
single complex tangent, provided that the index is preserved. In particular, if the
index equals zero, one can cancel all complex tangents and obtain a totally real
embedding (resp. immersion). This is explained in Theorem 1.1 and its corollaries
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in Section below. It should be stressed that Theorem 1.1 is itself a corollary of
results in [23], but the present proof is new and, hopefully, more illuminating.
A large part of the paper is devoted to construction of totally real embeddings

(or embeddings with minimal number of complex tangents) of real surfaces into (22
or CP2. These results, summarized in Corollaries 1.2-1.5, follow from Theorem
1.1, but they can also be deduced from results known earlier. In [23] and [24]
this problem was reduced to the question about possible normal bundles of real
2-surfaces in a complex 2-dimensional manifold. This is a classical problem which
was solved in the case ’ (22 by Massey [29] who proved a conjecture by
Whitney. It seems that the explicit computations were never published anywhere
(except some special cases); so it seems useful to summarize these facts in one paper.
We also find new totally real embeddings of some unorientable surfaces into the
complex projective plane (Theorem 1.6).
We apply our technique to construct holomorphically convex embeddings of

every closed surface M other than the two-sphere into C2 (Theorem 1.8). This yields
examples of Stein domains in (22 that are homotopically equivalent to M (Corollary
1.9).
The paper is organized as follows. In Section 1 we state the main results. In Section

2 we recall the relevant properties of the Maslov index and its connection with the
index I(g) of Definition 1. In Section 3 we consider the behavior of index under the
operation "connected sum", and we construct some specific embedding and immer-
sions used in the proof of results in Section 1. In Section 4 we explain a modification
lemma for the operator in the disc that is used in the proof of Theorem 1.1 given
in Section 5. In Section 6 we construct a regular Stein neighborhood basis ofsurfaces
in C2 with eomplex tangents of negative type. In Section 7 we consider embeddings
of surfaces into the projective plane CP2.

I wish to thank Joe Vrabec for very helpful conversations and suggestions
concerning the topological part of the paper. He pointed out to me the result of
Massey [29] and showed me the embedding RP2

--* C2 given in Lemma 3.2. I thank
Hans Sterk from the University ofAmsterdam, who explained to me the connection
of (1) with the genus formulas for curves in CP2, and Jan Wiegerinck with whom I
had stimulating conversations on the subject. I thank Edgar Lee Stout who raised
(for the second time) my interest in this subject by asking the question answered by
Proposition 1.7. Last but not least, I wish to thank the referee for his useful criticism
of the first version of this paper.

1. Results. Let E(k) c C2 be the graph of the function

w zk if k > 0, w lkl+l if k < 0.

Clearly, 0 is the only complex tangent of E(k) with index equal to k.

Definition 2. A complex tangent p M of an immersion rr: M ’ is said to be
of type k Z if there exists a neighborhood U of p in M and a local holomorphic
chart on ///, centered at n(p), that carries n(U) onto a neighborhood of 0 in E(k). If
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C2, we require in addition that this can be done by a complex affine change
of coordinates on C2.

According to this definition, a complex tangent of type 0 is in fact a totally real
point.
We shall now explain our main result on joining pairs of complex tangents. For

nondegenerate complex tangents this was done earlier by Eliashberg and Harlamov
[-24], but that paper is not easily accessible.

Let Po, P M be isolated complex tangents of an immersion z: M ’. We
choose on TpjM the canonical orientation induced by re, from the natural orienta-
tion of z,(TpjM) as a complex line. If y c M is a curve connecting Po to pl, we can
carry the canonical orientation of TpoM along , to an orientation of TIM. We say
that y is orientation-preservin9 (resp. orientation-reversing) if this orientation agrees
(resp. disagrees)with the canonical orientation of TpIM.
Our main technical result is the following theorem.

THEOREM 1.1. Let Po, P M be isolated complex tangents of an immersion

ZOo: M- of a real surface M into a complex surface /// and let M be an
orientation-preserving simple smooth curve connecting Po to P l. Let U be a neighbor-
hood of in M that does not contain any other complex tangents or double points of
zro. Given a point q and an e > O, there is a regular homotopy of immersions

zt: M - ////, [0, ], satisfying
(a) 7r ro on M\ U for all t,
(b) supM i(zrt, ro) < e for all t, where is anyfixed metric on ,
(c) every rt has the same number of double points as ZOo, and
(d) rllt has a single complex tangent q of type k I(po; Zro)+ I(pl; ro). In

particular, if k O, zr is totally real on U,
(e) if rco is an embedding, then (rc} is an isotopy of embeddings.

Theorem 1.1 is proved in Sections 4 and 5 below. We have already mentioned in
the introduction that it also follows from results of Gromov [23].
Theorem 1.1 has several corollaries. We first consider the case when M is ori-

entable and n: M C2 is an immersion with isolated complex tangents. Then every
curve in M joining a pair of complex tangents of the same sign is orientation-
preserving. Using Theorem 1.1 repeatedly, we can join all complex tangents of the
same sign into a single complex tangent of type I_+(rc). It follows from (3) and (4)
that we cannot join complex tangents of opposite signs.
On the other hand, if M is unorientable, we can join every pair of complex

tangents by a curve with the required properties. Namely, if a chosen curve from

Po to P is orientation-reversing, we follow it by another orientation-reversing
simple loop at P that exists since M is unorientable. The composed curve is
orientation-preserving, and we can replace it by a simple smooth orientation-
preserving curve from Po to Pl. Using Theorem 1.1, we canjoin all complex tangents
of r into one complex tangent of type I(r0.
We summarize these results in the following corollary.
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COROLLARY 1.2. (a) Every embedding n: M /// can be changed by an isotopy
to an embedding with two complex tangents of types I +(n) (with one complex tangent
of type I(rt) ifM is unorientable). The same holds for regular homotopy of immersions.

(b) An embedding n: M is isotopic to a totally real embedding if and only if
I(n) 0 and c(M) O. The last condition c(M) 0 always holds when t’ C2 or
when M is unorientable.

(c) An immersion n: M - C2 is regularly homotopic to a totally real immersion if
and only if I(n) 0.

Remark. The proof ofTheorem 1.1 can also be used to create complex tangents.
More precisely, we can split an isolated complex tangent p of index k into any
number m of isolated complex tangents Px, P2, Pm (of the same sign as p if M is
orientable), with Ps of type ks, provided that ’__ k k. For instance, one can
isotope a given initial embedding to an embedding that only has elliptic or hyper-
bolic points (depending on the index) of types + 1 (resp. 1).

