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TRANSACTIONS OF THE 
AMERICAN MATHEMATICAL SOCIETY 
Volume 332, Number 2, August 1992 

ADMISSIBLE BOUNDARY VALUES OF BOUNDED 
HOLOMORPHIC FUNCTIONS IN WEDGES 

FRANC FORSTNERIC 

ABSTRACT. If M C CN is a generic Cauchy-Riemann manifold and 7/c CN 

is a wedge domain with edge M, then every bounded holomorphic function 
on 7 has an admissible limit at almost every point of M. Moreover, if a 
holomorphic function f on 7' has a distribution boundary value (bv f) on 
M that is a bounded measurable function, then f is bounded on every finer 
wedge near M, and its admissible limit equals (bv f)(p) at almost every point 
p E M. 

1. INTRODUCTION 

In this article we prove the existence of pointwise boundary values of bounded 
holomorphic functions in wedge domains with generic edges (Theorem 1). We 
also prove a more technical result concerning the boundary values of nonholo- 
morphic functions in a standard wedge with edge RN x R1 C RN x C' (Theorem 
4). Our work is motivated by a result of Rosay [9] concerning the regularity 
at the edge of a holomorphic function in a wedge whose distribution boundary 
value is a continuous function on the edge. Another specific reason for this 
article is that we want to apply the main result, Theorem 1, in a forthcoming 
paper "Mappings of strongly pseudoconvex Cauchy-Riemann manifolds," and 
there does not seem to exist a precise reference, in spite of the fact that the 
question of boundary values of holomorphic functions has been one of the cen- 
tral subjects of complex analysis for some time. Most of the existing results 
concern the boundary behaviour of holomorphic functions on domains with 
smooth boundaries (see [5, 8, 12] and the references therein). Another type of 
domains on which this question has been investigated to some extend are the 
wedges W = RI' + ir c C' with the linear totally real edge RI c Cl, where 
F c R1 is an open cone with vertex at the origin. See Vladimirov [14], Rudin 
[10], Koranyi [6, 7], and Carmichael and Mitrovic [3]. We wish to point out 
that our methods are very similar to those used by Rosay in [9]. 

Let n, / E Z+ . In the space C:n x C' we denote the coordinates by (z, w), 
where z E Cn, W = S + it E Cl, and t = (t1, ..., t,). Let M c Cn+I be a 
smooth real manifold, defined in a neighborhood of the origin by 

(1.1) w = s + iv(z, z, s), 
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584 BOUNDED HOLOMORPHIC FUNCTIONS IN WEDGES 

where (0 is a smooth mapping with values in RI , (0(0) = 0, dp(O) = 0. Then 
M is a generic Cauchy-Riemann (CR) manifold of CR dimension n and of 
real codimension 1. 

If F c R1 is an open, connected, convex cone with vertex 0 E RI, we define 
the corresponding wedge 7 = 7(F) c Cn+l with edge M by 

(1.2) (zr = (Z w) E CEn+l: Im w - ~p(z, zf, Re w) E F} 

={(z, s + iep(Z f, s) + it): Z Cn, s E R, t E}. 
Throughout this paper we shall understand M and 7' as germs of sets at the 
origin in Cn+l. 

Fix a point P = (P1, P2) E M, P1 E Cn , P2 E Cl . A p-curve in 7 is 
a continuous curve A(t) E 7 (O < t < 1) with limt- I A(t) = p. Denote 
by A(t) the projection of A(t) onto the plane Lp, = fz = Pi x C1 in the 
direction of Tp?M, i.e., A(t) - A(t) is parallel to Tp?M for all 0 < t < 1. 
Here, TCM = TpM n iTpM is the maximal complex tangent space of M at 
p, of complex dimension n. 

Let 7p, = Lp, n 2; this is a wedge in Lp, with the totally real generic edge 
M n Lpl. 
Definition. A p-curve A(t) in 21'r is called admissible if there is a to < 1 such 
that 

(a) A(t) E 1, (to < t < 1), and A(t) is nontangential in 2, in the sense 
that 

JI(t) -pI < A * dist(A(t), 0&71p) (to ? t< 1) 
for some A < oo, and 

(b) lim IA(t) - A(t) 12/ dist(A(t), 0&1p) = 0. 
t--+1 

A continuous function f on 7 is said to have the admissible limit B at 
peM if 

(1.3) lim f(A(t)) = B 

for every admissible p-curve A(t) in 7. 

