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Introduction 

In this paper we prove several results on approximation of biholomorphic 
mappings between domains in C" (n _>-- 2) by holomorphic automorphisms of C". 

Recall that the group of holomorphic automorphisms of C", denoted Aut C", 
consists of those holomorphic mappings ~ : C  "--, C" that have a holomorphic 
inverse 4 - 1  : C" --* C". With the topology of uniform convergence on compact sets, 
Aut C" is a topological group. While the group Aut C 1 of automorphisms of the 
complex plane consists only of the linear mappings az + b (a, b e C, a 4= 0), the 
group Aut C" is very large and complicated when n > 2. Let us choose a linear 
coordinate system on C" and write the coordinates as z =  (z ' ,w),  where 
Z'~-(Z1, . . . ,Zn_I)C--C n - 1  and w = z ,~  C. Then AutC  n contains mappings of the 
form 

z = (z', w)~--~(z', ehCZ')w + f ( z ' ) )  , 

wherefand h are holomorphic functions on C n- 1 In [4] the mappings of this type 
are called overshears,  and those with h -  0 are called shears as in [17]. The 
Jacobian determinant of every shear is identically equal to one, i.e., the shears are 
volume preserving. We emphasize that we allow shears (and overshears) in any 
coordinate system on C" that is obtained from the initial coordinates system by 
a linear transformation. 

In [4] Anders6n and Lempert proved that every biholomorphic mapping 
q': f2--, C" from a convex (or starshaped) domain f2 ~ C" (n > 2) onto a Runge 
domain r can be approximated by finite compositions of overshears, uniformly 
on compact sets in O. If, in addition, �9 is volume preserving, then it can be 
approximated by finite compositions of shears. In particular, every automorphism 
of C" can be approximated by finite compositions of overshears, uniformly on 

- - - - - - _ _ _ . . _ _ .  
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compact sets in C", and the volume preserving automorphisms can be approxim- 
ated by finite compositions of shears. On the other hand, the volume preserving 
automorphism 

(zl, z2)~--~(zl e . . . .  , z 2 e -~'=2) 

is not a finite composition of shears (Anders6n [3]) nor overshears [4]. Thus, for 
n > 2, the subgroup of Aut C" generated by overshears is dense in Aut C" but is not 
equal to Aut C". Similarly, the group generated by shears is dense in but not equal 
to the group Autl C" of volume preserving automorphisms of C". 

In Sect. 1 we state a more general theorem on approximation of parametrized 
families of biholomorphic maps by automorphisms (Theorem 1.1). From the con- 
verse part of Theorem 1.1 it is evident that our condition is close to being necessary 
and sufficient. This result was essentially proved by Anders~n and Lempert in [4], 
but it was not stated in this generality. We do not want to claim any credit for this 
part. But in the sketch of proof, given for the sake of completeness, we change the 
presentation slightly by replacing the dynamics in AutC" with dynamics in C". 

Our new results are explained in Sects. 2 6. In Sect. 2 we begin with a result on 
approximation by holomorphic automorphisms in a neighborhood of a poly- 
nomially convex set K c C" (Theorem 2.1). We apply this to approximate indepen- 
dent motions of a collection of convex (or starshaped) bodies in C" by a single 
automorphism of C" (Theorem 2.2). The only obstruction to such approximation is 
the nontrivial polynomial hull of the union of the given bodies. For instance, 
a collection of three disjoint balls in C" can be approximately moved to any 
position in C" by an automorphism of C" (Corollary 2.3). The same is true for three 
disjoint polydiscs in C 2 with sides parallel to the axes. This answers a question 
raised by Rosay and Rudin in [17]. 

In Sect. 3 we consider the problem of approximately mapping a given embed- 
ded real-analytic submanifold Mo c C" onto another such submanifold M1 c C", 
diffeomorphic to Mo, by automorphisms of C". Precisely speaking, two such real- 
analytic submanifolds are said to be C"-equivalent (Definition 2) if there exists 
a biholomorphic map (b : f2 ---, C", defined in a neighborhood • of Mo and taking 
Mo onto M1, such that q~ is the limit of a sequence of holomorphic automorphisms. 
We introduce a similar concept for real-analytic embeddings into C". The notion of 
C"-equivalence seems a natural analogue of the concept of ambient equivalence in 
real differential topology. Even though the definition of C"-equivalence makes 
sense also for smooth submanifolds of C", it does not seem to be natural there. We 
are aware that a similar approach is possible in the case of smooth manifolds, and 
this is explained (in the simple setting of smooth arcs in C") in the forthcoming 
paper [16]. It seems likely that the same methods can be applied to more general 
smooth submanifolds. In this article we purposely deal only with real-analytic 
manifolds, 

The main result of Sect. 3 (Theorem 3.1) is that, given a real-analytic submani- 
fold M0 c C" that is totally real and polynomially convex in C", Mo is C"- 
equivalent to another real-analytic submanifold M1 c C" if and only if Mo and 
M, are isotopic in C" through a family of totally real, polynomially convex 
submanifolds M, c C" (t ~ [0, 1]). 

In Sects. 4 and 5 we apply Theorem 3.1 to obtain C"-equivalence for several 
classes of embedded real-analytic manifolds: totally real polynomially convex discs, 
arcs, embedded analytic discs, closed polynomially convex curves, and totally real, 
polynomially convex surfaces in C" for n > 3. 
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In Sect. 5 we also prove that the set of all smooth, totally real, polynomially 
convex embeddings of a compact, real, two-dimensional surface into C" for n _>_ 3 is 
open and dense in the set of all embeddings, and every two such embeddings are 
isotopic through totally real, polynomially convex embeddings (Theorem 5.2). The 
same is true for closed curves in C" for n >_- 2. Similar result holds for embeddings 
of real k-dimensional manifolds into C ~ provided that n is sufficiently large with 
respect to k, but we postpone this to a future publication in order not to make the 
paper too long. 

In Sect. 6 we give a necessary and sufficient condition for the approximation of 
a given biholomorphic mapping ~ :  f2 ---, C ~ by automorphisms ofC" in a neighbor- 
hood of a real-analytic, totally real, polynomially convex submanifold M c f2. The 
answer is in terms of certain holonomy group of bomotopy classes of automor- 
phisms of the complex normal bundle to M in C ~. While the criterium seems 
difficult to check in general, we have a very explicit result for embedded real- 
analytic curves and surfaces M c C ~ (n >- 2 resp. n >_- 3): If M is totally real and 
polynomially convex, then a biholomorphic map q~ can be approximated by 
automorphisms in some neighborhood of M if and only if 4~(M) is also poly- 
nomially convex and the Jacobian determinant J (4~) : M --* C \  {0} is homotopic to 
a constant in C \  {0} (Corollary 6.3). 

In Sect. 7 we collect some examples and open problems. 

1 The Anders~n-Lempert theorem 

In [4] the following theorem is essentialy proved, but not stated in this generality. 
By approximation on f2 c C" we shall always mean uniform approximation on 
compact subsets in Q. 

1.1. Theorem. Let f2 be an open set in C" (n >= 2). For every t ~ [0, 13, let ebb be 
a biholomorphic map from s into C", of  class ~2 in (t, z)~ [0, 13 x ~2. Assume that 
each domain Q~ -- 4~t(f2) is Runge in C ~. 

If q~o can be approximated on f2 by holomorphic automorphisms of  C n, then 
fi~r every t ~ [0, 13 the map ~t can be approximated on f2 by holomorphic automor- 
phisms of  C". Moreover, if  every ~t is volume preserving (i.e., its Jacobian determinant 
equals one), and if q~o can be approximated on ~2 by volume preserving automorphisms 
of C ~, then every ~t can be approximated on ~ by volume preserving automorphisms 
o fC ~. 

Conversely, if  ~2 is a pseudoconvex Runge domain in C" and ~ 1 : ~  ~ C ~ is 
a biholomorphic map that can be approximated on ~ by automorphisms o fC ~, then for 
every compact set K c s there is an open set D, K c D c ~, and a family of  
biholomorphic maps ~t: D ~ C ~, of  class ~ in (t, z) ~ [0, 13 • D, such that ~o is the 
identity map, ~1 is the given map, every ~ can be approximated on D by automor- 
phisms of  C", and cI)~(D) is Runge in C" for each t ~ [0, 1]. 

A remark, at the end of this section, gives a more general statement, close to stating 
necessary and sufficient conditions. 

Recall that a domain ~ c C ~ (not necessarily pseudoconvex) is said to 
be Runge in C ~ if every holomorphic function on s can be approximated by 
entire functions, uniformly on compact sets in ~2. Every starshaped domain is 
Runge [103. The envelope of holomorphy of a Runge domain is a pseudoconvex 
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Runge domain in C", and therefore the pseudoconvexity hypothesis in the converse 
part of Theorem t-I is no loss of generality. 

The original result of Anders6n and Lempert [4] is that a biholomorphic 
mapping q~ : t2 ~ f2' from a starshaped domain O c C" can be approximated by 
automorphisms if and only if O' = q,(f2) is Runge. We may assume that q~(0) = 0, 
In this case the one-parameter family to which one applies Theorem 1.1 is 
z e Y~ ~ tb(tz)/t, t ~ [0, 1], that connects �9 to the linear map Dtb(0). 

We obtain a slightly more general version of Theorem 1.1 if we allow the base 
domain O, to vary smoothly with t ~ [0, 1]. In that situation we obtain, under 
the same hypothesis as above, the approximation of the biholomorphic map 
~t : ~2, ~ C" by automorphisms of C", uniformly on compact subsets of (") ~to ,  1] ~'~p 

It will be useful to introduce the notion of isotopy of biholomorphic mappings: 

Definition 1. Let (2 be a domain in C". A family of biholomorphic mappings 
~b~ :g2 ~ C", depending smoothly (of class at least cg2) on (t, z) e [0, 1] x f2, is called 
an isotopy ofbiholomorphic mappings from ~2. The range q~t(f2) c C" depends on t. 

Before proceeding to the proof of Theorem 1.1 we collect some simple but useful 
observations about biholomorphic mappings that can be approximated by global 
automorphisms. 

Recall that a compact set K c C" is polynomially convex if for every point 
z o ~ C " \ K  there is a holomorphic polynomial P(z)  satisfying IP(zo)l > 
sup=~K IP(z)l. We denote by K the polynomially convex hull of K, that is, the 
smallest polynomially convex set in C" containing K. 

1.2. Proposition. Suppose that a biholomorphic map q~: 0 ~ C" from a domain 
~2 c C" onto f2' = ~(Q) c C" can be approximated by automorphisms of  C". Then 
(a) The inverse qb -1 :f2' ~ f2 can be approximated by automorphisms of  C" on 0'.  
(b) I f  one of  the compact sets K c c O, ~(K)  c c ~2' is polynomially convex then the 
other one is polynomially convex as well. 
(c) I f  one of  the domains Q, f2' is Runge in C" then the other one is also. 
(d) For each 7 s ~ Aut C" there is an isotopy of  automorphisms 7 ~, ~ Aut C" (t e [0, 1]) 
such that 7~t = 7 t and ~o is the identity. 