COROLLARY 1.3. A closed surface M of genus g admits a totally real embedding
into C2/f and only if M is orientable and g 1 (M is the torus), or M is unorientable
and g 2 (mod 4). (M is the connected sum of an odd number g/2 of Klein bottles.)

Proof. Let if: M--4 C2 be an embedding; so d(n)= 0. If M is orientable, (2)
implies I(n)- z(M) 2- 2g, and hence I(n) 0 if and only if g 1, i.e., M is
the torus. The standard embedding T {(e, e): 0, r/e R} is totally real (even
Lagrangian).

IfM is unorientable, with Euler number h 2 g, Whitney proved that for every
embedding into C2 we have Z(n; C2) 2h (mod 4) (see Massey [29]). From (1) we
get I(n) 3h (mod 4), and hence I(n) 0 implies h 0 (mod 4) whence g 2 (mod
4). Thus, M must be a connected sum of an odd number 0/2 of Klein bottles.
An explicit totally real embedding of the Klein bottle K into C2 was given by

Rudin I-31 ]. Givental [ 19] constructed Lagrangian (whence totally real)embeddings
of the unorientable surfaces with Euler characteristic h < -4, h 0 (mod 4). It is
still an open problem whether the Klein bottle itselfadmits a Lagrangian embedding
into C2.

Alternatively, we can use Corollary 1.2 to construct the required totally real
embeddings as follows. Using the operation "connected sum", we obtain in Section
3 a set of embeddings of an unorientable surface M into C2 with the corresponding
set of normal Euler numbers equal to

{2h 4, 2h, 2h + 4, 4 2h}, h z(M).

Massey proved in [29] that this is precisely the set of all possible normal Euler
numbers of embeddings into C2. Thus, the set of possible indices of embeddings
into C2 equals

(3h 4, 3h, 3h + 4,..., 4- h}. (5)
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This set contains zero if and only if h 0 (mod 4); hence Corollary 1.2(b) gives a
totally real embedding in these cases. Corollary 1.3 is proved.

Remark 1. Corollary 1.3 is a special case of the following result of M. Audin [6],
based on the work of Gromov [21], [23] (see also [15]): ,4 connected closed
2n-dimensional manifold M admits a totally real embedding into C2n/f and only if its
complexified tangent bundle is trivial and z(M) 0 (mod 4 if M is unorientable). For
surfaces our approach in the present paper is simpler than the one in [23] or [15]
since we do not use Whitney’s method [36] of removing pairs of double points of
immersions Mn- R2n that is problematic in dimension four. Corollary 1.3 also
follows from the results of [24].

Remark 2. It is known that every totally real immersion M - C is regularly
homotopic to a Lagrangian immersion (Gromov [21], [23] and Lees [28]). More-
over, if n / is not a power of two, all totally real immersions of an n-manifold into
C are regularly homotopic to each other [6].

We now summarize the results on complex tangents of closed surfaces in C2.
Some of them have been known before, but we take this opportunity to present
them coherently.

COROLLARY 1.4. Let M be a closed orientable surface of genus g g(M).
(a) If g (M is the torus), then every embedding of M into C2 is isotopic to a

totally real embedding.
(b) If g v 1, then every embedding of M into C2 has a nonempty disconnected set

of complex tangents, and it is isotopic to an embedding with two complex tangents
(one positive and one negative), both of type g.

(c) Every totally real immersion re" M - C2 satisfies d(rc) 1 g. There exists a
totally real immersion of M into C2 with precisely ll- gl double points (normal
crossings).

Proof. Parts (a) and (b) follow from Corollary 1.2 and the formula I+(rc)-
1/2z(M) g(3). If the set of complex tangents of an embedding is connected,
all complex tangents are of the same sign, and the same holds after a generic
perturbation. Thus, at least one of the numbers I+/- equals zero whence g 1.
From (2) we see that I(rc) 0 implies d(rc) z(M)/2 1 g. We shall construct

a totally real immersion with gl double points in Section 3 (following the proof
of Proposition 3.1). This will prove (c).

Remark. Apropos (a), T. Fiedler [13] proved that there exist embedded totally
real tori T1, T2 c C2 that are isotopic, but not within the class of totally real
tori.

COROLLARY 1.5. Let M be a closed unorientable surface of genus g and Euler
characteristic h 2 g. For each number k (3h 4, 3h, 3h + 4, 4 h}, there
exists an embedding M - C2 with a single complex tangent of type k. Conversely, the
index of every embedding belongs to this set. Specifically, we have the following.
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(a) If g is odd, M does not admit any totally real immersions into C2. It admits an
embedding with a single complex tangent of type k, where k { 1, 3} and g k
(mod 4).

(b) If g 2 (mod 4), M admits a totally real embedding into C2.
(c) If g 0 (mod 4), M admits no totally real embeddings into C2. It admits an

embedding with a single complex tangent of type 2, and it also admits a totally
real immersion with one double point.

Proof. Everything except the last assertion in (c) follows from Corollary 1.2 and
from the existence ofembeddings with indices (5). A totally real immersion with one
double point is constructed in Section 3 (following the proof of Lemma 3.2). This
proves Corollary 1.5.

In Section 7 we shall consider embeddings into the complex projective plane CP2.
Using a genus formula for an embedded complex projective curve C c CP2 of
degree d, we obtain I(C; CP2) 3d. For instance, we have embedded spheres C1,
C2 c CP2 with indices 3 (resp. 6). By taking the connected sum of C1 and C2 with
unorientable surfaces embedded into the finite part of CP2, we prove the following
theorem.

THEOREM 1.6. Every unorientable surface of genus g 1, 2 (mod 4) admits a
totally real embedding into CP2 that is not regularly homotopic to an embedding
into C2.

Thus, Corollary 1.3 and Theorem 1.6 provide nonequivalent totally real em-
beddings of the unorientable surfaces of genera g 2 (mod 4) into CP2.