Theorem 1. Let M c Cn+l be a Cauchy-Riemann manifold (1.1) of class W2, 
and let 7 be a wedge (1.2) with edge M. Then every bounded holomorphic 
function f on 7f has an admissible limit f* (p) at almost every point p E M 
with respect to the surface measure on M. 

Of course, the function f* E L? (M) is also the distribution boundary value 
of f on M in this case (see defnnition below). 

Remark 1. This theorem is well known in the case 1 = 1 when M is a hyper- 
surface in Cn+l (see [8 or 12]). Our terminology differs somewhat from the 
standard one in this case. Our notion of an admissible limit coincides with 
Rudin's restricted K-limit (K for Koranyi), see [12, p. 170]. On the other 
hand, Koranyi [7] used the term admissible limit for what is now usually called 
a K-limit (see [12, p. 76]). In this case one requires (1.3) along every p-curve 
A(t) in 7' satisfying the weaker condition 

JI(t) -pI < a * dist(A(t), 02f) (0 < t < 1) 
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BOUNDED HOLOMORPHIC ]FUNCTIONS IN WEDGES 585 

for some a < oo. We do not know whether our Theorem 1 holds with admis- 
sible limits replaced by K-limits. 

Remark 2. One can obtain better results concerning the convergence of f in 
directions parallel to T?M if one imposes suitable conditions on the geometry 
of M. As we shall see in the proof, the crucial property is the existence of 
sufficiently large complex discs in > in directions parallel to T?M on which 
one can apply the Lindelof-Chirka principle. 

Remark 3. Although Fatou-type theorems are most interesting in the case of 
holomorphic functions, they can often be proved also for nonholomorphic func- 
tions whose 0-derivative does not grow too fast near the boundary. In the situ- 
ation of Theorem 1 we suppose that M is of class Wk+2 for some k > 0, and 
f E W1 (>) is a bounded function satisfying the estimates 

(1.4) Iaf(z, w)l = &(dist((z, w), M)-1!2) 
I a f (z, w) I = &(dist((z ,W w) M)-k- ). 

Then the conclusion of Theorem 1 holds for f . Here, as usual, 

&fZOf Of~Z~ dU1 AOf =E . d zj + E - d wy . 

We indicate the proof of Theorem 1 under these weaker hypotheses at the end 
of ?2 below. 

For each p E M and a > 1 we define a nontangential approach region 
p c Y by 

p= {(z, w) E >: I(z, w) -pl < a * dist((z, w), &y)}J. 

Of course pa may be empty if a is too small, depending on the size of the 
cone F determining > . However, as a -* oo, the regions pa increase to the 
entire wedge W. A continuous function f on > has the nontangential limit 
B at p E M if 

lim f(z,w)=B 

for all (sufficiently large) a. 
A simple calculation shows that we can choose a sufficiently small neighbor- 

hood U = U(p, a) of p in Cn+I such that every p-curve A(t) in pa n U is 
admissible. Thus we have 

Corollary 2. Under the hypotheses of Theorem 1, f admits a nontangential limit 
f*(p) at almost every point p E M. 

Theorem 1 still holds if we only assume that the holomorphic function f on 
0 is bounded on every finer wedge i' < > in a neighborhood of M. (Recall 
that a cone F c R1 is finer than F if F' n S is a relatively compact subset of 
F n S, where S is the unit sphere in RI. Similarly, a wedge 7i' = 7t"(F') of 
the form (1.2) is finer than YI = YI(F) if F' is finer than F. We shall denote 
this by 7i' < 71"'.) Our proof will show that the last condition is satisfied if 
f admits a distribution boundary value (bv f) that is a bounded function on 
M. 

