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A SMOOTH HOLOMORPHICALLY CONVEX DISC IN C2 
THAT IS NOT LOCALLY POLYNOMIALLY CONVEX 

FRANC FORSTNERIC 

(Communicated by Clifford J. Earle, Jr.) 

ABSTRACT. We construct a smooth embedded disc in C2 that is totally real 
except at one point p, is holomorphically convex, but fails to be locally poly- 
nomially or even rationally convex at p . 

INTRODUCTION 

A compact set K C Cn is said to be holomorphically convex if K is the 
intersection of Stein open sets (domains of holomorphy) containing K. Equiv- 
alently, K has a basis of Stein neighborhoods in Cn. The holomorphic hull 
Kr is the smallest holomorphically convex compact set containing K. 

Recall that the polynomially convex hull K of K is the set 

Z E Cn: I f(z)I < sup IfI l f holomorphic polynomial1 

The rationally convex hull Kw of K is the set of all points z E Cn with the 
property that every holomorphic polynomial f on Cn that vanishes at z also 
vanishes somewhere on K. 

For every compact set K we have 

KycKm c K. 
It is well known that these hulls are in general different even when K is a rather 
simple set, e.g., a smoothly embedded disc in C2. Hbrmander and Wermer 
[6] gave an example of a smooth embedded disc in C2 that is totally real and 
therefore holomorphically convex, but it bounds an analytic disc and thus is not 
polynomially or even rationally convex. Recently Duval [3] gave an example of 
a smooth embedded Lagrangian disc in C2 that is per force rationally convex 
according to the main result of [3], but it fails to be polynomially convex. A 
Lagrangian disc does not bound any complex varieties with reasonably nice 
boundaries, and the existence of the nontrivial hull is due in this case to a 
certain linking property of analytic discs in the polynomial hull. 
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It seems that the known examples of smooth surfaces M in C2 that are 
holomorphically convex are at least locally polynomially convex at each point, 
i.e., sufficiently small neighborhoods of each point in M are polynomially con- 
vex. This is the case for all surfaces with nondegenerate complex tangents in 
the sense of Bishop [1]: at every elliptic complex tangent there is a nontrivial 
local envelope of holomorphy [1], while totally real points and the hyperbolic 
complex tangents are locally polynomially convex [5]. 

In this article we construct a smooth embedded holomorphically convex disc 
in C2 that fails to be locally polynomially or even rationally convex. 

Choose any smooth function g: [0, oo) -- R with a sequence of simple zeros 
a, > a2 > a3 > ... > 0 converging to 0 (and with no other zeros). For instance, 
g(t) = exp(- 1/t) sin( 1/t) will do. Set 

h(z) = zg(1z12)exp(ijz2), 
and let M be its graph over the unit disc 

M = {(z, h(z)) E C2: IzI < 1}. 

Theorem. The smooth disc M C C2 defined above satisfies 
(a) M is totally real outside the origin, 
(b) M is holomorphically convex, and 
(c) M has no rationally convex neighborhood of 0. 

A theorem of H6rmander and Wermer [6] and Preskenis [7] implies the fol- 
lowing 

Corollary. Every continuous function on M can be approximated uniformly on 
M by functions holomorphic near M. 

However, because of (c), there is no single Stein neighborhood Q of M such 
that every continuous function on M would be the uniform limit of functions 
holomorphic on Q. 

The complex tangent 0 E M is highly degenerate; in fact, h vanishes to 
infinite order at 0. We do not know whether an example of this kind exists 
with a real-analytic function h. 

Proof of the theorem. A simple calculation shows that the graph M of a function 
h: C -- C is totally real at a point (z, h(z)) if and only if hz(z) = ah/&z(z) $ 
0. With h as above we have 

hz(z) = exp(ijz2)((Iz12g' + g) + ijZ12g) 

where g' = dg/dt. Since g only has simple zeros, h2 is nonzero outside the 
origin, so property (a) holds. 

Since h(V/a7jexp(i0)) = 0, M bounds the analytic disc 

D. = {(z , ?): jzj < vra -j 

hence Dj c M for all j. Since the discs Dj shrink to the origin as j oo 
M has no polynomially convex neighborhood of the origin. Moreover, as the 
boundary curve bDj also bounds the disc M~dF = M nI {IzI <? X/j}, Dj is 
contained in the rational hull of Ms. Namely, if A c C2 is a complex 
algebraic curve that avoids bDj and intersects the interior of Dj, then the 
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intersection index A * Dj is positive (two complex varieties always intersect 
positively) and A has the same intersection index with M+aj. This proves (c). 

We now turn to the proof of (b). First we compare the sizes of hz and h,. 
We have 

hZ = dh/Oz = Z2 exp(ijZ12)(g' + ig) 

and 
IhzI2 _ Ihz12 = g2 + 21z2gg'. 