Let M be an orientable surface of genus g. We have seen in the proof of Corollary
1.4 that an immersion r: M- C2 with the connected set of complex tangents
satisfies d(r) 1 g. When M is the sphere (g 0), we obtain as a consequence
the following result concerning the intersection of analytic and totally real discs in
C2

PROPOSITION 1.7. Suppose that A and E are smoothly embedded closed discs in
C2 that are glued along their boundaries so as to give an immersed sphere. If the disc
A is complex and the disc E is totally real at every interior point, then A and E also
intersect in the interior. If we orient A and E so that the two orientations agree on
their joint boundary, then their intersection index A" E equals one.

This answers a question raised by E. L. Stout (personal communication). More
general results on intersections of analytic and smooth discs have been proved
recently in [11] and [37].

Using the methods of this paper, one can construct an embedded torus or
embedded unorientable surfaces in C2 that contain a closed analytic disc and are
totally real outside this disc. It suffices to strech a single complex tangent into an
analytic disc.

Corollaries 1.4 and 1.5 show that every closed surface except the sphere admits
an embedding M C2 with complex tangents of type k < 0. In Section 6 we
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construct a smooth plurisubharmonic function p > 0 in an open neighborhood f
ofM satisfying p-l(0) M and dp v 0 on f\M(Proposition 6.1). The sublevel sets

ta {(z, w)e ta: o(z, w) < c}

for sufficiently small c > 0 are smoothly bounded pseudoconvex domains with the
homotopy type of M. We call such a family a reoular Stein neighborhood basis of
the surface M c C2. It follows from [26, Theorem 4.3.4] that M is holomorphically
convex in each fc; that is, for each point p fc\M there is a holomorphic function

f on f with f(p) > supM Ifl. Thus, we have the following theorem.

THEOREM 1.8. Every closed surface M other than the sphere admits a holomor-
phically convex embeddin9 into C2 with a regular Stein neighborhood basis. If M is
orientable, then every embeddin9 of M into C2 is isotopic to an embeddin9 satisfyin9
this property.

COROLLARY 1.9. For every closed surface M other than the sphere, there exist
Stein domains in C2 with the homotopy type of M.
One may ask why is the two-sphere an exception. It is known that the envelope

of holomorphy of every ’nicely embedded’ two-sphere S in C2 is an embedded real
three-ball S foliated by analytic discs. (It suffices to assume that S is generically
embedded into a smooth closed strongly pseudoconvex hypersurface in C2.) Re-
suits in this direction were obtained by Bedford and Gaveau [7-1, Bedford and
Klingenberg [8], and Gromov [22]. If S is contained in a Stein domain f c C2,
then the envelope S is also contained in f, and hence S is zero-homotopic within
f. This justifies the following conjecture.

CONJECTURE. There exists no Stein domain (i.e., domain of holomorphy) in C2 with
the homotopy type of the two-sphere.

Corollary 1.9 raises the question: For which real n-dimensional manifold M is there
a Stein domain f in C" with the homotopy type of M?
Of course, the question is nontrivial only for manifolds that do not admit totally

real embeddings into C".

2. Index. We first recall the definition of the Maslov index of totally real
n-dimensional manifolds in C (see [5-1, [38], 1-14], [16]).

Let G G(n, 2n) denote the Grassmann manifold of oriented real n-dimensional
subspaces of C. For each g G we choose n vectors X1, X in C that form a
positively oriented real orthonormal basis of g and denote by X the complex n x n
matrix with the jth column Xj. We set z(g) det(X). If Y (Y,..., Y) is another
such basis of g, then Y XA for some real orthogonal matrix A SO(n, R) whence
det Y det X. Thus, we have a well-defined function z: G C such that Gtr
G\z-I(0) is precisely the set of all oriented totally real n-dimensional subspaces
of C".
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The function z induces a homomorphism of the first homology groups

H,(,): Hi(G,,)+ Hi(C\{0}) Z.

Let re: M C" be an immersion of an oriented n-dimensional manifold M into
C" and let rr,: M - G be its Gauss map that takes each point p e M to the oriented
tangent plane zr,(TpM) c C. If the immersion is totally real, the image zr,(M) is
contained in Gtr, and we may compose the map H10r,) with Hi(z) to obtain a
homomorphism

I, Hi(z) o Ha(n,): Ha(M) Z, (6)

called the index homomorphism of the immersion zr. If 7r is an embedding and we
identify M with its image in C", we shall also write I In.

For each closed path 7:$1 R/Z M we denote by I(y) the index of the 1-cycle
in Hi(M) defined by the path 7. Note that I(y) only depends on the restriction of
rc to an arbitrary neighborhood of y(S 1) in M.

Here is the simplest way to compute the index I(y). Choose continuous vector
fields Xa, X,: S C" such that for each S the vectors Xa (t), X,(t) form
a real basis of the tangent space r.(Tr,)M). Such vector fields exist when M is
orientable along the path 7. Then I() equals the winding number of the determi-
nant function det(Xa (t), X.(t)) C\ {0} around the origin. Note that the deter-
minant is without zeros since rc is totally real.
We collect the basic properties of the index that we shall use in the sequel.

PROPOSITION 2.1. (a) I,, is independent of the choice of orientation on M.
(b) If rot: M Cn(t [0, 1]) is a reoular homotopy throuoh totally real immersions,

then I,o I,,.
(c) Let 7: Sa M be a closed path, U C" an open neiohborhood of y(Sa), and
U (U) C" a biholomorphic mappin9. Denote by k the windin9 number of the

function S det D(I)((t)) C\ {0}. Then

Ia, o,(’) I,,(7) + k.

A 91obal biholomorphic chanoe of coordinates on C2 does not affect the index.

Proof. Properties (a) and (b) follow from the definition. For a proof of (c) see
Lemma 7 in I16].

Suppose now that U is an open set in the complex plane, 9: U C is a smooth
complex function on U, and M c C2 is the graph of 0:

M {(z, 0(z)) C2: z U}. (7)

Let z x + iy and w be the variables on C2. The vectors

X(z) (1, OO/Ox(z)), Y(z) (i, OO/Oy(z)) (8)
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form a real basis of the tangent space Ttz,otz))M for all z U. Since the determinant
of the matrix with columns X(z) and Y(z) equals

cg cg cg
d(z) -y (z) -x (z) 2i--c? (z)

the surface M is totally real at (z, 9(z)) if and only if 09/0 (z) # O. The formula for
computing the index of a closed path shows the following proposition.

PROPOSITION 2.2. Let M be as above. If y (y , Y2): S --* M is any closed path
contained in the set of totally real points of M, then It(y) equals the windin9 number
of the function e S --, Og/c3 5(y(t)) C\ {0}.

