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Proper Holomorphic Mappings:
A Survey*

Franc Forstnerié

0. Introduction

A continuous mapping f: X — Y is called proper if f~!(K) is a com-
subset of X whenever K is a compact subset of Y. If X and Y are
plex spaces and f: X — Y is a proper holomorphic mapping, then
'y) is a compact subvariety of X for all points y € Y. Consequently,
e space X is Stein, the preimage f~!(y) is finite for all y € Y. A
ial class of proper holomorphic maps are the biholomorphic maps, i.e.,
bijective holomorphic maps with a holomorphic inverse.
Proper holomorphic mappings between complex spaces were studied
1e 1950s and early 1960s; (see Remmert-Stein [RS]). Perhaps the most
ortant result from this time is the Grauert’s theorem on the coherence
rect images of a coherent analytic sheaves [Nar2]. A special but impor-
case of this result is the Proper Mapping Theorem of Remmert [GR}:
X — Y is a proper holomorphic mapping of complex spaces, and if A
is a complex subvariety of X, then its image f (A) is a complex subva-
rof Y. If both X and Y are Stein spaces and A C X is an irreducible
-ariety of dimension k, then B = f(A) is an irreducible subvariety of

“dimension k. Moreover, there exists a proper, nowhere dense subvari-
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ety V C B, such that B\V and A\ f~}(V) are complex manifolds an
restriction f: A\f~*(V) — B\V is a finitely sheeted holomorphic cov
projection.

In this survey we shall consider proper holomorphic mappings f:
D' between bounded domains D CC C™ and D’ CC CV. Such map
are also known as ‘finite mappings’ since each preimage f~*(w) is a
subset of D. A map f: D — D’ is proper when for every sequence {z;}
with lim;_, oo dist(z;, D) = 0, we have limj_, o dist(f(z;),4D’) = 0. (
that N > n.) I f extends continuously to the closure of D, the
extended map takes the boundary bD into the boundary D', and it sat
the tangential Cauchy-Riemann equations on 4D. Thus proper map
f: D — D' lead naturally to the geometric theory of mappings from ¢
bD'. A good reference for the structure of proper holomorphic map
between domains in C™ is Chapter 15 in Rudin’s book [Ru2].

In section 1 we survey the results on the regularity at the bounde
proper holomorphic mappings between smoothly bounded domains ir
This has been a very active area of research ever since Fefferman p:
in 1974 that biholomorphic mappings between smooth bounded str«
pseudoconvex domains in C™ extend smoothly to the boundary (The
1.2 below). We first survey the results obtained by the method o
Bergman kernel and the related d-Neumann problem. Most of thes
sults have been covered in the survey by Bedford [Bedl]. There are
new results concerning the Condition R, the most interesting ones d
Boas and Straube [BS1, BS2, BS3], as well as new regularity result
locally proper mappings, due to Bell and Catlin [BC2]. We also pr
an elementary approach to the regularity problem for mappings of str«
pseudoconvex domains, due to Pinéuk and Hasanov {PH] and Forst
[Fo6], that reduces the problem to the C* version of the edge-of-the-w
theorem. There is a new regularity result of Piné¢uk and Tsyganov for
tinuous C-R mappings between strongly pseudoconvex hypersurfaces

an optimal regularity result due to Hasanov.

In section 2 we consider the mappings between bounded domai
C™ with real-analytic boundaries; the main problem is to show that
mappings extend biholomorphically across the boundary. In one va:
this is the classical Schwarz reflection principle. In several variables
phenomenon was first discovered by Lewy [Lew] and Pincuk [Pi2] 1

case of strongly pseudoconvex boundaries. Very interesting and far rea
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mains (see [GS]), and others.

The survey is intended for the specialists in several complex varia
If the reader is looking for motivation, we would like to refer him t«
recent survey of a more general nature by Steve Bell [BeT].

I have tried to be accurate with respect to credits. I do not striv
completeness; rather I tried to present the strongest results on each ct
topic. If I have overlooked, some important contributions, I wish to ex
my sincere apologies to their authors.

I started this work during the special year 1987/88 for several con
variables at the Institut Mittag-Lefller. It is my privilege to thank Chi
O. Kiselman and John Eric Fornzss for their kind invitation to spe
very fruitful year in the pleasant atmosphere of this Institut.

I wish to express my sincere thanks to all the colleagues with w
I had the pleasure to discuss and learn the subject of proper holomo
mappings. I wish to thank especially John D’Angelo for many stimul
conversations during our visit at the Institut Mittag—Leffler in the S
of 1988, and for having contributed a large part of section 6 of the pr
paper. Furthermore, I wish to thank all who responded to the initial ve
of this paper with their valuable comments and suggestions: S. Bao
and L.P. Rothschild, E. Bedford, S. Bell, J.P. D’Angelo, K. Diederic
Kruzhilin, A. Noell, S. Webster, and the referee. Finally I thank E.L. ¢

who first drew my attention to proper holomorphic mappings.

1. Boundary Regularity

One of the central problems in the theory of proper holomorphic
pings is the question of regularity of mappings at the boundary:

Does every proper holomorphic mapping of bounded domains D, D’
smooth boundaries in C" eztend smoothly to the boundary of D?

It is a classical result due to Kellogg [Kel] that the answer is y
dimension one. If D and D’ are bounded by closed Jordan curves,
every biholomorphic mapping of D onto D’ extends continuously t
closure of D according to Carathéodory [Ca].

The problem is much more interesting and difficult in dimension:
greater than one. When we know that biholomorphic mappings bet
certain domains must extend smoothly to their boundaries, the que

of biholomorphic equivalence is reduced to a geometric problem o1
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wundary. Using this approach, Chern and Moser [CMo] developed a theory

biholomorphic invariants of strongly pseudoconvex hypersurfaces. See
so the papers of Burns et all [BSh], [BSW] on deformation of complex
ructures.

The regularity problem has been successfully solved on a wide class of
eudoconvex domains, as well as on some special cases of non-pseudo-
nvex domains. It is still open on general pseudoconvex domains and on
ost non-pseudoconvex domains.

The result is false for domains in non-Stein manifolds. Barrett [Ba2]
ind a family of bounded domains Dy (k € Z,) contained in complex
anifolds M} of complex dimension two such that
.) each Dy is a hyperbolic Stein manifold that has smooth real-analytic

boundary in My,

1) each Dy is biholomorphic to D, but
1) the boundaries bD;, and bDy, are not isomorphic as C-R manifolds
when k; # k2.

This means that no biholomorphic mappings f: Dy, — Dj, extends
100thly to the boundary. The manifolds M} are not Stein.

The most successful approach to the regularity problem is certainly
e one via the Bergman kernel. This method has been developed mainly
the works of C. Fefferman [Fef], Webster [Wel], Bell and Ligocka [BL],
11 [Bel, Be2, Beb]), Catlin {Catl, Cat2], Bell and Catlin [BC1, BC2], and
ederich and Forneass [DF2, DF4]. The Bergman kernel method gave a
sitive answer to our question on all pseudoconvex domains of finite type
:e Theorem 1.4 below).

On strongly pseudoconvex domains there are at least three other ap-
oaches which avoid the Bergman kernel. One is due to Nirenberg, Web-
i, and Yang [NWY], the second one to Lempert [Le3, Led], and the third
e to Pincuk and Hasanov [PH] and Forstneri¢ [Fo6].

We first mention a result on boundary continuity of proper mappings.

Theorem 1.1. If D and D' are pseudoconvex domains with C? bound-
y in C™ and f: D — D' is a proper holomorphic mapping, there exists
€ > 0 and constants ¢; > 0,¢; > 0, such that

c1dist (z,bD)¢ < dist (f(z),bD’) < cpdist (2,bD), z € D.

in addition, the infinitesimal Kobayashi metric on D’ satisfies the esti-
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mate

Kpi(z,X) > c|X|/dist(z,6D'), ze€ D', XecC"

for some ¢ > 0 and 8§ > 0, then f extends to a Hélder continuous map

D.

This estimate on the Kobayashi metric holds in particular if D’
strongly pseudoconvex [Gra] (in this case f is Holder continuous with
exponent 1/2 on D) or if D’ is weakly pseudoconvex with real-analy
boundary [DF1, DF2]. The idea of the proof of Theorem 1.1 is to ap
the Hopf lemma to the composition of the given mapping (or its inver
with a bounded plurisubharmonic exhaustion function on D’ (resp. D).

The history of Theorem 1.1 is as follows. Around 1970 the result
proved by Margulis [Mar] and Henkin [Hen] for biholomorphic mappi:
of strongly pseudoconvex domains, using the Carathéodory metric. Pin¢
[Pil] generalized the method to proper holomorphic mappings. A sim!
result was proved independently by Vormoor [Vor]. The first inequa!
in Theorem 1.1 for weakly pseudoconvex domains was proved for the fi
time by Range [Ran], using the at that time new bounded plurisubharme
exhaustion function of Diederich and Fornaess [DF8]. The Kobayashi met
was introduced into the picture in [DF2}.

In 1974 C. Fefferman [Fef] made a remarkable discovery by proving

Theorem 1.2. Every biholomorphic mapping between boundec
strongly pseudoconvex domains with smooth boundaries in C™ extends

a smooth diffeomorphism of their closures.

Fefferman’s proof is based on a very careful study of geodesics of
Bergman metric which emanate from a point z € D close to the boundary
directions close to the normal direction towards the boundary. He shov
that these geodesics give a smooth diffeomorphism of an open part of
unit sphere in the tangent space T, D onto an open part of the bound:
bD. Since the Bergman metric is a biholomorphic invariant of the doms
the mapping carries geodesics in D to geodesics in D', and the regular
of the mapping on the boundary follows from its regularity in the domsz

Fefferman’s theorem and its very difficult proof stimulated intens
work in this fleld, with attempts both to simplify the proof and extend

result to a wider class of domains. Another problem was that his pr
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not apply immediately to locally biholomorphic or proper holomorphic
pings.
The first simplification was obtained by Webster [Wel], who isolated a
crucial properties of the Bergman kernel that would imply extendability
1e mapping.
The main progress in this direction was done by Bell and Ligocka
and Bell [Bel] who discovered that the extendability of biholomorphic
ipings follows from the global regularity of the Bergman projection on
two domains.
Let D be a bounded domain in C™. Denote by L3(D) the Hilbert space
inctions on D that are square integrable with respect to the Lebesgue
sure, and let OL(D) be the subspace consisting of all the holomorphic
tions in Ly(D) (the Bergman space). Recall that the Bergman projector
J is the orthogonal projector P: Ly(D) — OLy(D). More generally, for
0 < ¢ < n, the Bergman projector P, is the orthogonal projector from
Hilbert space of square integrable (0, g)-forms on D onto the subspace
isting of all 9-closed forms (so P = Po).
Following Bell and Ligocka {BL] we say that D satisfies the Condition
" the projector Py is globally regular, in the sense that it maps the
pace C® (D) C La(D) of functions that are smooth up to the boundary
I to itself.
The following result was proved for biholomorphic maps by Bell [Bel]
also Bell and Ligocka [BL]). It was extended to proper maps by Bell
Catlin {[BC1] and, independently, by Diederich and Fornzss [DF4].

[heorem 1.3. Let D and D’ be bounded pseudoconvex domains in
with smooth boundaries and let D satisfy the Condition R. Then every
ver holomorphic map of D onto D' extends smoothly to the closure of

An important independent step in the proof for mappings with non-
il branch locus is a division theorem for functions that are holomorphic
D and smooth up to the boundary; see [BC1] and [DF4]. This result
s also for relatively compact domains in Stein manifolds [BBC].

The pseudoconvexity hypothesis in the preceeding theorem may be
»ped if both domains satisty Condition R [BL].

An independent and rather difficult problem was to show that a large

; of domains satisfies the Condition R. The most successful approach so
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far has been the one via the regularity of the 8-Neumann problem. We sh
recall the connection only very briefly since this may be found in sevel
sources (see [Ko3], [Ko4], [Bed1]).

