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An elementary proof of Fefferman’s theorem

Franc Forstneri¢

1. Introduction

One of the classical problems of several complex variables is to understand the
boundary behavior of biholomorphic mappings f : D — D’ between bounded
domains D, D’ = C" with C*-smooth boundaries. In one variable there is a classical
theorem, due to Kellog [21], to the effect that every such mapping extends to a
C*-smooth diffecomorphism f : D — D' of their closures. If the boundaries bD,bD’
are smooth real-analytic curves, then f extends holomorphically to a neighborhood
of D according to the much more elementary Schwarz reflection principle.

It is not a simple task to prove the corresponding statements for domains in C" for
n > 1, and the problem is still open on arbitrary domains. The first general result in
this direction was the following theorem of C. Fefferman [14] in 1974. By smooth
we always mean ¥® unless otherwise specified.

1.1 Theorem If f : D — D’ is a biholomorphic mapping between bounded domains
D, D’ in C" with smooth strongly pseudoconvex boundaries, then f extends to a smooth

diffeomorphism of D onto D'

Recall that a domain D < C" is strongly pseudoconvex if there is a defining function
r(z) on a neighborhood of D satisfying D = {r < 0},dr # 0 on bD = {r = 0}, so
that for each z € bD the Levi form

n
o*r _
P(z;w) = Z az—.az;(z)wfwk (1.1)
k=1 ""J
is positive definite on the maximal complex tangent space

H,bD = {w ec:y (%r(z)wj - 0}. (1.2)

j=1"%J

Fefferman’s proof involved deep and rather difficult analysis of the Bergman kernel
function and the associated Bergman metric of a smooth strongly pseudoconvex
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domain in C". On the other hand, if the mapping f is assumed to be continuously
differentiable up to the boundary and the boundaries are real-analytic, it is not
difficult to show that f extends holomorphically past the boundary. This ‘reflection
principle’ was first proved by Lewy [23] and Pincuk [27] by a clever application
of the implicit function theorem. Webster [35] provided another proof, using the
classical edge-of-the-wedge theorem.

Today there exist several proofs of Theorem 1.1. The result has been localized
and extended to proper holomorphic mappings between pseudoconvex domains
of finite type in C". One approach relies on the biholomorphic invariance of the
Bergman kernel and the regularity of the associated d-Neumann problem. See the
papers by Bell and Ligocka [9], Bell [4,5,6], Bell and Catlin [7,8], and Diederich and
Fornass [11,12]. Independent proofs using more elementary techniques were given
by Nirenberg, Webster, and Yang [25], Lempert [22], and more recently by PinCuk
and Hasanov [30]. See also the recent survey [16] by the author.

The purpose of this paper is to give yet another proof of Theorem I.1. It is
based on two classical results of complex analysis: the edge-of-the-wedge theorem
and its generalization to ¥ edges (Theorem 3.1 below), and the theorem of Julia-
Carathéodory in several variables (Rudin [33, p.174]) that follows from the invariant
Schwarz lemma.

A similar approach was developed in the papers by Webster [35], Nirenberg, Webster
and Yang [25], and Pin¢uk and Hasanov [30]. Julia’s theorem has been used in this
context in [25], but our proof seems shorter and simpler. The difference between our
proof and that of PinCuk and Hasanov is that we replace their method of scaling
by the theorem of Julia-Carathéodory. This way we can avoid some of the delicate
points in the normal families arguments of [30] and [28]. We believe that our proof
is accessible also to beginners in complex analysis. It is especially elementary in the
case of real-analytic boundaries.

The proof is completely local and gives the following local theorem.

1.2 Theorem Let M and M’ be smooth strongly pseudoconvex hypersurfaces in C"
(not necessarily closed), and let D = C" be a domain in the pseudoconvex side of M,
containing M in its boundary. Let f : DU M — C" be a continuous mapping that is
holomorphic in D and takes M to M'. If for some p € M the fiber K = f~(f(p))
is a compact subset contained in the (relative) interior of M, then f is smooth in a
neighborhood of p in D U M.