Denote by d = d(z, w) the distance from a point (z, w) E O" to the edge 
M. (Clearly d is proportional to I Im w - (o(z, z, Re w)I .) Suppose that M 
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586 BOUNDED HOLOMORPHIC FUNCTIONS IN WEDGES 

is of class Fk+2 for some K E Z+. If f is a holomorphic function on 2f 
satisfying the growth condition 

(1.5) If (z , w) I = &(d(z, w)-k), 

then f admits a distribution boundary value (bv f) on M (Straube [13] and 
Rosay [9]), in the sense that for each test function x E Ok+1(Cfl) supported 
in a small neighborhood of 0 we have 

(1.6) (by f, X) = rlimJxRX x f(z, s + i(p(z, f, s) + it) dv(z, s), 

where dv(z, s) is the Lebesgue measure on C(n x R1 and F' is any cone finer 
than F. The same holds if we replace t E F', t -* 0 by a sequence of mappings 
tj(z, s) E F' that tend to zero in the Wk+2 sense when j -* oo. 

Proposition 3. Suppose that f E 6(2f) satisfies the growth condition (1.5). If 
(bv f) is (the integration against) a bounded measurable function on M, then 
f is bounded on every finer wedge 2/i' < 2 near M, and it has the admissible 
limit (bv f)(p) at almost every point p E M. 

Remark. Another sufficient condition for a holomorphic function f E &(2) 
to be bounded near the edge was found by Zav'yalov and Drozhzhinov [15], 
Khurumov [16], and Pinchuk and Hasanov [17]: If f is bounded on a manifold 
M c 2 of class F2 with boundary M (so dim)M = dim M + 1), then f is 
bounded on every wedge 2/f' < 2 near M. 

When the function f is bounded (k = 0), it follows immediately from the 
Banach-Alaoglu's theorem that bv f is a bounded measurable function on M. 
Namely, given any sequence tj E F', t -* 0 , the family of functions 

(z, s) -* f(z, s + iep(z, , s) + itj) 

is bounded in LOO = (L1 )*, so there is a subsequence converging to f* E LI in 
the weak- * topology. Hence (1.6) holds for this sequence, with bv f replaced 
by f* . This proves that bv f = f * E L?? as distributions on M. 

A natural question is whether Theorem 1 holds in the case when (bv f) 
exists and is an integrable function on M, i.e., (bv f) E L1 (M). It seems that 
a positive answer is known only for the case when M is hypersurface [8]. 

In this context we recall a result of Rosay [9]: If (bv f) is (the integration 
against) a continuous function on M, then f extends continuously from every 
finer wedge 2' < 2 to M, assuming the values (bv f) on M. See also the 
papers by Baouendi and Treves [1, 2]. 

To prove the announced results we use a standard method: we straighten the 
edge M along the totally real submanifolds Mz = { z = const} n M and study 
the boundary behavior of nonholomorphic functions whose & -derivatives sat- 
isfy good growth estimates near the linear edge Cn x R1. This will be explained 
in the following sections. 

It is my pleasure to thank the Max-Planck-Institut fur Mathematik in Bonn 
for its hospitality and support. 

Remark added to the proof. Recently J. P. Rosay studied the boundary values of 
holomorphic functions in wedges in the article On the radial maximal function 
and the Hardy-Littlewood maximal function in wedges. 
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2. BOUNDARY VALUES OF FUNCTIONS WITH BOUNDED a 

We use the same notation as Rosay in [9]. Let N, / E Z+. In the space 
RN X CI we denote the coordinates by (x, w), w s + it. Let Fo be the cone 

Fo={t=(ti,...,tl)ERl: ltjl<ti,2<j<l}, 
and let X0 be the corresponding wedge 

W = RN x (R' + irlo) = {(x, s + it): x E RN s E R1, t E ro}. 

The results announced in ? 1 will follow from 

Theorem 4. Let g(x, w) be a continuously differentiable function on XVO satis- 
fying 

(2.1) Igl = &(t1k), j&g/&Tijj = 6,(t11+8), 1 < < 1, 

for some k E Z+ and e > 0. If the distribution boundary value (bv g) on 
RN x R1 (that exists according to Rosay [9]) is a bounded measurable function, 
then g is bounded on XO near RN x R1, and there is a set F c RN x R1 offull 
measure so that at each point (x, s) E F, the restriction g(x, *) to the wedge 
{x} x (RI + iFO) has the nontangential limit (bv g)(x, s). 

