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Introduction 

Let B" = {z ~ C" :lzl < 1 } be the open unit ball of the complex euclidean space C", 
and let bB" = {z ~ C" :lzl = 1 } denote its boundary, the unit sphere. The motivation 
for the present paper is the following result of the author [For, Theorem 1.4]: 

Theorem. I f  f2 is an open connected subset of bB" and 

F = ( F  1 . . . .  ,F , , )  : f 2~bB" '  ( n ' > n > l )  

is a mapping of class n ' --n+ l that satisfies the tangential Cauchy-Riemann 
equations on f2 (in short, a CR mapping), then F extends to a complex rational 
mapping on C". 

Thus every proper holomorphic mapping F : B " ~ B " '  that is smooth of class 
n' - n + 1 on the closed ball I]" is rational. This result is useful in the problem of 
classification of proper holomorphic mappings between balls, see the papers by 
D'Angelo [DA1, DA2, DA3]. In the equidimensional case n = n' > 1 the result is 
due to Alexander [A1] (see also [Ru, p. 316]): If the mapping is not constant, it 
extends to an automorphism of the ball. Recently Pin~uk and Tsyganov [PT] 
proved the same result for all continuous nonconstant CR mappings F: t2 C bB" 
~ b B  n. 

The punctured sphere bB "+ l\{p} is equivalent via the Cayley transformation 
[Ru, p. 31] to the quadric hypersurface (hyperquadric) defined by 

~ w  = Izl t  z + . . .  + Iz,I 2 , (0 .1 )  
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so the above result bears on CR mappings of such hyperquadrics, possibly of 
different dimensions. In fact the result applies to all hyperquadrics 

~w= ~ ajkZj~k (0.2) 
j , k = l  

with a positive definite hermitian matrix A = (ajk), since every such quadratic form 
can be diagonalized by a unitary change of z coordinates. 

In the present paper we use elementary complexification arguments, similar to 
those in [For], to extend this phenomenon to mappings of quadric Cauchy- 
Riemann (CR) manifolds in C", of arbitrary dimensions and codimensions. 

We denote the coordinates on C" by (w, z), where w ~ C n, z ~ C m, d+  m= n, 
d,m>O. Let (z ,~)=Zzj~  j. We associate to each d-tuple A=(A 1 ..... Ad) of 
hermitian m x m matrices the quadric CR manifold M = M a C C" defined by 

~Wk=(AkZ, Z), 1 <_k<d. (0.3) 

Clearly M is a Cauchy-Riemann submanifold of C" of real codimension d and of 
CR dimension m; we shall say that M is of type (d, m). The hermitian quadratic 
form 

z-~(Az, ~) =((Alz, ~) ..... (ADZ, e)) 

with values in R d is called the Levi form of M. To simplify the notation we shall 
drop the indices and write 

3w = (Az, ~). 

Each quadric of this form is affinely homogeneous, i.e., there is a group of complex 
affine transformations of C" acting transitively on M [-PS, p. 15]. 

Under rather mild assumptions on their Levi forms we prove that every CR 
mapping of quadric CR manifolds with some initial amount of regularity extends 
to a complex rational mapping on C", and the space of all such mappings between a 
given pair of quadrics is finite dimensional (Theorems 1.1 and 1.5). Theorem 1.1 
generalizes a result of Tumanov (see Corollary 1.3). We wish to point out that our 
method is different from the method of Tumanov, which seems to apply only to CR 
diffeomorphisms between quadrics of the same type (d, m). 

We also prove an extendability result for CR mappings from certain real- 
analytic CR manifolds into quadrics (Theorem 1.6). Our method provides a 
unified approach to a variety of mapping problems of CR manifolds. 

The idea of our proof goes back to the reflection principle of Lewy [Le] and 
Pin~uk [Pin]. Their technique was further developed by Webster [Wel, We2, 
We3], Diedrich and Webster [DW], Diederich and Forna~ss [DF1, DF2], and the 
author [-For]. Somewhat different approach to mapping problems was developed 
by Baouendi, Jacobowitz, and Treves [BJT], Baouendi, Bell, and Rothschild 
[-BBR], and Baouendi and Rothschild [-BR1, BR2]. 

Another important ingredient are the results on holomorphic extendability of 
CR functions due to Boggess and Polking [BP], Baouendi, Chang, and Treves 
[-BCT], Tumanov [-Tul], and Baouendi and Rothschild [BR3]. Finally, our result 
in [For] for mappings of hyperquadrics depended on a lemma of Cima and 
Suffridge [-CS] to the effect that holomorphic functions of certain kind must be 
rational. In the present paper we give a simple proof (Proposition 3.1) that applies 
in the more general setting we are dealing with. 
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Quadric CR manifolds are important for several reasons. First, they are local 
second order models of general CR manifolds. From the analysis on hypersurfaces 
it is well known that such local models play a very important role, especially in the 
case when their Levi form is nondegenerate. For instance, there is a simple proof of 
Fefferman's theorem on smooth extendability of proper holomorphic mappings 
between strongly pseudoconvex domains, based on the scaling method and the 
knowledge of the automorphism group of the ball (Pin~uk and Hasanov [PH]). 
Second, the quadric CR manifolds (0.3) are Shilov boundaries of the associated 
Siegel domains of the second kind (Piatetsky-Shapiro [PS, p. 13]). These domains 
are wedges with edge M, defined by (2.3) below. As such, the quadrics are 
important for the function theory on Siegel domains and in questions concerning 
holomorphic mappings between these domains [TH1]. Since every classical 
Cartan domain (bounded symmetric domain) admits representations as a Siegel 
domain of the second kind [PS], the mappings of quadric CR manifolds are related 
to proper holomorphic mappings between Cartan domains; see Henkin and 
Novikov [HN], Tumanov and Henkin [TH2], and Tumanov [Tu2]. 

For these reasons it is desirable to have as much information as possible on the 
CR mappings between a given pair of quadric CR manifolds. We hope that our 
method can be applied to the computation of the holomorphic automorphism 
group of quadric CR manifolds. Presently these groups are known only for certain 
special classes of quadrics (see [CM] for hyperquadrics). 

When the quadrics have different CR dimensions, the classification problem for 
CR mappings between them is rather difficult already in the case of hyperquadrics 
(spheres); see the papers [DA2, DA3]. The study of such mappings is simplified 
substantially if we know apriori that they are rational. 

1 Results 

Let M a be the quadric (0.3), associated to the quadratic hermitian form 

(Az,~) =((Alz,~),..., (AdZ,~)). 