Proof  (a) If q~ = l imi~ ~ (bj on O, (bj ~ Aut C n, then q~- 1 = limj++ (b 71 on O'. 
(b) Suppose ~ ( K ) =  K ' ~  c t2' is polynomially convex. Let a ~ ~2\K. Choose 
a polynomial P(w) satisfying IP(~(a))l > supw IPI = supK]P o q']. If we approxim- 
ate �9 sufficiently well by 7/~ AutC"  on K w {a}, then [Po ~(a)[ > supKIpo T[. 
Since P ~ 7 j is an entire function, we conclude that a r K. Thus K c~ Q = K which 
impl ies / (  = K. If K is polynomially convex, we apply the same argument to q~- ~ to 
prove that K'  is polynomially convex. 
(c) Let O' be Runge in C". Fix a compact set K ~ c f2 and a holomorphic function 
f on t2. Choose an open set R c c O' containing ~b(K) and approximate the 
holomorphic function g = f o ~ - ~  by a polynomial P, uniformly on /~. Also, 
approximate ~b by ~ ~ Aut C", uniformly on K, such that 7~(K) c R. Then P ~ j is 
an entire function that approximates f on K. Thus O is Runge in C". To get the 
converse we apply the same argument to ,/~-t 
(d) Let ~ A u t C " .  The isotopy 7 ~ + ( t -  1)7/(0) (t ~ [0, t ] )  connects 7/ to the 
automorphism 7%(z)= 7~(z) - ~g(0) satisfying ~go(0)=0. Next, the isotopy 
Or(z) = ~ 7%(tz) (0 < t ~ 1) connects 7% to the linear automorphism 
D7%(O)eGL(n ,C) ,  the derivative of 7% at the origin. Finally, every linear 
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automorphism can be connected by an isotopy to the identity since GL(n, C) 
is connected. If we combine these three isotopies into a single isotopy and 
reparametrize the interval [-0, 1] suitably, we obtain a smooth isotopy T t e  Aut C" 
connecting T to the identity. 

Sketch o f  proo f  o f  Theorem 1.1 We first prove the converse part of Theorem 1.1. 
Suppose that ~b:f2 ~ C" can be approximated by automorphisms of C" on f2. 
Choose a compact set K = f2. We can find a Runge domain D satisfying K ~ D ~ ~ f2. 
If we approximate r sufficiently close by T e Aut C", uniformly on a neighborhood 
of/),  then the family t r  + (1 - t) T:f2  ~ C" (t e [0, 1]) is an isotopy of biholomor- 
phic maps connecting TIp to r Further, the automorphism T can be connected 
to the identity by an isotopy of automorphisms (Proposition 1.2(d)). Combining 
these two isotopies we obtain an isotopy r :D --* C" connecting r to the identity. 
By construction, every ~bt can be approximated by automorphisms on D. Since D is 
Runge in C", it follows from Proposition 1.2(c) that every image domain 4~,(D) is 
Runge in C" as well. This establishes the converse part of Theorem 1.1. 

As we said before, we will only sketch the proof of main part and refer to [3, 4]. 
However, we prefer to change slightly the presentation. Roughly speaking, in [3] 
and [4] the dynamics takes place in the group Aut C", while we prefer to 'see' the 
dynamics in C". 

Let X be a holomorphic vector field on C", X(z)  = (X l ( z )  . . . . .  X,(z)) ,  where 
Xj(z)  are entire holomorphic functions. The vector field X is said to be complete if 
and only if for every z e C", the ordinary differential equation 

dR 
dt X(R(t)), R(0) z (.) 

can be integrated for all times t from - oo to + oo. If the field X is complete then 
for every z e C" and t E R one sets Ft(z) = R(t), where R solves (*) with the initial 
condition R(0) = z. Clearly Ft is an automorphism of C" for every t e R. In fact, the 
family {Ft: t e R} is a one-parameter subgroup of Aut C" since the field X is time 
independent. 

Anders6n [3] (in the special case of divergence zero) and Anders6n-Lempert [4] 
proved the following fundamental lemma: 

1.3. Lemma. Every holomorphic vector field on C" can be approximated, uniformly 
on compact sets, by f inite sums of  complete holomorphic vector fields. In fact ,  every 
polynomial vector field (resp. with divergence zero) is a f inite sum of  complete ones 
(resp. with divergence zero). 

Proof. We only give indications to help the reader to get the proof out of [3] 
and [-4] (where complete vector fields are not explicitly mentioned). 

If p is a polynomial in one variable and a = (al . . . . .  a ,_ 1, 1), the vector field 

Xa.p(z) = (p(a " z), 0 . . . . .  O, - al p(a " z) ) 

on C" is complete. It gives rise to the flow (in each level set of a ' z  = ~ = 1  aJzi) 

z = (zl . . . . .  z , )  ~ z + t X , , , ( z ) .  
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This corresponds to Lemma 5.5 in [3]. Then as in Lemma 5.6 in [3] this yields the 
desired result for vector fields V(z )=(Vl ( z )  . . . . .  V,(z)) with divergence zero 
( ~  8 Vi/Oz ~ = 0). (Corresponding to Lemmas 5.3 and 5.4 in [3] notice that a vector 
field of the type (0 . . . . .  0, ~(z2 . . . . .  z,_ t)) corresponds to the flow z -~ (zi . . . . .  z,_ 1, 
,Zn + t ~ ( z 2 ,  . . . ,  Zn-1)). The case of general vector field is reduced to the case of 
divergence zero vector field as in [4, Proposit ion 3.8]. When reading Proposit ion 
3.8 in [4] notice that, if p is a polynomial in one variable then the vector field 
(0 . . . . .  O, p(z i )z , )  has divergence p(zl) and is complete, it corresponds to the flow 
(zl . . . . .  z,) ~ (zi . . . . .  z,_ l ,  e 'm')z,).  

By arguments standard in control theory one gets immediately 

1.4. Lemma. Let X be a holomorphic vector field (resp. divergence zero vector field) 
defined on all of  C". Let Q be an open subset of  C" and let to > O. Assume that the 
differential equation dR/dt = X (R (t ) ) can be integrated for 0 <- t <- to with arbitrary 
initial condition R(O) = z E •. Set Ft (z) = R(t) as above. Then Ft (0 <-_ t <-_ to) is 
a biholomorphic map from t] into C" that can be approximated, uniformly on compact 
sets in [2, by automorphisms of  C" (resp. by automorphisms with Jacobian one). 

Proof o f  Lemma 1.4 By Lemma 1.3 it suffices to consider the case when X is a finite 
sum of complete vector fields X = X1 + ... + Xk. Then instead of integrating the 
vector field X from time 0 to time t one splits the time between the vector fields Xj. 
More precisely, choose a large integer N, flow along X1 for time t /Nk, then flow 
along XE for time rink,  etc. After flowing along Xk in k-th step we return again to 
X1, continue with XE, etc., until we finally stop after Nk steps. This is a 'concatena- 
tion'  of vector fields X1, ... ,Xk; clearly it is an automorphism of C". As N ~ oo, 
the process converges to the flow Ft(z) of X, uniformly on compact subsets of/2. 

We remark that Lemma 1.4 is a version of Proposit ion 2.1 in [6], with the 
additional uniformity with respect to initial data in compact sets. The details, to 
check uniformity, are left to the reader. 

Theorem 1.1 is then proved in the following way. At each time to e [0, 1] 
consider the vector field Xto on the domain Cbto(~) = ~to obtained by differentiating 
4, with respect to t at t = to: 

d l X,o(W) = ~ ~,(~,~ (w))l,=,o, w E ~,o- 

Let to e [0, 1]. The map Fro = q~ro o tbo 1 is obtained by integrating the time depend- 
ent vector field Xt from time 0 to to. It can be approximated on compact sets in 
t2 by integrating the time independent vector field Xkto/u from time kto/N to 
(k + 1)to/N (0 < k <.N - 1, N large). Each of those vector fields can be approxim- 
ated by holomorphic vector fields on C" since/2, is Runge for every t. Finally one 
applies Lemma 1.4 and the proof is complete. 

Remark. As seen from the proof, we can replace the hypothesis in Theorem 1.1 that 
each ~, is Runge by the hypothesis: 

For each to ~ [0, 1], the vector field 

d 
X,o(W) = ~ ~, ('~,~(w))l~=,o, w ~ a ,o ,  

can be approximated, uniformly on compact sets in t2to, by holomorphic vector fields 
defined on C". 
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Also, even if we do not assume that q~o is approximable by global biholomor- 
phisms, we get that at any rate the composition q~, o q~o i is approximable. 

2 Approximation near polynomiaily convex sets 

In this section we apply Theorem 1.1 to obtain results on approximation of 
biholomorphic maps in a neighborhood of polynomially convex sets. The import- 
ant point is that every polynomially convex set in C" has a basis of Stein 
neighborhoods that are Runge in C" [14]. This observation allows us to prove 

2.1. Theorem. Let f2 be an open subset of  C" and let 4~t: f2 ~ C", t e [0, 1], be an 
isotopy of  biholomorphic maps such that q)o is the identity map. Then for every 
compact polynomially convex subset K ~ (2 the followin 9 are equivalent: 
(a) The set K~ = ebb(K) is polynomially convex for every t e [0, !]. 
(b) There is a neiyhborhood U of  K such that for every t ~ [0, 1], q)t can be 
approximated by automorphisms of  C ", uniformly on U. 

The implication ( b ) ~  (a) follows from Proposition 1.2(b) in Sect. 1. The main 
implication ( a ) ~  (b) follows immediately from Theorem 1.1 and the following 

2.2. Lemma. Let f2 be an open subset of  C" and 49t: f2 ~ C" an isotopy ofbiholomor- 
phic maps. I l K  ~ f2 is a compact polynomially convex set such that for each t ~ [0, l ]  
the set Kt = q~t(K) is polynomially convex, then there exists a basis of  Stein neighbor- 
hoods U of K such that the domain ~t(U) is Runge in C" for each t ~ [0, 1]. 

Proof of  the lemma. For  every polynomially convex set K c C" there exists 
a smooth plurisubharmonic exhaustion function p > 0 on C" that is strongly 
plurisubharmonic on C " \ K  and vanishes precisely on K. (This is a small extension 
of Theorem 2.6.11 in [14, p. 48].) Each sublevel set U~ = {z e C": p(z) < e} is a Stein 
domain that is Runge in C" (combine Theorem 2.7.3 and Lemma 4.3.1 in [14]). 

Assuming that Kt is polynomially convex we claim that for every sufficiently 
small e > 0 the domain ,~,(U~) is Runge in C". 

