The length of a set in the sphere whose polynomial hull contains the origin*

by Franc Forstnerič

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

Communicated by Prof. J. Korevaar at the meeting of February 24, 1992

ABSTRACT

Let X be a compact subset of the unit sphere in the complex Euclidean space \mathbb{C}^n such that the origin $0 \in \mathbb{C}^n$ belongs to the polynomial hull of X. Assuming that X is rectifiable in the Hausdorff $(\mathscr{H}^1, 1)$ -sense, it is shown that the length of X is at least 2π .

INTRODUCTION

It is well known that every pure one-dimensional complex variety $A \subset \mathbb{C}^n$ with reasonably "nice" boundary bA satisfies the *isoperimetric inequality*

 $(\text{Length}(bA))^2 \ge 4\pi \text{Area}(A).$

Moreover, if A contains the origin $0 \in \mathbb{C}^n$ while bA lies outside the ball $\mathbb{B}(r) = \{z \in \mathbb{C}^n : |z| < r\}$ of radius r, then Area $(A) \ge \pi r^2$ and therefore

Length $(bA) \ge 2\pi r$.

(See Chirka [6], p. 180 and p. 195, and Bishop [4].) The same inequalities hold if A is an immersed minimal surface with connected boundary; see Section 7.3 in [5]. The constants in these inequalities are the best possible.

H. Alexander [3] extended the isoperimetric inequality to closed Jordan curves $X \subset \mathbb{C}^n$: If X is not polynomially convex, then the set $A = \hat{X} \setminus X$ is an irreducible one-dimensional subvariety of $\mathbb{C}^n \setminus X$, and the isoperimetric ine-

^{*}Supported in part by the Research Council of the Republic of Slovenia.

quality holds when the length and the area are computed using the Hausdorff measures \mathscr{H}^1 resp. \mathscr{H}^2 on \mathbb{C}^n . (For Hausdorff measures see Federer [7, p. 171].) In particular, if X is a closed Jordan curve in the unit sphere $S = \{z \in \mathbb{C}^n : |z| = 1\}$ whose polynomial hull \hat{X} contains the origin $0 \in \mathbb{C}^n$, then we have

 $\mathscr{H}^{1}(X) \geq 2 \sqrt{\pi} (\mathscr{H}^{2}(\hat{X}))^{1/2} \geq 2\pi.$

Recall that the polynomial hull of X is the set

$$\hat{X} = \{ z \in \mathbb{C}^n \colon |f(z)| \le \sup |f| \text{ for all } f \in \mathscr{O}(\mathbb{C}^n) \}.$$

In this article we shall consider the following question that was raised by Stout [8, problem 4.2.2]:

If $X \subset S$ is a compact set in the unit sphere whose polynomially convex hull \hat{X} contains the origin $0 \in \mathbb{C}^n$, must the length of X be at least 2π ?

In [11] Stout proved a weaker inequality $\mathscr{H}^1(X) \ge \sqrt{2\pi}$ that improved the previously known result $\mathscr{H}^1(X) \ge 2$ by Sibony [9]. (The result of Sibony applies also to sets that are not contained in a sphere.)

Here we give a very simple proof of the inequality

(*)
$$\mathscr{H}^1(X) \ge 2\pi$$
 when $X \subset S$ and $0 \in \hat{X}$

for $(\mathcal{H}^1, 1)$ -rectifiable compact sets $X \subset S$. Together with a new result of Mark Lawrence this settles the general case as well.

THE RESULT

DEFINITION. (Federer [7, p.251].)

- (a) A set $X \subset \mathbb{R}^k$ is 1-rectifiable if it is the image of a bounded subset $U \subset \mathbb{R}$ under a Lipschitz continuous mapping $f: U \to \mathbb{R}^k$.
- (b) X is $(\mathcal{H}^1, 1)$ -rectifiable if $\mathcal{H}^1(X) < \infty$ and almost all of X (with respect to the length \mathcal{H}^1) can be covered by a countable union of 1-rectifiable sets.