We shall use the following terminology. 

Definition 1. (a) The form ( A z , ~ )  is nondegenerate if  (Az ,~)=0  for all ~ ~ C "  
implies z = O. In this case we say that the quadric M A is Levi nondegenerate. 

(b) The quadric MA is strongly pseudoconvex if  there is a vector 
~l = (~11,..., tld)~ Rd such that the matrix t I �9 A = ~ tljA j is strongly positive definite. 

(c) M A is strongly 1-pseudoconcave if for each tl ~ Ra\{0} the matrix tl . A has at 
least one negative eigenvalue. 

We associate to MA the convex cone in R d, 

F = FA=CO{ ( A z , ~ )  ~ Rd: z ~C"}  , (1.1) 

where Co stands for the linearly convex hull. Notice that MA is strongly 
pseudoconvex if and only if it is Levi nondegenerate and FA\{0} is contained in an 
open half-space of R a. 

Let M' C C n' be another quadric of type (d', m'), given by 

~ w ' =  (Bz' ,  ~ ') .  (1.2) 

For each p e M we denote by T~pM the maximal complex subspace of the real 
tangent space TpM. 
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1.1 Theorem. Assume that 
(a) M = M a is the quadric (0.3) of type (d, m) such that the associated cone Fa has 

nonempty interior, 
(b) M ' =  M'B is a Levi nondegenerate quadric (1.2) of type (d', m), 
(c) F : COC M-+ M' is a CR mapping of  class egl, defined on an open connected 

subset co of M, such that the differential dF(p) is a linear isomorphism of TCM onto 
C t Trtp~M at some point p ~ co. 

Then F extends to a complex rational mapping on C". Moreover, the degree of  
every such mapping F is bounded from above by a constant C = C(d, m) depending 
only on the type (d, m) of M. 

1.2 Corollary. Every local CR diffeomorphism F:coCM~CO'CM' between Levi 
nondegenerate hyperquadrics M, M' C C n + 1 of the form (0.2) extends to a birational 
mapping on C ~ + x 

Corollary 1.2 follows immediately from Theorem 1.1 by observing that the 
corresponding cone Fa C R has nonempty interior whenever A ~e 0. Similarly we 
have 

1.3 Corollary. I f  M = M a C C ~ is a Levi nondegenerate quadric (0.3) whose cone F a 
has nonempty interior, then every local CR diffeomorphism F:COC M~CO'CM 
extends to a birational mapping on C". The group of all rational CR automorphisms 
of M is finite dimensional. 

Corollary 1.3 was first proved by Tumanov [Tu2], using different methods. 
In the case when the quadric M = Ma is strongly pseudoconvex and the cone F 

(1.1) has nonempty interior, Henkin and Tumanov [TH1] proved that every local 
CR homeomorphism F : co C M ~to'  C M extends to a holomorphic automorphism 
of the associated Siegel domain of the second kind, defined by 

"/U = {(w, z) ~ C" : ~ w -  (Az,  2) ~ int F}. 

In other terms, ~r is a wedge with edge M and cone F. 
Thus the group of CR automorphisms of M is isomorphic to the group of 

holomorphic automorphisms of ~ .  Since ~ is equivalent to a bounded domain in 
C" I-PSI, it follows that AutM is a finite dimensional Lie group. In addition to this, 
Tumanov proved in [-Tu2] that every proper holomorphic self-mapping 
F:  ~/r162 r is an automorphism, thus generalizing Alexander's theorem [A1] to 
certain Siegel domains of the second kind. 

Opposite to this is the case when M is strongly l-pseudoconcave. Then the 
convex cone Fa has no supporting hyperplane at 0, so it equals R a. This implies that 
every CR function on co C M extends holomorphically to a neighborhood of each 
point p ~ co in C" (Naruki [Na]), hence every local CR homeomorphism F : o9 C M 
~co 'CM extends locally to a biholomorphic map. If, in addition, M is Levi 
nondegenerate, F extends to a birational mapping on C" according to 
Corollary 1.3. 

We denote by Auto (M) the group of local CR automorphisms of M preserving 
the origin 0 e M. 

1.4 Corollary. The group Auto M of a quadric is finite dimensional if and only if M 
is Levi nondegenerate and its Levi cone F (1.1) has nonempty interior. 

Proof. Corollary 1.3 implies that the last two conditions are sufficient for the finite 
dimensionality of AutoM. 
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I fM is Levi degenerate, it is isomorphic to M1 x C k for some integer k > 0, where 
M1 is a Levi nondegenerate quadric in C "-k. For  each f e  AutoM ~ and for every 
g E Auto Ck we obtain a local automorphism of M by setting F(z, 0 =(f(z),  g(()). 
Thus AutoM is infinite dimensional. 

Similarly, if the cone F has empty interior, it lies in a real hyperplane of R ~, so 
d 

there is a real-linear combination A' = y~ cjA i such that <A'z, ~) = 0 for all z e C m. 
j = l  

Changing coordinates on w-space we may assume that A'=A~,  so the first 
equation in (0.3) is 3wl =0.  Thus M =  M t x  R k for some positive integer k and 
quadric M1 C C "-k. For  each f e Aut o M1 and each local automorphism g of C k 
satisfying g(R k) C R k, g(0) = 0, we get a local automorphism of M as above. Thus 
AutoM is infinite dimensional. This proves Corollary 1.4. 

Example. Let M C C  3 be defined by 

so M is the product of the hyperquadric S C C z with R. Every CR mapping of M to 
itself is of the form F(z, w l, t )= (ft(z, w x), g(t)), where f t :S  ~ S is a CR mapping of S 
to itself. Thus ft is rational for each fixed t, but the CR condition on M imposes no 
regularity o f f  and g in the t variable. In this case the cone F is a ray in R 2 without 
interior. 

So far we have assumed that both quadrics have the same CR dimension, only 
their codimensions could differ. We obtain a similar result for mappings between 
quadrics of different CR dimensions, provided that the target is strongly 
pseudoconvex and the mapping is sufficiently regular to begin with. 

1.5 Theorem. Let M = M A be the quadric (0.3) of type (d, m) such that the cone F a 
(1.1) has nonempty interior, and let F: toC M ~ M '  be a CR mapping from an open 
connected subset 09 C M to a strongly pseudoconvex quadric M ' =  M'B (1.2) of  type 

p r T C l l / l  --.4. T C  ll,'fr (d, m ). Let r(p) be the rank of the linear map dF(p)'~p . . . .  Ftp~ . . . .  
I f  F is smooth of  class s = m r - r(p) + 1 in a neighborhood of  some point p ~ ~o, then 

F extends to a complex rational mapping on C". The degree of F is bounded from 
above by a constant C(d, m, m r) depending only on the indicated quantities. 