Remarks.

L. This theorem has been proved for mappings between pseudoconvex hyper-
surfaces of finite type by Bell and Catlin [8] via the Bergman kernel method.
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Recently Pincuk and Tsyganov have proved the same result for strongly pseu-
doconvex hypersurfaces without assuming that f=1(f(p)) is a compact subset
of M. (This was announced by Pinduk at the conference at Santa Cruz, July
1989.)

2. The continuity of f on DU M follows from the assumption that the cluster
set of f at M is contained in M'. See for instance the papers [15] and [17].

3. We shall always restrict ourselves to the ¥ case, although the same proof
can be applied in the case of finite smoothness of M and M’ (see [30], [22]).
The following sharp regularity result has been obtained recently by Hurumov
(to appear): If M and M’ are of class %,k > 2 then f is of class @*—1/2-9,

The paper is organized as follows. In section 2 we localize the problem near a
given boundary point p € M. In section 3 we recall some regularity results for
mappings on wedge domains with a generic totally real edge (€ version of the
edge-of-the-wedge theorem). In section 4 we explain the connection between the
two problems. This part follows closely the approach by Webster [35] and Pinéuk
and Hasanov [30]. Everything up to this point is well-known.

The crucial part of our proof that differs from the existing ones is given in section 5
where we complete the reduction step (Proposition 5.1).

I wish to thank J.P. Rosay who called my attention to the work [30] and who
shared with me many of his ideas on the subject during my visit to the University
of Wisconsin in September 1988. I also thank S. Bell and J. Globevnik for several
discussions on this subject. Last but not least, I thank S.I. Pinéuk who kindly
explained me certain points concerning the normal families argument in the paper
[30].

This work was supported in part by a grant from the Research Council of the
Republic of Slovenia.

2.  Localization

We shall first prove that a nonconstant holomorphic mapping satisfying the
conditions of Theorem 1.2 is biholomorphic locally near p. A similar localization
can be found in the papers by Bell [6] and Bell and Catlin [8]. If the reader is only
interested in the global case (Theorem 1.1), he may skip this section.

Let D’ be a domain in C* bounded in part by M’ and lying in the pseudoconvex
side of M. Recall that D < C" is a similar domain bounded in part by M.

Definition. We say that a set G = D is a one-sided neighborhood of a point pe M
if G contains U N D for some open neighborhood U of p in C".
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2.1. Proposition. Under the hypotheses of Theorem 1.2 there exist arbitrarily small
one-sided neighborhoods G of p € M and G’ of f(p) € M’ such that the restriction
f : G — G' is biholomorphic.

Proof. If V < C" is a sufficiently small open neighborhood of the compact set
K = f~Y(f(p)) in C", then VN M cc M,VND cc DUM, and f(VND) < D’
according to the maximum principle. For such V, the compact set E = f(bV N D)
does not contain f(p), so there is a ball U’ centered at f(p) that does not meet E.
We choose U’ sufficiently small such that the domain G’ = U’ N D’ is compactly
contained in D' U M.

Let G = f~'(G') NV N D. By continuity of f, G is a one sided neighborhood of
each point in K. We claim that the restriction f : G — G’ is proper holomorphic.
To prove this, take an arbitrary compact subset L' = G’ and let L = f~(L') N G.
If L is not compact, then its closure in C" intersects the boundary of G, so there is
a point z € bG for which f(z) € L'. Since z cannot be in M, it must be in bG N D.
Also, z cannot be in bV N D by the construction of G’. Hence z is an interior point
of ¥V N D. By the continuity of f it follows that a neighborhood U of z in V N D
is mapped into G’. Hence U < G, which contradicts the assumption that z is a
boundary point of G.