Remark. Contrary to the first appearance this result is completely local since 
the growth condition on &wg is preserved if we multiply g by a smooth cut- 
off function V/ E &OOO (RN x Cl) whose derivatives & yV/09wij vanish to infinite 
order on RNx l (1 <; < 1). 

If g is bounded on X0O, the boundary value (bv g) exists and is in 
L?(RN x RI). (See the remark following Proposition 3 above.) Thus we have 

Corollary 5. If g is a bounded W1 function in XVO satisfying (2.1), then at 
almost every point (x, s) E RN x R1, g(x, *) has a nontangential limit at 
(x, s) within the wedge {x} x (RI + iFO). 

In these results the variable x is merely a parameter, as we have no assump- 
tions and conclusions on the nontangential behavior of g in the x-direction. 

Remark. Our condition (2.1) concerning the growth of &w g near the edge is not 
the best one possible, but it is easy to verify and convenient to use. For functions 
of one complex variable there is a sharper result, due to Nagel and Rudin [12, 
p. 235]: If g is a bounded WI function in a rectangle Q = (a, b) x (0, c) c 

-2 = C such that &g/OUi E LP(Q) for some p > 1, then limy-+ g (x + iy) 
exists for almost all x E (a, b) . 

However, in most applications the condition (2.1) is sufficient. In the proof 
of Theorem 1 we shall only need that &w g is bounded. In the proof of the 
result by Nagel, Rudin, and Wainger [12, p. 238] on nontangential boundary 
values of a function f E HOO(0) along a WI curve in the boundary of 0 
that is everywhere transverse to the complex tangent space TJc?2 one obtains 
a function g on Q as above such that jag/aq = &((Im w)-1/2). 

We will first show how the results of ? 1 follow from Theorem 4. The proof 
of Theorem 4 will be given in ?3 below. 

Let N = 2n, R2, = Cn . Suppose that the manifold M (1.1) is of class 
Wk+2. We extend the mapping (0 to aFk+2 map in a neighborhood of the 
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588 BOUNDED HOLOMORPHIC FUNCTIONS IN WEDGES 

origin in Cn X C1 so that &w fo and its derivatives of order < k + 1 vanish on 
Cn x R1. The extended map 

(D(z, w) = (z, w + i(o(z, w)) = (z, 4(z, w)) 

is a local Fk+2 diffeomorphism near the origin that maps Cn x R1 onto M. 
Let f be a holomorhic function on if satisfying the hypothesis of Proposi- 

tion 3. We must show that the restriction of f to any finer wedge if' < i is 
bounded near M and has the admissible limit (bv f)(p) at almost every point 
p E M. 

Choose a wedge if" satisfying i' < if" < if. The inverse images 
(D- I (>l) c 4D-I (0if") c ?-l (if) are wedge-like domains near the origin, with 
the edge C(n x R1. We can find a finite number of cones F1, F2, ..., Fr, c R 
isomorphic to the cone Fo so that the corresponding wedges 7/ = C X (Rl+ ifr) 

satisfy the following inclusions in a sufficiently small neighborhood of the origin: 
IJ 

D-- ( c) C U 711ji c 
j=1 

Let g = f oI E Fk+2(D-l(2r)) . Then IgI = (d-k) on each wedge 7, 
where d denotes the distance from the wedge. The chain rule gives 

aglaTj = j ff/&45 0 5Wj. 
s=l 

Since If I = 6(d-k) on X, the Cauchy estimates imply I&f/45C I = &(d-k-l) 
on 2V" for 1 < s < 1. We also have I&C/sI0Tjl = &(dk+l) by the construction 
of 1, so it follows that ag/I47j is bounded on 71 for 1 < j < 1. Since 
the distribution boundary value (bv g) (that exists by [9]) is the pull-back of 
(bv f) by 1, we conclude that (bv g) E Loo(Cn x RI). Theorem 4 now implies 
that g is bounded on each s near Cn x Rl, so f is bounded on if' near 
M. 

The second part of Theorem 4 implies that for almost every point po 
- (zo, so) E C'n x R1, the restriction g(zo, *) has the nontangential limit 
(bv g)(zo, so) within the wedge {zo} x (RI + iFs) at (zo, so). Going back 
to f, this says that f(zo, -) has the nontangential limit (bv f) (zo, Co) at 
(zo, So) = ID(zo, So) within the wedge {z = zo} In if'. This holds for every 
7i' < X, so the same is true for if. 