This generalizes Theorem 1.4 in [For]  where both M C C ~ and M'C C"' are 
hyperquadrics (0.1). In that case the differential dF(p) is injective on TCM (unless F 
is constant), so the required smoothness of F is s = m' - m + 1 = n' - n + 1. 

Most likely our smoothness assumption is not optimal. However, it is known 
that for each nr> n > 1 there exist proper holomorphic mappings F : B " ~ B  n' that 
are continuous on the closed ball but are not rational [Dor,  Ha]. It is an open 
problem whether such a map can be continuously differentiable on the closed ball 
without being rational. 

Notice that we may have m' < m even when F is not a constant mapping. This 
happens for instance when M is the product M = M1 • M2 of lower dimensional 
quadrics and the mapping F:M~ • M 2 ~ M '  is constant on one of the factors. 

Finally we prove an extension result for CR mappings of more general real- 
analytic CR manifolds into quadrics. Let tk(z, i, ~tw) be a real-analytic function in a 
neighborhood of 0 in C m x R ~, with values in R d, satisfying ~b(0) = 0 and d~(0) = 0. 
Let M C C" be a local real-analytic submanifold of real codimension d, defined by 

3w = tk(z, ~, 9tw). (1.3) 



168 F. Forstneri~ 

Then M is a generic CR submanifold near 0 of CR dimension m--- n -  d. 
After a local biholomorphic change of coordinates near the origin we may 

eliminate all pluriharmonic quadratic terms in ~b and assume that the equation of 
M is 

~w = ( Az, ~) + c~'(z, ~,~Rw) , (1.4) 

where A =(A1, ..., Ad) is hermitian and ~b' contains terms of degree at least three 
[BP]. The quadratic part is the Levi form of M at the origin. The corresponding 
quadric MA (0.3) osculates M to second order at the origin. We shall say that M is 
Levi nondegenerate or strongly pseudoconvex at the origin if the quadric M a 
satisfies these properties. 

We shall need a result of Tumanov [Tul ]  on extendability of CR functions on 
M to holomorphic functions on wedges with edge M. For this purpose we recall a 
definition from [Tul].  

Definition 2. A CR manifold M of the form (1.3) is said to be minimal at a point p ~ M 
if there exists no local CR manifold N C M passing through p, of the same CR 
dimension m but of strictly smaller real dimension. 

It is easily seen that a quadric M = M a (0.3) is minimal at any point if and only if 
the cone Fa has nonempty interior. Equivalently, the components of the Levi form 
must be linearly independent. Thus M can be strongly pseudoconvex but not 
minimal. If M is a more general CR manifold (1.4) and the cone Fa has nonempty 
interior, then M is minimal at 0, but the converse need not hold. 

1.6 Theorem. Let M c C  n be a real-analytic CR manifold (1.3) of type (d, m) that is 
minimal at each point p ~ M, and let F : M ~ M '  be a CR mapping into a strongly 
pseudoconvex quadric M ' c C  ~' (1.2) of type (m',d'). Denote by r(p) the rank of 
dF(p)" Tcrut ~TC A,4' = min {r(p): p ~ M}. �9 ~p . . . .  F~pr" and set ro 

I f  F is smooth of class m ' -  r o + 1 on M, there is a closed subset E = E e C M of 
surface measure zero in M such that F extends holomorphically to a neighborhood of 
each point p e M \ E .  

Contrary to the previous results the map F in Theorem 1.6 need not be rational. 
It is an open problem whether such a map extends holomorphically to a 
neighborhood of every point p ~ M. 

By a more careful argument one can also replace the target M' by arbitrary real- 
analytic strongly pseudoconvex CR manifold and still obtain the same conclusion 
for CR mappings F : M ~ M '  of class c ~ .  A theorem of this type for mappings 
between hypersurfaces of different dimensions has been proved in [For, 
Theorem 1.1]. Also, there are extension results of Webster [We2,We3] and 
Baouendi, Jacobowitz, and Treves [BJT] for mappings between real-analytic CR 
manifolds of the same type (d, m). See also Tumanov [Tul] .  

In Sect. 2 we explain our method that relies on the Segre Q-varieties. We first 
extend F to a holomorphic mapping on a wedge ~ +  with edge M. Using the 
condition F(M) C M' we associate to F its characteristic variety X r as a solution set 
of the system of Eqs. (2.9)-(2.10). The variety XF that is initially defined over the 
opposite wedge ~/C- can be extended across most points of M so that it contains 
the graph of F. 

The announced results follow from Theorem 2.5 in Sect. 2. In Sect. 3 we prove 
Theorem 2.5 in the nondegenerate case when the system (2.10) has maximal rank. 
In Sect. 4 we deal with the degenerate case. 
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2 The characteristic variety 

We are to study a CR mapping F : M ~ M '  of class c~s. The value ofs depends on the 
theorem we are proving: s = 1 in Theorem 1.1, s = m' - r(p) + 1 in Theorem 1.5, and 
s = m' - r o + 1 in Theorem 1.6. 

Since our theorems are local, we fix a point p ~ M and change coordinates so 
that p = 0  and F(0)=0. This is possible since each quadric (0.3) is affinely 
homogeneous [PS, p. 15]. We also assume that dF(p) c ~ c ,. "TpM TFtp)M 1s of rank at 
least r o at each point p ~ M and F is smooth of class s = m ' - r  o + 1 on M. In 
Theorem 1.1 we have r o = m = m ' ,  so s--1. 