Thus, f : G — G’ is proper holomorphic. Let 4 = {z € G : det Df(z) = 0} be the
branch locus of f in G. PinCuk proved in [28] that A does not approach the strongly
pseudoconvex boundary points of G when n > 1. (For self-mappings of the ball this
is just the well known result of Alexander [1], [33, p.316].) If we now shrink the
neighborhood V' of K, we may assume that f is locally biholomorphic in ¥V N D.
Repeating the above procedure we find smaller domains, still called G and G’, such
that f : G — G’ is proper, whence a holomorphic covering. If U’ is a sufficiently
small ball at f(p), then G’ = U’ N D’ is simply connected. If we now replace G
by the connected component of G whose closure contains p, then f : G — G’ is
biholomorphic.

A standard argument (see for instance [2] or [26]) shows that the inverse

f~! : G’ - G extends continuously to a neighborhood of f(p) in G, so p is
an isolated point of the fiber K. Thus we may apply the above proof with V an
arbitrary small neighborhood of p. This concludes the proof of Proposition 2.1.

3. Regularity of mappings on wedge domains.
In this section, we recall some results due to Pincuk and Hasanov [30] and,
independently, to Coupet [10], concerning mappings between wedge domains.

Perhaps the main reason why it is much easier to prove the boundary regularity
theorem in one variable than in several variables is that the boundary of a domain
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in C! is a real curve with no complex structure, while in C” it is a real hypersurface
with plenty of complex structure. This point of view suggests that the most natural
generalization of the one-variable mapping problem to several variables is obtained
by considering the behavior of holomorphic mappings near totally real submanifolds
in C".

Recall that a real submanifold ¥ <= C" is said to be totally real if for each
z € X the real tangent space T,X contains no nontrivial complex subspaces, i.e.,
T,ZNiT,X = {0}. Clearly this requires dimy X < n. X is said to be maximal real if,
in addition, dimy ¥ = n. Thus, every smooth real curve in C' is maximal real.

If £ < C" is a maximal real submanifold that is also real-analytic, we can find
locally near each point z € £ a biholomorphic change of coordinates so that, in the
new coordinates, X corresponds to a piece of R” — C". Thus X is the fixed point set
of an anti-holomorphic reflection @, defined on a neighborhood of ¥ in C".

If ¥ is merely smooth, we can find a smooth change of coordinates W thats maps X
to R" and that is d-flat on X, i.e,, 0¥ vanishes to infinite order on T [24]. This gives
us a reflection @ that fixes X pointwise and that is almost antiholomorphic, in the
sense that its holomorphic derivative 0® vanishes to infinite order at every point of
2

A natural type of domains associated to a maximal real submanifold £ < C" are the
wedges with edge X. Locally near p € £ we can find n smooth real-valued functions

Fiseesty 8O that 2 ={z :7,(z) = -+ =r,(z) = 0}, and the complex gradients
" or,
_ J
67']- = Z aTde
k=1 "7k

are C-linearly independent on X. If U is a neighborhood of p in C" and I = R" is
an open convex cone with vertex zero, we define the wedge with edge X:

W =wUT)={zeU:r@z) T} 3.1)

We recall the edge-of-the-wedge theorem: If W+ = w (U,T"), %~ = # (U,—T), and
f is a continuous function on #* U X U #~ that is holomorphic on '+t U ¥,
then f extends holomorphically to a neighborhood of XN U in C". For real-analytic
edge X this follows from the classical result [34] where X is an open subset of R”
by an change of coordinates. For smooth edges see [3], [29], or [32].

There is a version of this result for asymptotically holomorphic functions. A smooth
function f defined on a wedge # is said to be asymptotically holomorphic at X if

each derivative D“Ijﬁ(éf) of df extends continuously to £ and equals zero there.
Here is the ¥® version of the edge-of-the-wedge theorem: If X is smooth, f is
continuous on ¥t UM U~ and smooth on # U ~, and if f is asymptotically
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holomorphic at X, then the restriction of f to X is also smooth. More precise results
in this direction have been proved by Pincuk and Hasanov [30, Theorem 1] and by
Coupet [10]. In the case when T = R" this also follows from a more general result
concerning the ¥* wave front set of a function on R"; see Hérmander [20, p.257].
The general case follows by applying a local ¥ change of coordinates near p € X
that takes X to R" and is 0-flat on Z.