We can find points b > 0 arbitrarily close to 0 such that 

(a) g(v'T)g'(V/) > 0 and 
(b) Ig(t)j < lg(Vb)l for O < t < V7. 

Fix a bo satisfying these properties and choose a b1 > bo such that (a) and 
(b) hold for every b E [bo, bl]. Notice that Ih(z)l = IZi lg(1z12)1 is a radial 
function depending only on I zI. It follows that there is a constant C > 0 such 
that for all points z in the annulus A(bo, b1) = {bo < Izi < bi} we have 

(i) Ih2I2 - Ihz2 > C > 0 and 
(ii) Ih(z)l is a strictly increasing function of j zi. 

Let Pj (j = 0, 1) be the polydisc 

Pj = {(z, w): Izi < by, jIw < Ih(bj)I}. 
Set Ko = Po, KI = (Ko U M) n PI = Ko U (M n PI), and S = Ko U M. Then 
Ko = Ko, S\Ko is a totally real submanifold of C2\Ko, and K1 is a relative 
neighborhood of Ko in S. 

Proposition. The set K1 is holomorphically convex (in fact, even polynomially 
convex). 

If the proposition holds, then a theorem of Hormander and Wermer [6] im- 
plies that the set S = Ko U M is holomorphically convex, so the holomorphic 
hull of M is contained in Ko U M. As b > 0 can be chosen arbitrarily small, 
the polydisc Ko is arbitrarily small, hence M is holomorphically convex as 
claimed. This proves our theorem, provided that the proposition holds. 

Proof of the proposition. The proof is inspired by Duval [2, 3] and Preskenis 
[7]. Let 

A+(') IC{4 eC:4ICI '6, w 4R > 0}. 
For each a E C, Ial < 1, we set 

Qa(z, w) = (z - a)(w - h(a)). 
In order to complete this proof, we need the following 

Lemma. For each b2 > 0 satisfying bo < b2 < b1 there is an co > 0 such 
that for every a E A(b2, b1) andfor every a E A+(eo) the quadric aa C C2, 
defined by the equation 

Qa(z, w) + ahz(a) = 0, 
avoids K1. 
Proof of the lemma. Using the Taylor expansion of h(z) at a we get 

Qa(Z, h(z)) + ahz (a) 

= (z - a) (hz(a)(z - a) + hz(a)(z - a)) + ahz(a) + o(lz - at2) 

= hz(a)(Iz - at2 + a) + (z - a)2hz(a) + o(lz - a12). 
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Since I hz (a) I > Ih, (a) I, this expression is nonvanishing near z = a for every 
a with 3ca > 0. Thus there are a neighborhood V of (a, h(a)) with size 
depending only on a (and of course on h ) and an go > 0 such that for every 
a E A+(go) we have ya, anKi n V = 0. 

As a tends to zero, the quadric , a tends to Qa (z, w) = 0, uniformly 
outside V. Since the quadric Qa(z, w) = 0 intersects K1 only at the point 
(a, h(a)), we can decrease go if necessary to ensure that a, n K1 = 0 when- 
ever a E A+(go). The construction shows that we can choose go > 0 indepen- 
dent of a E A(b2, bl). This proves the lemma. 

Fix a point (zo, wo) E PI \K . We shall find a quadric , a passing through 
(zo, wo) and avoiding K1 . This will imply that K1 is rationally convex and 
therefore holomorphically convex. An additional argument as in [2] shows that 
K1 is polynomially convex, but we shall not need this fact. 

At least one of the lines z = zo, w = wo avoids the polydisc PO. Suppose 
that z = zo does, as the proof in the other case is completely analogous. The 
property (b) (?2) and the definition of h show that there is a unique point zi E 
A(bo, bl) satisfying h(zi) = wo. Choose b2 such that bo < b2 < Izil < bl, 
and choose an go > 0 such that the lemma holds on A(b2, b1). To conclude 
the proof it suffices to find an a close to zI, with b2 < tal < bl, and an 
a E A+ (so) such thatya, a passes through (zo, wo). (Recall that this quadric 
avoids K1 by construction.) 

The last condition means 

(zo - a)(wo - h(a)) + ahz(a) = 0. 

This is satisfied if we set 

a = (zo - a)(h(a) - wo)lhz(a). 

It remains to choose a = zI + 4', with 4 sufficiently small, such that a E A+ (so) . 
Using the Taylor expansion for h(a) at the point z, we get 

a = (zo - z1)(hz(z1)4 + hz(z1)4)/hz(zi) + o(I'I) 
= C(zo - zi)(l + 4hz(zj)/4hz(zi)) + o(14'). 

Since Ihz/hzI < 1, we get for 4 = g/(zo - z1), with g > 0 sufficiently small, 
that a E A+(go) and a = z1 + 4 E A(b2, bl). This concludes the proof of the 
proposition. 
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