To begin with, let M be a general real-analytic CR manifold (1.3), where q5 is a 
convergent power series without constant and linear terms, 

c~(z, ~, u) = Z 4~, ~, ~ z ~ u  ~ , 

the summation over ~, fl E Z2,  7 ~ Za+ �9 
We polarize the equation of M by considering (~, ~) as complex variables 

independent of (w, z). The power series ~b((, z, (t/+ w)/2) converges in a smaller 
polydisc neighborhood U o x Uo of the origin in C" x C". We shall choose U o small 
enough so that F is defined in a neighborhood of Mc~/2 o. The resulting equations 
define a local complex submanifold M~ Uo • Uo of complex codimension d, 
called the polar of M: 

(rl - w)/2i = ~b((, z, (q + w)/2). (2.1) 

For  each (w, z) in a smaller polydisc neighborhood U C Uo of 0 we define a 
complex submanifold of U o of complex codimension d by 

Q(w, z) = {(q, ~) e U 0 :(q, ~; ~, e) e M~ 

When M is the quadric ~w = (Az ,  ~), Q(w, z) is the affine complex subspace of C" 
given by 

Q(w, z) = {(q, ~) e C":(q - ~)/2i = (A~, ~)}. (2.2) 

These varieties were first introduced by Segre [Seg] in the case when M is a real 
hypersurface. They have been used in mapping problems by several authors [Wel,  
DW, DF1, For].  We recall some of their important properties (see [DW] or 
[DF1]): 

(i) (w, z) ~ Q(q, 0 if and only if (~/, r ~ Q(w, z), 
(ii) (w, z) ~ Q(w, z) if and only if (w, z) ~ M, 

(iii) Q(0,0)= {w =0} = {0} d x C". 
Let M' C C"' be another CR submanifold of the form (1.3), and let Q'(w', z') be the 

corresponding variety (2.2). Our proof is based on the observation, due originally 
to Webster [Wel] ,  that every holomorphic mapping F, defined on a neighborhood 
of 0 in C", that maps M to M', also maps the variety Q(p) into Q'(F(p)) for all p ~ C" 
near 0. In particular, if F is biholomorphic near the origin, the varieties attached to 
M are in one-to-one correspondence with those attached to M'. The proof of this is 
very similar to the one given in [Wel ]  or [-For] in the hypersurface case. 

This suggests that we associate to F its characteristic variety 

XF = {(P, P') �9 Uo x C"': F(Q(p)) C Q'(F(p))}. 
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We shall see that X F is indeed a complex subvariety. The importance of XF in the 
mapping problem is evident from the previous works [DF1] and [For]. 

Unfortunately we do not know that F is holomorphic in a full neighborhood of 
0 in C", so we need to find a different way of defining the characteristic variety. 

We begin by extending F to a holomorphic mapping on a wedge domain with 
edge M. IfA C R a is an open convex cone with vertex 0 and U o is a neighborhood of 
0 in C", we define the corresponding wedge by 

~r = ~r Uo)= {(w, z) e U o : 3 w -  ~b(z, ~, 9tw) �9 A}. (2.3) 

I fM is minimal at 0 in the sense of Definition 2, then according to Tumanov [Tul]  
there is some wedge of this kind to which every CR function on co C.M extends as a 
holomorphic function. Moreover, if the function is of class (g~ on c0, its 
holomorphic extension is of class cg~ on ( ~ ' u  M)n  U o for every strictly finer wedge 
"W'C ~/r [Co2]. This also follows from the approximation theorem for CR 
functions due to Baouendi and Treves [BT]. 

If M is of the form (1.4) and the cone Fa .(1.1) has nonempty interior, then the 
above holds for every cone A that is strictly smaller than the interior of Fa (Boggess 
and Polking [-BP], Baouendi, Chang, and Treves [-BCT]). If M = M A is the quadric 
(0.3), we may take A =In tFa  according to Naruki [Na]. See also Baouendi and 
Rothschild [BR3]. 

Thus we can extend F to a holomorphic mapping on a wedge f +  (2.3) that is 
smooth of class cg~ on (~r ~ M ) n  Uo. 

Let h(w, z) = (h'(w, z), z) be the real-analytic mapping in a neighborhood of 0 �9 C" 
determined by the equation 

(h' - ~)/2i = c~(z, e, (h' + ~)/2), 

so h(w, z) �9 Q(w, z). Such h exists by the implicit function theorem. For each fixed 
z = z ~ the map w~h' (w,  z ~ is an antiholomorphic reflection within the subspace 
z = z ~ fixing the totally real submanifold M n  {z = z~ When M is the quadric (0.3) 
we get the mapping 

h(w, z) = (~ + 2i(Az,  e), z). (2.4) 

Shrinking U if necessary we may assume that h(w, z) �9 Uo whenever (w, z) �9 U. Let 

~r = {(w, z) �9 U: h(w, z) �9 "#/'+ } (2.5) 

be the wedge that is opposite to ~ + with respect to h. In the quadric case we get 
~W- = "W(- Int Fa, U). In general, ~W- contains a wedge "W(- A', U) for some open 
convex cone A' C A. 

Our goal is to extend the mapping F, holomorphic on the wedge ~W § to the 
opposite wedge ~r as a complex subvariety X v defined as above. For each 
( w , z ) � 9  we have a point h(w,z)�9 in the region where F is 
holomorphic, so the condition defining X v makes sense. In order to use the 
assumption that F maps M to M' we shall replace the defining condition F(Q(w, z)) 
C Q'(F(w, z)) by the corresponding infinitesimal condition on the Taylor series of 
Fl~w z) at the reference point h(w, z). 

Let ~/r176 C M ~ be the preimage of ~r + under the first coordinate projection: 

~/r = {(r/, ~; w, z) �9 M ~ :(q, ~) �9 ~r r+  }. 

This is a wedge-like domain whose edge contains the maximal real submanifold 

T=  {(w, z; if, f): ( w , z ) e m ~ U o }  c m  ~ . 
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We may assume that ~r ~W-, and ~W ~ are connected. 
For each point ( ~ / , ~ ; ~ , 0 ~  ~ we consider the Taylor expansion of the 

restriction Flo(w,~), centered at (r/, O. From the equation of the polar (2.1) we see 
that Q(w, z) can be parametrized locally near (r/, 0 by 

x ~ C" ~ O ( x ) =  (q + la~oC~(~l, ~ ; ~,z-)x~, ( + x ) ,  (2.6) 

where the function O(x)= ~ G(q, ~; w, ~) x" is a solution of the equation 
I~1>o 

O(x)/2i = d)( ~ + x, e, (q + O(x) + ~)/2) - q~({, e, (r/+ ~)/2). 

By the implicit function theorem a solution exists and is holomorphic in all 
indicated variables. In particular, the functions c, are holomorphic in 
M~ x Uo), provided that Uo is sufficiently small. This means that G(q, ~; w, ~) 
is holomorphic in (q, {) and antiholomorphic in (w, z). 

When (q, 0 belongs to the wedge ~r + where F is holomorphic, we insert (2.6) 
into the Taylor expansion of F at (t/, 0 to obtain 

F(O(x)) = f(q,  0 + <Z aa( ~, ~; ~, e)x a + o(IxlS). (2.7) 
1 =lt~l__<s 

2.1 Lemma. Each function a o for I/~1 < s is holomorphic in the wedge ~ o  and extends 
continuously to W'~ Here s is the order of  smoothness of  F on ooCM. 