The function Pt = P ~ 471  ~ 0 is plurisubharmonic on O~ = q~,(f2) and it van- 
ishes precisely on K ,  Fix a t e [0, I]  and choose on open relatively compact 
neighborhood V ~ = f2t of K,. Since Kt is polynomially convex, we can find 
a smooth plurisubharmonic exhaustion function ~ > 0 on C" that is positive and 
strongly plurisubharmonic on C " \  V and vanishes on a smaller neighborhood 
I/1 c ~ V of Kt (see [14, Theorem 2.6.1]). Let Z be a smooth cut-off function that 
equals one on V and is compactly supported in f2t. If we choose 6 > 0 sufficiently 
small then 

~,(z) = ~(z) + ~z(z) pt(z) , z ~ C " ,  

is a strongly plurisubharmonic exhaustion function on C" that vanishes precisely 
on Kt and equals ~pt(z) for z ~ V1. Every sublevel set {z ~ C" :zt(z) < ~} is Runge 
in C n. 

If to > 0 is sufficiently small (depending on t) then ~t(U~) c I/1 and 

�9 ,(u~) = {ze  Vl:p,(z) < ~} = {z ~ c " : ~ , ( z )  < ~ } ,  ~ < 80 ,  
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whence ~,(U~) is Runge in C". It follows from the construction that the same eo is 
good for an open set of t ~ [0, 1]. By compactness of [0, 1] we can choose eo to be 
independent of t ~ [0, 1], and the lemma is proved. 

We now apply Theorem 2.1 to prove the following result that generalizes 
Theorem 8.1 of Rosay and Rudin [17]. We say that a set K ~ C" is starshaped if 
there is a point a ~ K such that a + t(z - a) ~ K for every z ~ K and t ~ [0, 1]. 

2.3. Theorem. Let KI ,  K2, ... ,K~ be pairwise disjoint, compact, starshaped subsets 
of  C" (n > 2), and let qb~ e Aut C" ( j  = 1 . . . . .  s) be automorphisms of C" such that the 
sets K ) =  q~J(K~) are also pairwise disjoint. Assume that the unions K = ~ = 1  Kj 
and K'  U~-  I K~ are poIynomially convex. Then there exist neighborhoods U j of  
Kj (1 < j < s) and a sequence of  automorphisms 7J~ ~ Aut C", 1 ~ Z+,  such that 

lim 7tl(z)=CbJ(z), z e Uj , 1 <=j < s , 

the convergence being uniform on every Uj. 

Note that we are approximating a set of independent motions of the sets Kj by 
a single automorphism of C", provided that both unions are pairwise disjoint and 
polynomially convex. This answers a question raised by Rosay and Rudin in [17]. 

The union of two disjoint closed convex sets in C" is clearly polynomially 
convex hence Theorem 2.3 applies. The union of three convex sets is in general not 
polynomially convex even in C 2, see Kallin [9, 21] and Rosay [15]. However, the 
union of three disjoint closed balls in C" is always polynomially convex (Kallin 
[9, 21]), and the same is true for three disjoint closed polydiscs in C z with the sides 
parallel to the coordinate axes (Rosay [15]). We thus have 

2.4. Corollary. Let B1, Bz, B3 and B'I , B'2, B' 3 be two sets of  pairwise disjoint closed 
balls in C". Then there exists a sequence o f  automorphisms 7st ~ Aut C", converging 
uniformly on a neighborhood of  each ball Bj to a linear map that takes Bj onto Bj. The 
same is true for sets of  three disjoint polydiscs in C 2, with sides parallel to the 
coordinate axes. 

Proof o f  Theorem 2.3 In view of Theorem 2.1 it suffices to find for each 
j 6 {1, 2 . . . . .  s} an isotopy of biholomorphic maps cb~, t ~ [0, 1], defined on a neigh- 
borhod Uj of K~ in C", satisfying 

(i) q~ is the identity, 
(ii) q~ = C J, and 

(iii) the sets Kj, t =  ~{(Kj)  (1 < j < s )  are pairwise disjoint and their union 
U~= 1 Kj, t is polynomially convex for each t ~ [0, I]. 

Let U~ be a bounded neighborhood of K~, starshaped with respect to a j, such 
that t,,Tj are pairwise disjoint fo r j  = l . . . . .  s, and also their images cbJ(Uj) = U'j are 
pairwise disjoint. 

Every automorphism r AutC"  can be smoothly deformed to the identity 
through an isotopy of automorphisms of C" (Proposition 1.2). Choose such an 
isotopy 7J~, t ~ [0, 1], with 7J~ = Id. Modifying each ~P{.by a family of translations 
depending on t we may assume that the points bj., = 7S~(ai) ~ C" for j  = 1, 2, ...,  s 
are distinct for every t ~ [0, 1]. If 3 > 0 is sufficiently small then the union of 
the closed balls U~=I B"(bj.,, 6) is polynomially convex for every t ~ [0, 1]. Fix 
such a 6. 
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Choose r />  0 such that ~ maps the ball B'(aj, r/) into the ball B"(bj,~, 5) for 
every t ~ [0, 1]. Let R > 0 be sufficiently large such that for every 1 < j < s the set 
Uj is contained in the ball B'(aj, R). 

For each t > 0 and j = l . . . . .  s we set O~(z) = aj + t ( z -  aj). The required 
isotopy ~ is obtained by first squeezing Uj into B'(aj, rl) using contractions O{, 
then following the isotopy ~{ restricted to B"(aj, r]), and finally expanding the 
image of Uj onto Uj. 

To give explicit formulas we determine c > 0 by 1 -  c/3 = ~I/R, hence 
OJ(Uj) c B'(a~, ~1), and we define the isotopy q)~ on Uj as follows: 

l-ct 

4)~ .i J 

4)J~ 0~ +~(t-11 , 

i f 0 < t < l / 3 ;  

if 1/3 < t < 2/3; 

if 2 / 3 < t <  1 . 

It follows from the construction that for each t e [0, !J the set ~ = ~  4){(Kj) is 
polynomially convex. For 0 -< t -< 1/3 this holds since 4)~ (Ki) c K~ (1 < j < s), and 
similarly for 2/3 -< t <- 1 we have 4){(Kj) c K'j. Here we are using the condition 
that the sets Kj are starshaped. On the middle interval 1/3 < t < 2/3 we have 
dP{(Kj ) ~ B n ( b j ,  t, (5), and the union of these balls is polynomially convex. 

The constructed family of automorphisms 4){ is only piecewise smooth in the 
variable, but it can be made smooth in t by a reparametrization of the interval 

[0, 1]. We leave out the details. This completes the proof of Theorem 2.3. 

3 lsotopies of submanifolds and C"-equivalence 

We begin by the following definition: 

Definition 2. (a) Two real-analytic submanifolds Mo and M1 in C" are C'-equi- 
valent if there exists a sequence of automorphisms 7~ e AutC" ( j  ~ Z+) that 
converges, uniformly on a neighborhood U of Mo, to a biholomorphic map 
~F: U ~ 7J(U) c C" satisfying ~g(M0) = M1. 
(b) Two real-analytic embeddings fo , f l  : M --. C" are C"-equivalent if there exists 
a sequence of automorphisms T~ ~ Aut C" (j  e Z + ) that converges, uniformly on 
a neighborhood U of fo(M), to a biholomorphic map ~ P : U ~ C "  satisfying 

ofo =f~.  

For a related notion for smooth manifolds see Rosay [16]. 
In order that Mo and MI be C"-equivalence there must of course exist 

a real-analytic diffeomorphism ~b : Mo ~ M1. The converse is not true in general. 
There exist local and global obstructions to extending q5 to a biholomorphic map 
(b in a neighborhood of M0 in C". Even if 4) can be so extended, one may not be 
able to approximate 4) by automorphisms in any neighborhood of Mo. (See 
examples in Sect. 7.) 

The problem is substantially simpler if we restrict our considerations to totally 
real submanifolds of C' .  Recall that a submanifold M0 c C" is totally real if the 
real tangent space Tp M0 at each p ~ Mo contains no nontrivial complex subspace 
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of TpC". Every continuous (or smooth) function on Mo can be approximated (in 
appropriate norm) by functions holomorphic in a neighborhood of Mo. It is easily 
seen that a real-analytic diffeomorphism q5 : Mo ~ M1 can be extended to a bi- 
holomorphic map ~, in some neighborhood of M0 if and only if the complex 
normal bundles to Mo and M1 in C" are isomorphic (see below for precise 
definitions). Thus the obstruction to the extension of q5 in a neighborhood of Mo is 
global along Mo. 

In order to apply Theorem 1.1 the manifolds Mo and M1 must also have small 
Runge neighborhoods. When the manifolds are totally real this will hold if and 
only if they are polynomially convex in Cn. If one of the manifolds, say Mo c C", is 
totally real and polynomially convex, and if M1 c C" is C"-equivalent to Mo, then 
M1 is also totally real and polynomially convex (Proposition 1.2(b)). 

Let M be a smooth manifold. Recall that an isotopy between smooth embed- 
dingsfo, f~:M ~ C" is a smooth mappings z:[O, 1] x M ~ C" such that for each 
t e [0, 1] the map Tt = r ( t , ' ) : M  ~ C" is an embedding, ~o =fo ,  and r~ =f~.  In this 
case the embeddings fo and f~ are said to be isotopic in C". The isotopy is 
real-analytic if M and the mapping z are real-analytic. 

Sometimes we are only interested in the submanifolds Mt = z,(M) = C" and 
not in the mapping z. We say that the submanifolds Mo, M~ ~ C" are isotopic in 
C" if there exists an isotopy z: [0, 1] x M ~ C" as above such that zo(M) = Mo and 
z~(M) = M1. With some obvious abuse of language we will say that Mo and 
M1 are isotopic in C" through the family of submanifolds Mt = zt(M). 

The main result of this section is 

3.1. Theorem. Let Mo, M1 c C" be compact real-analytic submanifolds (with or 
without boundary), and assume that Mo is totally real and polynomially convex. Then 
Mo and Ma are C"-equivalent if and only if they are isotopic in C" through a family 
Mt (t e [0, 1]) of totally real, polynomially convex submanifolds of C". 

Similarly, if M is a compact real-analytic manifold and fo : M - ,  C" is a real- 
analytic embedding such that fo(M) is totally real and polynomially convex in C", 
then fo is C"-equivalent to another real-analytic embedding fa : M ~ C" if and only 
there is an isotopy of  embeddings z:[0,  1] x M ~ C" such that zt = ftfor t = O, t, and 
zt(M) c C" is totally real and polynomially convex for every t ~ [0, 1]. 

Recall that a compact polynomiaUy convex subset K of C" satisfies Hr(K, C) = 0 
when r > n [134, p. 59]. Thus, if M c C" is a closed, orientable, n-dimensional 
submanifold of C", then M is not polynomially convex. Moreover, an n-dimen- 
sional totally real manifold M ~ C" has vanishing Euler characteristic [22]. Thus 
the conditions in Theorem 3.1 require that dimR M < n, at least if we are consider- 
ing closed orientable manifolds. 

Theorem 3.1 can be compared with the standard result in real differential 
topology (cf. [13]) which asserts that, under certain obvious restrictions, every 
isotopy Mt of manifolds in R" can be realized by a global diffeotopy, i.e., there exists 
an isotopy of global diffeomorphisms ~ut: R" --* R", t ~ [0, 1], satisfying 
kUt(Mo) = Mr. Of course in the holomorphic case the best we can expect is to 
approximately realize the isotopy by automorphisms of C" because of the identity 
principle. The proof of Theorem 3.1 is much more difficult than the proof of the 
corresponding result on extending isotopies to diffeotopies. 