Let D C C™ be a bounded pseudoconvex domain with smooth bour
ary. When 1 < g < n, the 8-Neumann operator N; on D is the inverse
the complex Laplacian 38 +98 0 on (0, g)-forms. For the general theory
the -Neumann operator see Folland and Kohn [FK] and the survey [Ko

The connection between the Bergman projection and the Neuma

operator is given by the Kohn’s formula

P,=1d -8 Ngy18, 0<g<n-—1
Thus, if the Neumann operator N; is globally regular, i.e., it maps C®(.
to itself, then so is the Bergman projector P = P,, whence Condition
holds. A more explicit connection between the regularity of the Bergm
projection and the Neumann operator can be found in [BS2].

Kohn and Nirenberg proved in [KN2] that the Neumann operator .
is globally regular when we have a subelliptic esttmate at every bounde
point of D. Kohn [Kol,2] showed that these estimates hold under cert:
geometric hypotheses on the boundary; in particular, we have a subellip
1/2 estimate on every strongly pseudoconvex domain. Similar results wt
obtained by Hérmander. Diederich and Fornass [DF1] proved such
estimate on weakly pseudoconvex domains with real-analytic boundar
in C™. Catlin [Cat2] solved the problem completely on smoothly bound
pseudoconvex domains in C™. He shows that there is a subelliptic estim:
at a point z € bD if and only if z is a point of finite type in bD in the ser
of D’Angelo [DA1]. This condition means, roughly speaking, that there
an upper bound for the order of contact of 4D at z with complex analy
curves passing through z.

As a consequence we see that every smoothly bounded pseudoconv
domain of finite type satisfies Condition R. Thus we have (see [BC1] a
[DF4))

Theorem 1.4. Let D and D' be bounded pseudoconvex domains w
smooth boundaries in C™. If D is of finite type, then every proper ho
morphic mapping of D onto D' extends smoothly to D.

Condition R may hold even if there are no subelliptic estimates. I

instance, it holds on pseudoconvex domains that are weakly regular
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sense of Catlin [Catl]. On these domains the §-Neumann operator is
rally regular, which implies Condition R . Every smooth pseudoconvex
1ain of finite type is weakly regular at each point, but the converse is
true. For instance, every smooth pseudoconvex domain that is strongly
1doconvex except at a discrete set of points is weakly regular, so proper
ymorphic mappings of such domains extend smoothly to the boundary.
Recently Boas and Straube [BS2, BS3] found a new method to verify
idition R . Their mainresult is that the Bergman projector and the Neu-
1n operator are globally regular (even exactly regular on Sobolev spaces)
smoothly bounded pseudoconvex domains in C™ that admit a defining
:tion p whose complex Hessian is nonnegative at every boundary point
bD in all directions. We shall say that such a function is plurisubhar-
ic at the boundary of D. (It does not need to be plurisubharmonic in
open set containing bD.) Note that this condition is somewhat stronger
n that of pseudoconvexity where the Hessian at p must be nonnegative
7 in complex directions that are tangent to the boundary. Thus we have
3]

Theorem 1.5. Let D and D' be bounded pseudoconvex domains in
with smooth boundaries, and let D admit a defining function that is
risubharmonic at the boundary of D. Then every proper holomorphic
> f:D — D' extends smoothly to the closure of D. This holds in

ticular when the domain D is (weakly) geometrically convex.

It is not known whether Condition R holds on all pseudoconvex do-
ns. Barrett has found a non-pseudoconvex domain with smooth real-
lytic boundary in C? on which Condition R fails [Bal]. It is also not
wn if Condition R is necessary for the existence of a smooth extension
he boundary.

There is a local version of the regularity theorem, due to Bell [Be5]
Bell and Catlin [BC2]. This can be stated most naturally in terms
nappings of hypersurfaces that satisfy the tangential Cauchy-Riemann
ations (in short, C-R mappings). If the mapping is merely continuous,
should understand that C-R condition in the distributional sense.

Theorem 1.6. Suppose that f: M; — M; is a continuous C-R map-
g between smooth pseudoconvex hypersurfaces, and M, is of finite type.
2° € My and w® = f(2°) € M,. Suppose that at least one of the



306 Chapter

following hypotheses holds:

(a) f is finite-to-one on M, near z°;
(b) M, does not contain any one-dimensional analytic varieties, and t
preimage f~!(w®) is a compact subset of Mj.

Then f is of class C® in a neighborhood of 2°. Furthermore, if f is
local C-R homeomorphism near z°, then it is a local C-R diffeomorphi:
near 2°. In case (b) it follows that the preimage f~1(w®) is finite and f
finite-to-one in its neighborhood.

Even though the Bergman kernel method has been very successt
in the study of the boundary regularity problem, it involves the diffici
analysis of the 8-Neumann operator and results from the theory of part:
differential equations. For this reason the method cannot be consider
elementary from the point of view of several complex variables.

There are at least three alternative approaches, due to Nirenberg, We
ster, Yang [NWY], Lempert [Le3, Le4], and Pinéuk and Hasanov [PH] a:
Forstneri¢ [Fo6]. These methods only apply to mappings of strongly pse
doconvex domains. The advantage is that they rely on standard metho
of several complex variables. The methods are entirely local and they apg
also to the case when the boundaries have only a finite degree of smoot
ness. The method by Pinéuk and Hasanov is especially interesting a
elementary.

The approach by Nirenberg, Webster, and Yang [NWY] is a natu
generalization of the extension theorem of Lewy [Lew] and Pinéuk [Pi
where the two boundaries are real-analytic, to the case of smooth boun
aries. The crucial ingredient is the use of almost anti-holomorphic refle
tions across the boundary bD within complex lines that are transverse to t
boundary. The extended mapping is the solution of a system of equatio
that are obtained by differentiating the initial equation and describing t
condition f(bD) C bD’. The difficult part is to prove a transversality pro
erty for the mapping near the boundary (Condition A, p. 319 in [NWY
The main result of the paper [NWY] is a different and more elementa
proof of Fefferman’s theorem (Theorem 1.2 above).

Lempert obtained a proof of Fefferman’s theorem from his work [Le
on the extremal discs for the Kobayashi metric on strongly convex domai
in C™. Since the extremal discs are biholomorphically invariant, and sin

f is locally biholomorphic according to Pinéuk [Pi4], the smoothness
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llows immediately from the smoothness of the extremal discs. One
needs to consider discs through points close to the boundary in the
tions that are close to the complex tangent direction to the boundary
le nearest boundary point. Lempert constructed these extremal discs
1e continuity method. One part involves solving a suitable Riemann-
art boundary value problem for matrix-valued functions on the unit
The second part is to find apriori estimates for the extremal discs.
. though his construction is not easy, the method is very natural and
:ontained. His foliation of strongly convex domains by the Kobayashi-
'mal discs has proven very useful in many other problems.
Perhaps the most natural and simplest proofs of Fefferman’s theorem
given by Pinéuk and Hasanov [PH] and by Forstneri¢ [Fo6]. Their
oach is based on the reflection principle of Lewy [Lew] and Pinéuk
(see section 2 below), and on the smooth version of the edge-of-the-
ie theorem from [PH]. The classical edge-of-the-wedge theorem was first
in this context by Webster [We3]. I wish to thank J. P. Rosay who
d my attention to the work [PH].
The methods of Lempert [Le4], Pinéuk and Hasanov [PH], Forstnerié
', and Hurumov [Hur] give the following sharp regularity result for
pings of strongly pseudoconvex domains:

‘heorem 1.7. Let D and D’ be bounded, strongly pseudoconvex do-
1s in C™ with boundaries of class C™,m > 2. Then every proper holo-
»hic mapping f: D — D’ extends to a map of class C™~1/2-9(D).

The fact that such a mapping is necessarily locally biholomorphic was
ed by Pincuk [Pi4].

Here, m > 2 may be any real number. f m = k + e, with 0 < o < 1,
C™ = C¥* is the usual Holder class. Recall that C™° = C™ if m is
n integer, and equals Jg 4c; C™- 1.2 if m is an integer.

This result was proved in [Le4], [PH}, and [Fo6], with the weaker con-
on that f € C™ 179(D). The last step from ™10 to ™~ 1/2-0 wag
recently by Hurumov [Hur], using some general regularity theory for
iic equations. (Hurumov’s result was announced by Pin¢uk at the AMS
mer Research Institute 1989 in Santa Cruz.)

The following example, due to Hurumov, shows that the conclusion of
rrem 1.7 is sharp.



308 Chapter
Example. Let k > 3/2 be a non-integer,

flz1,22) = (21 + z§,22),
D ={z¢e C%zy+|2|? < 0}.

Obviously f is a well-defined biholomorphic mapping from D onto so
bounded domain D' C C2?, f € C*¥(D), and f ¢ C'(D) for I > k. It is ez
to check that D’ is strongly pseudoconvex and that 8D’ is of class C¥+

Subsequently, Pincuk and Tsyganov [PT] provided the same result -
all local C-R mappings of strongly pseudoconvex hypersurfaces withc

assuming properness:

Theorem 1.8. Every continuous C-R mapping f: M — M’ of smoc
strongly pseudoconvex hypersurfaces is smooth on M, with the loss

smoothness as in Theorem 1.7.

From a previous result of Pinéuk [Pi4] it follows that such a map
either constant or a local diffeomorphism on every connected component
M.

Theorem 1.8, together with a theorem of Alexander (see Theorem .
below), implies

Corollary 1.9. Let Q C bB™ be an open connected subset of t
unit sphere in C™, n > 2. If f: Q@ — bB™ is a continuous C-R mapping w.

range in the sphere, then f extends to an automorphism of the ball B™.

A similar result holds for mappings of certain quadric C-R manifolds
higher codimension in C”; see the papers [TH1, TH2], [Tum2], and [Fo!

So far there is no comparable regularity result for continuous C-R m:
pings of weakly pseudoconvex hypersurfaces without further assumptic
on the mapping; the reader should compare this with Theorem 1.6 aboy

We shall briefly outline the proof of Fefferman’s theorem given in [P
and [FoB]. For the sake of simplicity we shall assume that D and D’ ¢
strongly pseudoconvex domains with C® boundaries, and f: D — D’
a biholomorphic mapping. Recall that f extends bicontinuously to t
closures according to Theorem 1.1.

Following Webster [We3], we associate to f a holomorphic mapping

F(z,A) = (f(2), f(z)A),
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:d in the space of pairs (z,A) where z is a point in D and A is a
lex (n — 1) plane in C™ passing through z. We may consider such
.) planes as the points in the complex projective (n - 1)-space CP™~!
ake as the ambient space the manifold C* x CP™~'. Here, f/(2)A is
nage of A by the derivative of f at z.

Che mapping F is holomorphic in the wedge domain D x CP™~! with
mooth, totally real edge M = {(z,TEbD):z € bD}. Here, TCbD is
1aximal complex subspace of the real tangent space to bD at the point
le total reality of M is equivalent to bD being Levi-nondegenerate, see
ter [We3].

Che most difficult part of the proof is to show that there is a smaller
e W with the same edge M such that the restriction of F to W+
ds continuously to the edge M and maps M to the totally real smooth
fold M’ = {(z/,T¢bD’): 2’ € bD'} associated to the second boundary
Pinéuk and Hasanov proved this using the scaling method with non-
igeneous dilations and the theorem of Alexander [All] to the effect
1ll proper self-mappings of the ball are automorphisms. (See Theorem
slow.) In the paper [Fo6] it was shown that the continuity of F up to
dge follows from the Julia-Carathéodory’s theorem for maps between
The method developed in [Fo6] generalizes naturally to mappings of
1n Cauchy-Riemann manifolds of higher codimension, and we have an
gue of Fefferman’s theorem in this setting [FoT].

lo a smooth, generic, totally real submanifold M C C?*~! one can
late a smooth reflection & defined in a neighborhood of M, which
M and is almost anti-holomorphic, in the sense that its holomorphic
atives vanish to infinite order on M. Let &' be a similar reflection
. Denote by W~ the wedge ®(W*) with the same edge M. We
d the mapping F to W~ by setting F(p) = ®'o Fo®(p) forpec W~.
extended mapping is almost anti-holomorphic on the double wedge
J W~ and continuous up to their common edge M. The C* version
: edge-of-the-wedge theorem [PH] now implies that the restriction of
M is smooth; hence, f is smooth on bD.