Proof It suffices to observe that ap is a linear combination of the derivatives o fF  at 
(q, 0 of order < Ifl[, with coefficients that are holomorphic polynomials of the 
functions c, for I~1 _-< I/~1. 

We get more precise information when M is the quadric (0.3). Let ek ~ C" be the 
k-th standard unit vector. Then the vectors 

bk(~)=(2i(Aek,~),ek)~C", 1 <_k<_m (2.8) 

form a basis of the affine subspace Q(w, z), so Q(w, z) is parametrized by 

O(x) = (rl, 0 + ~ Xkbk(Z-) = (q + 2i(x, ~ ) ,  ~ + x) 
k = l  

for each (r/, 0 e Q(w, z). This proves 

2.2 Lemma. When M is the quadric (0.3) and h is defined by (2.4), then each 
coefficient aa(q, ~ ; ~) in the expansion (2.7) for 1 < Jill < s is a polynomial of  degree Ifll 
in the variable ~ and is independent of  w. 

Let M's  be the quadric (1.2). For each ( w , z ) ~ # / -  we have 
h(w, z)e Q(w, z ) ~ v  +, so we can substitute the expansion (2.7)for F}o(w.~ ) at the 
reference point (t/, 0=h(w,  z) into the defining equation of the affine variety 
Q'tw' z'~ It will be convenient to use the notation 

F = ( f g ) ,  a~=(fo, ga), 

where the first component corresponds to the variable w' ~ C a' and the second to 
t t / l '  z ~C . Thus 

f (  6)(x)) = f(h(w, z)) + 1<= ~1 <-~ fPxa + o(Ixl'), 

and similarly for g. 
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The equations of X are 

( f (O(x) ) -  ~')/2i = (Bg(O(x)), ~').  

Comparing the coefficients of terms involving x a we obtain the following system of 
equations: 

if' = f (h(w, z ) ) -  2i( Bg(h(w, z)), Y ) , (2.9) 

(Bgtj(h(w,z); ~,~),~')=fa(h(w,z); ~,z--)/2i, 1 <[f l l<s .  (2.10) 

The equations are defined for all ( w , z ) e ( ~ - w M ) n U  and are linear in 
(~', ~') ~ C"'. We define the characteristic variety X e as the set of all solutions of this 
system. 

The following proposition shows that XF contains the graph of FIMnv. 

2.3 Proposition. For each (w, z) ~ M n  U the point (w', z') = F(w, z) ~ M' satisfies the 
system (2.9)-(2.10). 

Proof. Fix a point pO = (w o, z o) e Mc~ U and extend F as a function of class cgs in a 
neighborhood of pO in C ". Since F(M)C M', the function ~ f - ( B g ,  ~) of class cgs, 
with values in R a, vanishes on M. Hence we can find functions ql, q2,..., qd of class 
cgs-1 near pO, with values in R d, such that 

d 

~f(w, z)-- (Bg(w, z), g(w, z)) = E q,(w, z)(3wj - qbj(z, ~, 9tw)) 
j = l  

is an identity near pO in C". 
Write 

f(w, z) =F(w,  z) + o(s), 

g(w, z) = gS(w, z) + o(s) , 

qj(w, z) = q~- l(W, z) q- O(S -- 1), 

where f~, g~, and q~- ~ are Taylor polynomials of indicated orders centered at pO, 
and 

o(s) = o ( ( I z -  z~ + I w -  w~ �9 

Note that f~ and g~ are holomorphic polynomials. Substituting into the above 
identity we obtain 

d 

~f~ -- (Bg ~, ~ )  = ~. q~- l( ,~wj- dpj(z, 2, ~Rw)) + o(s). 
j = l  

We complexify this identity by varying the conjugate variables (#, z-) indepen- 
dently of (w, z). It is important to observe that the error term remains small of 
order s also in the complexified identity. This follows immediately from the 
fact that a holomorphic function a(z, 0 whose restriction to the totally real 
subspace ( =  2 vanishes to order s at (z ~ 2 ~ also vanishes to order s as a function 
of (z, 0 at this point. 

Thus we may set # = ~0, 2=  2O and let (w, z) vary: 

(F(w, z) -- f~(w ~ z~ -- ( Bg~(w, z), g~(w ~ z~ 

= E q~- ~(w, z; g,o, 2o)((w j -  ~~  gp,(z, 2O, (w + #~ + o(s). 
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We now restrict (w, z) to the variety Q(pO) in the coordinates (2.6), so that the 
term in the right hand side vanishes up to order s at pO It follows that F ~ maps Q(pO) 
into Q'(F(p~ up to order s, hence so does F. By the construction of the system 
(2.9)-(2.10) this means that (p~176 is a solution. Proposition 2.3 is proved. 

We extend the linear system (2.10) in ~' to the polar M~ 

(Bga(~l,(;~,~),~')=fa(rl,(;fv,~)/2i, l <lfll<s, (2.11) 

where (q, (; #, z-) c ~ o w  TC M ~ The coefficients of the system are holomorphic on 
~r and continuous up to the edge T. 

Let ~(~/, ~; #, if) be the coefficient matrix of the system (2.11). Its rank Q(r/, ~; #, z-) 
is an upper semicontinuous function on ~ ~  Let 

Q0 = max {Q(w, z; #, ~) :(w, z) e M n  U}. (2.12) 

2.4 Proposition. (a) 0 <= Oo everywhere on ~q/~o. 
(b) There is a closed subset E c  Mc~U of surface measure zero in M such that 

Q=0o on M n U \ E .  

Proof. To prove (a) we note that every minor (subdeterminant) of ~ of size Qo + 1 is 
a holomorphic function on ~r continuous up to T, that vanishes on T by 
definition of Qo. Since T is a determining set for such functions according to 
Saddulaev [Sad] (see also Coupet [Col]), this minor is zero on ~r162 as well. Since 
this holds for all minors of size 0o + 1, we conclude that Q < Qo. 

The same argument shows that the set {Q < 0o} C ~#ro u T is defined by vanishing 
of functions, holomorphic on ~#ro and continuous up to T. From the identity 
theorem in [Col ] it follows that the closed set E ~ = Tn {Q < Qo} has measure zero in 
T. Since the complex analytic subset {0 < Qo} can not disconnect ~W ~ we have 
Q = 0o everywhere on TkE ~ The dosed subset E C M, obtained as the image of E ~ 
under the coordinate projection (r/, (;w,z)~(r/, (), satisfies the conclusion (b). 