The above implies the following regularity results for mappings on wedges; this is
a special case of results due to Pinuk and Hasanov [30] and Coupet [10]:

3.1 Theorem Let # = # ' (U,T) be a wedge (3.1) with a smooth maximal real edge
Y cClet X < C" be a smooth totally real submanifold, and let F : %W UX — c
be a continuous mapping that is smooth on W, asymptotically holomorphic at Z,
and F(Z) < X'. Then the restriction of F to £ N U is smooth. If both ¥ and X'
are real-analytic and F is holomorphic on #, then F extends holomorphically to a
neighborhood of 2N U in C".

In the real-analytic case the result follows from the edge-of-the-wedge theorem as
follows. Without loss of generality we can assume that £’ is maximal real in c”.
Let @' be the anti-holomorphic reflection that fixes ¥’ pointwise, and let ® be the
corresponding reflection on . We can extend F to a wedge # ~ that is essentially
the opposite of #© = ¥ by taking @ o F o ®@. If F is holomorphic on #"* and
® resp. @' are anti-holomorphic, the extended map is holomorphic also on #"~, so
the classical edge-of-the-wedge theorem shows that F extends holomorphically to a
neighborhood of p in C". -

In the smooth case we use almost anti-holomorphic reflections ® resp. @', together
with a distance estimate

dist (F(z),Z") < Cdist(z, ),

valid on any finer wedge ¥} < #* with some C < oo (see [30] and [31]), to see
that the extended map is asymptotically holomorphic at ¥ also from the wedge #'7.
Hence the smoothness of F of X follows from the ¥* edge-of-the-wedge theorem
quoted above.

4. Reduction to the edge-of-the-wedge theorem.

We shall now explain the connection between Theorem 3.1 and the mapping
problem. This is due to S. Webster [35], although the idea appeared implicitly
already in the papers by H. Lewy [23] and S. Pincuk [27].

In view of Proposition 2.1 we may assume the following situation. Let M and M’
be local strongly convex smooth hypersurfaces containing the origin in C" (n > 1).
Let D be a local domain in C" near the origin that is smoothly bounded and
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pseudoconvex along M, and let D’ be a similar such domain bounded in part by M’
We have a biholomorphic mapping f : D — D’ that extends to a homeomorphism

of D onto D and takes the origin to the origin, and we must prove that f is smooth
on D U M near the origin. Since the problem is a local one, we may shrink our sets
towards the origin, which we shall freely do in the sequel.

Let (z,w) = Y z;w;. For each nonzero vector a € C"\{0} we denote by [a] the
complex hyperplane

[a] =A,={weC":(w,a) =0} € CP"".

Two vectors in C" determine the same hyperplane precisely when they are multiples
of each other, and every complex hyperplane through 0 is of this form. Hence the
set of all such hyperplanes is the complex projective space CP""!, and a is the
homogeneous coordinate of A,.

Following Webster [35] we associate to f the holomorphic mapping
F(z,A) = (f(2),Df (2)A),

where z € D and A € CP"! is a complex hyperplane through 0. Here, Df (z)A is
the image of A by the derivative Df (z). Clearly F maps the domain D = D x cp!
in the complex manifold X = C" x CP""! biholomorphically onto the domain
D' =D'x CP" = X,

If A is an invertible n x n matrix and a € C"\{0} is a row-vector, a simple calculation
shows that A(A,) = A, for b = aA~!. Here, aA™"! is the matrix product of the row a

with the matrix A~!. Thus F is given in the homogeneous coordinates on CP"~! by

F(z,[a]) = (f(2), [aDf ()7']) - “.1)

Recall that H,M < T,M is the maximal complex subspace of the real tangent space
T,M (1.2). We associate to M the smooth submanifold M of X defined by

M= {@zHM)eX :zeM}. 4.2)

Let M’ =c X be the analogous manifold associated to the hypersurface M’.