’in¢uk and Hasanov gave a direct proof of the last step using the
hy integrals. Alternatively, one can understand this step in terms of
*© wave front set (see Hérmander [H51]). Composing F with a smooth
morphism which maps the edge M to an open subset of R*"~! and
1is O-flat on M (i.e., its 8 derivatives vanish to infinite order on M), we
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may deal with a wedge whose edge is an open subset of R?*~ 1. Passing
smaller wedge, we may also assume that Wt = M +i and W~ = M -
where I' is an open convex cone in R?*~1, Let I'° C R?"~1! be the cl
dual cone (the polar of I'). Since F is almost holomorphic in W+, the
wave front set of Flp at a point Z € M is contained in ['° (see [H61
257). By the same argument for W~ the wave front set is containe
—T°. Since the intersection I'° N —T'° is empty, the wave front set is emr
at Z, 1.e., F is smooth in a neighborhood of Z.

Several problems appear if one tries to use this method on dom
that are not strongly pseudoconvex. First, the associated manifold M i
longer totally real. Furthermore, if f is branched, one cannot even de
F as above. Also, the method of dilations does not apply directly since
limit domain would no longer be the unit ball. Even so, it would be
to see this approach extended to a larger class of pseudoconvex domai

We mention a theorem of a different nature. One may ask whe
the continuity of a proper mapping at the boundary is the consequenc
suitable local assumptions on the two boundaries. A result of this tyg

due to Forstneri¢ and Rosay [FR]; we shall only cite a special case.

Theorem 1.10. Let f: D — D' be a proper holomorphic map
domain D C C™ onto a bounded domain D' C C™. Assume that bD .
class C? and strongly pseudoconvex in a neighborhood of a point 2° €
If there is a sequence {27} C D converging to z°, such that the in
sequence {f(2?)} C D’ converges to a point w® € bD’ and bD' is of ¢
C? and strongly pseudoconvex in a neighborhood of w®, then f extend

a Holder continuous map with the exponent 1/2 on a neighborhood ¢

inD.

Note that there are no conditions on the two boundaries away from
points 2%, resp. w®. One needs to assume much less on the two bounda
What is important is to have good local holomorphic peaking function:
D' near w®. The theorem was proved by a localization of the Kobay
metric in a neighborhood of a certain pseudoconvex boundary point
bounded domain in C™. Of course the theorem does not give anytl
new if the domains have globally smooth boundaries. However, a slig

stronger version of the theorem gives:
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ollary 1.11. Let D be a domain in C™ with a plurisubharmonic
; function of class C*** for some € > 0, and let D' be a bounded
in C™ whose boundary is of class C? and strongly pseudoconvex
a closed, totally disconnected subset E C bD’'. Then every proper
rphic mapping of D onto D' extends continuously to D.

reither of the two domains D, D’ C C™ has smooth boundary, there
1son why a biholomorphic or proper map should extend continuously
losure. Fridman [Fri] has shown that there is a bounded domain D
rith piecewise-smooth boundary and a biholomorphic mapping of D
e unit polydisc in C? that does not extend continuously to D. Also,
a domain D in C? whose boundary is real-analytic and strongly
:onvex, except at one point z € bD, and there is an automorphism
at does not extend continuously to DU {2z} {FR]. Another example
R} shows that the condition in the Corollary is sharp, in the sense
2 conclusion may be false if the exceptional set E C bD’ is a circle.
: mention a result of Lempert [Le5}) in which the usual pseudocon-
issumptions are replaced by a global geometric condition. Recall
jomain D is star-shaped with respect to a point z° € D if the line
t from any point z € D to 2° is contained in D. The domain is
star-shaped if, in addition, the line segment from any boundary
€ bD to z° intersects bD at an angle that is uniformly bounded

om 0.

sorem 1.12. Let D and D' be bounded, strictly star-shaped do-

with real-analytic boundaries in C". Then every biholomorphic

g of D onto D’ extends to a Hdélder continuous homeomorphism
—

ito D .

: close the section with some open problems.

mentioned at the beginning of the section, it is not know whether
ppings between bounded domains in C™ with smooth boundaries
end smoothly to the closure. A class of special domains on which
: problem has not been solved are the Hartogs domains in C™ for
> 2, except of course the pseudoconvex domains of finite type. For
nains in C? see Theorem 3.12 below.

the local extension theorem of Bell and Catlin (Theorem 1.5) one

uld like to remove the hypothesis that the fiber f~!(wo) is com-
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pact. More precisely, let f: M; — M; be a continuous C-R mapping o
smooth pseudoconvex hypersurfaces on finite type. Is f also smooth’

3. Is it possible to extend the elementary approach by Pinéuk and
Hasanov to a wider class of domains?

4. Study the regularity of C-R mappings between smooth generic C-I
submanifolds in C™ of codimension d > 1. It is well-known that thi
one-sided holomorphic extension of C-R functions is replaced by holo
morphic extension into wedges (see section 2 below). What is th
correct analogue of a proper mapping in this setting? Under wha
geometric conditions is every local C-R homeomorphism of such C-I
manifolds smooth? For partial results in this direction see [Fo7].

5. Bedford and Bell proved in [BB2] that every proper holomorphic self
mapping of a bounded pseudoconvex domain D C C™ with real
analytic boundary is biholomorphic. Is the same true when bD i
smooth?

2. Analyticity of C-R Mappings
In this section we present results on the following extension problems

Local extension problem. Let M, M’ C C™ be (germs of) smooth real
analytic hypersurfaces at the origin. Locally near the origin M splits th
space in two open half-spaces M~ and M*. Suppose that a continuou
mapping f: M~ U M — C" is holomorphic on M~ and maps M int
M'. Under what conditions does f extend holomorphically to an oper
neigborhood of the origin in C™?

Global extension problem. Let D and D’ be relatively compact do
mains with smooth real-analytic boundaries in C™ (or in n-dimensiona
Stein manifolds). Does every proper holomorphic mapping f: D — D’ ex
tend holomorphically to a neighborhood of D?

In one variable the map in the local problem extends according to th
Schwarz reflection principle. In the global problem one first applies thi
classical theorem of Carathéodory to obtain a continuous extension of f t«

D.

From now on we shall always assume that n > 2. The first exten
sion result in several variables was obtained in 1974 by Lewy [Lew] anc
Pin¢uk [Pi2] for strongly pseudoconvex hypersurfaces (see Theorem 2.
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). Even though the global extension problem is still open on non-
oconvex domains in C™, it has been solved for the pseudoconvex do-
. by Baouendi, Bell, and Rothschild [BaBR, BaR1, BaR2] and, inde-
ntly, by Diederich and Fornaess [DF5]. (See Theorem 2.2 below.) It
Iso solved on domains in C? with smooth algebraic boundaries [DF6].
ts in this direction have been obtained in recent years by several au-
see [We2, We3, We5, BB1, Be2, Der, Han, DW, BalT].

.s we have mentioned in section 1, Barrett [Ba2] constructed examples
olomorphic mappings between domains in non-Stein manifolds that
t extend even continuously to the boundary. The common feature
h examples is that the boundaries of the domains contain complex
tic varieties. This is not possible for bounded domains with real-
tic boundaries in C™ [DF1].

‘he formulation of the problem is intentionally a bit vague. Typically
ould like to prove the existence of a holomorphic extension under
: no extra conditions on the map f. Of course, one has to put some
:ions on M and M'. For instance, if M and M’ are Levi-flat, f need
ctend. The simplest example of this type is M = M' = {(21,22) €
zy = 0}, f(z1,22) = (21,22 + g(z1)), where g(¢) is a holomorphic
on on {R({ < 0}, smooth on {N¢ < 0}, that does not extend holomor-
ly across {R¢ = 0}.

“he conditions on the two hypersurfaces can sometimes be traded with
»nditions on f. In most results one assumes that f is not merely
wuous, but also smooth. Often the smoothness of f follows from one
regularity theorems in section one.

"he set M~ plays an auxiliary role. The hypothesis that f is holomor-
om M~ guarantees that the restriction fips is a C-R map. It follows
usual complexification argument that f will extend holomorphically
eighborhood of the origin if and only if f|as is real-analyticat 0 € M.

our problem is a special case of the following

tegularity problem. Let f: M — M' be a C-R mapping of smooth
nalytic hypersurfaces at the origin in C*. Under what conditions is

-analytic at the origin?

f M does not contain a complex hypersurface passing through the
, then every C-R function f on M extends holomorphically to one
f M, say M~, according to Trepreau [Tre]. Hence, the two problems
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are equivalent in this case.

The second formulation of the problem can be generalized imme:
to C-R mappings of real-analytic C-R manifolds of higher codimens
C™. The one-sided holomorphic extension of f is replaced in this ¢
holomorphic extension to wedges with edge M. We shall mention
results of this type below.

If the Levi form of M at 0 has at least one positive and one ne
eigenvalue, then every C-R function (and even every C-R distributi
M extends to a holomorphic function in a neighborhood of the ori
C™ [BaCT]. Thus the problem is only interesting when the eigenva
the Levi form at 0 have the same sign.

Our subject started around 1974 with the following ‘reflection :
ple’ due to Lewy [Lew] and, independently, Pinéuk [Pi2}:

Theorem 2.1. Let M and M’ be real-analytic hypersurfaces at t
gin in C™. Assume that f: M~ U M — C" is a map of class C! that i
morphic in M~ and f(M) C M’. If the derivative f'(0) is non-dege
and M’ is strongly pseudoconvex at 0, then f extends holomorphic
a neighborhood of the origin in C™. If M is also strongly pseudocon

0, then f'(0) Is necessarily non-degenerate.

We recall briefly the idea of the proof. The tangential C-R ope
on the hypersurface M play a very important role. These are co
vector flelds of type (0,1) that are tangent to M. Let r be a real-a:

real-valued defining function of M near the origin, i.e.,
M = {2 € C":r(z2,z) = 0},

where 7(0) = 0, dr £ 0. We may assume that 8r/8z,(0) # 0. Then w
take as the basic tangential C-R operators on M
0 or/0z; 0

=2 2 1<j<n-—l.
77 8%, Or/dz, 0%, =7 =

Suppose that r’ is a real-analytic defining function of the second |
surface M’'. Let 0 € M and f(0) = 0 € M’. Applying the L;’s
identity

r'(f(z),f(z)) =0, z €M,
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taln . — 1 additional identities on M:

Y (f(2), (f(2)) L f;(z) =0, ze€M1<s<n—-1.  (2.3)

Ve consider (2.2)-(2.3) as a system of n holomorphic equations in
1knowns (fy,..., fn). A simple calculation shows that its complex
lan with respect to f is nonvanishing at the origin, provided that the
orm of 7' is nondegenerate on T¢ M’ and f'(0) is injective on T¥ M.

g the system, we obtain a new set of identities

f: Q(?v Ll?v"-yanIT)’ (24)

Q is a holomorphic function in all arguments.
ecall that f is holomorphicin M ~. Fix a complex line I' C C™ trans-
to M. Its intersection with M is a real-analytic curve 7y that splits
ly in two half-lines y* = PN M+ and v~ = ' " M~. Since f|,
Is holomorphically to y~, its conjugate ?[7 extends holomorphically
By extending the real-analytic coefficients of L; from v to holomor-
unction on I' we can also extend the functions Lffh to y*. Thus
ght-hand side of (2.4) defines a holomorphic extension of f to y*.
:an be done uniformly on a family of parallel lines, so we obtain a
orphic extension of f across the origin. This proves Theorem 2.1.
" M’ is not strongly pseudoconvex at the origin, or if the derivative
s degenerate, the implicit function theorem does not apply. A natural
hen is to differentiate the equations (2.3) further with respect to the
sors Ly,
-eral authors, see the papers [Der, Han], and the papers cited below.

obtaining more and more equations. This idea was pursued

irse, the map f must be smooth to begin with.