The results announced in Sect. 1 will follow from 

2.5 Theorem. Let F: M ~ M' be as in Theorem 1.5 or 1.6, and let E r C M be the set of 
measure zero given by Proposition 2.4. Then F extends holomorphically to a 
neighborhood of each point p ~ MkE. I f  M is the quadric as in Theorem 1.5, then F 
extends to a rational mapping on C". 

We first show that this result immediately implies Theorem 1.1. Since each 
quadric is affinely homogeneous [PS, p. t5], we may assume that p = 0  and 
F(0) = 0. At the origin the vectors bk(0) (2.8) for 1 < k < m form the standard basis of 
the maximal complex tangent space ToCM = {0} d x C m. Hence the coefficients ga(0) 
for 1/71--1 are the first order partial derivatives with respect to the variables 
z=(z l  . . . .  ,zm) of the component g of F that is complex tangential to M' at 0. 
Therefore, if dF(O) is a linear isomorphism of ToCM onto TCM ', the vectors 
{g~(0):lfl[=l} are a basis of C m. Since the bilinear form associated to 
B=(B~ .. . . .  Ba,) is nondegenerate, we see immediately that the vectors 
{Bkga(0): 1 <k<d' ,  1/71= 1} also span C m, so the system (2.10) has maximal rank 
Oo = m at the origin. Thus Theorem 2.5 applies. 

In Sect. 3 we shall prove Theorem 2.5 in the case when the rank 0o = m' is 
maximal. The proof in the degenerate case Qo < m' is more involved and will be 
given in Sect. 4. 
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3 The nondegenerate case 

In this section we shall prove Theorem 2.5 in the special case when the system 
(2.9)-(2.10) defining the characteristic variety Xr is of maximal rank, i.e., Qo = m'. 
This part is similar to the original reflection principle of Lewy [Le] and Pin~uk 
[Pin]. 

Fix a point pO ~ M\E.  To simplify the notation we shall choose the coordinates 
so that p ~  and F(p~ From the system (2.10) at (w, z) = (0, 0) we choose a 
suitable set of m' independent equations. The same equations remain independent 
if we vary (w, z) in (~//"- u M ) n  U1 for a suitably small neighborhood UI C U of 0, so 
we obtain a unique solution z' = z*(w, z) there. Inserting this solution into (2.9) we 
also obtain w' = w*(w, z). 

Since the Eqs. (2.9)-(2.10) are antiholomorphic in w, the solution F*=  (w*, z*) is 
holomorphic in w for each fixed z. Proposition 2.3 shows that for (w, z) ~ M n  U1 we 
have F*(w, z) = F(w, z). Thus we may extend F to (~/r u M)n  U 1 by setting F = F* 
there. Then for each z near 0 the function F(., z) satisfies the hypotheses of the edge- 
of-the-wedge theorem on the double wedge (~#r+wMu~lr-)n{z=const} ,  so it 
extends holomorphically to an open set VzCCd• Since the edge 
M n { z  = const} depends analytically on z, we can take Vz to be independent of z. 

We have obtained an extension o f f  to a neighborhood U* --- U* x U* of 0 such 
that F(., z) is holomorphic in w ~ U* for each z e U~. Since F is holomorphic on the 
open set "W +, a theorem of Hartogs IBM, p. 141] implies that F is holomorphic 
near 0. This proves the first part of Theorem 2.5 in the case of maximal rank. 

Assume now that M = M A is the quadric (0.3), and let h be defined by (2.4). 
According to Lemma 2.2, the coefficients of the system (2.9)-(2.10) are holo- 
morphic in (h(w, z); ~) and polynomials in F. By Cramer's formula each component 
of the solution (w*, z*) is of the form 

n(q, z) = G(q, z)/g(q, z), q = h(w, z), (3.1) 

where G and g are holomorphic in the variables (q, z) and polynomials in z. The last 
part of Theorem 2.5 follows immediately from 

3.1 Proposition. I f  there is an open VcC" such that the function H (3.1) is 
holomorphic as a function of (w, z) ~ V, then H is a rational function of (w, z). 

A similar result has been proved by Cima and Suffridge [CS] for the special case 
when M is a sphere. 

Proof Let V= V 1 x V2, with V 1 C C d and V 2 C C m. For each point z e V 2 we let 
A(z) C C" be the complex subspace spanned by the vectors b I(F) . . . . .  bin(z-) (2.8), i.e., 
A(z) is the parallel translation of Q(w, z) to 0. 

Fix a point z~ V2 and introduce new coordinates (z,Q)eC", defined as 
functions of (w, ~) e C" by 

(z, O) = (w, z ~ + ~ (kbk(~O). 
k = l  

Equivalently, 

r = w +  2i(A~,z-~ 

In these coordinates we have 

Q = z ~ + ~. (3.2) 

q = h(r, Q) = (~ - 2i(Ar 0>, 0)- (3.3) 
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3.2 Lemma. Suppose that g(q, O) is a holomorphic function of (q, q) that is polynomial 
of order <__K in O. I f  we substitute q by (3.3) and (z,O) by (3.2), then'O~g/t?(~l~=o-=O 
whenever [al > K. 

Proof. The chain rule gives 

Og ~ Og Oqk Og OOk_ d m Og OOk 

k=d+ l Oqk O(j -t-k~l OOk O(j 

We have 80k/0~ = 6j~, 0 0 k / ~  = 0, and for 1 _ k_< d 

t~q k OZ k _ _  -- 2i~jj(AkO, O) 

= 2i(Akej, ~o)_  2i(Akej, ~o + ( )  

= -- 2i(Akej, (~.  

Inserting this into the expression for ~g/O(j we obtain 

O~j k = 1 0 q  k Off i " 

When we differentiate further with respect to ~, the terms (Akej, (-} are preserved, 
so 

0~g = O'~g + terms containing ~. 

The lemma follows. 
The lemma implies that we can write G and g, as functions of(w, 0, in the form 

G(w, 0-- Go(W, 0 + 2 (-~G(w, 0, 
k = l  

where Go is holomorphic in (w, () and polynomial of order < K in ( (similarly for g). 
Recall that the quotient H = Gig is holomorphic in (w, 0 in a suitable domain. 
Comparing the holomorphic terms in the Taylor expansion of rig = G at the point 
( = 0 we conclude that H is the quotient of the holomorphic parts H = Go/go. Since 
G O and go are polynomials in (, it follows that H(w, ~) is rational in ( for each fixed 
w E N  1 . 