If f is continuously differentiable up to D U M, then for each z € M the derivative
Df(z) maps H,M isomorphically onto Hf(Z)M’. Hence the associated mapping F

extends continuously from the domain D to DUM and maps M to M. Its restriction
to M is given by

F@H,M) = (f(z), Hy, M) .
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Fefferman’s theorem now follows immediately from Theorem 3.1 and the following

Lemma. (Webster [35]) If M < C" is strongly pseudoconvex, the associated
manifold M = C"* x CP"! is totally real (Whence maximal real).

Namely, the domain D clearlNy contains a wedge #~ of type (3.1) with the edge M,
so Theorem 3.1 implies that f is smooth on M whence f is smooth on M.

Suppose now that f is merely continuous up to M. In order to use Theorem 3.1 one
has to prove

4.1 Theorem  There is a wedge W < D with edge M such that the restriction of F
to W extends continuously to M and equals | there.

Once this is established, the smoothness of f on M follows from Theorem 3.1 as
above. We shall prove Theorem 4.1 in the following section. A different proof had
been given before by Pincuk and Hasanov [30], using the scaling method.

S.  An application of Julia-Carathéodory’s Theorem.

Let M = {r(z) = 0} and M’ = {r'(z) = 0} by strongly convex hypersurfaces, with
defining functions whose Taylor expansion at the origin is of the form

r(z) = Rz, + 0(z', 3z,) + o(Z|* +|3z,/?), (5.1

where Q is a strongly positive definite quadratic form in the indicated variables.
Also let D = {r(z) < 0},D" = {r'(z) < 0}. We shall use the notation

or =
ajVZa—Zj, 6]r=

or

Az o
(9zj

or = (041,...,0,r), Or= (Elr,.‘.,énr).

e Uy

From (1.2) we see that the maximal complex tangent space H,M has the
homogeneous coordinate dr(z). Since 9,r(z) # 0 in a neighborhood of the origin,

we can restrict our considerations to the coordinate chart C"~! = CP"! on which
the last coordinate is nonzero. Let p = (p;,...,p, ;) be the affine coordinate of the

point [py,...,p,_;, 1] € CP"™"'. Then M is given by

7(2) .
r(z) =0, pf:#r(?)’ l<j<n-—1,

and similarly for M’.

Let G : D x C™! — C"\{0} be the holomorphic mapping

G(z:p) = (Py>---»Py_1, DS (2) 7.
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Then the mapping F (4.1) can be expressed by

F(z,p) = (f),[GEp)), zeD,peC

Shrinking D if necessary we may assume that each point z € D has a unique closest
point 7(z) € M. For « > 0 and U a small neighborhood of 0 in C" we denote by
W ,(U) = U x C*! the wedge

0;r(r(z))

W, (U) = {(w) ZeUND, 12— 3 ra)

<oadist(z,M), 1<j<n-— 1}

with edge M. Now Theorem 4.1 will follow immediately from

5.1. Proposition For each o > 0 there is a neighborhood U of the origin in C"
such that the functions G, G,,...,G, and 1/G, are bounded holomorphic on W ,(U).
Moreover, the quotients Gj/ G, for 1 < j < n—1 extends continuously to W ,(U) UM
so that for each { € M N'U we have

- Gyz.p) _ 97'( )
= G,(z,p) 9, (f(0)

Notice that for points (z,p) € #°,, z — { € M implies that p converges to the
affine coordinate of H, M. Since the right hand side above is the affine coordinate

of the point Hyyy M’ € CP"!, proposition implies that F extends continuously to
W, (U)U M and coincides with f on M, so Theorem 4.1 holds.