Using the Maslov index, we can compute the index I(p; r) of an isolated complex
tangent of an immersion r’M--* // as follows. Choose a biholomorphic map
(I): V B2 from a neighborhood V of rr(p) in /onto the ball B2 c C2. Let U be a
neighborhood of p in M, U homeomorphic to the disc A c C, such that re(U) c V
and r is totally real at every point of U\ {p}. We pull back the canonical orienta-
tion of the complex line r,(TM) by r, to an orientation of TpM and orient U
accordingly.

LEMMA 2.3. If 3)" S U\{p} is any closed path with winding number one (in the
chosen orientation on U), then I(p; z) Ia, o,(’).

Proof. Ia, o(/) is independent of the choice of 7, and by Proposition 2.1(c)
it is also independent of (V, O). With suitable choice of U and (V, O), the surface

o re(U) c C2 is a graph of the form (7), and the required equality follows from
Proposition 2.2. Lemma 2.3 is proved.

The index I(p; r0 of an isolated complex tangent can also be defined as the local
intersection number of the Gauss map associated to rc with the submanifold H of
the Grassmanian G(2, 4) of real two-planes in C2 consisting of complex lines (see
Chern and Spanier [10], Bishop [9-1, and Forstneri [ 14, p. 94]).

Yet another way of defining I(p; r) is due to Webster [33]. Assume for simplicity
that M c //is embedded. Let N M be the normal bundle of M in ///so that
TM O) N T//lllVt. If we choose a local orientation on TM, we can coorient the
normal bundle N locally by the requirement that the two orientations add up to
the standard orientation of the complex bundle T/lt.

Let z: TC/lt - N be the projection with kernel TM. Denote by J the almost-
complex structure operator on T//induced by the complex structure on ’. Every
tangent vector field X on M gives rise to a normal vector field X z(JX). Let Po
be an isolated complex tangent of r. Choose a tangent vector field X on M that has
no critical points in a neighborhood U of Po in M. Then X is a normal vector field
with an isolated zero at Po. We let I(po; M) be the index ofX at Po, i.e., the winding
number of the fiber coordinate of the map p - Xp at p Po. It is easily seen that
the definition does not depend on the choice of the normal bundle N and the vector
field X. The definition is local, and hence it also applies to immersions.
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To see that this definition coincides with Definition 1 we may assume that M is
locally near Po given by (7), with Po corresponding to the point 0 e C2. We may
choose the normal bundle with constant fibers Np {0} x C. Let X and Y be the
tangent vector fields to M defined by (8) above. We then have

X(z) iX(z) Y(z) (0, iOo/Ox(z)- c39/Oy(z)) 2i(0, c39/c3(z))

and similarly Y(z) 2(0, c3g/O (z)); so their index at 0 equals the winding number
of Og/O around 0. This shows that the two definitions are equivalent.

Let n: M’be an immersion with isolated complex tangents Pl, Pz Pm M.
Recall that the index of n is the integer I(n)= ’=11(pfi n). (This is to be dis-
tinguished from the index homomorphism I defined by (6)!)
The last definition of the index I(p; n) gives a simple proof of the formula (1), due

to Webster [33]" Let X be a tangent vector field on M with isolated zeros that avoid
the set of complex tangents of n. Then X is a normal vector field of n with isolated
zeros at zeros of X and also at each complex tangent of n. If p M is a zero of X
(so p is not a complex tangent of n), then we have Indp X + IndpX 0. Hence, the
sum of indices ofX and X at all critical points equals I(n). However, the total index
of X equals it(M), and that of X equals it(M; //); so we obtain (1).

Recall that for an oriented M we have defined I+(n) and I_(n) by summing up
the indices of positive (resp. negative) complex tangents of n.

PROPOSITION 2.4. For an immersion re: M --. C2 of a closed oriented surface into
C2, we have I+(n) I_(n) I(n)/2. More generally, if M is an oriented surface with
boundary bM and if n: M C2 is an immersion that is totally real near bM, then

I+(u)- I_(u)= I,(bM).

Proof. Choose an oriented triangulation {A} of M such that each Ag contains
at most one complex tangent of in its interior, and no complex tangent lies on the
boundary of any cell Ag. If M has boundary bM, we further require that each Ag is
either entirely contained in the interior of M or else one of its sides lies in bM. We
orient the boundary curve bA coherently with A.
The index I(bAj) equals zero if A contains no complex tangents, and by Lemma

2.3 it equals I(p; n) if A contains the complex tangent p, where the sign depends
on the signature of p.
Denote by M, the surface obtained by removing from M all the complex tan-

gents of n. Since [bA] [bM] in the first homology group Hi(M,) and since

I: H(M,) Z is a group homomorphism it follows that

I(bM) I,,(bA)= I+()- I_().

IfM is closed, we get I+(zc) I_(zr) 0. Since I+(z0 + I_(zr) I0r), the proposition
follows.
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3. The connected sum. Recall that the connected sum M1 # M2 of two surfaces
is a surface obtained by removing a disc A from each M and connecting the two
punched surfaces by a tube E S x [0, 1] glued to M along the curve bA.

If z: M - ///are embeddings (or immersions) into a complex surface ///, we can
perform the connected sum of zr(M) and 7r2(M2) within ///. The result is an
embedding (or immersion) of the connected sum M #M2 into t’ that we shall
denote by zrl # zr2. (This is determined only up to a regular homotopy.)
We shall give an explicit construction of the connected sum

that adds two hyperbolic complex tangents of index -1, one positive and one
negative in case that the surfaces M, M2 are oriented.
To simplify the notation we identify M with 7r(M) ’. Choose a pair of totally

real points p Mr (j 1, 2) that are not double points of M1 (resp. M2) or in
M1 c M2, and choose a simple real-analytic arc with endpoints p and P2
that does not intersect M1 w M2 elsewhere. Let X1 be a real-analytic vector field of
type (1, 0), defined on a neighborhood of in ’ and tangent to
correctly we may assume that JX is tangent to M at p for j 1, 2. We can find
another real-analytic vector field X2 on ’ near , that is C-independent ofX and
is tangent to M at p for j 1, 2.