This shows that for each (w, z)~ V, the restriction of H = G/g to the affine 
subspace (w, z)+ A(z), parallel to A(z) and passing through (w, z), is rational. In 
particular, if to C A(z) is any complex line through 0, then H is rational on the 
translated line p + t o for every point p in a smaller neighborhood V' C V of 0. 

To conclude the proof it now suffices to show that the set of vectors 

~ =  {bk(Z-)" 1 < k < m ,  ze  V2} 

spans all of C". This will give us n linearly independent directions tojCA(z j) for 
various d ~ V2 such that H is rational on the translates of toj to points of V'. The 
theorem on separately rational functions [BM, p. 201] then implies that H = G/g is 
rational. 

To obtain a contradiction we suppose that ~ does not span C". Then there is a 
vector 

1~=(#,, ...,#,),o 
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such that (fl, bk(Z-) ) = 0 for all k e { 1 . . . . .  m} and z e V 2. This means 

2i ~_ ek,~ +fld+k=0,  l<k<--m, zeV2. 
J 

d 

Hence fin + k = 0, 1 --< k-< m, and ~ fljAj = 0. Thus the components of the Levi form 
j = l  

of M a are linearly dependent. This contradicts the assumption that the cone F A has 
nonempty interior. The contradiction shows that ~ spans C" as claimed, and 
Proposition 3.1 is proved. 

4 The degenerate case 

In this section we shall prove Theorem 2.5 in the case when the system (2.9)-(2.10) 
has rank Q0<m'. Let E CM be the set given by Proposition 2.4. Fix a point 
pOt M n  U\E. As in Sect. 3 we may shrink our neighborhoods and assume that 
p~ F(p~ and MnUonE=O.  

We first show that the system (2.11) is compatible (solvable) in a neighborhood 
of(0, 0) in Tu~IU ~ We can find Qo columns from the coefficient matrix ~(q, ~; ~, z-) 
that are linearly independent when (r/, (; ~, ~) E Two#/~ is close to qO. Let ~o be the 
matrix consisting of these Qo columns, together with the column of the right hand 
sides fa/2i of(2.11). Consider any maximal minor A of ~o. At points of T the system 
is compatible, so A =0  on T. Since A is holomorphic on ~ o ,  the uniqueness 
theorem of Sadullaev [Sad] implies that A = 0 on ~/r as well. Since this hold~ for 
each minor of ~o,  the system (2.11) is compatible and of constant rank Qo near qO. 

Let 6=m'-Qo be the defficiency of the system (2.10). We can relabel the 
variables z' so that the syst6m (2.10) has rank 0o in {z'k:6 + 1 < k < m}. Hence the 
solution of (2.10) for points (w, z)~ ~iCr-wM close to 0 is of the form 

6 
! ! Z~=Ck.o(W,Z)+ ~ Ck,j(W,Z)Zj, 6+ 1 < k < m  , (4.1) 

j = l  

where each coefficient %j(w,z) is a real-analytic function on -/Or- that extends 
continuously up to M. From (2.9) we obtain similar expressions for the variables 

6 

W'k=dk, o(W,Z)+ • dk,j(W,Z)Z), l<k<_d'. (4.2) j=l 

These equations define the variety X v on ~/U-wM near 0. 
The crucial point of the proof is 

4.1 Proposition. The functions Ck,j and dk.j are holomorphic in ~tU-nU1 for a 
suitably small neighborhood UI of O, so Xn(~/Cr-n U~) x C"' is a complex analytic 
subvariety of dimension n + 6. 

Proof. We consider again the linear system (2.11). Our first goal is to prove that the 
set of solutions z' of the system is independent of the choice of the point 
(rl,()eQ(w,z), provided that we stay in the same connected component of 
Q(w, z ) n ~  +. 

The arguments that were used in the proof of Proposition 2.4 show that there is 
a point pl ~ M \ E  arbitrary close to 0 such that set of vectors 

~ - -  {ga(r/, (; ~, z-) : 1 < Ifll < s} c C "  (4.3) 
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is of constant rank 01 near the point (p~, p~) on ~W~ T. Since the rank of the system 
(2.11) is Qo<m' and the hermitian form (B~,z) is nondegenerate, we also have 
QI <m'. 

To prove that the solution set of (2.11) is independent of(q, 0 E Q(w, z) we need 
to show that the linear span of the set (r is independent of (q, 0. 

Fix (w, z) ~ ~ -  near pl and consider the map g : Q(w, z )~C m'. Let O](q, ~) be its 
osculating space of orderj  at the point (q, ~), i.e., the linear span of its derivatives of 
order < j  at this point. If we use the coordinates on Q(w, z) given by (2.6), the 
derivatives of g are precisely the functions ga. Hence OJ(q, ~) is the linear span of the 
set if1 (4.3). 

When (w, z) is close to a point p ~ M, the tangent space to Q(w, z) at each point 
(r/, () close to p is close to TCM. From the assumption that dF(p)." TpCM ~Tv~p)c has 
rank at least r o for each p ~ M it follows that g has rank at least ro at (q, () ~ Q(w, z), 
provided that both (w, z) and (q, () are sufficiently close to M, so dimOl(q, ( )>  %. 
We also know that dimOS(q, ()=Q1 <m'. 

We thus have an increasing sequence 01(w,z)CO2(w,z)C...COS(w,z) of 
s = m' - ro + 1 complex subspaces of C "  such that 

dim OS(w, z ) -  dim O l(w, z) ~ QI - ro < m' - r o . 

Hence there is a j  =j(q, ~) such that OJ(~/, () = O j+ ~(q, (). Since dim OJ(q, () is an upper 
semicontinuous function of (q, ~), we can take j independent of (r/, () on an open 
subset of Q(w, z). 

Lemma 7.5 in [For] now implies that the image g(Q(w, z)) is contained in the 
affine subspace g(q, () + O~(r/, () C C m' for some 0/, () e Q(w, z). This, together with the 
fact dim O~(r/,()---ro, shows that Os(q,O is independent of the choice of 
(11, ~) ~ Q(w, z), so the system (2.11) is also independent of (r/, ~). 