'he result has been generalized to mappings between much wider
3 of hypersurfaces, and also to mappings between C-R manifolds of
* codimension in C™. The following outstanding global result follows
the independent works of Baouendi, Bell, and Rothschild [BaBR],
], Diederich and Forneess [DF5], and from Theorem 1.4 above:

Cheorem 2.2. Let D and D’ be bounded pseudoconvex domains
imooth real-analytic boundaries in C™. Then every proper holomor-
napping of D onto D’ extends to a proper holomorphic mapping from
hborhood of D onto a neighborhood of D
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The analytic part of this theorem is a consequence of more general [
extension results, obtained in the papers [DF5], [BaR1], [BaBR], [Bal
[BaBR4), that we shall now describe. Because of the larger number of
sults following the pioneering work of Lewy and Pinéuk we shall concents
on the most important contributions. We try to be as accurate as poss
with respect to credits and priorities, which seems a difficult task in
present case.

Essentially there have been two main lines of development; one
Webster [We2, We3|, Diederich and Webster [DW], and Diederich
Forness [DF5]; the other one by Baouendi, Jacobowitz, and Treves [Ba.
Baocuendi, Bell and Rothschild [BaBR], and Baouendi and Rothsc
[BaR1, BaR2, BaR4]. We should also mention a paper by Bedford
Pin¢uk [BP2].

We shall first deal with mappings of hypersurfaces, deferring the o
pings between C-R manifolds of higher codimension to the end of this
tion.

In the paper [We3], Webster showed how Theorem 2.1 can be prc
using the classical edge of the wedge theorem, at least when the hyper:
faces are strongly pseudoconvex. An important contribution of Web
in [We2] and [We3] is the introduction of the so called ‘Segre varieties
the mapping problem; see (2.5) below. Implicitly these varieties alre
appeared in the works of Lewy and Pincuk , but Webster made this m
more explicit.

An important step in extending the result to more general hyper:
faces was the paper [DW] by Diederich and Webster in 1980. They prc
that a biholomorphic mapping f: D — D’ between pseudoconvex dom,
with real-analytic boundaries, such that f and f~! are sufficiently smc
up to the boundary, extends holomorphically to every point z € bD\E ¢
side a real-analytic subset E C bD of real codimension at least two in
The technique developed in this paper was later improved by Diederich
Fornaess [DF5] in 1987, where they proved a rather general local exten:
result (see Theorem 2.3 below) that implies Theorem 2.2.

In the paper [DW], the authors recognized the importance of the ¢
dition of essential finiteness, see definition below. This terminology is
to Baouendi, Jacobowitz, and Treves [BaJT], who introduced the condi

in a slightly different but equivalent form in 1985.
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The paper by Baouendi, Jacobowitz, and Treves was an important
:ibution in the development of this theory. They showed in particular
if the hypersurface M is essentially finite and M’ is of finite type at
»rigin, then every smooth C-R diffeomorphism f: M — M’, f(0) = 0,
al-analytic near 0. The point is that they proved extendability of
mapping at every point where the two requirements are met. The
ors replaced the implicit function theorem by a more delicate method
stematic elimination of variables in a set of analytic equations. They
obtained results on extendability in the case of C-R manifolds of higher
nension. Their approach was developed further in the papers [BaBR]
[BaR1, BaR2, BaR4]. We shall return to the paper [BaJT] at the end
is section; see Theorem 2.8 below.

We shall now explain the main idea of the papers by Diederich and
ster [DW] and Diederich and Fornzss [DF5]. Suppose that, near the
n in C", the hypersurface M is defined by (2.1). If we set w = Z and
2 and w independently, we obtain a holomorphic function r{z,w) of
ariables. The set

M = {(z,w) € C*": r(z,w) = 0}

local complex hypersurface in C?", called the polar of M. It is the
slexification of the totally real submanifold {(z,z):z € M} C C?".
For each fixed w € C™ we define the Segre variety

Quw = {z € C™:r(z,w) = 0}. (2.5)

is a nonsingular local complex hypersurface near the origin in C", the
section of the polar M° with a hyperplane @ = constant. These hyper-
ices were apparently first introduced by Segre [Seg] in a different con-

Their importance in the mapping problem comes from the following
le observation, due to Webster [We2]. Let M’ = {z € C™:r/(2,Z) = 0}
nother real-analytic hypersurface, and let f: U — U’ be a holomorphic
ping between small neighborhoods of 0 in C™, satisfying f(M) C M’

f(0) = 0. This means that v*(f(z), f(z)) = 0 for z € M. Hence we
an identity

r’(f(z), f(z)) = p(z,i)r(z,i)
€ C" near 0, with p(z,Z) a real-analytic function. Setting Z = @ and
ing z and w independently we have an identity

T’(f(z), T(—w—)) - P(Z: E)T(Z, E)
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for z and w in a suitably smaller neighborhood of the origin in C™. If
fix w and let z € Q,, both sides of the identity are zero, so we concl
that f(z) € Q}(w). Here, Q.,. is the Segre variety associated to M'. T

shows that

f(Qu) is contained in Q}(w)

for all w € C™ near 0. The same is true if M’ C CV with N > n; f
was exploited in [Fo4]. If f is locally biholomorphic, we may apply
same argument to f~!, thus showing that the family of varieties {Q.,
invariantly attached to M.

Let A,, denote the fiber of the mapping w — Qy:

Ay ={z€C™Q, = Qu} (¢

This 1s also a local complex variety in C™. We list some elementary
important properties of these sets (see [DW] or [DF5]):

(a) z € Qy if and only if w € Q,,

(b) z€ @Q, ifand only if z € M,

(c) z € Ay,

(d) if z € M, then 4, is a complex subvariety of M, and

(e) Ay ={Q:1z2€ Qu}.

Suppose now that f is holomorphic only in one side M~ of the hyj
surface and smooth on M~ U M. If w € Mt is close to 0, then Q, N I
is a nonempty complex hypersurface, so we can try to find a point w' €
such that

C

f(Qu) C Qyr (¢

If such a w’ exists and is unique, it is natural to set f(w) = w’ and h
that this would give a desired holomorphic extension of f.

There are several problems. To show that there exists at least one pc¢
w’ satisfying (2.7) we must use the condition that f is smooth on M~ L
and maps M to M’. The condition (2.7) makes no sense for points w €
since Q,, may then be contained in M+ U {w}. However, in actual pr
(2.7) is replaced by a differential condition involving the Taylor coefficie
of the Segre varieties and the mapping which makes sense also for w €

A more serious problem is related to the fact that the mapping w €
need not be one-to-one. It turns out that it is sufficient to require that t
mapping be finite-to-one. The importance of this condition was first rec
nized by Diederich and Webster [DW]. In a slightly different but equival
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it was introduced and given a name by Baouendi, Jacobowitz, and

es [BaJT]:

Definition. A smooth real-analytic hypersurface M C C™ is said to
isentially finite at 0 € M if the subvariety

Ao ={2€C™:Q. =Qo} =U{Q.:2 € Qo}
" is equal to {0} (in the sense of germs at the origin).

Before proceeding, we collect some observations about this property
[DW] and [BaJT]).

If M does not contain any positive dimensional complex subvariety,
then it is essentially finite. (This is trivial since V is a complex subva-
riety of M.)

From 1. and a result of Diederich and Forness [DF1] it follows that
every compact real-analytic hypersurface in C™ is essentially finite at
each point.

If M contains a germ of a complex hypersurface through the point 0,
then M is not essentially finite.

If a real-analytic hypersurface M is essentially finite, then it is of fi-
nite type in the sense of Bloom and Graham [BIG]. (This is in fact a
restatement of 3.)

The real hypersurface M C C? defined by

Rw = |211® + |z122]* + |22)?(2] +2})

is pseudoconvex in a neighborhood of the origin, and it is essentially
finite even though it contains the complex line 2; = w = 0.

The assumption that M is essentially finite at 0 implies that dim A,
for all z close to the origin. Hence, for each w, there will be at most
ly many points w’ satisfying (2.7). It turns out that the set

X ={(wvw)we M f(QuO M )CQ.,},

ized suitably near the origin, is an n-dimensional complex subvariety
n that is a branched covering over M *.
If M is essentially finite at 0, then it can not contain a germ of a

slex hypersurface at 0 according to the property 3 above. Hence we may
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assume, according to a result of Baouendi and Treves [BaT] and Trepreat
[Tre], that all holomorphic functions on M* extend holomorphically to &
full neighborhood of the origin (otherwise M ~ has this property and we car
simply extend f across 0). By extending the canonical defining functions o
the analytic cover X — M we can extend X to a complex n-dimensiona
subvariety in a full neighborhood of the origin in C?". This extensior

contains the graph
Ty = {(2 f(2))iz € M~ UM}

of f. Hence each component of f satisfies an identity P;(f;;2) = 0, wher
P;(t; z) is a Weierstrass polynomial in ¢. Since f; is C* on M, it follow
from the Artin-Rees lemma that fps is real-analytic at 0.

This outline can be used to prove the following local extension result
due to Diederich and Forness [DF5] and, independently and simultaneously
to Baouendi and Rothschild [BaR1] (see also [BaBR] for the case n = 2)
Let z = {21,..., 2z,) be the coordinates in C™.

Theorem 2.3. Let M, M’ C C™ be smooth real-analytic hypersur
faces at the origin, with tangent space Rz, = 0 at 0. Assume that M
is essentially finite at the origin. If f = (f1,...,fn) is a smooth map
ping on M~ UM that is holomorphic in M~ and satisfies the condition
f(M) C M, f(0) =0, and 8f,(0)/02, # 0, then f extends holomorphi
cally to a neighborhood of 0 in C™.

Actually, both papers [BaR1] and [DF5] give a similar result unde
somewhat weaker hypotheses, but they do get more technical. We refer th
interested reader to the original papers. In the case when f: M — M’ 1
a smooth local C-R diffeomorphism at 0, Theorem 2.3 was also proved b
Bedford and Pin¢uk [BP2].

The transversality condition 8f,(0)/0z, is satisfied when M and M
are pseudoconvex and f maps the pseudoconvex side of M to the pseudo
convex side of M’ [Fn2]. Since every compact real-analytic hypersurface i1
C™ is essentially finite, Theorems 1.4 and 2.3 imply Theorem 2.2 above.

In the subsequent paper [BaR4], Baouendi and Rothschild have ob
tained a sharper local result on holomorphic extendability (see Theorem |
in (BaR4]). With the appropriate choice of local holomorphic coordinate
it suffices to require that M is essentially finite and the transverse com

ponent f, of the given smooth C-R mapping f: M — M’ is not flat at 0
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: conclusion then is that f|u is real-analytic at 0. They also proved
:ndability under the asssumption that M’ is essentially finite at 0 and
mapping f is either of finite multiplicily or else it is not totally de-
erate at 0; we refer the reader to [BaR4] for the definitions and precise
nulation. The first of these two cases falls under the scope of Theorem

Namely, if M’ is essentially finite, then it is of finite type in the sense
3loom and Graham. If, in addition, f is of finite multiplicity at 0, it
>ws that the transverse component f,, satisfies 3f,(0)/8z, # 0 [BaR4,
rorem 1], and also that M is essentially finite [BaR1]. Thus Theorem
applies.

In the case when both M and M’ are Levi nondegenerate, it suffices
1se the first order information carried by Q.,, i.e., the tangent space
)w at a point z € Q. The mapping (2, 7;Qw) — (w, T Q;) is an anti-
>morphic reflection that fixes the totally real manifold {(z,T;M):z €

Using these reflections one can reduce the extension problem to
edge-of-the-wedge theorem. (See Webster [We3].) We explained this
hod in connection with the result of Pinéuk and Hasanov (Theorem 1.7
ve).