Proof of Proposition 5.1. Let U < C" be a small ball centered at the origin. Fix a
B > 1. For each point { € U N M we let

I, ={zeD:lz—{| < pdist(z, M)}

be a nontangential approach region for { in D. We denote by l~“é < W', the preimage
of ', in the wedge #", under the coordinate projection (z,p) — z.

We now fix { € M N U and choose new coordinates w = (w',w,) on C" so that
{ corresponds to the point w = 0, and the outer normal direction to M at {
corresponds to the axis Rw, > 0. To find an explicit expression for w we choose
a unitary matrix U, € U(n) satisfying U, Vr(() = te, for some t > 0, where

Vr(z) = 20r(z) is the gradient of r at { (considered as a column vector), and
e, = (0',1). We may assume that |Vr({)| = 2 for each { € M. By conjugating and
transposing the above relation we obtain

orQ)U; " =e, (5.2)
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The relation between the old coordinates z and the new coordinates w is then

W= ¢C(Z) = Ug(Z =L

Clearly we can choose U, to depend continuously on { € M. We introduce a similar
coordinate change

W' =)&) = Vi) (2 = F(0))

for the target hypersurface M’ at the point f({), with Vi) € U(n). To simplify the
notation we shall drop ¢ and write ¢r=0¢,U= U, etc.

We now have f = p~lo fr o ¢, where f, is the expression for our mapping in the
new coordinates w resp. w'. The chain rule gives

G(z,p) = (s, Puey, DU ' DS (9(2)) ' V. (5.3)

Letz € I'r, w = ¢, (2), and e = e(z) = dist(z, M). Then we also have ¢ = dist(w, M,),
where M, = ¢,(M). Write

A(w) B(w) )

Cw) D(w) G4

Df (w) = (
where A4 is a square matrix of dimension (n — 1), B is a column m—1)x1,Cisa
row 1 x (n—1), and D is a scalar. Of course these entries also depend on ¢, but we
shall suppress { to simplify our notation.

We shall now estimate various entries in (5.3) in terms of the boundary distance
e. All constants in these estimates will be independent of { € M N U and z € Iy,
unless otherwise specified.

First of all we have a distance estimate
dist (f(z), M') < ce (55)

for some ¢; > 0 (see [2] or [26]). For any given complex direction in C* we can find
a linear complex disc in D in that direction, centered at z, of radius e. In complex
tangent directions we can find larger discs of radii proportional to €/2. On the
other hand, the largest linear disc in D’ centered at f(z) has radius at most c,e!/2
for some ¢, > 0. Since the domains D resp. D’ are convex along M resp. M, a
theorem of Graham [18,19] gives an estimate

IDf;(w)| = Df(2)] < cye 2.

Integrating this estimate along the straight path from 0 to w and using f,(0) = 0
we get |f,(w)] < 2¢;e'/2,
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Set w' = f,(w) = f(z), and let W be the unique point in M}, that differs from
w’ only in the real part of the last coordinate. Since the hypersurface M}(é) has a
defining function of the form (5.1) near the origin, the estimate |w'| < 20361/ 2 implies
|RW,| < cye for some ¢, > 0. Since |Rw;, — RW, | approximately equals dist(w’, M )
which is < ¢,e by (5.5), it follows that

[Rw, | < cse (5.6)

for some c5 > 0. Hence the projection of any linear disc in D’, centered at f(z) = w/,
onto the complex line through f({) in the wj-direction has radius at most cse. A
theorem of Graham [19] now implies the following bounds on the derivatives of f T

Aw) = 0(1), Bw)=0("?), Cw)=0("?), Dw) =0() (5.7)

as e = dist(z, M) — 0. These estimates are uniform for { € M N U since they only
depend on the geometry (curvature) of M resp. M’ and on the constant in the
distance estimate for f.

The estimates (5.7) imply det Df(z) = det Df,(w) = O(1) as € — 0, so det Df is a
bounded holomorphic function on D N U. Applying the same to the inverse £~ we
conclude that 1/ det Df is bounded on D N U as well. The formulas for computing
the inverse matrix show that the entries in

A'(w) B'(w) )

=
D™ = (G b

satisfy the same estimates (5.7), uniformly in { € M N U.

