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ABSTRACT 

Let X be a compact subset of the unit sphere in the complex Euclidean space C” such that the 

origin 0 EC” belongs to the polynomial hull of X. Assuming that X is rectifiable in the Hausdorff 

(.X’, I)-sense, it is shown that the length of X is at least 2n. 

INTRODUCTION 

It is well known that every pure one-dimensional complex variety A Cc=” 

with reasonably “nice” boundary bA satisfies the isoperimetric inequality 

(Length(bA))2 2 4nArea(A). 

Moreover, if A contains the 

{ZE C’I : /zI <r} of radius r, 

Length(bA) 2 2rrr. 

origin 0 E UI)” while bA lies outside the ball B(r) = 
then Area(A) 2 zr2 and therefore 

(See Chirka [6], p. 180 and p. 195, and Bishop [4].) The same inequalities hold 

if A is an immersed minimal surface with connected boundary; see Section 7.3 

in [5]. The constants in these inequalities are the best possible. 

H. Alexander [3] extended the isoperimetric inequality to closed Jordan 

curves XcC”: If X is not polynomially convex, then the set A =_$\X is an 

irreducible one-dimensional subvariety of C”\X, and the isoperimetric ine- 
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quality holds when the length and the area are computed using the Hausdorff 

measures .Z’ resp. .%?* on @“. (For Hausdorff measures see Federer [7, p. 

1711.) In particular, if X is a closed Jordan curve in the unit sphere S= 

{z E C”: /zI = 1) whose polynomial hull X contains the origin 0 E @“, then we 

have 

Recall that the polynomial hull of X is the set 

8= {zEV: If(z)l5sup Ifi for all ffz6(cC”)}. 
X 

In this article we shall consider the following question that was raised by 

Stout [8, problem 4.2.21: 

If XCS is a compact set in the unit sphere whose polynomially convex hull X 
contains the origin 0 E V, must the length of X be at least 2n? 

In [l l] Stout proved a weaker inequality Z’(X)? k&r that improved the 

previously known result &!‘(X)z2 by Sibony [9]. (The result of Sibony ap- 

plies also to sets that are not contained in a sphere.) 

Here we give a very simple proof of the inequality 

(*) .%?‘(X)127r when XcS and 0~8 

for (.%Y’, I)-rectifiable compact sets XCS. Together with a new result of Mark 

Lawrence this settles the general case as well. 

THE RESULT 

DEFINITION. (Federer [7, p.2511.) 
(a) A set XC R” is l-rectifiable if it is the image of a bounded subset UC iR 

under a Lipschitz continuous mapping f: U+ Rk. 

(b) X is (sV’, I)-rectifiable if.%‘(X)< 03 and almost all of X (with respect to 
the length .%I) can be covered by a countable union of l-rectifiable sets. 

Our main result is 

THEOREM. If X is a compact (ST”, 1)-rectifiable subset of the unit sphere 
SC KI” such that the origin 0 EC” belongs to the polynomial hull 8, then 
.%‘(X)L 2n. 

Clearly the result can be stated for the ball r5 of radius r: If XcrS is com- 
pact and (.%I, 1)-rectifiable, and if 0 E X, then Z’(X) 2 2nr. 

The isoperimetric inequality does not hold in the context of our Theorem. 

Namely, Alexander constructed in [2] a compact disconnected set XC@* of 

finite length whose polynomial hull X has infinite area. His set X is not highly 

pathological, it consists of a countable disjoint union of real-analytic simple 

closed curves, and A =8 \X is countable union of analytic subsets of C’\X. 

Obviously X is (&?‘, I)-rectifiable. 
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It is unknown whether the isoperimetric inequality holds for compact con- 

nected sets XcUZ" of finite length. Recall that A =X\X is then a pure one- 

dimensional analytic subvariety of C’\X (if not empty) according to Alex- 

ander [l]. For smooth curves X this had been proved by Stolzenberg [lo]. 

REMARK ADDED TO THE PROOF. It suffices to prove the inequality (*) for sets 

XC S of finite length (x’(X)< M) that are minimal, in the sense that no 

proper compact subset of X contains 0 in its polynomial hull. Recently Mark 

Lawrence (private communication) informed me of his new result that such a 

set is necessarily (.Z’, I)-rectifiable. Together with our theorem this implies 

COROLLARY. If X is a compact subset of S and 0 E 8 then &l(X) 2 27~. 

Also, after the completion of the first version of this article, H. Alexander 

[12] and N. Poletski (private communication) informed me that they had in- 

dependently proved the estimate (*) by different methods. 

PROOFOFTHETHEOREM 

The result will follow from the following Lemma and an integral geometric 

formula (Crofton formula) from Federer [7, p. 2841. 

LEMMA. Zf X is a compact subset of C”\ (0) of finite length such that 0 ET?, 
then almost every real hyperplane ZC 6Y' passing through the origin intersects 
X at least at two points. 

Here, “almost every” is meant with respect to the volume measure on the 

Grassman manifold of real hypersurfaces 0 E 2'~ c". 

PROOF. Since X has finite length and 06X, Fubini’s theorem implies that 

almost every complex hyperplane LC@" passing through 0 misses X. Here, 

“almost every” refers to the volume measure on the Grassman manifold of 

complex (n - I)-dimensional subspaces of C=“. 

Fix such a hyperplane L, and let _Z be any real hyperplane in C)” containing 

L. Then L splits Z in two open half-planes .Z+ and .E. 

We claim that both .Z+ and Z_ intersect X. To see this, let TC : Cn + L’ be the 

orthogonal projection onto the complex line L’ orthogonal to L. If X is dis- 

joint from C, then n(X)C L’ is disjoint from the real half-line rr(Z+), hence 

0 EL’ lies in the unbounded component of L’ \TC(X). Thus 0 is not in the 

polynomial hull of Z(X) in L’ and hence 0 is not in the hull of X in C”, a con- 

tradiction. (This also follows from Oka’s criterion for polynomial convexity 

[IO, p. 2631: since 0 belongs to X, we can not move L continuously to infinity 

without hitting X.) 

This shows that every such real hyperplane C intersects X in at least two 

points. Since the remaining set of real hyperplanes through the origin in C” 

has measure zero, the lemma is proved. 
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We now apply Theorem 3.2.48 in Federer [7, p. 2841 as follows. Let B be the 

intersection of a real hyperplane through the origin in C=” with the sphere S. By 

our hypothesis X is (G=??‘, 1) rectifiable, it is Z’ measurable since Hausdorff 

measures are Bore1 regular, and x’(X)< 00. Clearly B is m = (2n - 2)-rectifi- 

able and $P-measurable since it is an m-manifold. Applying Theorem 3.2.48 

in [7] to the constant functions a = 1 on A =X and p = 1 on B we get 

s S d.Te” d&,(g) = C. S’(X). ,“‘(B) 
jito:(2n) xnpw 

for some constant C depending only on m and n. 

Recall that Z” is just the counting measure. The lemma implies 

.Yf”(Xng(B))r2 for almost all gE D(2n) with respect to the volume measure 

8 Zn. Hence we get 

x?‘(X)~28,,(0(2n))/C~‘P(B). 

To calculate the constant on the right hand side we choose X to be the intersec- 

tion of S with a complex line through the origin, hence .%‘(X)=2n. In this 

case Xng(B) contains exactly two points for most gEO(2n), hence the ine- 

quality above is actually an equality. Thus the value of the right hand side 

equals Z’(X) = 271. 

This completes the proof of the Theorem. 
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