Proof o f  Theorem 3.1 It suffices to prove the second statement concerning the 
equivalence of embeddings, since the first part is a special case of this. 
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We first prove the 'only if '  part  of Theorem 3.1. Suppose that we have a 
neighborhood U ofMo = fo(M) in C" and a biholomorphic  map ~ :  U ~ C" that is 
a limit of automorphisms on U and satisfies 7 j ~ = f l .  We may choose U to be 
Runge in C" since Mo is polynomially convex. The converse part of Theorem 1.1 
gives a smaller Runge domain  f2 c c U containing Mo and an isotopy of 
biholomorphic  maps ~b~ :f2 -~ C" (t E [0, 1]) such that q~o is the identity, qh = ~1~, 
and each q~t can be approximated by automorphisms of C". Then the family of 
embeddings ft = Cb~ofo:M ~ C" (t ~ [0, 1]) is an isotopy of embeddings with the 
required properties. This proves the converse part of Theorem 3.1. 

To prove the main  implication in Theorem 3.1 let r : [ 0 ,  1] x M ~ C "  be a 
smooth isotopy as in the statement of the theorem. First we approximate r by 
a real-analytic isotopy ~' satisfying r't = z~ = f ,  for t = 0, 1. To this end we choose 
a real-analytic function Z : [0, 1] ~ [0, 1] such that ~(0) = 1, Z(1) = 0, and )~(t) is 
very close to 0 for 6 <- t-< 1 for some small 6 > 0. If g:[0,  1] • M ~ R  is any 
real-analytic map  approximat ing r, then the mapping 

z'(t, x) = Z(t)fo(x) + Z(1 -- t ) f l(x)  + (1 - Z(t) - Z(1 -- t))'~(t, x) 

approximates ~ and satisfies the bounda ry  conditions. (Alternatively, one may 
appeal to Cartan 's  Theorem A for Stein manifolds [14, p. 190].) If the approxima- 
tion of z by z' is sufficiently close in ~2  norm then r~(M) is still totally real and  
polynomially convex for every t ~ [0, l] .  Thus we may assume from the outset that 
the isotopy ~ is real-analytic. The proof now follows by combining Lemma 2.2 with 
the following 

3.2. Proposition. Let M be a compact real-analytic manifold and let 
3: [0, 1] • M ~ C ~ be a real-analytic isotopy of embeddings such that for every 
t ~ [0, 1], the submanifold Mt = rt(M) is totally real and polynomially convex. Then 
there exists an open set U ~ C" containing Mo and an isotopy of biholomorphic 
mappings ~t:  U--* C" such that ~o is the identity map and ~ t o %  = vt for all 
r e [ 0 ,  1]. 

Applying Theorem 1.1 (in a smaller neighborhood offo(M)) we conclude that 4~1 is 
the limit of au tomorphisms near fo(M), hence the embeddings fo and f l  are 
C"-equivalent. This proves Theorem 3.1, provided that Proposi t ion 3.2 holds. 

Proof of  Proposition 3.2 Let 3: [0, 1] x M ~ C" be the given real-analytic isotopy. 
The map q5 t = rto % 1 :Mo ~ Mr is a real-analytic diffeomorphism depending ana-  
lytically on t e [0, 1]. Our  goal is to extend q~t to an isotopy ~b, of b iholomorphic  
mappings, defined on a tubular  neighborhood U of Mo in C", satisfying q~t[Mo = ~bt, 
with cb o the identity map. 

The result is immediate  if m = dim~ M equals n; in this case 4~t is obtained by 
simply complexifying ~bt. Since ~bt is real-analytic in t, the ne ighborhood of Mo in 
which the complexification q~t is defined can be chosen independent ly of t. 

F rom now on we shall assume that m < n and set d = n - m. Fix a t e [0, 1] 
and a point  z e M,. The tangent  space T~C" can be decomposed as a direct sum 

T~C" = T ~ M , ( ~ J ( T ~ M t ) ~ ( N t ) ~ ,  (1) 

where J is the almost  complex structure operator  on  T . C "  and (N,)~ is the 
(hermitian) or thogonal  complement  of TCM,  = T~Mt ~ J (T~Mt) in T~C". Since 
M, is totally real in C", (N,)~ is a complex subspace of d imension d = n - m. 
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Denote by n t : N t ~ M t  the complex vector subbundle of TC"bMt or rank 
d = n -  m with fibers (Nt)z. In general this bundle may be nontrivial which 
prevents us from simply reducing the proof to the case when dim Mt = n. Let 
~/" ~ [0, 1] x M be the complex vector bundle of rank d whose fiber at (t, x) equals 
(Nr)~(t..,,). Thus, the part JV" t of JV" lying over {t} x M is just the pull-back o f N t  ~ Mt 
by the map Yr. 

Every vector bundle n : Y ~ [0, 1] x M over the product manifold [0, 1] x M 
is isomorphic (over [0, 1] x M) to the product bundle [0, 1] XJ~o, where 
Jtr o = n - l ( { 0 } x M ) .  For  real vector bundles a good reference is [13, p. 90]; 
the proof can can easily be adapted to complex vector bundles, and is totally 
elementary. 

Since the complex vector bundle J f  ~ is real-analytic in the base variable, 
there exists (by approximation) a real-analytic vector bundle isomorphism 
7/:[0, 1] x .At o ~ JV" over [0, 1] x M that is complex linear on every fiber, and 
'F(0," ) is the identity on Yo- Then Fr = 7~(t, �9 ) : Y0 ~ Y ,  t ~ [0, 1], is a family of 
complex vector bundle isomorphisms, depending analytically on t, such that Fo is 
the identity on Xo.  

We now embed a neighborhood V, of the zero section in J ~  into C" by the 
mapping Sr : ~ -+ C", St(x, v) = Tt(x) + v. The zero section is mapped diffeomor- 
phically onto Mr = vt(M), and St is non-singular at every point of the zero section. 
Hence St is an embedding near the zero section. The image 2;t = St(V~) is a generic, 
real-analytic, Cauchy-Riemann submanifold of C", of CR dimension d, containing 
M ,  (In fact, Zt is foliated by open sets of complex d-dimensional planes, the images 
of the fibers of Jg'r.) Since everything is analytic in the t variable, we can choose the 
neighborhoods V~ such that Ft(Vo) = V~ for every t s [0, 1]. The mapping 

Or = St~ F t ~  ~ Zr 

is a real-analytic CR diffeomorphism of .to onto 2;, depending analytically on 
t e [0, 1]. By construction, Ot extends the diffeomorphism q~t : Mo ~ M,, and Oo is 
the identity. 

It remains to extend the CR map Or from Zo to a holomorphic map c/'r : U -+ Ut 
in a neighborhood U of Mo, mapping U onto a neighborhood U~ of M ,  By 
analyticity of Ot in the t variable we can choose U independently of t E [0, 1]. 45o is 
the identity since it extends the identity on Zo. Shrinking U if necessary we can 
insure that every 4't is biholomorphic on U. Since every Mt is polynomially convex, 
we may shrink U further to insure that for every t e [0, 1] the set Ur = rbt(U) is 
Runge in C" (Lemma 2.2). This completes the proof of Proposit ion 3.2. 

Remark. Of course it is possible to construct the isomorphisms Fr and Or directly, 
without appealing to splitting of the bundle Y ~ [0, 1] x M. For  instance, for 
small values of t > 0 we can take O, to be the orthogonal projection of (No).~ 
(z e Mo) onto (Nr),~(~) in the direction of the tangent space T CM o. This works for 
0 < t < tl for some tl > 0 that only depends on the data. For  t > tl but close to 
t~ we can project in a similar way the fibers of Nt~ onto the corresponding fibers of 
Nt, and then compose the new projection with the one from the first step to get the 
map Or. The required isomorphism Or can thus be constructed in a finite number 
of steps for every t s [0, 1]. Finally we may approximate this family Or with 
another family that depends analytically on t. 

Another, more canonical approach to construction of Ot is by choosing a con- 
nection and performing the parallel transport. 
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4 C"-equivalence of discs and curves 

In this section we apply Theorem 3.1 to several classes of embedded real-analytic 
sub-manifolds of C" (n > 2): totally real polynomially convex discs, arcs, embedded 
analytic discs, and closed polynomially convex curves. In the next section we deal 
with real-analytic surfaces in C" for n > 3. In the first three cases the C"-equiva- 
lence already follows from the result of Anders6n and Lempert [4] on approxima- 
tion of biholomorphic mappings from convex domains onto Runge domains. 

4.1. Corollary. (All manifolds are assumed to be embedded real-analytic in C".) 
(a) Any two totally real, polynomially convex, k-dimensional discs in C" (k < n) are 
C"-equivalent (in the sense of Definition 2). 
(b) Any two arcs in C" are C"-equivalent. 
(c) Any two embedded analytic discs in C" are C"-equivalent. 
Moreover, if M c C" is as in (b) or (c), then every biholomorphic map �9 : D ~ C" 
defined in a neighborhood D of M in C" can be approximated, uniformly on a smaller 
neighborhood of M, by automorphisms of C". I f  M is a k-disc as in (a), then �9 can be 
so approximated near M if and only if the image ~( M) is also polynomially convex 
in C ~. 

Here, a k-disc in C" is the image of an embedding of the standard closed ball D k 
in R k. Similarly, an analytic disc in C" is the image of a holomorphic embedding of 
the closed unit disc A c C into C" (the embedding must be analytic in some 
neighborhood of A). Every analytic disc in C" is polynomially convex according to 
Wermer [23]. Similarly, every smooth arc in C" is polynomially convex, so (b) 
follows from (a). 

Corollary 4.1 means, intuitively speaking, that 'there is only one arc (analytic 
disc, totally real polynomially convex disc of certain dimension, etc.) in C"'. 

Remark. There is an interesting algebraic result, due to Abhyankar and Moh [1], 
to the effect that for every proper polynomial embedding f :  C --, C z the imagef(C) 
can be mapped onto C • {0) by a polynomial automorphism of C z. It would be of 
interest to know whether the analogous result holds for proper holomorphic 
embedding of C in C z, i.e., can we always straighten the image by a holomorphic 
automorphism of C 2 9 

Proof of  Corollary 4.1 (a) Let E be an arbitrary embedded, real-analytic, totally 
real, polynomially convex k-disc in C". Denote by E k the standard linear k-disc in 
R k x {0} c C", and choose a real-analytic diffeomorphisms ~O : E k ~ E. We can 
extend ~, to a biholomorphic map ~u from a small convex neighborhood U of E k in 
C" onto a neighborhood V = 7J(U) of E. If U is chosen sufficiently small then V is 
Runge according to Lemma 2.2. 

Now we may apply the result of Anders6n and Lempert [4] (or Theorem 1.1) to 
conclude that t/, is the limit of a sequence of automorphisms of C". This means that 
E and E k are C"-equivalent. 