Fix a point p2 ~ ~ -  close enough to pX so that the above conclusion holds for 
all (w,z) in a neighborhood U2C~/U - of p2. Locally near p2 we can find an 
antiholomorphic mapping (w, z)--*hl(w, z) ~ Q(w, z)n-#r+ such that hl(p 2) = h(p2). 
Now we solve the system (2.10) with h replaced by h 1. From what was said above 
we conclude that the solution set of the new system for (w, z) near p2 is still given by 
(4.1). However, since the new system is (after conjugation) holomorphic in all 
variables, its solution is holomorphic, so the coefficients Cj.k(W,Z) in (4.1) are 
holomorphic functions near p2. Since these functions are real-analytic on ~r n U, 
they are holomorphic on all of ~r U. 

We subsitute the solution (4.1) into the first Eq. (2.9) to obtain the correspond- 
ing solution w' (4.2). It remains to show that w' is also independent of the choice of 
the reference point h(w, z). To see this we fix (w, z) e ~W- and let z' be any solution of 
(4.1). Consider the function 

W'(q, ~) =f(r/, ~)-- 2i( Bg(q, O, ~0 
for (q, 0 ~ Q(w, z). Fix a point (q, () and use the local coordinates ~9(x) (2.6) on 
Q(w, z). Differentiating W'(x) with respect to x at x = 0  we obtain the Eqs. (2.11) at 
the point (r/, ~; ~, z-). Since z' is a solution of this system, the derivatives of W' all 
equal zero, whence W'(q, ~) is constant on Q(w, z). Thus the solution (4.2) is also 
independent of the choice of h(w,z). If we choose hi as before to be anti- 
holomorphic locally in ~ - ,  we conclude that the solution w' is holomorphic in all 
arguments. This proves Proposition 4.1. 

Remark. Although we can choose h to be antiholomorphic locally on ~W-, there is 
no such global choice of h that would preserve M. Therefore we had to prove that 
different choices of h give the same solution set Xv. 
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4.2 Proposition. The variety X r extends to a complex analytic subvariety in 
U 2 x C ~' for  a suitably small open neighborhood U 2 C U 1 o f  0 in C n. I f  M is the 
quadric (0.3), then X r extends to a rational subvariety o f  C ~ x C n'. 

Proof. We have seen that there is a neighborhood U1 of 0 in C" such that each 
coefficient cj, k and dj, k is a holomorphic function on the wedge ~ - c ~ U 1  and 
extends continuously to the edge M n  U~. Its restriction to Mc~ U 1 is a CR function 
on M n U  1. 

Since M is minimal at 0, we can find a wedge ~/r with edge M such that every 
CR function on Mc~U1 extends holomorphically to ~ +  in a smaller neighbor- 
hood U2 of 0. In particular, we can extend the coefficients c j, k, dj, k to ~r 

We would like to conclude that these functions extend holomorphically to a 
neighborhood of 0 in C". This is so if we can show that they are holomorphic on a 
double wedge with edge M, since we can then use the edge-of-the-wedge theorem 
as in Sect. 3 above. The trouble is that ~/r w~/r - need not be a double wedge, i.e., 
the convex hull of the union of the corresponding cones in R d need not be all ofR d. 

To avoid this difficulty, we associate to ~/r + the opposite wedge 

~/U x- = {(w, z) e U 2 : h(w, z) e ~tU1 + }. 

Since the original mapping F is CR on a set containing Mc~Ua, we may also 
assume that F is holomorphic on ~r We repeat the construction of X v  with ~/r 
resp. ~/U- replaced by the wedges ~ i  + resp. ~/r For points ( w , z ) e M c ~ U ~  the 
solution (4.1)-(4.2) of the system (2.9)-(2.10) does not depend on the choice of the 
wedges. The upshot is that we obtain a holomorphic extension of the functions 
Cj, k, dj, k from M ~ U  2 to the double wedge ~/U1 + u~r so the edge-of-the-wedge 
theorem applies. Thus X e extends as a complex analytic variety to U 2 x C"' for a 
suitably small neighborhood U2 of 0 in C". 

If M is the quadric (0.3) whose cone F a has nonempty interior, then Cramer's 
formula shows that each coefficient in the solution (4.1)-(4.2) is of the form (3.1). 
Since these coefficients are holomorphic near the origin, Proposition 3.2 implies 
that they extend to rational functions on C", so Xv extends to a rational subvariety 
of C" x C"'. Proposition 4.2 is proved. 

We can now prove that FIMo u2 is real-analytic, so it extends holomorphically to 
a neighborhood o f M n  U2. The proof is very similar to the one in [For, pp. 56-57]. 

First we observe that for each point p e M n U ~  we have 

F(p) e X (p) C Q'( F(p)) . 

Here, X(p)C C"' is the fiber of Xv over p, an affine subspace of C"'. The first 
inclusion is the content of Proposition 2.3, and the second is a consequence of the 
Eq. (2.9). 

Recall that M' is strongly pseudoconvex, so we may assume, after a linear 
change of w coordinates, that B~ is strongly positive definite. Let ~b(w', z ')= ~w'~ 

- (B~z',  2'). A calculation shows that for each point (w ~ z ~ ~ M', the restriction of 
q~ to Q'(w~ ~ equals - ( B l ( z ' - z ~ 1 7 6  so it has a unique nondegenerate 
critical point at z '= z ~ 

The same is then true for the restriction of ~b to the affine subspace X(p) of 
Q'(F(p)) for p ~ M n  U2. Recall that the equations of Xp  are given by (4.1)-(4.2). If we 
insert these equations into ~b, we obtain a function O'(z'~ . . . . .  z'~) with a unique 
nondegenerate critical point at z)= F a, +j(w, z). This point is the unique solution of 
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the system of linear equations 

c]0'/0~ ) = O, 1 ~j_<_ 6 

in the variables (Z'l . . . . .  z~,). By Cramer's formula the solution is a rational 
expression in the coefficients of this system, which are themselves polynomial 
expressions of the functions Cj, k, dj, k from (4.1)-(4.2). Therefore the functions 
F d, + j(w, z), 1 --<j _--< 6, are real-analytic functions of (w, z) e M n U 2. The same is then 
true for the remaining components of F since these may be computed from the 
system (4.1)-(4.2). Hence F extends holomorphically to a neighborhood o f M n  U2. 

When M is a quadric, we already know that the coefficients in (4.1)-(4.2) are 
rational functions of (w,z), so it follows that F l ~ v ~  coincides with a rational 
function of the variables (w, z; ~, ~). Since F is holomorphic on the wedge qCro, it 
follows that F is complex rational. We shall omit the proof of this last step since it is 
very similar to the proof of Proposition 7.7 in [For]. 
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