The results that we have mentioned so far are not sharp, in the sense
t they only give sufficient conditions for extendability that are, generally
aking, not necessary. Baouendi and Rothschild [BaR2] have obtained a
ticularly beautiful sharp result in C? that we shall now describe.

Let M be a smooth real-analytic hypersurface at the origin in C2. If
4~ — C?1is a holomorphic mapping that extends smoothly to M~ UM,
shall say, following [BaR2], that f is not totally degenerate at O if its
obian determinant det(8f;/8z:) is not flat at 0, i.e., its Taylor series
) does not vanish identically. We say that a real-analytic hypersurface
has the reflection property at 0 if any holomorphic mapping defined on
side of M as above and not totally degenerate at 0, mapping M into
ther real-analytic hypersurface M’ C C?, extends holomorphically to a
neighborhood of 0 in C%. The main result of [BaR2] is

Theorem 2.4. A real-analytic hypersurface M C C? has the re-
tion property at 0 if and only if M is not locally biholomorphically
ivalent to the hypersurface {Sz; = 0}.

We have seen above that the hypersurface {Sz; = 0} does not have
reflection property. Also, if M is any hypersurface in C? on which
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there is a smooth C-R function g which extends holomorphically only t
M, then the mapping f = (g,0) is a totally degenerate mapping fron
M to M’ = {Sz; = 0} which does not extend holomorphically in an;
neighborhood of 0. (This example is taken from [BaR2]). Hence Theoren
2.4 1s optimal.

Recall that a bounded domain D C C" is said to be algebraic if ther
exists a real polynomial #(z,Z) on C™ such that D is a connected componen
of the set {z € C":r(2,Z) < 0} and dr(z) # 0 for z € bD. Using th
Q. varieties, Webster proved [We2] that biholomorphic mappings betwee:
strongly pseudoconvex algebraic domainsin C™ are algebraic, i.e., the grapl
of the mapping is contained in an n-dimensional algebraic subvariety X ¢
C?". Recently, Diederich and Fornzss [DF6] proved the following result

concerning mappings of algebraic domains.

Theorem 2.5. Let D, D' CC C? be algebraic domains and f: D —
D’ a biholomorphic mapping. Then f extends holomorphically to a neigh

borhood of D.

Theorem 2.6. Every proper holomorphic mapping f: D — D’ be
tween algebraic domains D, D' CC C™ extends continuously to D.

There is an older result, due to Diederich and Fornass [DF3], for mag

pings of non-pseudoconvex domains in C2.

Theorem 2.7. Let Dy, D, C C? be bounded domains with smoot.
real-analytic boundaries. Assume that the set of strongly pseudoconve:
boundary points of D; is separated from the set of strongly pseudoconcav
boundary points by a real-analytic, totally real submanifold M; C &D
for 7 = 1,2. Then every biholomorphic mapping f: Dy — D, extend

continuously to Dj.

It follows that f extends holomorphically to a neighborhood of D,
Since f clearly maps M) into M, the extendability of f at points of M
follows from the edge-of-the-wedge theorem.

We now return to the paper [BalT| by Baouendi, Jacobowitz, an
Treves, where the authors considered the analyticity of smooth C-R dif

feomoprhisms between generic real-analytic C-R manifolds in C™. Such .
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anifold M is given locally by a set of real equations
r1(z,2) = 0,...74(2,2) = 0, (2.8)

here each r; is real-analytic in a neighborhood of the origin, and dry A
. A drqg # 0. Everything should be understood in the sense of germs at
e origin. Write n = m + d; then we have dimM = 2m 4 d and CR
mM = m. As before we define the polar of M by

M° = {(z,w) € C*™:rj(z,w) = 0,1 < j < d},

id for each fixed w € C™ we define a local complex submanifold of C™ of

mplex dimension n — d by
Quw = {(z,w) € C*:7rj(z,w) = 0,1 < j < d}.
1st as before we pose the following

Definition. (See[BalT].) A generic real-analytic C-R manifold M C
™ is said to be essentially finite at 0 € M if the subvariety V = N{@,:z €
o} of M is equal to {0} (in the sense of germs at the origin).

Let A C R? be a non-empty open convex cone with vertex 0 in R¢.
1ppose that M is given by (2.8). We define a wedge W(A) C C™ with
lge M by

Sw — ¢(z,z, Rw) € A.

s usual we think of W(A) as a germ of a domain at the origin.

The main result of the paper [BaJT] is:

Theorem 2.8. Suppose that M and M’ are real-analytic generic C-
submanifolds at the origin in C™ of C-R dimension m > 0, satisfying the
llowing two conditions:

1) There is a nonempty open convex cone I' C R? such that every C-R
function on M extends (in the sense of distributions) to a holomorphic
function in a wedge W(A) with edge M,

3) M’ is essentially finite at 0.

Then every C*®-smooth C-R diffeomorphism f: M — M’ with f(0) = 0
real-analytic at 0 (and therefore it extends holomorphically to a neigh-

srhood of 0).
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There are several known results on holomorphic extension of C-R func
tions to wedges; see the papers [BaCT, BaR3]. We mention an interestin,
and strong result of Tumanov [Tuml].

Definition. A generic C-R manifold M C C" is called minimal a
the point z € M if there exists no C-R manifold N C M, pasing throug.

z, of smaller dimension than M, but of the same C-R dimension.

Tumanov proved that at every point z € M at which M is minima
all C-R functions on M can be extended to some wedge with edge on M
If M is a hypersurface in C", then it is minimal when it does not contain .
complex subvariety of maximal dimension n — 1. In this case the result ¢
Tumanov is just the one-sided extension theorem of Baouendi and Treve
[BaT] and Trépreau [Tre]. The result of Tumanov, together with Theoren
2.8, implies

Corollary 2.9. Let M and M’ be generic real-analytic C-R manifola
at the origin in C"™. If M is minimal at 0 and M’ is essentially finite a
0, then every smooth C-R diffeomorphism f: M — M' with f(0) = 0 i

real-analytic at 0.

On Levi-nondegenerate C-R manifolds the result of Theorem 2.8 hold
if f is merely of class C!, see [BaJT]. In this case the same result was prove:
earlier by Webster [We6]. On hypersurfaces, Theorem 2.3 above is stronge
than Theorem 2.8 where the mapping is assumed to be non-branched. A:
alternative proof of Theorem 2.8 for hypersurfaces was given by Bedfor
and Pinéuk [BP2].

We conclude the section by mentioning some open problems.

1. One of the assumptions in Theorem 2.4 is that the mapping f is no

totally degenerate. Suppose that the real-analytic hypersurfaces M

M’ C C™ are not biholomorphically equivalent to &z, = 0. If f: M —

M’ is a smooth C-R mapping that is totally degenerate at 0, does i

follow that f is constant?

2. Find necessary and sufficient conditions for extendability of holomo:

phic mappings in dimension n > 2 (see Theorem 2.4 for n = 2).

3. In a typical extension result one first uses one set of ideas to prov
that the mapping is smooth on the boundary and another set of idea
to prove that it extends across the boundary. It would be more sat
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sfactory to be able to go from the small initial amount of regularity
lirectly to holomorphic extension. On strongly pseudoconvex hyper-
irfaces the methods of Lempert [Le4], Pin¢uk and Hasanov [PH] and
forstneric¢ (Fo6] are of this kind. Also, Bell proved [Be2] that the holo-
norphic extendability of a mapping f: D — D’ between pseudoconvex
-eal-analytic domains in C™ follows from the global analytic hypoel-
ipticity of the 8-Neumann problem for D, which is known to hold on
itrongly pseudoconvex domains. It seems that there is so far no suc-
:essful approach of this kind for arbitrary pseudoconvex real-analytic
lomains in C™.

Suppose that f1M — M’ is a C-R homeomorphism of generic real-
walytic C-R manifolds in C*, f(0) = 0. If both M and M’ are
ninimal at 0 (in the sense of Tumanov [Tu]), is f real-analytic at
)? This problem seems to be open even on Levi non-degenerate C-R
nanifolds (see [Fo7]).

3. Mappings of Special Domains

Jne of the most special domains in C™ is certainly the unit ball:
n
B"={zeC™z|* = Z ;% < 1}.
i=1
1 that the automorphism group of B™ is generated by the unitary
» U(n), together with the involutions

a— P,z - 3,Q,z
1~ (z,a) '

$a(2) =
2 {z,w) = E?zl 2jW;, P,z = é—:—z)la, Quz =z — Pz, and s, = (1 —
/2. See Rudin [Ru2].
t follows that the group Aut B™ acts transitively on the ball. Con-
ly, when n > 1, B™ is the only bounded, strongly pseudoconvex do-
in C™ with a transitive group of automorphisms, according to Wong
g] and Rosay [Rol]. See also [Ru2, p. 327].
We now consider the proper holomorphic maps of B™ onto itself. When
,, such maps are precisely the finite Blaschke products [Rul, p.164]:

m

2 —a
F(Z):He””{——a%z, 6, €R,aq; € BLmeZ,.
j=1 -
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Thus the space of proper holomorphic maps B! — B! is infinite dime
sional, and every such map is rational.

The situation is quite different for n > 1. It is much more difficult
a domain D C C” with n > 1 to admit proper self-mappings that are n
automorphisms. The first evidence of this was the following theorem, d:

to Alexander [All]:

Theorem 3.1. If n > 1 and f:B™ — B™ is a proper holomorplk
mapping, then f is an automorphism of B™.

An elementary proof of this theorem can be found in Rudin’s boc
[Ru2, p.316]. The theorem can be reduced to the following local result (s
[Ru2, p. 311]):

Theorem 3.2. Let n > 1. Suppose that Q; is an open subset of E
(7 = 1,2) whose boundary bQ}; contains an open subset I'; of bB™, a
suppose that f is a biholomorphic map of {1, onto (3.

If there is a sequence {ai} in {1, converging to a point a € I'y which
not a limit point of B™ N b§);, such that the sequence by = f(ay) converg
to a point b € 'y which is not a limit point of B™ N b2, then f extends

an automorphism of B™.

The best result in this direction is due to Pincuk and Tsyganov [P
see Corollary 1.9 above.

It is worth mentioning the history of this problem. In 1907 Poinca
[Po] proved the following result for n = 2: Let U be an open ball centerc
at a point a € bB™ and let f:U — V C C™ be a biholomorphic map th
takes 8B NU to 8B™"NV. Then f extends to an automorphism of B™. Th
was proved for arbitrary n > 1in 1962 by Tanaka [Ta] who was apparent
not aware of Poincaré’s work. The same result was rediscovered by Pell
[Pe] and Alexander [All].

Subsequently Alexander [Al2] proved Theorem 3.1 using the fact th
the map f extends smoothly to B™ according to a theorem of Fefferm:
(Theorem 1.2). Pinéuk reduced the smoothness requirement C! [Pi2]. T!
proof of Theorem 3.2 given in Rudin’s book [Ru2] avoids Fefferman’s th
orem and is rather elementary. Finally Piné¢uk and Tsyganov proved
[PT] that every nonconstant local continuous C-R mapping of bB™ to itst
extends to an automorphism of B™ (Corollary 1.9).
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Alexander’s theorem has been extended to several classes of domains.
:rich and Fornass proved in [DF7] that every proper holomorphic map-
from a smoothly bounded, strongly pseudoconvex domain in C™ onto
rer smoothly bounded domain in C" is locally biholomorphic, hence a
norphic covering projection. If the target is simply connected, the map
olomorphic. Thus, if D CC C™ is strongly pseudoconvex and simply
scted, then every proper self-map of D is an automorphism. Also, ev-
rroper holomorphic self-mapping of a bounded pseudoconvex domain
" with smooth real-analytic boundary is an automorphism according
:dford and Bell [BB2]. It is an open problem whether the same holds
nooth bounded domains of finite type in C™. In this direction, Pan

proved that every proper holomorphic self-map of a pseudoconvex
1ardt domain D ¢ C™(n > 1), such that the Levi determinant of D
not vansh identically on 4D, is an automorphism of D. He proved the

result for certain special pseudoconvex domains that are not of finite

n a different direction, Henkin and Novikov [HN] and Henkin and
anov [TH1, TH2, Tum?2] proved the same result for all classical Cartan
uns, as well as for a wide class of Siegel domains of the second kind.

hall state only a special case of these results:

heorem 3.3. Let D C C™(n > 1) be an irreducible bounded symmet-
»main (in the sense of E. Cartan; see Piatetsky-Shapiro [Pia]). Then

- proper holomorphic map f: D — D is an automorphism of D.