Our main result is

THEOREM. If X is a compact $(\mathcal{H}^1, 1)$ -rectifiable subset of the unit sphere $S \subset \mathbb{C}^n$ such that the origin $0 \in \mathbb{C}^n$ belongs to the polynomial hull \hat{X} , then $\mathcal{H}^1(X) \ge 2\pi$.

Clearly the result can be stated for the ball $r\mathbb{B}$ of radius r: If $X \subset rS$ is compact and $(\mathcal{H}^1, 1)$ -rectifiable, and if $0 \in \hat{X}$, then $\mathcal{H}^1(X) \ge 2\pi r$.

The isoperimetric inequality does not hold in the context of our Theorem. Namely, Alexander constructed in [2] a compact disconnected set $X \subset \mathbb{C}^2$ of finite length whose polynomial hull \hat{X} has infinite area. His set X is not highly pathological, it consists of a countable disjoint union of real-analytic simple closed curves, and $A = \hat{X} \setminus X$ is countable union of analytic subsets of $\mathbb{C}^2 \setminus X$. Obviously X is $(\mathcal{H}^1, 1)$ -rectifiable. It is unknown whether the isoperimetric inequality holds for compact *connected* sets $X \subset \mathbb{C}^n$ of finite length. Recall that $A = \hat{X} \setminus X$ is then a pure onedimensional analytic subvariety of $\mathbb{C}^n \setminus X$ (if not empty) according to Alexander [1]. For smooth curves X this had been proved by Stolzenberg [10].

REMARK ADDED TO THE PROOF. It suffices to prove the inequality (*) for sets $X \subset S$ of finite length $(\mathscr{H}^1(X) < \infty)$ that are minimal, in the sense that no proper compact subset of X contains 0 in its polynomial hull. Recently Mark Lawrence (private communication) informed me of his new result that such a set is necessarily $(\mathscr{H}^1, 1)$ -rectifiable. Together with our theorem this implies

COROLLARY. If X is a compact subset of S and $0 \in \hat{X}$ then $\mathscr{H}^1(X) \ge 2\pi$.

Also, after the completion of the first version of this article, H. Alexander [12] and N. Poletski (private communication) informed me that they had independently proved the estimate (*) by different methods.

PROOF OF THE THEOREM

The result will follow from the following Lemma and an integral geometric formula (Crofton formula) from Federer [7, p. 284].

LEMMA. If X is a compact subset of $\mathbb{C}^n \setminus \{0\}$ of finite length such that $0 \in \hat{X}$, then almost every real hyperplane $\Sigma \subset \mathbb{C}^n$ passing through the origin intersects X at least at two points.

Here, "almost every" is meant with respect to the volume measure on the Grassman manifold of real hypersurfaces $0 \in \Sigma \subset \mathbb{C}^n$.

PROOF. Since X has finite length and $0 \notin X$, Fubini's theorem implies that almost every complex hyperplane $L \subset \mathbb{C}^n$ passing through 0 misses X. Here, "almost every" refers to the volume measure on the Grassman manifold of complex (n-1)-dimensional subspaces of \mathbb{C}^n .

Fix such a hyperplane L, and let Σ be any real hyperplane in \mathbb{C}^n containing L. Then L splits Σ in two open half-planes Σ_+ and Σ_- .

We claim that both Σ_+ and Σ_- intersect X. To see this, let $\pi : \mathbb{C}^n \to L^{\perp}$ be the orthogonal projection onto the complex line L^{\perp} orthogonal to L. If X is disjoint from Σ_+ then $\pi(X) \subset L^{\perp}$ is disjoint from the real half-line $\pi(\Sigma_+)$, hence $0 \in L^{\perp}$ lies in the unbounded component of $L^{\perp} \setminus \pi(X)$. Thus 0 is not in the polynomial hull of $\pi(X)$ in L^{\perp} and hence 0 is not in the hull of X in \mathbb{C}^n , a contradiction. (This also follows from Oka's criterion for polynomial convexity [10, p. 263]: since 0 belongs to \hat{X} , we can not move L continuously to infinity without hitting X.)