It remains to show that f has the same admissible limit within the entire 
wedge if at po = (zo, CO). This follows by applying the Lindel6f-Chirka 
principle [12, p. 168]. We shall explain briefly the idea. 

Let A(t) E if be an admissible po-curve, and let A(t) be its projection onto 
{z = zo} x C' so that A(t) - A(t) is parallel to T?oM. Denote by R(t) the 
radius of the largest disc in C that is mapped into if by the mapping 

(2.2) C X) C -- (1 - ) * A(t) + C * A(t) E Cn+,. 

Since A is admissible, a simple calculation shows that R(t) -* oo as t - 1. 
The function g(4) = f((l - 4C)(t) + 4A(t)) is bounded holomorphic on 

4' < R(t), with IIgO I I oo I IfII. The Schwarz lemma implies 

If(A(t)) - f(A(t))l = lg(l) - g(O)l < 21IfII10/R(t). 
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BOUNDED HOLOMORPHIC FUNCTIONS IN WEDGES 589 

When t -+ 1, f(A (t)) -+ (bv f)(po) since the curve A (t) approaches po non- 
tangentially within the wedge {z = zo} ln 7. Since the right-hand side goes to 
zero, we have f(A(t)) -+ (bv f)(po) as well. Thus Theorem 1 and Proposition 
3 are proved, provided that Theorem 4 holds. 

We shall now indicate the proof of Theorem 1 under the weaker assumptions 
(1.4) on f . Let g = f o D be as above. By the chain rule, 

l l 

Og/0i7j = af/los *O/ eSIlTj + Zaflazs * azslawj 
s=1 s=1 

= (d-k-1) . (dk+1 ) + 6P(d- 1/2) * (1) = (d- 1/2) 

so g still satisfies Theorem 4. The only other place where we used the fact 
that f was bounded holomorphic was in the Lindelof-Chirka principle. In the 
nonholomorphic case we shall require the following lemma. 

Lemma 6. Denote by A = {II Cl < 1 } the unit disc in C. For each compact subset 
K c A andfor each a E (0, 1) there is a constant C = C(K, a) such that every 
function f E 1 (A) satisfies the estimate 

(2.3) If(ZI) - f(z2)1 ? C(IIfIoo + IIof/lOIloo) IZI - Z21, ZI, Z2 E K. 

Here, lIf loo = sup{jIf(z)I): z E A}. 

Proof. By the Cauchy formula we have 

f_(z) = df - d A d; 

= ??(f)(z) + T(Of/IO)(z), Z E A. 

The operator T maps LOO(A) boundedly into the Holder space W (A) [18, 
p. 34], so T(Of/IO) satisfies the estimate (2.3) with a constant C, < x de- 
pending only on a . Also, since 4D(f) is holomorphic, I ID(f)IkI0 < If IIok, and 
the Cauchy estimates imply 

I4(f)(ZI) - D(f)(z2)1 < C2 * IIfIloo * IZI - Z21, 

where C2 depends on K cc A. Combining the two estimates we obtain (2.3). 
Lemma 6 is proved. 

Consider now the complex line Lt C Cn+l given by (2.2). Fix a t < 1 and let 
e be the distance of A(t) to M. Within Lt there is a disc At c X, centered 
at A (t), of radius comparable to g1/2, so that dist(p, M) > c.i for some c > 0 
and for all p E At. By our assumption on f we have lf I < g-1/2 on At . If 
we rescale At to the unit disc A = { e C: 'ii < 1} so that y(t) corresponds 
to q = 0 and denote by ht(q) the restriction of f to At in the i-coordinate, 
then I IhtIIoo < C < 00, where C is independent of t. Also, IIht IKI < IlflIo. 
The condition that the curve A(t) is admissible implies that the point i(t) E A 
corresponding to A(t) E At tends to zero as t -+ 1, so Lemma 6 implies 
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590 BOUNDED HOLOMORPHIC FUNCTIONS IN WEDGES 

as t -+ 1. This completes the proof of Theorem 1, provided that Theorem 4 
holds. 