Let z x + iy and w u + it; be coordinates on C2. There is a tubular neighbor-
hood of /in ’ and a biholomorphic map : ’ C2 satisfying

(a) () [- 1, 1] x {0}, (Pl) (- 1, 0), (P2) (1, 0), and
(b) O.(X1) cc3/dz (c > 0) and O.(X2) c3/dw at each point of
It follows that O.(TpjM) {(iy, u): y, u R} for j_--- 1, 2. After a small deforma-

tion ofthe surface M1 at p, the image(c M) M1 ’ will contain the disc

Al:{(-l+iy, u):y,uR, y2+u2<e2}

for some e > 0. Similarly, we insert into M2 (I)(k3 M2) the disc A2

{(1 + iy, u): yE + u2<e2}.
Let E be the smoothly embedded tube in C x R defined by

Y {(x + iy, u): < x < l, y2 + u2=g(x2)},

where g is any smooth increasing function on [0, 1) that is continuous on [0, 1]
and satisfies the conditions g(0)= e2/4, g(1)= e2, g’(t)> 0 for all e [0, 1), and
limt_ gtk(t) o for all k 1, 2,

If q E is a complex tangent, we must have TqE {w 0}. There are precisely
two such points: q (0, e/2) and q2 (0, e/2), both ofthem hyperbolic with index

1. Thus, I(E) -2.
We now remove A from M and glue the resulting pu_nched surfaces together

along bA with the tube E. Denote the new surface in’ by Mo. The resulting surface

M (M\f) w (M2\f) (I)-(/ro)

is the connected sum M1 #M2 within //.
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If Mx and M2 are disjointly embedded in #, then M is also embedded. In general,
the self-intersection number ofM equals the sum of the corresponding numbers of
Mx and M2, plus the intersection number of M1 and M2 within ’.
The connected sum satisfies the following properties.

PROPOSITION 3.1. (a) z(M # M2) ;t(M1) + z(M2) 2.
(b) X(r #r2; d///) Z(r; d//) + Zs(r2;
(C) I(x #X2) I(xx) + I(x2) 2.

Proof. The property (a) is well known (see [32]), and (c) follows from the
construction. Together with (1) we get (b), although this is also well known (see [30]).

We shall now consider some immersions and embeddings of the two-sphere S2,
the torus T, and the projective plane RP2 into C2. To begin with we construct the
totally real immersed orientable surfaces required in Corollary 1.4(d).
The standard embedding of the sphere is

S { (z, u): z C, u e R, Iz[ 2 4- u2 1 } C2

We orient S as the boundary of the three-ball [z[ 2 + u2 < 1. Clearly, S has two
elliptic complex tangents Po (0, 1) and P (0, 1), the first one positive and the
second one negative, and S, S\{po, p} is totally real. Thus, I+(S)= 1_(S) 1
and I(S) 2 z(S), as expected from (1).
An explicit Lagrangian (whence totally, real) immersion of the n-sphere into C"

with one double point can be found in Weinstein [34, p. 26]. For n 2 it is given by

7(X1, X2, a) (x(1 + 2ia), X2(1 + 2ia)), x2 + X22 + a2 1.

Let Sx C2 be its image, a totally real immersed sphere with one double point. Its
self-intersection number equals d 1, and the normal Euler number is -2.
For each immersion z (, 2): M - C2 we set (:, 2). Since the reflection

(z, w) (z, ) changes the orientation on C2, it changes the sign of the normal Euler
number, and hence Z(; C2) -Z(z; C2). Thus, the sphere has (1; C2) 2.

Let To be the standard embedded totally real (lagrangian) torus in C2. The
connected sum T To #S: is an immersed torus with one double point and
z(Tt; C2) 2; hence I(T) 2 according to (1). (We first translate To or x so as to
make them disjoint.) Thus, for each surface M C2 we have I(M # Tx) I(M) by
Proposition 3.1(c). It follows that the disjoint connected sum

(O- 1)times

To#T#."#TI

is an immersed orientable surface of genus 9 > 1, with 19 11 double points and
with index zero; hence it can be deformed to a totally real immersion.

This proves Corollary 1.4(d). We now proceed to construct embedded and
immersed unorientable surfaces required in Corollary 1.5.
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Recall that the projective plane RP2 is the quotient of the sphere obtained by
identifying each pair ofantipodal points. Its Euler number equals 1. Every mapping
F" C x R (22 that is a function of the quadratic terms z2, zu, and u2 induces a
mapping/: RP2 - C2.

LEMMA 3.2. The image of S under the mapping F(z, u) (z2, zu) is an embedded
projective plane P1 c C2 with a single complex tangent of index three; hence I(P1) 3
and z(P; C2) 2.

Proof. F extends to the holomorphic map F(z, w)= (z2, zw). If F(z, u)=
F(z2, u2) then z z2 and zul z2u2" hence z2 /_z, and the second equa-
tion implies u2 +_u unless z z2 0. In this last case the assumption that
both points lie on S implies u, u2 /_ 1. Thus, F induces a one-to-one mapping
if: RP2 - C2.
To prove that F is an embedding it suffices to show that Fls is an immersion. Its

derivative equals DF(z, w) (2 Oz), and the Jacobian determinant is d(z, w)

2z2. The branch locus {z 0} intersects S only at the points (0, 1), whence F is
locally biholomorphic at each point of S,. Thus FIs, is an immersion, and F(S,) is
totally real in C2. At the two exceptional points (0, +_ 1) the derivative of F equals

/ 0 ^\o Since the intersection of its kernel {0}xC with the tangent space
_1 0/

Tto._+ 1S C x {0} is trivial, FIs is an immersion also at the points (0, + 1).
Thus, F(S)= P1 is an embedded projective plane in C2 with the single com-

plex tangent at F(0, 1) (0, 0). Choose an e (0, 1) and consider the path ,(0)
(ee i, V/1 e2) in S. According to (2.4), we have Is() I(po; S) 1. The winding
number of the jacobian determinant d(z, w) 2z2 along equals 2, and hence
Proposition 2.1(c) implies I((0, 0); P) 1 + 2 3. Lemma 3.2 is proved.

Let P be the reflection of P as explained above, so that Z(I; (22) -2 and
I(P1)

Fix / Z/ and write g k / l, k, Z/. Proposition 3.1 implies that the em-
bedded unorientable surface of genus g defined by

k times times

M, e # #P #p # #e
has the normal Euler characteristic 2k- 2l and index I 2-# + 2(k- l)
3h + 4(k 1), where h 2 # is the Euler number. Thus, we obtain embeddings
of the unorientable surface ofgenus /into C2 with the set ofindices equal to {3h 4,
3h, 3h + 4, 4- h}. (See also Massey [29].) These embeddings were used in
Corollary 1.5.