Fix this 7L Then every other biholomorpohic map �9 defined near E can be 
written as a composition �9 = q,' o 7 t -  1, where q~' is a biholomorphic map defined in 
a neighborhood of E k and ~'(E k) = ~(E). Thus, if qS(E) is polynomially convex, 
then ~'  and hence 4~ can be approximated by automorphisms of C". This proves 
part (a). 
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Part  (b) is a special case of (a). Part  (c) is proved in the same way as (a) except 
that one uses the standard analytic disc Ao = A • {0}"- 1 c C" instead of E k. 

Remark. There exist embedded totally real 2-discs in C 2 that are not polynomially 
convex (Wermer). A simple example of this kind is the disc 

M = {(z, w): [z[ -< 1, w = ,~(1 -- [z[2)e ii~12} . 

Its boundary is the circle {(z, 0): ]z[ = 1} bounding the analytic disc {(z, 0): Izl < 1} 
which is therefore contained in the polynomial hull of M. It follows that no 
biholomorphic map taking M onto the disc D 2 ~ R 2 ~ C 2 can be approximated 
by automorphisms of C2. 

Next we consider closed real-analytic curves F c C". According to Wermer [23, 
24, p. 77] (see also Stolzenberg [20]) such a curve is polynomially convex if and 
only if it does not bound a one dimensional complex variety. The same is true for 
simple closed rectifiable curves [2], but we shall not need this fact. The set of 
polynomially convex curves is open and dense in the qf~ topology on the space of 
all curves in C". 

4.2. Theorem. Let T be the circle. I f  f o , f l  : T--* C" (n > 2) are real-analytic embed- 
dings such that both curves fo(T)  and f l  (T) are polynomially convex, then fo and f l  are 
C"-equivalent. Moreover, given an embedded, real-analytic, polynomially convex 
curve F ~ C n and a biholomorphic map ~:  D -~ C n defined on a neighborhood o fF,  
cI) can be approximated by automorphisms of  C" in some neighborhood o fF if and only 
i f  49(F) is also polynomially convex and the winding number of  the Jacobian 
J(q~) = det Dq~ along F equals zero. 

In particular, every two simple closed real-analytic curves in C" (n > 2) that are 
polynomially convex are C"-equivalent. Unlike the previous results, Theorem 4.2 
does not follow immediately from the Andersen-Lempert theorem since closed 
curves do not have small starshaped neighborhoods. One must use Theorem 1.1 
instead. 

The first assertion of Theorem 4.2 follows from Theorem 3.1 and Lemma 4.4 
below. The second assertion will be proved in section 6 below (after Theorem 6.2). 

Theorem 4.2 implies the following result that may be of independent interest: 

4.3. Corollary. Every simple, closed, real-analytic curve F ~ C ~ (n > 2) that is poly- 
nomially convex bounds a smooth, totally real, polynomially convex disc. 

The result is most interesting in C 2 since in C" for n > 3 a generic embedded disc is 
totally real and polynomially convex (see Sect. 5). Most likely the same result holds 
also for smooth polynomially convex curves. 

Proof o f  Corollary 4.3 The curve 

ro  = {(e i~ e -i~ 0 . . . . .  O) e C": 0 ~ R} 

bounds the totally real, polynomially convex disc 

Mo = {((, ~, 0 . . . . .  0)6 C":](I  =< 1}. 

Every curve that is sufficiently close in the ~o~ sense to Fo also bounds a totally 
real, polynomially convex disc that can be obtained by a small ~ perturbation of 
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Mo. According to Theorem 4.2 there exist automorphisms ~ e Aut C" such that 
the curve F '  = kU(F) is arbitrary close to Fo in the cg~ sense. If M' is a totally real, 
polynomially convex disc bounded by F '  then M = 7~-1(M ') is a similar disc 
bounded by F. This proves Corollary 4.3. 

In this remainder of this section we shall prove the following result: 

4.4. Lemma. Let T be the circle. For every pair of smooth embeddings fo , f l  : T-~ C" 
(n > 2) such that fo(T)  and f l ( T )  are polynomially convex there is an isotopy 
z: [0, 1] x T ~  C" satisfying rt = f  for t = O, 1, and such that zt( T) is polynomially 
convex for every t ~ [0, 1]. 

Proof Here we give a proof using Wermer's (or Stolzenberg's) theorem on hulls 
of curves. A more elementary proof is possible along the lines of the proof of 
Theorem 5.2 in Sect. 5. 

If a smooth closed curve 7 c C" fails to be polynomially convex, then by 
Stolzenberg's theorem [20] it bounds a pure one-dimensional complex variety V, in 
the sense of Stokes' theorem. If co(z) = ~ (z)dz~ + ... + ~,(z)dz, is a holomorphic 
(1, 0) form on C", its differential dco is a (2, 0) form which therefore vanishes on V, 
hence ~ co = ~v dco = 0 for every such co. Thus, in order for 7 to be polynomially 
convex, it suffices that ~.r c o .  0 for at least one such form co. 

Conversely, if 7 is polynomially convex, we can approximate every continuous 
function on 7 by a holomorphic polynomial according to Oka-Weyl 's  theorem 
[14, p. 91], hence we can construct holomorphic (1, 0) forms co on C" satisfying 
~, o ~ .  0. 

Let T = {e~~ C :0  ~ R}. Every two embeddings fo , f~ :T-~  R k for k > 4 are 
isotopic. (In general, every two embeddings of k-dimensional manifolds into R 2k + z 
are isotopic. This is an immediate consequence of Whitney's one-one immersion 
theorem [12, p. 61] which is itself a consequence of Thorn's jet transversality 
theorem [12, p. 54].) Every isotopy z: [0, 1] • T ~  C" is of the form 

z(t, 0 ) =  ~ cj(t)e i~~ te[O, 1], 0 e R ,  
j ~ z  

where cj: [0, 1] ~ C" are smooth functions. 
First we approximate fo resp. f l  by embeddings fo  resp. f ' l  given by finite 

trigonometric polynomials of the form ~u=-N C~ eij~ If the approximations are 
t J 

close enough, we can isotop fo into fo  by tak ingf~  = (1 - t)fo + t f  o (t ~ [0, 1]), 
and every intermediate curve is still polynomially convex. We do the same thing 
for fx. This shows that we may replace fo b y f o  and f l  b y f '  1 . 

Now we choose an isotopy 3: [0, 1] • T-~ C" fromfo tof~. By approximation 
we may assume that each zt is a trigonometric polynomial, of degree N that is 
independent of t. We denote by cg N the space of trigonometric polynomials of 
degree at most N, with values in C". The spaces CgN is isomorphic to C 2N+1 x C n, 
with the coefficients cj = (c j,1, . . . ,  c j,,) as complex coordinates. 

Since Fo = f o ( T )  is polynomially convex, there is a holomorphic (1, 0)-form 
e~ with polynomial coefficients on C", satisfying S r f ~  co * 0. The function 
G: cg N --. C defined by G(f )  = S r f *  co is a holomorphic polynomial in the coeffic- 
ients Cj, k of f ~  %r Thus the zero set Za  = { f ~ g N :  G ( f ) =  0} is a complex 
hypersurface in cg N. 
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By a standard result on analytic varieties [7] we can approximate the smooth 
path t ~ zt ~ flu by another smooth path z't connectingfo to f l  such that G(z't) # 0 
for 0 < t < 1. If the approximation is sufficiently close then F~ = z't(T ) is an 
embedded polynomially convex curve for every t ~ [0, 1] as required. Lemma 4.4 is 
proved. 

5 Polynomial convexity and C"-equivalence of surfaces 

In this section we prove the following result on C"-equivalence of surfaces for 
n > 3. Here, a surface is a smooth, compact, connected manifold of real dimension 
two, with or without boundary. 

5.1. Theorem. Let M be a compact real-analytic surface and let fo, f l:  M ~ C" 
(n -> 3) be real-analytic embeddings. I f  the surfaces m o = f 0 ( M )  and M1 = fa ( m ) are 
totally real and polynomially convex in C" then fo and f l  are C"-equivalent. 

Recall that a compact surface without boundary embedded into C a is never 
polynomially convex [t4, p. 59], [25]. On the other hand, we will prove that 
surfaces in C" for n ~ 3 are generically polynomially convex. Theorem 5.1 follows 
immediately from Theorem 3.1 and from the part (b) of the following 

5.2. Theorem. I f  M is a smooth compact surface and n > 3 then: 
(a) The set of totally real embeddings f: M ~ C" whose image f ( M )  is polynomially 
convex is open and everywhere dense in the set of all embeddings of M into C" (in the 
Whitney cgo~ topology). 
(b) I f  fo, f l:  M ~ C" are totally real embeddings whose images are polynomially 
convex then there is an isotopy of embeddings z: [0, 1] x M -~ C" connecting fo to 
f l  such that for every t ~ [0, 1], the embedding zt = z(t," ): M -~ C" is totally real and 
%(M) is polynomially convex. 

In fact we will prove that every isotopy of embeddings z: [0, 1] x M ~ C" can be 
approximated (in the cg~ topology on the space of mappings) by isotopies z' such 
that z't(M ) is totally real and polynomially convex for every t ~ [0, 1]. If Zo and 
zl are already totally real and polynomially convex then z' can be chosen to agree 
w i t h z a t t = 0 a n d t = l .  

First we shall prove the following slightly more general result on density of 
totally real embeddings and isotopies. 

5.3. Lemma. Let M be a compact smooth manifold of dimension k. 
(a) I f k  ~ (2n + 1)/3 ihen the set of smooth totally real embeddings M ~ C" is open 
and everywhere dense in the set of all smooth embeddings of M into C". 
(b) I f  k < 2n/3 then every pair of totally real embeddings of M into C" can be joined 
by an isotopy of totally real embeddings of M into C ~. 

In the proof of this and other results in this section we shall frequently appeal to the 
following 'jet transversality theorem' of Thom [12, p. 54]: 

Theorem (Thorn Transversality Theorem). Let X and Y be smooth manifolds and 
W a closed submanifold of the bundle J "(X, Y) of m-jets of smooth mappings X ~ Y. 
Then the set of all maps f: X ~ Y for which the m-jet map jm f: X ~ Jm( X, Y) is 
transverse to W is open and everywhere dense in the space of all smooth mappings 
X ~ Y (in the cgoo topology). 



Approximation of biholomorphic mappings 339 

Recall that, if dim X + dim W < dim J re(X, Y), then the transversality of the jet- 
map j " f t o  W means that the image o f j m f  misses IV. 

For  immersions (and embeddings) f: X -~ R u there is another version of the 
transversality theorem for one-jets as follows. Let k = d imX,  and let i ( k , N )  
denote the Grassman manifold consisting of all k-dimensional subspaces of R N. For  
each immersion f :  X --* R N we consider the Gauss map f :  X ~ i ( k ,  N) that sends 
x � 9  to the tangent plane f . ( T x X )  to f at f (x) .  Given a closed submanifold 
W ~ if(k, N}, there is an open and dense set of immersions for whichf is  transverse 
to W. This result is an immediate consequence of the general transversality 
theorem for one-jets. 