Next we consider mappings between bounded circular domains D, D' €
Recall that a domain D is circular if it is invariant under the rotation

= €'’z for all § € R. The following classical result is due to H. Cartan

1

heorem 3.4. If f: D — D’ is a bitholomorphic mapping of bounded
lar domains in C™ containing the origin, and if f(0) = 0, then f is a
r mapping.

This result has been generalized to proper holomorphic mappings by
Be§].

Theorem 3.5. Suppose that D and )’ are bounded circular domains

1

which contain the origin. If f: D — D’ is a proper holomorphic
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mapping such that f(0) = 0, then f must be algebraic. If we furth
assume that f~1(0) = {0}, then f is a polynomial mapping.

Al
J

Recall that a mapping is algebraic if its graph ' = {(z, w):w = f(z
is an algebraic variety, i.e., it is defined by polynomial equations. Be
first proved this result in the papers [Be3] and [Be4] using the Bergme
kernel function. In [Be4] he also proved that every proper holomorph
correspondence f of D onto D' satisfying f~!(0) = {0} is algebraic. Tt
proof given in [Be6] is elementary; it does not involve the behavior of
near the boundary or the properties of the Bergman kernel.

Next we consider the mappings between bounded Reinhardt domain
For each a € C™ we denote by T,: C* — C" the linear map T,z
(@121,...,8n2,). A domain D C C" is called a Reinhardt domain
T,(D) = D for each a = (a1, ...,a,) with |a;| = 1 for 1 < j < n.

Recently Shimura [Shi] solved the equivalence problem for arbitrai
bounded Reinhardt domain. A similar result was obtained independent!
by Barrett [Ba3] under an additional but rather weak hypothesis on t}

two domains.

Theorem 3.6. ([Shi], Theorem 1, page 131.) If two bounded Rei.
hardt domains D, D' in C™ are biholomorphically equivalent, then the
exists a biholomorphic mapping f: D — D' of the form

fi(z) = biz{™ .oz, 1 <1< m, (3.

where b; € C\{0} for:=1,...,n and A = (ai;) € GL(n,Z). Moreover,
we assume in addition that D and D’ contain the origin, then there exis
a biholomorphic map D — D' of the form z; — TiZg(i) where r; >

1< i< n, and ¢ is a permutation of the indices.

The last result when both domains contain the origin has been prove
before by Sunada [Sun]. For n = 2 the result goes back to Thullen [Thu]

While the approach by Barrett is analytic (he studied the Bergman ke
nel function), the approach by Shimizu is algebraic. Denote by T(D) tl
subgroup of the holomorphic automorphism group Aut(D) consisting of &
maps Ta,a = (a1,...,an),|a;] = 1 for 1 < j < n. The most important ste
in the proof of Shimizu is to show that T(D) is a maximal torus in the co
nected component G(D) of Aut(D) containing the identity map. If f: D -
D' is a biholomorphic map, then the set T(D’) = {foT,of 1: T, € T(D)}
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ther maximal torus in G(D’). By the conjugacy theorem of Hochschild,
maximal tori 7(D’) and T(D') in the connected Lie group G(D') are
jugate, i.e., there is an automorphism g € G(D’) such that ¢7(D')g~ ! =
)"). Hence we have g(fT(D)f~')g~! = (¢f)T(D)(¢9f)~! = T(D'). This
lies that the map gf: D — D’ takes the tori {T,z:|a1|=---la,| = 1in
nto tori in D’. Shimizu proved that such a map has to be algebraic of
form given in Theorem 3.6 above.

Shimizu obtained further results on the automorphism group of bound-
teinhardt domains D C (C*)™. The logarithmic image of such a domain

1e set
log(D) = {(~log|z1],...— log|z.|): 2 € D} C R".

: second main result of [Shi] (page 136, Theorem 2) is

Theorem 3.7. If D is a Reinhardt domain in (C*)™ whose logarith-
image has the convex hull containing no complete straight lines, then
y automorphism in the connected component of the identity is of the
n(z1,...,2n) — (@121,...,6n2n) where |a;] = 1 for 1 < j < n. It

>ws that every automorphism of D is of the form (3.1), with |b;| = 1.

A description of the automorphism group of certain Kobayashi hy-
solic Reinhardt domains has been obtained independently by Kruzhilin
1}. For instance, if such a domain does not intersect the coordinate
erplanes, then all its automorphisms have the form (3.1), with |6;] = 1.
: [Kru], Theorem 2 and its Corollary.)

The paper by Shimizu [Shi] containing several further results on the
>morphism group of two-dimensional Reinhardt domains.

The classification of proper holomorphic mappings between Reinhardt
1ains will necessarily be more complicated. For instance, we can map
annulus in C properly onto the disc.

Barrett proved in [Ba3] the following extension result for proper holo-
‘phic mappings of Reinhardt domains.

Theorem 3.8. Let f: D — D’ be a proper holomorphic mapping of
nded Reinhardt domains in C™. Suppose that there Is an integer k,0 <
n, such that DN {z; = 0} #0 forj=1,...,k, and DN {z; = 0} = 0
j=k+1,...,n. Then f extends holomorphically to a neighborhood of
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Denote the integer k in the formulation of the last theorem by k(i
Clearly, k(D) = 0 means that D is contained in (C*)". For such doma
we have the following rigidity result due to Bedford {Bed2}:

Theorem 3.9. Every bounded Reinhardt domain D C (C*)" is rj
in the sense of Cartan: If f: D — D is a holomorphic mapping such tl
the induced map f,: H1(D,R) — H,{D, R) on the first homology group

D is non-singular, then f is an automorphism of D.

Bedford also introduced a metric on H1{D, R) such that every ho
morphic mapping f: D — D’ of bounded Reinhardt domains D, D' C (C*
for which f, is an isometry of the form f(z) = (c12™*,...,c2%").

Landucci {Lan] and Dini and Primicerio [DP] have obtained results

mappings between Reinhardt domains of the form
Ta(a) = {(z1, .-, 20) € C™: 21?2 + 25277 + ..+ |2a]*% < 1},

where a = (a1,...,an) € R}, If all o; equal 1, we have the unit b:
Otherwise ¥,(a) is a weakly pseudoconvex Reinhardt domain that ¢
be mapped properly onto the ball B® by the mapping (z1,...,2xa)

ay a
(27, ..., 25

). These domains are usually called generalized ellipsoids. 1
following theorem was proved by Landucci [Lan] in the case when «; € Z

and was generalized to o; € Ry by Dini and Primicerio [DP3]:

Theorem 3.10. There exisis a proper holomorphic mapping f: £,
— £,(B) if and only if after a permutation of Indices o;/f; = h; € N.

Moreover, if the o’s and (3’s are integers, then every such mapping
equivalent up to reordering of indices and an automorphism of £,(8),
the map

(21, oy 20) — (202, ..., 20, (3

Dini and Primicerio [DP4] have extended this result to proper ho
morphic mappings f: R — D, where R is a Reinhardt domain and D
a smoothly bounded strongly pseudoconvex domain in C*, n > 1. 1
conclusion then is that, up to an automorphism of I, f is equivalent to t
mapping (3.2).

In [DP3] and [DP4] there are also results on factorization of proj
mappings by groups of automorphisms, similar to that of Rudin [Ru3]
mappings from the ball.
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‘he last theorem is partly contained in the more general result of
rd [Bed3, Theorem 3].

n the papers [DP1] and [DP2] Dini and Primicerio characterized the
ardt domains D C C™ that admit a proper holomorphic mapping

1 generalized ellipsoid.

heorem 3.11. Let D be a Reinhardt domain in C™ containing the
. If there exists a proper holomorphic mapping f: D — %,(a), then
also exists a proper polynomial mapping of D onto ¥,(a). If D
teinhardt domain in C™ and f: D — X,(«) is a proper polynomial
ing, then there are a € {C*)” and 8 € N™ such that D = T,(Z.(08)).

lere, To(21,-..,2n) — (121,...,8n2,). From Theorem 3.10 it then
s that G; /a; € N.

wnother special class of domains that have been classified up to biholo-
aic mappings are the real ellipsoids; see the paper by Webster [We2].
: same paper Webster found sufficient conditions on two algebraic real

surfaces in C” that force every biholomorphic mapping between the

ypersurfaces to be birational.

n [La2] Landucci treated the proper holomorphic mappings in certain

of bounded pseudoconvex Reinhardt domains with center 0 that lies
boundary of these domains, and the boundaries are not smoth at 0.

lobal condition R is not satisfied, but the mappings are nevertheless

way from 0.

'inally we mention a result of Boas and Straube [BS1} on mappings of

lete Hartogs domains in C2.

et to(2',2,) = (2',@z,) for @ € C. Recall that a domain D C C™ is
a Hartogs domain with respect to the variable z, if T,(D) C D for

| = 1. A domain is complete Hartogs if To(D) C D for all |a] < 1,
is of the form D = {|z.| < h(z1,...,2,-1)}.

loas and Straube proved in [BS1] that on smooth, bounded, complete
gs domains in C2%, the Bergman projection exactly preserves the dif-

iability of the functions as measured by Sobolev norms. This implies

T'heorem 3.12. Every biholomorphic mapping between smooth
led complete (not necessarily) pseudoconvex) Hartogs domains in C?

ds smoothly to the boundaries. If the boundaries are real-analytic,
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then the mapping extends holomorphically to a neighborhood

sure.

The correspondent problem seems open in dimensions n >

4. Existence of Proper Holomorphic Mappings into

It is well-known that each pseudoconvex domain D C C™
generally, each Stein manifold D admits proper holomorphic
f:D — C"*! and proper holomorphic embeddings f: D — (
[Ho2]).

The existence of such mappings into bounded domains in C*
more delicate problem. An obvious necessary condition is that
plenty of bounded holomorphic functions. However, the unit po
C C™ for n > 1 can not be mapped properly into any ball 1
or, more generally, into any bounded domain 2 C C¥ on w
boundary point p € bQ is a local peak point [Ru2, p. 306].
even a quantitative explanation for the non-existence of proper
f: A" — B¥; see [Ru2, p. 308], [Al3], and [Le2].

Suppose now that D C C™ is a bounded, strongly pseudox
main with C* boundary for some k > 2. When n = 1, Stout
[Sto] that there is a proper holomophic embedding f: D — B?,
class C*~% on D, such that the components of f have constant n
bD. There also exist proper holomorphic mappings f: D — B?
properties.

From now on we shall assume that n > 1. By a well-known
Fornass [Fn1] and Henkin [HC] there is a proper holomorphic «
f: D — Q into a strongly convex domain  C C¥ with C* boun
that f is holomorphic in a neighborhood of D and is transverse f
integer N is large and depends on D.

A question arises whether a similar result could hold if we
§ be some special domain, say the unit ball BY ¢ C¥ for som
also insist that f is holomorphic on D, then the boundary of .
real-analytic since it is defined by the analytic equation Y |f;(2
bD is smooth of class C*, it would be natural to require that f
C*(D) for some s < k.

In this and the next section we shall describe the present s
knowledge on the following questions:
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Which domains D C C™ admit proper holomorphic mappings (embed-
dings) f: D — B¥? How large must N be in terms of D and n?

How smooth can such mappings be on D?

Do there exist proper holomorphic mappings f: D — B¥ with ‘wild’
boundary behavior?

