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ABSTRACT

Let X be a compact subset of the unit sphere in the complex Euclidean space C” such that the
origin 0 € C" belongs to the polynomial hull of X. Assuming that X is rectifiable in the Hausdorff
(#), D-sense, it is shown that the length of X is at least 27.

INTRODUCTION

It is well known that every pure one-dimensional complex variety A CC”
with reasonably ‘‘nice’” boundary bA satisfies the isoperimetric inequality

(Length(bA))*=4nArea(A).

Moreover, if A contains the origin 0 € C” while b4 lies outside the ball B(r)=
{zeC":|z|<r} of radius r, then Area(4)=nr? and therefore

Length(bA)=2nr.

(See Chirka [6], p. 180 and p. 195, and Bishop [4].) The same inequalities hold
if A is an immersed minimal surface with connected boundary; see Section 7.3
in [5]. The constants in these inequalities are the best possible.

H. Alexander [3] extended the isoperimetric inequality to closed Jordan
curves XCC”": If X is not polynomially convex, then the set A =X\ X is an
irreducible one-dimensional subvariety of C”\ X, and the isoperimetric ine-
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quality holds when the length and the area are computed using the Hausdorff
measures ' resp. #> on C". (For Hausdorff measures see Federer [7, p.
171).) In particular, if X is a closed Jordan curve in the unit sphere S=
{zeC":|z| =1} whose polynomial hull X contains the origin 0 € C”, then we
have

H(X)22 Y A(X) =27
Recall that the polynomial hull of X is the set
X ={zeC":| f(z)| <sup | f] for all fe O(C")}.
X

In this article we shall consider the following question that was raised by
Stout [8, problem 4.2.2]:

If XCS is a compact set in the unit sphere whose polynomially convex hull X
contains the origin 0 € C", must the length of X be at least 2n?

In [11] Stout proved a weaker inequality .%'(X)zﬁn that improved the
previously known result 2#!(X)=2 by Sibony [9]. (The result of Sibony ap-
plies also to sets that are not contained in a sphere.)

Here we give a very simple proof of the inequality

(%) AN (X)=2n when XCS and 0e X

for (#', 1)-rectifiable compact sets XC S. Together with a new result of Mark
Lawrence this settles the general case as well.

THE RESULT

DEFINITION. (Federer [7, p.251].)

(@) A set XCRY is l-rectifiable if it is the image of a bounded subset UC R
under a Lipschitz continuous mapping f: U— R¥,

(b) X is (#", 1)-rectifiable if #'(X)< o and almost all of X (with respect to
the length #") can be covered by a countable union of 1-rectifiable sets.

Our main result is

THEOREM. If X is a compact (#', 1)-rectifiable subset of the unit sphere
SCC” such that the origin 0€C" belongs to the polynomial hull X, then
H1(X)=2n.

Clearly the result can be stated for the ball rB of radius r: If XCrS is com-
pact and (', 1)-rectifiable, and if 0 X, then #(X)=2nr.

The isoperimetric inequality does not hold in the context of our Theorem.
Namely, Alexander constructed in [2] a compact disconnected set XC C? of
finite length whose polynomial hull X has infinite area. His set X is not highly
pathological, it consists of a countable disjoint union of real-analytic simple
closed curves, and 4 =X \ X is countable union of analytic subsets of C*\ X.
Obviously X is (#', 1)-rectifiable.
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It is unknown whether the isoperimetric inequality holds for compact con-
nected sets X CC" of finite length. Recall that A =X\ X is then a pure one-
dimensional analytic subvariety of C"\ X (if not empty) according to Alex-
ander [1]. For smooth curves X this had been proved by Stolzenberg [10].

REMARK ADDED TO THE PROOF. It suffices to prove the inequality (%) for sets
XCS of finite length (#'(X)< o) that are minimal, in the sense that no
proper compact subset of X contains 0 in its polynomial hull. Recently Mark
Lawrence (private communication) informed me of his new result that such a
set is necessarily (#', 1)-rectifiable. Together with our theorem this implies

COROLLARY. If X is a compact subset of S and 0€ X then '(X)=2n.

Also, after the completion of the first version of this article, H. Alexander
[12] and N. Poletski (private communication) informed me that they had in-
dependently proved the estimate (*) by different methods.

PROOF OF THE THEOREM

The result will follow from the following Lemma and an integral geometric
formula (Crofton formula) from Federer [7, p. 284].

LEMMA. If X is @ compact subset of C"\ {0} of finite length such that 0 X,
then almost every real hyperplane X CC" passing through the origin intersects
X at least at two points.

Here, ‘‘almost every’’ is meant with respect to the volume measure on the
Grassman manifold of real hypersurfaces 0 e XCC".

PROOF. Since X has finite length and 0¢ X, Fubini’s theorem implies that
almost every complex hyperplane L CC” passing through 0 misses X. Here,
““almost every’’ refers to the volume measure on the Grassman manifold of
complex (n — 1)-dimensional subspaces of C".

Fix such a hyperplane L, and let X be any real hyperplane in C” containing
L. Then L splits 2 in two open half-planes 2, and 2.

We claim that both X, and X_ intersect X. To see this, let 7:C"— L~ be the
orthogonal projection onto the complex line L* orthogonal to L. If X is dis-
joint from X, then 7(X)CL" is disjoint from the real half-line 7(Z,), hence
0eL* lies in the unbounded component of L+ \7(X). Thus 0 is not in the
polynomial hull of 7(X) in L* and hence 0 is not in the hull of X in C”, a con-
tradiction. (This also follows from Oka’s criterion for polynomial convexity
[10, p. 263]: since 0 belongs to X, we can not move L continuously to infinity
without hitting X.)

This shows that every such real hyperplane 2 intersects X in at least two
points. Since the remaining set of real hyperplanes through the origin in C”
has measure zero, the lemma is proved.
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We now apply Theorem 3.2.48 in Federer [7, p. 284] as follows. Let B be the
intersection of a real hyperplane through the origin in C” with the sphere S. By
our hypothesis X is (#,1) rectifiable, it is #' measurable since Hausdorff
measures are Borel regular, and #'(X)< . Clearly B is m = (2n — 2)-rectifi-

able and & ™-measurable since it is an m-manifold. Applying Theorem 3.2.48
i 1 An A—anr‘[f:lnn R\xlr—nget
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for some constant C depending only on m and n.

Recall that #° is just the counting measure. The lemma implies
#°(X Ng(B))=2 for almost all ge ©(2n) with respect to the volume measure
0,,. Hence we get

H1(X)=26,,(02n))/C#"(B).

To calculate the constant on the right hand side we choose X to be the intersec-
tion of S with a complex line through the origin, hence #'(X)=2n. In this
case X N g(B) contains exactly two points for most g € ©(2n), hence the ine-
quality above is actually an equality. Thus the vaiue of the right hand side
equals #'(X)=2n.

This completes the proof of the Theorem.
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