Proof o f  Lemma 5.3. Let t = if(k, 2n) be the Grassman manifold of real k- 
dimensional subspaces (k-planes) of C" = R 2", and let ~ ~ i ( k ,  2n) be the subset 
consisting of k-planes that contain a nontrivial complex subspace (a complex line). 
Clearly ~ is a real-analytic subset of i .  Recall that dimR i ( k ,  2n) = k(2n - k). 

Next we calculate dim Jr. Clearly Jg is empty ifk < 1, so we may assume k >- 2. 
Every k-plane A �9 ~ is of the form A = Ao ~ A~, where Ao is a complex line in C" 
and A I is a real (k - 2)-dimensional subspace of A ~ (=  the orthogonal complement 
of Ao in C"). This shows that 

dimR ~f~ = dimR CP"-  1 + dim~ i ( k  - 2, 2n - 2) = (2n - 2) + (k - 2) (2n - k). 

A simple calculation shows that the condition dim M + dim ~f~ < dim t is satisfied 
if and only if k = dim M < (2n + 1)/3. If this holds then the transversality theorem 
implies that for a generic embedding f:  M ~ C", the tangent p lanef , (TpM)  never 
belongs to J f  for any p �9 M, hencefis  totally real. (Here, as always, 'generic' means 
that the set of such embeddings is open and dense in the set of all embeddings.) 

Similarly, if k < 2n/3, we have dim i - dim Jg > k + 2, hence the transversal- 
ity theorem implies that for a generic isotopy T: [0, 1] x M --+ C", the Gauss map 
(t, p) �9 [0, 1] x M ~ (~t).(TpM) �9 i misses ~,ug. This means that ~t is totally real for 
every t �9 [0, 1]. Lemma 5.3 is proved. 

Proof o f  Theorem 5.2. First we shall prove part (a). Lemma 5.3 implies that every 
embedding of M into C"(n > 3) can be approximated by a totally real embedding. 
We identify M with its totally real image in C". 

We will now show that M can be perturbed as little as we want in C" so as to 
become polynomially convex. The required perturbation will be done in several 
steps, using the following well known facts: 

(i) The total reality is a stable property under small cg 1 perturbations. 
(ii) Polynomial convexity is a stable property under small (~2 perturbations of 
totally real manifolds [11]. 
(iii) If a compact set K c C" projects under the first coordinate projection 
n: C"-~ C onto a smooth arc ? c C, and if the fiber Mz = n-~(z )c~M is poly- 
nomially convex for every z �9 7, then M is polynomially convex. 

Let n: C" ~ C be the coordinate projection ~(zl,  z') = zl = u + iv. A standard 
application of Thorn transversality theorem shows that after a small qqo~ perturba- 
tion of M c C" the function p = ~Rzrl~t is a Morse function on M. 
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Let p ( M ) =  [a,b] ~ R. Every level set M(u )=  p-X(u)(a < u <  b ) i s  either 
a union of finitely many smooth curves (this happens for all but finitely many 
values of u), or a finite union of curves such that one of them has a transverse 
self-intersection, or a point. This structure of the fibers M(u) enables us to perturb 
M slightly in the direction v = ~zl in such a way that the function ,~Tr is noncon- 
stant on every closed curve contained in any of the fibers M(u). In fact, we can 
choose the perturbation such that all fibers of z[M are finite. It follows that every 
fiber of zl~t is polynomially convex whence the same is true for every fiber 
m(u) = U ~a re- I(U + iv) C~ M, u ~ [a, b]. 

Since M is totally real, it is locally holomorphically convex. Thus we can choose 
for each u an open neighborhood W, of M(u) in C" such that W, is polynomially 
convex and M c~ W, is holomorphically convex in W,. It follows that for every 
sufficiently small interval J = [a,b] the slice M ( J ) =  p - l ( j ) =  U,~sm(u)  is 
polynomially convex in C". By compactness we can subdivide [a, b] into a finite 
number of closed intervals Jk = [Uk- 1, Uk], where a = Uo < us < u2 < ' "  < Urn 
= b, such that every slice M(Jk) wM(Jk+I) = M(JkUJk+l) (1 =< k < m) is poly- 

nomially convex. 
Now we perform another perturbation within each slice M(Jk) with the 

m purpose of splitting the polynomial hull of M = U k = 1 M(Jk) to the union of hulls 
of individual slices, thus making M polynomially convex. 

Fix a k, 1 < k < m, and write J = Jk. Choose a closed interval J '  contained in 
the interior of J such that every u ~ J '  is a regular value of p, and choose a pair of 
disjoint closed intervals I ~ 11 contained in the interior of J ' .  By a small perturba- 
tion of M(J)  we may assume that the slice M(J')  is smooth real-analytic. The 
complexification of M(J')  is then a local complex manifold S of complex dimen- 
sion 2. Let N ---, M(J')  be the complex normal bundle to M(J') in C", i.e., every 
fiber Nz for z e M(J')  is the complex plane of dimension n - 2 ~ 1 that is ortho- 
gonal to the tangent space TzM. 

By our choice of J '  each fiber M(u) for u e J '  is a finite collection of smooth 
curves, and the fibers depend smoothly on u ~ J'. Hence the manifold M(J')  is 
homotopic to a finite family of disjoint closed curves, and therefore the complex 
bundle N is trivial over M(J'). This implies that we can pick a holomorphic 
function 9 on a neighborhood of M(J') that vanishes identically on M(J')  (and 
therefore on 2;), but its gradient d9 is nonvanishing at every point of M(J'). 

By polynomial convexity of M(J') we can approximate 9 uniformly on a neigh- 
borhood of M(J')  by holomorphic polynomials P(z). Then the derivative of P also 
approximates the derivative of 9 near M(J'), hence the level sets of P near M(J') 
are smooth complex hypersurfaces that are close to the level sets of 9 in the c~J~ 
topology. 

We now deform the interior of M(J')  by pushing the slice M(I ~ into the level 
set {P = 0}, and similarly we push m(I  1) into the level set {P = e} for a small 

oe 0. The deformation can be made arbitrary small in the ~ o  sense, provided that 
the approximation of 9 by P is close enough and e is sufficiently small. Thus the 
slices M(Jk-~ w Jk) and M(Jk w Jk+ 1) remain totally real and polynomially con- 
vex after the perturbation. We leave out the obvious but tedious details. 

We perform the perturbation described above for every k = 1, 2, ... ,m. We 
claim that the new manifold M is then polynomially convex. To see this, fix a point 
Zo ~ h,) and let v be the Jensen representing measure for Zo supported on M [21, 
p. 108]. Fix a k, 1 -< k < m, and let P be the polynomial constructed above for the 
slice M(Jk). If v has any mass on the set M(I ~ where P = 0 then the Jensen's 
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inequality logIP(zo)l < SM loglPIdv implies P(zo) = 0. Similarly, if v has any mass 
on M(I 1 ) where P = e then Jensen's inequality, applied to loglP(z) - ~1, shows that 
e(z0) = ~. 

Thus, v has no mass on at least one of the slices M(I~ M(I  ~). Since the support  
of the projection g = p,(v) of v onto the real axis always has connected support,  it 
follows that v is supported on only one of the slices M(Jk-~ W Jk). But every such 
slice is polynomially convex by construction, hence v must  be the point  mass at 
Zo e M. This proves that the constructed surface M is polynomial ly convex as 
claimed. 

We proved part (a) of Theorem 5.2. To prove part (b) we suppose that 
f ( M )  = M~ for t = 0, 1 are totally real embedded polynomially convex surfaces 
in C" (n > 3). According to Lemma 5.3(b) there exists a totally real isotopy 
r: [0, 1] x M --* C" connectingfo = Zo to f l  = zl .  We shall perturb this isotopy so as 
to make every manifold Mt = zt(M) = C" polynomially convex but  keeping it fixed 
at t = 0 and t = 1. Since M, is already totally real and polynomial ly convex for 
t sufficiently close to 0 or 1, it suffices to consider per turbat ions without fixed ends 
since we can then patch the new isotopy with the old one near the endpoints  
t = 0 , 1 .  

5.4. Lemma.  Let M be a smooth manifold of dimension k, 1 < k < n, and let 
z: [0, 1] • M -~ R" be a smooth isotopy of embeddings. Suppose that Ix, ...,l~ are 
linear funetionals on R" such that dim (-]~= 1 ker lj < k. Then we can approximate the 
isotopy z in the c~o~ sense by an isotopy ~ such that for every t ~ [0, 1] at least one of 
the functions lj is a Morse functions when restricted to the manifold ft( M). 

Proof Let j 2 =  j2([0,  l'] • M, R n) be the 2-jet bundle  of smooth mappings of 
[0, 1] • M into R". We denote the local coordinates on M by x, and we let 
(j2z) (t, x) be the x-part  of the full 2-jet ( jzr)( t ,  x) of z at (t, x). For  each linear 
function I:R" ~ R the composi t ion l o (j2 z) (t, x) is then the 2-jet of l ort: M -~ R at 
x ~ M .  

For  a l inear functional  I on R" we denote by Zz c j 2  the subset consisting of all 
2-jets ( j2 r )  (t, x) ~ j 2  for which the jet l o ( j2z)  (t, x) fails to be the jet of a Morse 
function at x ~ M. Clearly the definition is independent  of the choice of local 
coordinates x on M. A jet as above is not  Morse if and only if the one-jet (j~ z) (t, x) 
belongs to the kernel of I (this gives k = dim M independent  conditions), and the 
second order jet 1 o (j2 r) (t, x) is degenerate (this gives another  condit ion-the van- 
ishing of the real Hessian determinant).  Thus S~ is a real-analytic subset of J 2 of 
codimension 

CodimR(L., j 2 )  = dim M + 1 . 

The Thorn transversality theorem implies that for a generic smooth map  z: 
[0, 1] x M ~ R "  its 2-jet map  j2z :  [0, 1] x M .._, j 2  avoids the singular part of 
2~ and intersects its regular part  transversely at a finite set of points 
E~ c [0, 1] • M. The same is true for a finite collection of the manifolds Z r 

If the functionals l~, ... ,l~ are chosen as in the lemma, it follows that no point  
" 2  �9 - S (t, x) is mapped by ) z to all Zj  = Z~ simultaneously,  i.e., (-]j_ 1 E~ = ~ .  After 

a small . . . . . . . . .  - ' genenc per turbat ion  of ~ supported in palrwlse disjoint nemghborhoods of 
the points in U~=a Ej we can arrange that the projections of the sets E1 . . . . .  Es 
onto [0, 1] are pairwise disjoint. This means that for each t e [0, 1] at least one of 
the functions lj o zt is Morse on M ,  and Lemma 5.4 is proved. 
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We apply Lemma 5.4 to z: [0, 1] x M ~ C", with the 1/s being the real and 
imaginary parts of the n coordinate projections n j: C" ~ C. We replace z by z' as in 
Lemma 5.4. The lemma allows us to part i t ion the interval [-0, 1] into a finite 
number  of subintervals 1 i such that for each j one of the projections 91nk, ~nk 
(k depending on j )  is a Morse function on every M, = zt(M), t E 1 i. 