3. PROOF OF THEOREM 4 

Multiplying g by a suitable cut-off function x such that 0wX is flat on 
RN X Rl we may assume that the support of g is contained in 0 n {n Ix12 + IW12 
< 1 }. Let (bv g) E LOO (RN x 11l!) be the distribution boundary value of g. 

We treat first the one-variable situation. Let H1+ = {w = s + it E C: t > O}, 
and let h E (H+) have support contained in { wI < 1 }. The formula of 
Stokes gives the following Cauchy's formula with weight: 

7 1 .\l h (z) if 1 - 

h(i)= -dT- 21 d hh/ OC * dC A dC. 

Replacing h(4) by h(s + tC) for a fixed pair s E 11R, t > 0, s2 + t2 < 1, we 
obtain 

(3.1) h(s+ it)= 1 L h(s2+ tz)d_ Oh/04'(s+ t)421 dC A dC. 

Suppose now that h is a WI function in I1+ with bounded support, but it is not 
WI up to the boundary 01r+ = 11R. If we assume that Oh/IO l = ((Im C)-1+8) 
for some e > 0 and that h has a distribution boundary value (bv h) E L?(1(R), 
then the formula (3.1) still holds, provided that we replace h by (bv h) in 
the first integral. This can be seen by applying our formula to the translates 
hr(C) = h(4 + ii/) for q > 0 and letting q -+ 0. The first integral converges 
by definition since 1/(z2 + 1) is a test function (recall that h has bounded 
support!). In the second integral we have 

I(0h/11C)(S + t)I <? C * (tIm C)1+ 
and we integrate over the set 

{C E H+: Is + tCl< 1} C {I E H+: ICI < 2/t}. 

Thus the second term in (3.1) is bounded up to a constant factor by 

te . y-1+8 1 dcdy C = x + iy, 
C1<21t IC2 + ii 

y>O 

that can be estimated from above by 

t8(log(2/t) + 6(1)) = te log l/t + &(te). 

The dominated convergence theorem applies, and we have (3.1). 
As T \ 0, the above estimate shows that the second integral converges to 

zero, uniformly for s E 11R. Thus h is bounded on H1+ and has a nontangential 
limit at s E 11R precisely when the first integral in (3.1) has these properties. 
Replacing s + tr by z we get the integral 

1 f00 _ _ _ 

h(s +it) = - h(T) *dT. 

This is just the Poisson integral P[h] of h in r1+. From the classical theory 
[5] we know that for all h E Loo(R), P[h] is bounded and has nontangential 
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BOUNDED HOLOMORPHIC FUNCTIONS IN WEDGES 591 

limit h(s) at almost every s E 11R; certainly this is true at every Lebesgue point 
of h. This proves Theorem 4 in the case N= O, 1 = 1. 

Recall that a point xo E Rim is a Lebesgue point of a locally integrable func- 
tion h E LI c(R1m) if 

r\O IV(B Xo, r)) (xo, r) 

where v is the Lebesgue measure on Rlm and B(xo, r) = {lx - xol < r}. 
The classical Lebesgue's differentiation theorem asserts that the set of Lebesgue 
points of every h E LI c(R1m) has full measure [4, p. 93]. 

We now proceed to the proof of Theorem 4 in the general situation. For each 
vector t E 1O \ {O} and for each point (x, s) E R <N X Rl we have the complex 
half-plane 

t(X, S) = {(X, S + tC) E N Xcl: Im >O}c0 
with boundary lt(x, s) c RN X 1l. 

A priori we do not know that the restriction of g to JI_+ (x, s) has the 
distribution boundary value on lt(x, s) equal to (bv g), restricted to lt(x, s) . 
To avoid this difficulty we use regularization as in [11]. Choose a function 
XE O(RNxR1l), X>O ,with fXdxds= 1,andlet X5= X(A1)1N+1 for 
3 > 0. Let g,3 = g * X,3 be the convolution of g with X3 in the variables 
(x, s): 

g,3(x, s + it) = Jg(x', s' + it)X,3(x - x', s - s') dx' ds'. 