Suppose that D is real-analytic and f is somewhat smooth on D.
Does this imply that f extends holomorphically across bD?

The first positive evidence for the existence of proper mappings of
1gly pseudoconvex domains into balls was given by Lempert [Lel] in

“heorem 4.1. If D C C" is a bounded, strongly pseudoconvex domain

C? boundary, there exists a sequence of functions {f;}, each of them
morphic and nonconstant in a neighborhood of D, such that the series
115 (2)|? converges for all z € D and equals 1 for z € bD.

Thus, f = (f1,f2,...): D — £3(C) is a holomorphic mapping of D

the complex Hilbert space £3(C) of all square-convergent complex se-

ces, such that bD is mapped to the unit sphere.

In his recent paper [Le6) Lempert proved that for strongly pseudocon-

lomains D CC C™ with real-analytic boundary we can find a sequence

as above such that the series i |f;(2)|? is locally uniformly convergent
=1

3
n open neighborhood of D. In other words, we can find C-R embed-

s of every compact strongly pseudoconvex real-analytic hypersurface
- C™ into the unit sphere of the Hilbert space £;(C).

Around 1984 it was shown by Faran (unpublished) and, independently,
orstneri¢ [Fol] that the analogue of the convex embedding theorem of
@ss and Henkin, with @ being the unit ball of any finite dimensional

olex space, fails:

“heorem 4.2. For each n > 1 there exist bounded strongly pseudo-
ex domains D in C™ with smooth real-analytic boundaries such that
roper holomorphic mapping f: D — B¥ for any N extends to a C®
on D.

The set of domains satisfying the conclusion of this theorem is of the
1d category in the natural topology on the space of domains. There

formal obstructions for the existence of local holomorphic embeddings
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of real-analytic hypersurfaces into spheres of any dimension. The main i
of the proof is similar to the heuristic argument of Poincaré [Po] for
existence of local biholomorphic invariants of hypersurfaces in C™ forn :

These methods did not shed any light on question (1). The bre
through came in 1984 when Lgw proved that the unit ball can be emt
ded as a closed complex subvariety of a high-dimensional polydisc [Lg
In fact, his method applies to every bounded strongly pseudoconvex
main instead of ball. Lgw’s technique was inspired by the constructior
inner functions developed by Hakim and Sibony [HS] and Lgw [Lgwl]
modification of his method also gives embeddings of bounded strongly p:
doconvex domains D C C™ into balls (Forstneri¢ [Fol] and Lgw [Lgw
Similar results have been obtained independently by Aleksandrov [Ale].

summarize, we have

Theorem 4.3. Let D be a bounded, strongly pseudoconvex don
with C? boundary in C*. There are integers N1 and Ny such that
(a) For each N > N there exist proper holomorphic embeddings f: L
B”. Some of these embeddings extend continuously to D, but tl
also exist embeddings that are not continuous at bD.
(b) For each N > N, there exist proper holomorphic embeddings
f:D - AN,

In fact, if N is sufficiently large, there are plenty of proper m
f:D — BY in the sense that every holomorphic mapping ¢: D —
with sup,eplg(z)] < 1 can be approximated, uniformly on compacts in
by proper holomorphic maps f: D — B¥ [Lgw3].

The proof of Theorem 4.3 is based on a constructive procedure fo
by Lgw [Lgw2]. It also resembles the construction of inner functions
strongly pseudoconvex domains due to Hakim and Sibony [HS] and 1
[Lowl].

We consider the case when the target is BY. Starting with a holon
phic map f = f°: D — B¥, smooth on D, one constructs a sequenc
maps f¥: D — B¥, converging uniformly on D, such that limy_, o |f*(
= 1for z € D. The limit map f = lim;_. o f* is continuous on D, holon
phic on D, and it maps D properly to BY. At each step of the proced
we add to f* a correction term g* to obtain the next map f¥*! = f* +
Each correction term is a combination of holomorphic peak functions t

are smooth on D, chosen in such a way that the infimum inf,¢,p|f*
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ises sufficiently fast towards one, while at the same time the sequence
rrections g¥(z) is uniformly convergent on D. The main idea is to
e the correction term g*(z) to be orthogonal to the vector f*(z) for
point z in a discrete subset of the sphere bB™. Moreover, for nearby
s of the given discrete set the vectors g* at these points are approxi-
ly orthogonal to each other. In this way we assure that the norm of
1apping increases in a controlled way at each step.

\ similar construction gives proper maps into polydiscs; this time we
to push the maximal value of the components max; <;<a(sup,¢p

I]) towards 1.

Jsing this technique Lgw proved the following, somewhat more general
. [Lgw3]:

heorem 4.4. Let DC C™ be a bounded, strongly pseudoconvex do-
with C? boundary. Then for all sufficiently large m the following holds.
s a continuous positive function on bD, f:bD — C™ is a continuous
sing satisfying | f(z)| < ¢(z) for each z € bD, K is a compact subset of
d € > 0, there exists a continuous mapping ¢: D — C™, holomorphic
such that

[f(z) + g(2)] = d(2) for z2€bD; |g(z)]<e for z€ K.

mapping g can be chosen to vanish to any prescribed order at an
or point of D.

Jsing the above theorem we can construct proper holomorphic embed-
into balls that do not extend continuously to the boundary. We choose
>morphic map h: B™ — C? which does not extend continuously to ﬁn,
'hose norm |h(2)| extends continously to B” and satisfies |h(2)] < 1 for
= B". If we apply Theorem 4.4 with f = 0 and #(2) = (1—|h(2)}})V/?,
1d a map g: B" — C™ such that F = (k,g): B® — BP*™ is proper
rorphic. Clearly F does not extend continously to B'. If his a
o-one holomorphic immersion, then F' is an embedding. Thus Theo-
t.4 implies the following corollary which was proved independently by
neri¢ [Fol].

orollary 4.5. If N is sufliciently large (depending on n), then there
proper holomorphic embeddings F: B™ — B which do not extend

nuously to B".
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This is in sharp contrast with the results on smooth extension of prop
holomorphic mappings between domains in C".
The technique of Lgw was used by Globevnik [Glo] to prove the fc

lowing interpolation result for proper holomorphic mappings.

Theorem 4.6. Letn > 1. There is an integer N(n) such that for eve
N > N(n) the following holds: Let K C bB™ be an interpolation set {
the algebra A(B™). Then every continuous mapping f: K — bB¥ has
continuous extension f: B — B which is holomorphic on B™ and satisfi
f(bB™) C bBY.

We can choose the interpolation set KX C bB™ such that there exists
continuous surjection g: K — bB¥. Extending g as above one obtains t]
following result [Glo]:

Corollary 4.7. Let n > 1. For every N > N(n) there is a continuo
map g:ﬁn — EN that is holomorphic in B™ and satisfies g(bB™) = bBY

The corollary shows that proper holomorphic maps into higher dime
sional domains may have a very large boundary cluster set, even when ths
extend continuously to the boundary. In particular, there ezist non-ration
proper holomorphic maps between balls of different dimensions.

In the above results, the dimension N is large compared to n, and
depends on D. New ideas were introduced to this problem by B. Stensgn
[Ste]. By a very careful refinement of Lgw’s technique, she proved

Theorem 4.8. Let D be a bounded, strongly pseudoconvex doma
with C* boundary in C™. Then there exist proper holomorphic mappin,
f: D — A™*1 into the (n + 1)- dimensional polydisc.

The key improvement due to Stensgnes is the use of very careful
selected holomorphic peaking functions in D that are smooth on D. T
analogous result for ball as the target domain was proved by Dor [Dor

and, independently, by Hakim [Ha}:

Theorem 4.9. Let D be as in Theorem 4.8. Then there exist prop
holomorphic mappings f: D — B™t! that extend continuously to D. Als
for each n there exist proper holomorphic mappings from B™ to B**1 th
are not rational.
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Ne shall see in section 5 below that rational proper maps of B” to BY
affine complex hyperplanes in C™ to affine hyperplanes in CV. Dor
lakim constructed proper mappings f: B — B™*! that do not have
sroperty. According to Theorem 5.1 such maps cannot be of class C?
y open part of the boundary of B™.

n his recent paper {Dor2], Dor proved the following extension result
:oper mappings between balls. We consider B™ as a subset of B™*!

1e embedding z — (z,0).

Theorem 4.10. Every proper holomorphic mapping f: B~ — BV,
v < N, can be extended to a proper holomorphic mapping F': B —

t seems likely that these methods can be applied to a more general
of domains. All that one needs are good holomorphic peaking func-
for points in bD. An evidence for this is the recent result of Noel and
gnes [NSt]:

Theorem 4.11. For every bounded pseudoconvex domain D C C?
real-analytic boundary there exists a proper holomorphic mapping
D into the unit polydisc in C*, and a uniformly continuous proper

norphic map from D into the unit ball of C3.

n the other direction, Sibony [Sibj constructed the following coun-

ample:

heorem 4.12. There is a smoothly bounded pseudoconvex domain
C? that does not admit a proper holomorphic mapping into any convex
inQQcch.

Che domain D is not of finite type; in fact, it contains an open set
ed by dense complex analytic curves.

Che following two questions are of interest:

Joes every pseudoconvex domain with real-analytic boundary in C™
idmit a proper holomorphic map into some ball?

does every strictly linearly convex domain D C C™ (i.e., z,y € D,z #
1, and t € (0, 1) imply that tz + (1 — t)y € D) admit such maps?

Che known results give rather satisfactory positive answers to questions

3 stated at the beginning, and a partial negative answer to question 2.
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However, no progress whatsoever has been made toward the constructic
of mappings f: D — B that would be somewhat smooth on the boundar
It seems plausible that such maps should exist if & is large and that the
smoothness should increase with N¥. The present methods do not yie

anything better than f € C(D). To be very specific, we pose the followi

Open Problem. Let n > 1. Does there exist a proper holomorpk
mapping f:B® — B¥ for some N such that f is of class C* on B, b
f is not holomorphic in a neighborhood of B™ (and hence not a ration
mapping in view of Theorem 5.1)?

5. Regularity of Mappings into Higher Dimensional Domains

Recall that, by a theorem of Alexander [All] (Theorem 3.1 above
every proper holomorphic self-mapping of the unit ball B™(n > 1) is ¢
automorphism of B™ and, therefore, a rational map (linear fractional). V
mentioned in section 4 (Theorem 4.9) that for N > n there exist no
rational proper holomorphic mappings f: B* — B that are continuous «
B". However, if f is sufficiently smooth on B", then f must be ration:

More precisely:

Theorem 5.1. Forstneri¢ [Fod]) Let U be an open ball centered at
point z € bB™. If N >n > 1and f:B"NU — CV is a mapping of cla
CN-n+1 that is holomorphic in B* N U and satisfies f(bB™ NU) C bB!
then f is rational, f = (p1,...,pN)/q, where the p;’s and ¢ are holomorpk
polynomials of degree at most N*(N ~n + 1).

Cima and Suffridge proved [CS4] that such a mapping has no sing
larities on the closed ball B”, and thus it extends to a proper holomorph
map of B™ to BV that is holomorphic in a neighborhood of B". The san
was proved before by Pincuk , but not published.

Corollary. If N > n > 1 and f: B® — BY" is a proper holomorp}
map that extends to a map of class CN~"*1 on B", then f is rational,
degree at most N*(N —n + 1).

Most likely the given bound on the degree of f is not optimal. T

existence of the bound implies that the space of all rational proper mappin
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© — BY is finite dimensional when n > 1. Theorem 5.1 may be
rtant in the classification of proper maps between balls; see section 6

.

Special cases of Theorem 5.1 have been proved by several authors:
ter [Wed] for N =n+1 >4 and f € C3(B"); Faran [Fal] for N =
=3 and f € C3B"); and Cima and Suffridge [CS1] for N = n + 1
fe C’(ﬁn). The proof of Theorem 5.1 was inspired by the methods
> paper by Cima and Suffridge [CS1].