Notice that a totally real Klein bottle in (22 can be obtained by modification of
the Klein bottle K P1 #1 C C2 that has index zero. An explicit example was
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constructed by Rudin [31]. The other two Klein bottles K2 P1 # P1 (resp. K2

P1 # P1) have index 4 (resp. -4).
The connected sum Kt2) K1 # K2 of two Klein bottles has index 2. Thus, if M

is any surface in C2, Proposition 3.1(c) implies I(M #Kt2)) I(M). By successively
adding copies of K(2) to K1, we thus obtain a connected sum of any odd number
of Klein bottles embedded into C2 with index zero; these can be made totally real.

Similarly, K #K has index 2. By adding copies ofKt2) we obtain a connected
sum of any even number of Klein bottles with index -2 (Corollary 1.5(c)).
The connected sum P2 P1 # $1 = C2 ofP1 with the totally real immersed sphere

$1 is an immersed projective plane with index 1 and with one double point. The
connected sum K3 P1 # P2 is an immersed Klein bottle with one double point
and index 2. Hence for every surface M c C2 we have I(M # K3) I(M).
The connected sum of two Klein bottles K1 # K3 is immersed with one double

point and with index zero; thus it can be deformed into a totally real immersion.
Similarly, we can add K3 to any totally real embedded connected sum of an odd
number of Klein bottles to get an even number of Klein bottles immersed totally
real into C2 with one double point. This proves Corollary 1.5(c). Similarly, one
proves part (a) of Corollary 1.5.

4. A modification lemma for 0 on the disc. Let f" A C be a smooth complex
function on the closed unit disc in the complex plane. We have seen in Section 2
that its graph

M {(, f()): Il < 1}

is totally real at a point ((, f(()) if and only if f(() (cf/c3 ()(() 4= 0. Thus, the
complex tangents of M lie over the zeros of 0f.

Suppose now that cf(() = 0 when I1 1; equivalently, suppose that M is totally
real near its boundary bM that lies over the circle T { ICI 1 }. We would like to
modify M in the interior, leaving it fixed near the boundary, so as to remove all the
complex tangents of M. Alternatively, we want to modify f, keeping it fixed near T,
such that the modified function has a nonvanishing c-derivative on A.

Clearly, there is a topological obstruction for doing this, namely, the winding
number of the function Of around T. In order to find the required modification, the
winding number must vanish. It turns out that this is the only obstruction.

LEMMA 4.1. Let f be a smooth complex function on the closed unit disc A c C such
that Of(() O for ICI 1, and the winding number of O.f alo._ng the curve ICI 1 equals
zero. Given an e > O, there exists a smooth functionf on A satisfyin9

(i) f equals f in a neighborhood of the circle I(l 1,
(ii) If fl < e on A, and
(iii) cf() : 0 for all I1 < 1o

Remark. Clearly, Lemma 4.1 applies to simply connected domains in C since a
conformal transformation only affects the 0-derivative by a nonvanishing factor.
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Proof of Lemma 4.1. This lemma follows from the work of Gromov [21], [23];
a similar result was used in [17]. However, in order to make our proof self-
contained, we will reduce Lemma 4.1 to an elementary lemma from control theory.
The same result holds ifwe replace the operator t3 with any first-order linear complex
differential operator on A that does not vanish at any point of A.

After a small perturbation f near 0, we may assume that df(0)=# 0. Choose
0 < a < such that Of(() 0 for I1 < a. We shall only modify f on the annulus
A- {(C’a< I(I < 1}.

Let B cgl(T) be the Banach space of all complex valued functions of class
on the circle T R/2rtZ. Write ( re. We associate to each f 2() the path
r [a, 1] f, B by (0) f(re).
A simple computation shows that in polar coordinates

0(=2 +
when r O; so the condition Of/O 0 is equivalent to the condition that the
function

is nonvanishing.
Our hypothesis on f implies that g, is nonvanishing for r 1 and for r a, and

its winding number equals for these two values of r. (This is becaus th winding
number ofOf/equals zero on the circles r and r a.) Choose > 0 suiently
small such that ]g,(0)l > for r 1, a and for all 0 e R.
For each r [a, 13 we let, c B be the open set consisting of all h e B satisfying

af )(i) h(O) + > for all 0 e R, and
r (re

if(ii) the winding number of the function 0 h(O) +
r tre equals 1.

Clearly, , is an open connected set in B, and the union

= U {r}x,c[a, 1]xB
arl

is an open set in [a, 1] x B. We say that a 1 path " [a, 1] B is fl-allowable if
the graph of its derivative ?’ is contained in fl, i.e., (d/&)(r) e fl, for each r.
We claim that the convex hull of each equals B. To prove this, choose g B

and write

eiOg(O) g(O) + ig2(O

with gl and g2 real-valued. For every R > 0 we have

g e-i(R + g) + ie-i(R + g2) Re-i iRe-i.
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If R > 0 is chosen sufficiently large, then all four functions on the right-hand side
belong to [,, and the claim is proved.
By construction of Dr the derivative (Of/Or)(r.) belongs to fir for r 1 and r a.

One easily finds a continuous function q" [a, 1] --. B such that
(i) b(r) (Of/Or)(r’) for r a and r 1, and
(ii) b(r) Dr for each r [a, 1].
It now follows from Lemma 2.1.7 in [21] that we can approximate the path

f: [a, 1] - B in the B-norm by an fl-allowable ffl pathf: [a, 1] B that coincides
with f near the endpoints of [a, 1]. More precisely, for any e > 0 we can find a ffl
pathf: [a, 1] B satisfying

(a) f coincides with f near the endpoints of the segment [a, 1],
(b) (Of/Or)(r.) r for all r [a, 1], and
(c) IlL Jlln < e for each r [a, 1].
The cited Lemma 2.1.7 is proved in [21] and is completely elementary. Most

likely, the lemma is older than the reference [21]. In fact, this lemma is the heart of
the matter of Gromov’s method of convex integration of differential relations.