We can refine these estimates by applying the Julia-Carathéodory’s theorem for
mappings of balls (Rudin [33]). At the point { € M N U we osculate M from within
by a ball B, € D that is tangent to M at the point {. At the image point f({) € M’
we osculate D’ from without by a ball B} containing D’ that is tangent to M" at
f(0); this is possible since M’ is strongly convex.

Consider now the restricted mapping f : B, — B}(C)' From (5.6) it follows that the
restriction satisfies

Ly .fdiSt (f(z)’bB}(o)
=M T distzbB,)

(5.8)

for some constant ¢, > 1 independent of {. Theorem 8.5.6 in Rudin [33] now gives
the finer estimates

Bw) = o(e™1?), C(w) = o(¢'/?), lim D (w) = D, (5.9)
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where D, > 0 depends only on the liminf in (5.8). Thus we have
l<D, <¢ (5.10)

for some ¢; > 1 independent of {. Alternatively, the first two estimates in (5.9)
show that det Df,(w) — det A(w)D(w) as € — 0. Since both factors are uniformly
bounded and their product is bounded from 0, the factors are also bounded away
from 0, so we get (5.10). However, the theorem we used does not give us uniformity
in (5.9) with respect to (.

Since 1/det Df is bounded on D, (5.9) implies similar estimates for the entries of
the inverse matrix Df,(w)~':

B'(w) = o(e7?), C'(w) =o(e?), lim D'(w) = Di. (5.11)

Let (z,p) € f“g. Then

o)
0,1 ()

(p17---7pn—171)= +0(6)a

so (5.2) gives

1
— n_,lU_1= e, +0(e),
(P Pn_1s1) 0.r(0) (e)

From the expression (5.3) we further have

G(z,p) = ——=¢,Df (W) 'V + 0(e'?)

(C)

= 57 (CD') ¥+ 0,

The term O(e'/?) is uniform in {. From the estimates (5.7) for C’'(w) and D’(w)
we see that G is bounded on I'y, and the bound is independent of {. Hence G is
bounded on the wedge #",. Moreover, as z tends to { within Lrs it follows from

(5.11) that G(z, p) has the limit within the region f“c equal to

= m or'(f ().

The last equality follows from (5.2).
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When { € M is close to O then 9,r({) is close to 1 and V = ¥V is close to the

identity matrix. Hence the real part of the last component of G*({) is positive and
bounded away from zero, uniformly in (.

We claim that, as a consequence, the real part of G, is itself bounded away from
zero on every finer wedge #,, (o < «) sufficiently close to the edge M. This will
imply that 1/G, is bounded as well. In the case of a straight edge M — R**~!
this follows from the Poisson integral formula applied on linear discs that lie in the
wedge and abut the edge. The same applies in the case when the edge is real-analytic
via change of coordinates. In the smooth case we can either construct (non-linear)
analytic discs in the wedge that abut the edge and whose images fill a finer wedge.
Such constructions are well-known, see for instance [10], [13]. Alternatively, we can
apply a change coordinates that is d-flat on the edge and prove a similar result for
asymptotically holomorphic functions. The details of this approach are very similar
to those in Rosay [32].

It follows that each quotient G j/ G, converges to 0 jr’(f ©)/0,7(f(©)) as (z,p) € l~"¢

and z — (. Since the limit function is continuous on the edge M, G; /G, extends

continuously to the edge from every finer wedge #°, (o' < ) according to Rosay
[32]. This completes the proof of Proposition 5.1.

Remark. An alternative proof of Theorem 4.1 can be found in the paper [30] by
PinCuk and Hasanov. Their method is based on special changes of coordinates and

nonhomogeneous scaling; it gives an alternative way to obtain the crucial estimates
(5.9).
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