It suffices to describe the required per turbat ion of ~ over each interval 1 i. Even 
though the per turbat ion of T for t e 1 i will affect rt also for nearby values of t, we 
shall keep all per turbat ions sufficiently small in the ('b ~2 norm, thereby not  destroy- 
ing any of the relevant properties of z over the adjacent intervals Ij_ 1 and Ij+ 1. 

Thus we may assume from now on that for some coordinate projection n: 
C" --* C, the real part  ~Rn is a Morse function on Mt for every t e [0, 1]. The proof 
now proceeds just  as in the case (a) by not ing that for each to ~ [0, 1] all the 
required per turbat ions of Mt can be done uniformly for t sufficiently close to to. 
More  precisely, we can part i t ion the interval [0, 1] into a finite number  of 
subintervals 0 = to < tl  < t2 < --. < tp = 1 such that for tj 1 < tj, the per turba-  
tions of Mt described in part  (a) can be performed on a set of intervals I o k, j ,  
1~. i c J'k,i ~ Jk.j( 1 -< k _< mr) that are chosen independent ly of t e [tj_ 1, tj]. (We 
are using the same nota t ion as in the proof of part  (a), except that we added indices 
in the obvious way.) 

Recall that the larger intervals Jk, j c R (1 < k < mr) are chosen such that for 
each t ~ [ t j -1 ,  tj], the union of every two consecutive slices Mt(Jk,j), Me(Jk+l,j) 
is polynomial ly convex. Moreover, we choose the smaller intervals J'k,j ~ ~ Jk, j 
(1 <_k<_m~) to be pairwise disjoint from the corresponding intervals 
J'k,i (1 --< k -< rni) whenever i + j .  

We start with the interval [0, tl  ] and perform the per turbat ions described in 
the proof of part  (a) that make every manifold Mr for 0 < t < tl polynomially 
convex. The required per turbat ions are supported on the slices Mt(J'k, 1) 
(1 < k < rnl). This changes the manifold Mr1 on the same slices, but  we can 
smoothen out the per turbat ion over the intervals J'k, 1( 1 < k -< ml) and over the 
values of t that are slightly larger than t I . If the perturbat ions are sufficiently small, 
this will not  destroy the polynomial  convexity of the slices Mt(Jk,2). 

Now we go to the next interval t e [tx, tEl, and we per turb the manifolds Mr on 
the slices Mt(J'k,2)(1 --< k ~ mE). Since these new intervals are disjoint from the 
ones used in step one, the previous per turbat ions do not  affect the new perturba- 
tions at all. Again we smoothen out the new per turbat ion near both endpoints  
t = ta, t = t2 and over the intervals J'k,2" Even though we changed again the 
manifolds Mt for certain t e [0, t l ] ,  we may suppose that the new perturbat ions are 
sufficiently small that they do not  destroy the polynomial  convexity of those 
manifolds M ,  

Cont inu ing  this way we complete the required per turbat ion of the isotopy 
Mr(t ~ [0, 1]) to an  isotopy with polynomiatly convex sets Mr in a finite number  of 
steps. This completes the proof of Theorem 5.2. 

6 Obstructions to approximation near submanifoids 

In  this section we give a necessary and sufficient condi t ion for the existence of 
approximat ion  of a given biholomorphic  mapping ~1 : f2 ~ C" by automorphisms 
of C" in a neighborhood of a real-analytic,, totally real, polynomially convex 
submanifold M c (2. 
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From Theorem 3.1 we know that, in order for the approximation to exist near 
M, there must exist an isotopy of embeddings r: [0, 1] x M ~ C" satisfying 
(a) % is the identity on M, 
(b) zl = q~ IN, and 
(c) for every t e [0, 1], the submanifold Mt = z,(M) c C" is totally real and poly- 
nomially convex. 

The converse of this is not always true. Suppose that an isotopy satisfying 
(a)-(c) exists. Applying Theorem 3.1 we get a biholomorphic map 7' near M satisfy- 
ing ~]M = ~ IM, such that 7' is the limit of a sequence of automorphisms in some 
neighborhood of M. By construction the composition �9 = 7 ' -  1 o ~1 is the identity 
on M, and ~1 can be approximated by automorphisms if and only if �9 can be so 
approximated. We have thus reduced the approximation problem to biholomor- 
phic mappings that fix the manifold M pointwise. 

If M is a generic submanifold of C ", it follows that �9 is the identity, hence 
~ = 7, is the limit of automorphisms. Thus, in the case of a generic manifold M, 
qh is a limit of automorphisms near M if and only if the manifolds M and 
M~ = ~ ( M )  are C"-equivalent. 

The more interesting case is when M is not generic. Simple examples show that 
in general �9 is then not approximable by automorphisms (see Sect. 7). 

Let N ~ M  be the complex normal bundle to M in C ~ (1), of rank 
d = n - d imM. Denote by ~: TC"IM --* N the projection onto the normal bundle 
in the direction of the complex tangent bundle TCM. The derivative D ~  defines 
a complex automorphism of the normal bundle N ~ M by 

cb,(z)v=Tt(Dcb(z)v) ,  z ~ M ,  v ~ N ~ .  (2) 

6.1. Proposition. Suppose that M ~ C" is a compact, real-analytic submanifold that 
is totally real and polynomially convex. Let 4) be a biholomorphic mapping in 
a neighborhood of  M such that ~(z) = z for all z ~ M. I f  the automorphism ~ ,  o f  the 
normal bundle N ~ M defined by (2) is homotopic to the identity in the group Aut N, 
then ~ is the limit of  a sequence of automorphisms of  C ~ in some neighborhood of  M. 

Remark. By the techniques explained in the proof of Proposit ion 3.2 above we can 
construct for every real-analytic automorphisms q5 of the complex normal bundle 
N-- .  M a biholomorphic map �9 near M that fixes M pointwise and satisfies 
D~IN = 4). It suffices to embed N locally near its zero section into C" and to extend 
4) to a holomorphic map near M. 

Proof o f  Proposition 6.1. We consider N locally near its zero section as an 
embedded real-analytic CR submanifold of C". The condition means that there is 
a family of automorphisms Ot ~ Aut N(t  ~ [0, 1/3]) such that O0 is the identity and 
O1/3 = ~ . .  We may choose Ot to depend analytically on all variables, including t. 
Furthermore, between time t = 1/3 and t = 2/3 we can join ~ .  to D~IN through 
complex automorphisms Ot of the bundle TC"[~ that restrict to the identity on 
TCM. Finally, from time t = 2/3 to t = 1 we join D~IN to �9 by simply taking 
convex combinations of the two. 

As in the proof of Proposit ion 3.2 we extend each Ot (0 <_- t _-< 1) to a biholomor- 
phic map F,: U ~ C", defined in a neighborhood U of M, beginning with the 
identity F0 and ending with F1 = ~. Every map F, fixes M pointwise. Since M is 
assumed to be polynomially convex, Theorem 2.1 implies that �9 is the limit of 
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a sequence of automorphisms on a smaller neighborhood of M. This proves 
Proposit ion 6.1. 

The condition in Proposit ion 6.1 is sufficient but not necessary for the approx- 
imation. We can formulate the necessary condition as follows. Let T = R/2nZ be 
the circle. Consider isotopies of embeddings z: T x M ~ C" of M into C", paramet- 
rized by t ~ T, satisfying 
(i) Zo = zl is the inclusion M ~ C", and 

(ii) for every t E T the submanifold zt(M) ~ C" is totally real and polynomialty 
convex. 

Let ~" ~ T • M be the complex vector bundle of rank d = n - dim M whose 
fiber over (t, x) is the complex normal space to T~t.x) M as in (1). In other words, the 
part ~ lying over {t} x M is just the pull-back of the complex normal bundle 
Nt --, Mt by zt- If we fix a connection on JV, then the parallel transport along the 
loops T • {x} yields an automorphism z ,  ~ Aut ~u of the bundle X0 ~ {0} x M 
(the monodromy automorphism). Even though z ,  depends on the choice of the 
connection, it is easily seen that its homotopy class [ r , ]  only depends on ~. 

We may identify JVo with the normal bundle N ~ M and think of z ,  as an 
element of Aut N. We denote by H the group of all homotopy classes of auto- 
morphisms of N ~ M. The group operation is composition. Let /70 c / 7  be the 
subgroup consisting of all hornotopy classes of the form I t ,  ], where r: T • M ~ C ~ 
is any isotopy satisfying the properties (i) and (ii) above; we shall call /70 the 
monodromy group corresponding to the isotopies satisfying (i), (ii). We can now 
apply Theorem 3.1 in the same way as in the proof of Proposit ion 6.1 to obtain 

6.2. Theorem. (Notation as above.) Let M c C" be a compact, real-analytic sub- 
manifold that is totally real and polynomially convex. Let �9 be a biholomorphic map 
defined near M such that qb(z) = z for all z ~ M, Then the following are equivalent: 
(a) �9 is a limit of  a sequence of  automorphisms in a neighborhood of  M. 
(b) The homotopy class [ ~ , ]  ~ /7 o f  the automorphism defined by (2) belongs to the 
monodromy group 1I o. 

As was noted above this also gives a necessary and sufficient condition for 
approximation of biholomorphic mappings ~1 near M that do not fix M. 

The homotopy classification of automorphisms of a vector bundle N --, M is 
equivalent to the homotopy classification of sections of an associated bundle 
G ~ M whose fiber at z s M is the set of all complex linear isomorphisms of the 
fiber Nz. Thus G is a principal GL(d, C) bundle over M. Even though the 
classification of sections of G ~ M is a rather complicated matter in general (we 
refer the reader to the Part  III  of Steenrod's book [19]), it is much simpler in the 
case when the bundle N ~ M is trivial. If we choose an isomorphism of N with 
M x C d, we obtain a reference frame X1, X 2 ,  . . .  ,Xd on N, i.e., global sections of 
N over M that form a basis of every fiber Nx, x e M. In this basis, every automor- 
phism of N gives a mapping of the base space M into the group GL(d, C) of the 
fiber, and vice versa. Moreover, two automorphisms of N are homotopic if and 
only if the corresponding maps M ~ GL(d, C) are homotopic. Thus, the mono- 
dromy group/70 is a subgroup of the group 

/7 = [M, GL(d, C)] = [M, U ( d ) ] ,  

where U(d) is the unitary group. 
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We shall now consider in detail the case of closed curves in C" for n ~ 2 and two 
dimensional surfaces in C" for n > 3. For the relevant results of homotopy theory 
we refer the reader to Steenrod [19, pp. 131-132]. 

Case 1: M is a simple closed curve in C". In this case the complex normal bundle 
N ~ M is trivial (every orientable bundle over the circle is trivial). The group of 
homotopy classes of automorphisms of N ~ M is 

n = [M, U(d)] = ~,(U(d)) = Z 

for every d. Moreover, it is easily seen that the class of ~b, (2) is just the winding 
number of the Jacobian determinant of ~b along M. Since M is homotopic to 
a point in C", this winding number vanishes for automorphisms of C", hence the 
monodromy group 17o is trivial. Conversely, every q~ satisfying [q~,] = 0 can be 
approximated by automorphisms according to Proposition 6.1. 