Decrease e in Lemma 4.1 so that e < al/2 and let f be chosen as above. We extend
f to [0, 1] by setting f f on [0, a]. This gives a cgl function on by setting
f(rei) j(0). By (a), f coincides with f near T bA (and also near the origin). It
follows from (b) and (c) that for r [a, 1] we have

0 00 --> >0> r

This implies that the graph off over is totally real, and hence f is the required
modification off. This proves Lemma 4.1.

5. Proof of Theorem 1.1. In this section we will reduce Theorem 1.1 to Lemma
4.1 proved in Section 4 above.

Shrinking U M if necessary, we may assume that U is homeomorphic to the
disc, the points Po and Pl are the only complex tangents of no on U, and ro: U ’is an embedding onto a smooth surface V o(U) ’. Set 2 o(?), where ? M
is the smooth simple arc connecting Po and pl.
Our goal is to show that we can holomorphically spread a neighborhood of 2 in

V as a graph of a complex function over a simply connected region in C, provided
of course that 2 preserves the canonical orientation at the two endpoints. This will
enable us to complete the proof using Lemma 4.1.
On 2 we choose a pair of smooth R-linearly independent (1, 0) vector fields X

and Y that are tangent to V and such that X is also tangent to 2. The assump-
tions imply that X and Y are C-linearly independent except at the two endpoints
Zo(Po z and o(Pl)= zl of 2.

Write X X and choose another vector field X along 2 that is C-linearly
independent of Xx. Then Y aX + bX2 for some smooth complex valued func-
tions a and b. Let Z cX + Xz, where the smooth function c on 2 will be deter-
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mined later. Clearly, Z is independent of X1, and we have Y (a bc)X + bZ.
Write a bc o + i, with cz,/3 real-valued. We wish to choose the function c such
that fl(z) - 0 for all z 2.

Since the only complex tangents of V on 2 are its endpoints, the function b
vanishes at the endpoints and is zero-free in the interior of 2. Moreover, since and
therefore 2 are both orientation-preserving, a is of the same sign at the endpoints
of 2, say positive. If we take c(z) Cib(z) for a sufficiently large C > 0, we have
fl(z) 3a(z) + Clb(z)l 2 > 0 (z 2), and the requirement is fulfilled.
We can find a neighborhood f of 2 in d//and a smooth diffeomorphism tI): f ---,

fg c C2 satisfying
(i) tI)(2) [0, T] x {0} for some T > 0,

(ii) the derivative , of is C-linear at each point of 2, and
(iii) ,X (1, 0) and ,Z (0, 1) on 2.
It follows that , Yz (z(z) + ifl(z), b(z)), z 2. Since fl(z) > 0 for all z 2, the

image tangent space tI),Tz V projects isomorphically onto the first coordinate axis

zl for each z 2. The implicit function theorem implies that tI)(Vc f)c C2 is
a graph over a region in (2, provided that the neighborhood f of 2 is chosen
sufficiently small.
The smooth arc 2 has a basis of Stein neighborhoods in d/g. Since the first-order

jet of is C-linear at each point z 2, we can approximate tI) on 2 by a holomorphic
mapping W (q 1, q2), defined on a neighborhood of 2 in d/t’, such that W, approx-
imates , on 2. Then W is biholomorphic on a sufficiently small neighborhood fl
of 2, and the image surface W(V fl) W C2 is a graph

W W(V c1)= {((, f(()): ( D C}

of a smooth complex function f on a domain D c C. This means that the map
W o no spreads a neighborhood of the arc M as a graph over a domain in the
first coordinate plane.
By construction the surface W is totally real except at the endpoints w W(z)

and w (z1) of the curve (2), and the indices are preserved:

I(p; ro)= I(zi; V)= I(wi; W), j=0,1.

Write wj ((j, f(()) (j 0, 1). The projection 1(2) c D of the arc W(2) into D is
a simple smooth arc in D with the endpoints (o, (.

Recall that q ? is the point at which we must produce a complex tangent of type
k. Let ro(q) z2 2 and W(z2) w2 ((2, f((2)) W.
Choose a pair of smoothly bounded domains D1 Do D containing the arc

q1(2) and homeomorphic to the disc. Let D2 c D1 be a small disc centered at
(2 e $1 (2) and let 9 be the real-analytic function on D2 that defines a surface with
an isolated complex tangent of type k at (2 and satisfies 9((2)= f((2). When
d//= C2, we choose # such that the preimage of its graph

’-({(, o()): D}) = C
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is a surface with an isolated complex tangent of type k at z2; i.e., its germ at Z2 is
affinely equivalent to the germ of the model surface Z(k) at the origin.
Denote by zj the positively oriented boundary curve of Dj (j 1, 2). Let G be a

strip connecting D2 with the annular region Do\D1 and satisfying G c q1(2) .
We can find a function F, defined and smooth in a neighborhood of the annular

region A, (Do\Dx)w G w D2, such that F f on Do\Dx, F 9 on D2, and
cF cF/O( 4:0 on A,\{(2}. Moreover, we can make If- gl small on D2 by
choosing D2 sufficiently small, and thus we can choose F satisfying IF f[ < q on
A, for any given r/> 0. Notice that there is no problem in choosing F correctly on
the strip G since the strip can be very thin.
The complement

D, Do\A, Dx \(G w D2) Do

is a region homeomorphic to the disc whose positively oriented boundary curve z,
is homologous in A,\{(2} to the cycle z2.
Denote the winding number of a nonvanishing function h along a closed oriented

curve c C by /’(h; ). By Proposition 2.2 and Lemma 2.3 in Section 2, we have

U(OF; z,)= /’(3F; zl)- (c3F; 2)

(Of; z)- (0; z)

I(w; W) + I(w; W)- k

We can now apply Lemma 4.1 to extend F from the annular region A, to the
disc-region D, such that OF is nonvanishing on D,. Moreover, since IF fl < r/on
A,, we can choose the extension such that the same holds on Do.
To summarize, we have found for any given r/> 0 a smooth function F on Do

satisfying
(a) F f near the boundary of Do,
(b) F g near the point 2,
(c) c3F - 0 on Do \ { (2 }, and
(d) sUpoo IF fl <
Let F (1 t)f + tF, [0, 1], let W = Do C be the graph of F over Do, and

set V W-(W) c ’. By construction the family of surfaces {V" [0, 1]} defines
an isotopy of the initial surface Vo V ro(U) to the surface V whose only
complex tangent z2 is of type k. The isotopy is fixed near the boundary of V, and
the deformation can be made arbitrarily small in the c-g-sense by choosing r/> 0
sufficiently small. This gives a regular homotopy of immersions n with the required
properties. Theorem 1.1 is proved.
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6. Stein neighborhood basis.