This shows that every such real hyperplane Σ intersects X in at least two points. Since the remaining set of real hyperplanes through the origin in \mathbb{C}^n has measure zero, the lemma is proved.

We now apply Theorem 3.2.48 in Federer [7, p. 284] as follows. Let *B* be the intersection of a real hyperplane through the origin in \mathbb{C}^n with the sphere *S*. By our hypothesis X is $(\mathcal{H}^1, 1)$ rectifiable, it is \mathcal{H}^1 measurable since Hausdorff measures are Borel regular, and $\mathcal{H}^1(X) < \infty$. Clearly *B* is m = (2n - 2)-rectifiable and \mathcal{H}^m -measurable since it is an *m*-manifold. Applying Theorem 3.2.48 in [7] to the constant functions $\alpha = 1$ on A = X and $\beta = 1$ on *B* we get

$$\int_{g \in \mathbb{O}(2n)} \int_{X \cap g(B)} d\mathcal{H}^0 d\theta_{2n}(g) = C \cdot \mathcal{H}^1(X) \cdot \mathcal{H}^m(B)$$

for some constant C depending only on m and n.

Recall that \mathscr{H}^0 is just the counting measure. The lemma implies $\mathscr{H}^0(X \cap g(B)) \ge 2$ for almost all $g \in \mathbb{O}(2n)$ with respect to the volume measure θ_{2n} . Hence we get

$$\mathscr{H}^{1}(X) \geq 2\theta_{2n}(\mathbb{O}(2n))/C\mathscr{H}^{m}(B).$$

To calculate the constant on the right hand side we choose X to be the intersection of S with a complex line through the origin, hence $\mathscr{H}^1(X) = 2\pi$. In this case $X \cap g(B)$ contains exactly two points for most $g \in \mathbb{O}(2n)$, hence the inequality above is actually an equality. Thus the value of the right hand side equals $\mathscr{H}^1(X) = 2\pi$.

This completes the proof of the Theorem.

REFERENCES

- 1. Alexander, H. Polynomial approximation and hulls in sets of finite linear measure in \mathbb{C}^n . Amer. J. Math. 93, 65-74 (1971).
- Alexander, H. The polynomial hull of a set of finite linear measure in Cⁿ. J. Analyse Math. 47, 238-242 (1986).
- 3. Alexander, H. The polynomial hull of a rectifiable curve in \mathbb{C}^n . Amer. J. Math. 110, 629–640 (1988).
- 4. Bishop, E. Conditions for analyticity, Michigan Math. J. 11, 289-304 (1964).
- Burago, Yu.D. and V.A. Zalgaller Geometric Inequalities. Grundlehren der Math. Wiss. 285, Springer, Berlin-Heidelberg-New York (1988).
- Chirka, E.M. Complex Analytic Sets. Math. and its Appl. 46, Kluwer, Dordrecht, (1989). Original in Russian, Nauka, Moskva (1985).
- Federer, H. Geometric Measure Theory. Grundlehren der Math. Wiss. 153, Springer, Berlin-Heidelberg-New York, 1969.
- 8. Fornaess, J.E. et al. The several complex variables problem list. Ann Arbor, Sept. 10, (1991).
- Sibony, N. Valeurs au bord de fonctions holomorphes et ensembles polynomialement convexes. Lecture Notes in Math. 578, Springer, Berlin-Heidelberg-New York (1977).
- 10. Stolzenberg, G. Polynomially and rationally convex sets. Acta Math. 109, 259-289 (1963).
- Stout, E.L. Removable sets for holomorphic functions of several complex variables. Publ. Mat. 33, 345-362 (1989).
- 12. Alexander, H. Quasi-isoperimetric inequality for polynomial hulls. Preprint (1992).