If q~l is a biholomorphic map near M that maps M onto another polynomially 
convex curve M, = q~(M), then by the first part of Theorem 4.2 there exists 
a biholomorphic map 7 ~ that is the limit of automorphisms near M and satisfies 
~u[M = (bl IM. Since the winding number of the Jacobian determinant of 7 j along 
M equals zero, the maps ~bl and q~ = 7 j -~  o q~ give the same winding number. 
Thus, if the winding number of J(q~,) equals zero and qh (M) is polynomially 
convex in C", it follows that �9 and therefore q~x are approximable by automor- 
phisms near M. This proves the second part of Theorem 4.2. 

Case 2: M is a two-dimensional surface in C" for n > 3. Of course we assume that 
M satisfies all other properties mentioned at the beginning. For every such M c C" 
the complex normal bundle N --* M is trivial which can be seen as follows. First, 
every two totally real embeddings of M into C"(n > 3) are totally real isotopic by 
Lemma 5.3, hence the bundle N is the same for every such embedding. If M is 
orientable, we can embed it as a hypersurface into a totally real plane R 3 c C 3. The 
normal bundle of M in C 3 is then generated by the normal vector field to M in R 3. 
In general, we can embed M into C 2 with only isolated complex tangents. Let 
h : C 2 ~ C be any smooth function whose differential dh is not complex linear on 
TpM at any complex tangent p e M. Then the graph M' = {(z, h(z)): z e M} c C 3 
is a totally real embedding of M into C 3 whose complex normal bundle is 
generated by the projection of the constant vector field X = (0, 0, 1) onto N in the 
direction of TCM.  Thus the bundle N ~ M is trivial as claimed. 

The group /7 equals [-M,U(d)]. If d = 1, U ( 1 ) =  S '  is the circle, and 
/7 = [M, S ' ] .  For d = 2 the group U(2) is homeomorphic to the product S t x S 3, 
and 

/7 = [M,U(2)]  = [M,$13  x [M, S 33 = [M,S ~3 

since [M, S 3] = 0 for every two dimensional surface M. In general, under the 
natural embedding U(d - 1) c U(d), the quotient U ( d ) / U ( d  - 1) is homeomor- 
phic to the sphere S zd- 1, hence every map of a two dimensional manifold M to 
U(d) is homotopic to a map into U(1) = S a. Thus, /7 = [M, U(d)] = [M, S 1 ] for 
every two dimensional surface M and for every d. The homotopy class 
[q%] ~ [M, S a ] (2) is evidently just the homotopy class of the Jacobian determi- 
nant 

J(q~) = act D~:  M ~ C\{0} . (3) 
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Since this class vanishes when q~ is approximable by automorphisms, the mono- 
dromy g roup / I0  is trivial. Together with Theorem 5.1 this implies 

6.3. Corollary. Let M c C"(n ->_ 3) be a compact, embedded, real-analytic surface 
that is totally real and polynomially convex. A biholomorphic mapping eb: U --, C n 
defined in a neighborhood of  M can be approximated by automorphisms of  C n near 
M if and only if the image ~ ( M )  is polynomially convex and the Jacobian (3) is 
homotopic to a constant. In particular, i f  M is a two dimensional sphere, then cb can be 
approximated by Aut C" near M if and only if cb(M) is polynomially convex. 

7 Examples and open problems 

We have seen in Sect. 6 above that the only topological obstruction to approximat- 
ing a biholomorphic map by automorphisms near curves resp. surfaces M c C" 
(n > 2 resp. n ~ 3) lies in the group [M, $1]. This group vanishes when M is simply 
connected. Of course, if we consider manifolds M of higher dimension, we will have 
many more homotopy obstructions. 

An obvious obstruction to approximation of a biholomorphic mapping 
4 :  ~ ~ C" by automorphisms of C" in a neighborhood of a submanifold M c f2 is 
the (nontrivial) homotopy class of the derivative Dq~: M --* GL(n, C), since this 
mapping is homotopic to a constant whenever (b can be so approximated. We will 
give two examples of this type. In Example 7.1 the obstruction to approximation 
lies in the fundamental group ~I(M),  and in Example 7.2 it lies in the group ~3(M). 

7.1. Example. The curve 

M = {(e i~ e-w): O 6 R} c C  2 

is polynomialty convex. The mapping 

�9 (z, w) = (z, w + (1 - zw) (1/z - 1)) 

is biholomorphic near M and fixes M pointwise. Its Jacobian equals 
J(q~) (z, w) = z, with winding number along M equal to one. Hence q~ can not be 
approximated by automorphisms of C 2 in any neighborhood of M. 

7.2. Example. We construct a real-analytic, polynomially convex, three dimen- 
sional sphere M c C 5 and a biholomorphic map q~ near M that fixes M pointwise 
but is not a limit of automorphisms in any neighborhood of M. This is a slight 
modification of Example 5.4 in [4]. 

Let M be the three-sphere S 3, embedded as the unit sphere in the totally real 
4-plane R 4 x {0} c C 5. Clearly M is polynomially convex. We choose orthonormal 
vector fields X a , X 2 ,  X3, X4 along M such that the first three are tangent to 
M while X4 is the outward unit normal field to M in R 4 x {0}. The complex normal 
bundle N ~ M is a trivial bundle of rank two, generated by the fields X4 and 
X5 = E5 = (0, 0, 0, 0, 1). For  each z ~ M let A(z) ~ U(5) be the map that sends the 
standard basis vectors E l ,  ... ,E5 of C s to the basis X1, ... ,X5 at z. 

The group U(2) is the product U(2) = U(1)• SU(2) = S ~ x S 3. Choose a real- 
analytic mapping F:M--*SU(2)  that generates the third fundamental group 
~a(U(2)) = ~3(S 3) = Z. The same map then generates 7~3(U(d)) for every d _-> 2 
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under the s tandard embedding U(2) c U(d) [19, p.132]. Write F in matrix nota t ion 

F = ( ~  b d ) , w h e r e a ,  b, c , d : M ~ C a r e r e a l - a n a l y t i c f u n c t i o n s .  Let  q) be a b i -  

holomorphic mapping in a neighborhood of M that fixes M pointwise and satisfies 

Dq)(z)Xj (z )  = X~(z) , 1 < j < 3 ,  

D 4~(z) X4(z) = a(z) X4(z) + c(z) Xs(z ) ,  

Dq~(z) Xs(z) = b(z) X 4(z) + d(z) X s(z) , 

for all z ~ M. Clearly the map D~b: M ~ U(5) is conjugate to Id �9 F by A, that is, 

A-l (z )oDCI)(z )oA(z)  = 1 O F ( z ) ,  z ~ m .  

It follows that the derivative map z ~ M--* Dq~(z)~ U(5) represents a nontr ivial  
element of ~z3(U(5)). Therefore 4, can not  be approximated by automorphisms of 
C 5 near  M. 

Remark. Note that, even if we extend q, to C 5 x C m as the identity in the extra 
variables, we still have a non-approximable  map, no  matter  how large m is. Of 
course it is possible to add a linear 'twist'  in the space C "  for m > 2 that 'undoes '  
the twist of cb on the normal  bundle  N such that the new map  is approximable  by 
automorphisms. 

7.3. Example.  The following is an example of a four dimensional  real submanifold 
22 c C 5 with a single complex tangent  at the origin that can not  be made totally 
real by a small ~1 per turbat ion near the origin: 

S = {(zl, z2,12112, [z212-Yt - ,z2): zx, zz ~ C} = C 5 . 

This example is related to Lemma 5.3(a). It shows that, when at tempting to 
generalize our  results on surfaces in C 3 (Sect. 5) to higher dimensional  manifolds, 
one must  in general have sufficiently high codimension as well. 

To prove our claim, notice that every submanifold S '  ~ C 5 that is close enough 
to I; in the (gl topology will be a graph over C z: 

s '  = {(zl, z2, Izll 2 + q~, Iz2l 2 + q,, ~1 - ~2 + )0: Z1, Z2 E C} , 

where qS, 0, 2 are functions of (zl, z2) of small (gl norm. 
For  c~ e C we let L~ = g/0:?~ + ec'~/052. One  obtains a complex tangency of S '  at 

the point  (z~, z2 . . . .  ) ~ S '  in the direction of the complex line ( ~ ((, ~ . . . .  ) by 
looking for (z~, z2) close to 0 and ~ e C such that 

L, ( I z l l  2 + ~b) = L,(lz2l 2 + O) = L,(~t - z2 + 2) = 0 .  

This gives three equations with three unknowns  z~, z2, ~: 

o~ o~ 
z~ + ~ + ~5-~ = o  , 

o0  o0 

02 02 
1 - ~ + ~-~ + ~ - ~ z  = 0 .  
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It has to be thought of as a system of six real equations in six real unknowns. When 
q~ = tp = 2 = 0 this system reduces to 

zl = 0 ,  ~z2 = 0 ,  1 - ~ = 0 

that has a unique solution (0, 0, 1) and is of maximal rank at (0, 0, 1). Thus every 
small perturbation of this system of maximal rank will have a solution close to 
(0,0, 1). 

Remark. The four dimensional manifold 

Z,j = {(za,z2,1zll2,1z212, O)} = C 5 

with complex tangencies along both Zl and z2 axes can easily be deformed into 
a totally real manifold. Indeed, consider the manifolds {(z l , z2 ,1z l]  2, [zzl2 + 
e~l, es for small e ~ 0. 

7.4. Problem. Let O c C" be a domain and q~: O ~ C" a biholomorphic map. 
Suppose that the derivative map Dq): D ~ GL(n, C) is homotopic to a constant 
through a family of holomorphic maps into GL(n, C). Does it follow that q, is the 
limit of automorphisms? The condition that D ~  be homotopic to a constant on 
every compact subset of O is necessary for the approximation according to the 
converse part of Theorem 1.1. 

7.5. Problem. Let ~ c C" be a pseudoconvex Runge domain with smooth bound- 
ary such that O is diffeomorphic to the ball. If q~: ~ ~ C" is a biholomorphic map 
whose image q~(O) is Runge in C", is q, the limit of automorphisms? 

7.6. Problem. Let O be as in the previous problem. Is the set of all biholomorphic 
mappings from ~ to domains in C" connected? 

7.7. Problem. Does there exist a Fatou-Bieberbach domain D c C" that is not 
Runge? It seems that in all known constructions of such domains (see for instance 
[5], [8], and [17]) one obtains a bihotomorphic mapping ~: C" -~D (Fatou- 
Bieberbach map) as a limit of a sequence of automorphisms, hence D is Runge. 
Note that, if q,: C" ~ D is a biholomorphic map whose image D is Runge in C n, 
then q~ a limit of automorpohisms of C" according to Theorem 1.t. 

7.8. Problem. If f :  C ~ C  2 is a proper holomorpohic embedding, can f(C) be 
straightened (i.e., mapped onto a line) by an automorphism of C2? The answer is 
positive for polynomial embeddings into C z [1], and is negative for holomorphic 
embeddingsf  : C --* C 3 [18]. 
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