PROPOSITION 6.1. Let M c C2 be a smoothly embedded surface with isolated
complex tangents of negative type (Definition 2). Then there is a neighborhood f of
M and a smooth plurisubharmonic function p on satisfying

(a) M {z f: p(z) 0}, and
(b) do(z) 0 for z e f\M.

Proof. Recall that E(k) is given by Z2 1+1. The nonnegative function

Izal/ll+2 + Iz=l 2

is plurisubharmonic, strongly plurisubharmonic on zl 0, and it vanishes precisely
on (k).

Let the complex tangents of M c C2 be pl, p,,, where Ps is of type ks. Let U
be a small ball centered at Ps such that M c U- As(E(ks) c U for a suitable
complex affine transformation As. Assume also that the balls U are pairwise disjoint.
Define a function Ps: U [0, ) by pj p(kj) o A]-x

The function po(z) dist(z, M)2 is smooth in a neighborhood of M in C2 and
is strongly plurisubharmonic in a neighborhood Uo of the totally real part
M\{px p,,} of M.
We obtain the required function p by patching Po with Ps in U. Let ;(s be a smooth

function on C2 with values in [0, 1] that is identically one near Ps and is identically
zero outside U. We set

p(z) I-I (1- (4(z))po(z) +
j=l j=l

Notice that p Po outside U, and p (1 Zs)Po + ZsPs on U. Since the patch-
ing of Po with Ps occurs only at points of M where both functions are strongly
plurisubharmonic, the function p is also plurisubharmonic in a neighborhood ofM.
We must see that dp(z) 4= 0 at points z not on M but sufficiently close to M. On

U we have

dp (1 zs)dpo + 74dps + dzs(P- Po).

The last term vanishes to second order on M U. The sum of the first two terms
is a convex linear combination of the gradients dpo and dps that vanishes to first
order onM Uand is nonvanishing in a punctured neighborhood ofM U. Thus,
p has the required properties in a sufficiently small neighborhood f of M. This
proves Proposition 6.1.
The sublevel sets fc {z f: p(p) < 0} for sufficiently small c > 0 are smoothly

bounded pseudoconvex domains homotopic to M. In fact, the orthogonal projec-
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tion onto M taking each point to its closest point in M is the deformation retraction
of t2 onto M. Thus, the family c is a regular Stein neighborhood basis of M, and
M is holomorphically convex in f (see [26, p. 91]).

7. Surfaces in the complex projective plane. Let C c CP2 be a smooth embedded
complex curve ofdegree d. This means that in homogeneous coordinates [zl, z2, z3-1
on CP2 the curve C is given by an equation F(Zl, z2, z3) 0, where F is a homoge-
neous polynomial of degree d. We choose on C the canonical orientation given by
its complex structure. Such a curve C is a closed Riemann surface whose topological
type is determined by its genus g(C).

Recall the index formula (1)

I(C; CP2) z(C) + z(C; CP2) z(C) + C" C.

By the theorem of Bezout [20, p. 670], we have C. C d2. We also have the genus
formula

g(C) (d 1)(d- 2)/2

[20, p. 220] relating the genus and the degree of C. Substituting this into the index
formula we get I(C; CP2) 3d. After a generic small perturbation of C, we obtain
a surface in CP2 with isolated complex tangents, all of the same sign; hence
Theorem 1.1 implies that they can be joined to a single complex tangent of type 3d.
This proves the following proposition.

PROPOSITION 7.1. The index of a smooth embedded complex curve C CP2 of
degree d equals I(C; CP2) 3d. There is an isotopy of C to a surface C CP2 with
a single complex tangent of type 3d.

Example 1. There are two nonisomorphic embeddings of the Riemann sphere
into Cp2: a degree-one embedding as a hyperplane C1 H, and a degree-two
embedding onto the curve C2 defined in the homogeneous coordinates [z, z2, z3]
by the equation ZlZ2 z. The index equals I(C1) 3 and I(C2) 6.

Example 2. Every compact Riemann surface of genus one (a topological torus)
can be realized as a nonsingular cubic curve T in CP2 [20, p. 222]. Thus, d 3 and
I(T; CP2) 9.

Choose a smooth complex curve C CP2 and let M C2 CP2 be a closed
surface embedded into the finite part of CP2. After a suitable affine transformation
applied to M, we may assume that C c M ; hence we can make the connected
sum C#M in CP2 as in Section 3. If C is of degree d, Propositions 7.1 and 3.1(c)
together imply

I(C # M; CP2) I(C; CP2) + I(M; C2) 2 I(M) + 3d- 2.
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If we take C to be one of the spheres Ca, C2 of Example 1 above, then the surface

C#M c CP (j 1, 2) is homeomorphic to M and

I(Cx # M; CP2) I(M) + 1, I(C2 # M; CPz) I(M) + 4.

This gives two inequivalent embeddings ofM into CP2. None of these embeddings
can be deformed into the finite part of CP2 since their intersection index with the
line at infinity equals one (resp. two) by Bezout’s theorem.

For orientable surfaces we cannot produce new totally real embeddings into CP2

in this way since the positive and the negative indices of C #M are different, due to
the fact that all complex tangents of C are of the same sign. However, this can be
done for certain unorientable surfaces as follows.

Proof of Theorem 1.6. Suppose that M is unorientable of genus 9. If 9 1 (mod
4), then 3;t(M) 3 (rood 4), and (5) shows that there is an embedding M c C2 with
index 1. The connected sum C1 #M c CP2 with the line in CP2 is an embedding
of M into CP2 with index zero; hence by Corollary 1.2(b) it is isotopic to a totally
real embedding.

If 9 2 (mod 4), then 3h 0 (mod 4). By (5) there is an embedding M C2 with
index -4. The connected sum C2 #M with the sphere of degree two in CP2 is an
embedding of M into CP2 with index zero; hence it is isotopic to a totally real
embedding. This proves Theorem 1.6.

In this way we cannot produce totally real embeddings of the unorientable
surfaces with genera O, 3 (mod 4) into CP2. We do not know if any such
embeddings exist.
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