Clearly g,3 satisfies the same growth conditions as g, uniformly with respect 
to 3. Also, g3 is continuous up to the edge RN X Rl and equals (bv g) * Xa 
there. As 3 goes to 0, (bv g) * X3 (x, s) converges boundedly to (bv g) (x, s) 
at every Lebesgue point (x, s) of (bv g). 

Let E c RN X Rl denote the set of Lebesgue points of (bv g). Fubini's 
theorem implies that for each t E 1O \ {0} there is a set Et c E of full 
Lebesgue measure such that for every (x, s) E Et, the intersection E n lt(x, s) 
is a set of full one-dimensional Lebesgue measure in lt(x, s). For any such 
point (x, s) E Et we apply the formula (3.1) to the function g3, restricted to 
Ht+(X, s): 

g(x, s+it) = - g( , dT 

Jf E +1t (x, s + td ) * C2 + *d A d;. 

Now let 3 \ 0. By the dominated convergence the second integral converges 
to the same expression with g3 replace by g. In the first integral, g3 -+ bv g 
boundedly almost everywhere on the line lt(x, s) (i.e., at each Lebesgue point 
of bv g), so the dominated convergence applies again. Thus 

1 f00 1 
g(x, s + it) = - ]_ (bv g)(x, s + t)2 + 1 d 

7-'ztJI a (X, s + tc) 42 + 1 dcA dC. 

j=1 H+ WIT 
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Since 1tjI < tI on Fo, we can estimate the second integral by C. tl * (log 1/tI + 
&(1)) as in the one-variable case (C only depends on g). Since bv g E LX, 
this formula shows that g is bounded on HtI(x, s) and the bound is indepen- 
dent of (t, x, s), provided that lt(x, s) n E has full measure in lt(x, s) . The 
union of the corresponding half-planes Ht+(x, s) is everywhere dense in 7/6, 
so g is bounded on X0 . This proves the first assertion of Theorem 4. 

To prove the second assertion concerning the nontangential boundary values 
we choose a countable dense set of vectors {tj}711 'in Fo \ {O} and let Etj =Ej 
be the corresponding sets of full measure in E. For each j we let Fj be the 
set of all points (x, s) E Ej with the property that (x, s) is a Lebesgue point 
of the restriction of (bv g) to itj (x, s). This also is a set of full measure in 
R>N X Rl. Finally let F = 

nlj Fj. Theorem 4 follows from 

Lemma 7. At each point (x, s) E F, the function g(x, .) has the nontangential 
limit (bv g)(x, s) within the wedge {x} x (R1 + iFo) c {x} x Cl. 
Proof. Fix (x, s) E F. By the construction of F and the corresponding one- 
variable result we know that 

(3.2) lim g(x, s + iatj) = (bv g)(x, s) 
e\0 

for all j E Z+. Our goal is to show that for every conical approach region 
A c (R1 + iFo) with vertex at (x, s) we have 

lim g(x, w) = (bv g)(x, s). 
A3w-*s 

Without loss of generality we may take (x, s) to be the origin in R N X C and 
(bv g)(O, 0) = 0. For every sequence 'j > 0, ej \ 0, we consider the family 
of functions hj(C) = g(O, gjC), c E A. The sequence is uniformly bounded 
on A. Moreover, the growth condition lwgl = &(tl+e) shows that on every 
compact subset K c A we have 

&hj/04k(4) = eOjg/Owk(0, gj4) = gj&((ejIm c) 1+6) 
= &(8y) >- 0 as j -- xc. 

Lemma 6 implies that {hj} is uniformly Holder continuous on every K cc 
A, so there is a subsequence converging to a continuous function h E F(A). 
The above estimate of l1hjl implies ah = 0 (this is verified immediately in 
the sense of distributions), so the limit function h is holomorphic in A. 

Now (3.2) shows that h equals (bv g)(0, 0) = 0 on each ray {iiAtj: A > 0}. 
Since the union of these rays is dense in the cone iF0, it follows by continuity 
that h _ 0 on the totally real submanifold iro n A of A c Cl of maximal 
dimension 1. Since h is holomorphic, we conclude that h _ 0 in A. This 
holds for every sequence {ej} converging to zero, so the usual argument by 
contradiction concludes the proof of Lemma 7. 
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