There is an analogous result, due to Forstneri¢ [Fo4], for proper holo-

hic mappings of more general domains of different dimensions.

heorem 5.2. Let D C C™ and D' ¢ C¥(N > n > 1) be pseudo-
:x domains, bounded in part by strongly pseudoconvex, real-analytic
rsurfaces M C C™ (resp. M' ¢ CV). If fDUM — CV is a C®
’ing that Is holomorphic in D and maps M to M', then f extends
norphically to a neighborhood of every point in an open, everywhere
: subset of M. In the case when the target D' is the unit BY | the same

usion holds under the weaker assumption that f is of class CV "+ on

M.

n the case N = n + 1, D’ is the ball BY, and f € C3(D), the result
reorem 5.2 was proved by Webster [Wed]. A theorem of this type
dimension one for arbitrary strongly pseudoconvex domains with real-
tic boundaries was also announced in [CKS], but the proof given there
not appear to be entirely correct.

According to Pinéuk (personal communication), f extends holomor-
lly across each point of the hypersurface M, provided that the target
the ball B¥. A result of this type was announced in [Pi5], but a proof
ot been published.

Theorem 5.2 was proved in [Fo4] using the Q,, varieties associated to
ypersurfaces M and M’ (see (2.6) in Section 2 above). The method
iilar to the one developed by Webster, Diederich, and Fornass [DW,

In the paper [Fo4] the author associated to the mapping f in an
lant way an upper semicontinuous, integer valued function v: M — Z,
! the deficiency of f, that measures the rate of degeneracy of f at the
point 2 € M. If f is holomorphic in a neighborhood of z in C™, then
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v(z) is the dimension of the analytic variety
S, ={uv'¢ CN:f(QZ) C Qu}

at the point f(z). Thus v(z) = 0 means that f(z) is an isolated p
of S,, which says that the restriction of f to @, locally determines ¢
among all varieties Q/ , for w’ close to f(z). If this happens, we say f
f 1s non-degenerate at z. If f is only smooth on bD, the definition of
more complicated. Instead of simply restricting f to @, one has to cons
the Taylor development of f along @,. (See section 4 in [Fo4].) The n

result of [Fo4] is the following pointwise extension theorem:

Theorem 5.3. (See [Fo4], Theorem 6.1.) Assume that the hypoth
of Theorem 5.2 hold. If the deficiency function v: M — Z Is constan
a neighborhood of the point z € M, then f extends holomorphically
neighborhood of z in C™. In particular, f extends to a neighborhoo

each non-degenerate point z € M.

Since v is upper semicontinuous, it is locally constant on an open d:
subset of 8D, so Theorem 5.2 follows from Theorem 5.3.

Similar results on holomorphic extensions were obtained by F:
[Fa3]. In the setting of Theorem 5.2, with f merely of class C% on DL
he proved that f extends at z € M provided that it satisfies certain 1
degeneracy condition involving first and second derivatives in the com
tangent directions to M at z. This restricts the range of possible codin

sions. The main result of [Fa3] is

Theorem 5.4. Let U; be an open set in C™,U; an open set in
Let §; C U; be proper open subsets so that each M; = bQ}; N U;
real-analytic, strongly pseudoconvex hypersurface. Let f:U; — U; |
mapping of class C? that is holomorphic on Q; and maps M; into M;
the second fundamental form of f is non-degenerate at a point z €

then f extends holomorphically to an open neighborhood of z in C™.

The appropriate definition of the second fundamental form car
found on page 8 of [Fa3]. As a corollary, Faran obtained the resul

Theorem 5.2 in the case when N = n + 1 and f is merely of class C*

DuUM.
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f is holomorphic in a neighborhood of z € Mj, and if the second
1ental form of f at z is non-degenerate, then the deficiency v(z)
zero, so the condition of Theorem 5.3 is fulfilled. The improvement
srem 5.4 is that f is only assumed to be of class C2.

the setting of Theorem 5.2 it is not known whether f extends holo-
cally to a neighborhood of each boundary point of D. The proof
1 [Fo4] does not apply at a point where the deficiency is not locally
it. The result of Theorem 5.2 is proved in [Fo4] under slightly weaker
ons on M and M’.

the remainder of this section we shall describe the idea of the proof
rem 5.1. (We refer the reader to Section 7 in [Fol] for the details.)
t (z,w) = E?=1 z;w; for z,w € C™. The conditions on f imply that
s a function p € C"l(_B_n NU), where s = N — n + 1, such that

(f(2), f(2)) - 1=p(2)((2,2) - 1), z€B nU.

oint z° € BB NU. If f is holomorphic in a full neighborhood of z°,

0. so that we can polarize the above identity

is real-analytic near z
in

f(z), f(w@) -1 = P(Z»m)((zaﬁ) - 1), z,w € C™ near 2°.
= C™\{0} we denote by Q,, the affine hyperplane
Qu = {2 € C™ (2,8) = 1} = w/|wl* + w*.

ove polarized identity implies that for each w near 2%, f maps the
wyperplane @,, C C” into the analogous affine hyperplane Q’f(w)
associated to bB™. This is the fundamental property of proper
1gs between balls that are holomorphic across the boundary.

f is merely of class C* on B" NU one can prove by a standard com-
ation arguement that the Taylor polynomial f* of f at a boundary
. € bB™ maps Q, = z* to Q}(z) = f(2)t. Let A, C Q}(z) be the
it affine subspace in C¥ containing the image of f*(Q,). In the
generate case we have A, = Q}(z) for some z € bB", so Q’f(z) is the
fine hyperplane in C¥ containing f* (Q:). The same is then true for
wE U\ﬁlr1 close to z: there is a unique w’ € C¥ such that the affine
lane Q.. contains f(Q., NB™). One can then show that the induced

1g w — w’ is a holomorphic extension of f to a neighborhood of 2
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in C™. By studying the form of the extension one can also prove that f
a rational mapping. This part is due to Cima and Suffridge [CS1].

In the degenerate case the dimension of A, is smaller than & — 11
each z € 8B™" N U. Fix a point for which this dimension is maximal, s:
k. If U is a sufficiently small neighborhood of z in C™, then one can shc
that the set X C (U\B") x CV, defined by

X = {(w,w"): f(QuNB*NU) C L},

is a complex analytic variety whose fibers X,, are affine subspaces of CV
dimension m = N — k — 1. Moreover, by analyzing the form of the defini
equations, one can prove that X extends to a rational variety in C™ x C
whose intersection with the product of the two spheres (U N dB™) x &E
equals the graph {(z, f(2)):z € U n bB™} of the mapping f on bD.
follows that f itself extends to a rational mapping.

Examples show that the rational variety X that contains the gra
of f may in fact be larger than the graph. It would be interesting to s
whether the variety X has any relevance in the classification problem f
proper mappings between balls (see section 6).

It seems that the regularity of mappings into higher dimensional h

persurfaces is still very poorly understood.

6. Classification of Mappings between Balls

One would like to know what are all the proper holomorphic mappin
f:B™ — BY for a given pair N > n > 1. If N = n = 1, these are t
finite Blaschke products, and if ¥ = n > 1, these are the automorphisms
B™ according to the theorem of Alexander (Theorem 3.1). If N > n, su
maps are abundant according to the results in section 4, and we cann
expect to have any reasonable classification unless we pose some additior
conditions on the map.

Further results are known if the map f is smooth of class * (En) ont
closed ball for a sufficiently large s, depending on n and N. Since Theore
5.1, with s = N —n + 1, covers all known regularity results for mappings
balls, we shall assume from now on that the mapping f is rational. Rec
that f is then holomorphic in a neighborhood of B according to Cima a
Suffridge [CS4].

Two proper mappings f, g: B® — B¥ are said to be equivalent if the
exist automorphisms ¢, ¢ of the respective balls such that g = ¢ o f o ¢.
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t seems that the first result in the case of positive codimension was
ned by Webster [We4]: If n > 3, then every proper holomorphic map
— B™*! that is of class C3 on B is equivalent to the linear embed-
(21,.+.y20) — (21y.. ., 22, 0). An alternative proof was given by Cima
uffridge {CS1] who reduced the smoothness assumptionto f € C2(§n).
was extended by Faran [Fa2] to the case N < 2n — 2. Thus we have

heorem 6.1. If f: B® — B¥ is a rational proper mapping and N <
2, then f is equivalent to the linear embedding z — (z,0).

Tor N = 2n—1 there is a proper polynomial mapping E,: B —» B?"~1,
En(z1,. .. 20) = (21, -y 201, 212n, 2220, - - -, Zn2n ),

is not equivalent to a linear mapping.

There are precisely four equivalence classes of mappings B? — B2,
- classification is due to Faran [Fal] and, independently, to Cima and
dge [CS3]:

heorem 6.2. Every rational proper mapping f: B — B2 is equiva-
.0 one the mappings:

(z,w) — (z,w,0),

(z,w) — (2%, V22w, w?),
(z,w) — (23, V32w, w?),
(z,w) — (2%, 2w, w)

further results on classification were obtained by D’Angelo [DA2, DA3,
For instance, he found that there are precisely 15 non-equivalent
:r mappings B? — B* whose components are monomials (see [DA2]).
es the four mappings to the three-ball listed above there are nine new
:te examples and two one-parameter families.
J’Angelo’s approach tc the classification problem relies on two key
vations. One is that the classification of proper monomial mappings
lls can be reduced to an algebraic problem. If we set |z;|? = t;, then
napping f(z) = (¢ca2®),z € C", with N components is proper from
o BV if and only if |f(2)* = Y., lcal’t® = 1 when |z|* = t; + 1, +
= 1. Conversely, each polynomial in the variables t = (t1,...,1,)

nonnegative coefficients that has constant value 1 on the hyperplane
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E?zltj = 1 gives rise to a proper monomial mappings from B” to son
ball.

The second observation is that the study of proper polynomial ma
pings of balls can be reduced to monomial mappings. Suppose that f
(fiy---, fn): C™ — C¥ is a polynomial mapping. Write each compone
as a sum of monomials: f; =Y ¢;j «2%, and let b = (cj,o2%) be the ma
ping from C™ to CM whose components are all the monomials ¢ 2% th

appear in f. The order of the components is irrelevant. We then have:

Proposition 6.3. Let f: C* — C¥ be a polynomial mapping, and !
h:C* — CM be the associated monomial mapping as above. If f is
proper mapping from B™ to BY, then h is a proper mapping from B™
BM,

This simple but very useful fact was noticed by Forstneri¢ [Fo5, p. 6
Lemma 4.1} and, independently, by D’Angelo [DA2]. This result can |
formulated by saying that each polynomial proper mapping f: B® — B
is a composition L o h of a proper monomial mapping h: B* — BM and
linear mapping L: CM — CV,

Using simple algebraic methods, D’Angelo obtained in [DA3] an i
teresting decomposition theorem for proper polynomial mappings of bal
We define the eziend operation F that acts on proper mappings fro
B™ to other balls. The operation E assoclates to each proper mappi
f = (fi,---, fn):B® — B¥ the proper mapping Ef:B® — BN+n
with the components Ef = (fi,..., fa—1, 21N, .. 2o fn). For example,
n = 2, E(id)(z,w) = (z, zw, w?). This operation is the analogue of mul
plication by z in one variable. We also have the inverse E~!: If f = Eg {
some proper mapping g: B* — BM then E~'f = g. Using the observatic
concerning the monomial maps and Proposition 6.3, D’Angelo proved

[DA3] the following:

Theorem 6.4. Each polynomial proper mapping f: B™ - B can .
obtained by a successive application of a finite number of operations .
on proper mappings from B™ to balls, starting with the identity map «
B™. Each operation Aj is either the extend E, its inverse E™1, or t.

composition with a linear mapping.

This result can be thought of as the several variables analogue of d
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sing a proper map f: A — A to a finite Blaschke product. Another
>»f D’Angelo [DA2] that is useful in the classification problem is:

eorem 6.5. Suppose that f and g are polynomial proper maps be-
balls that map the origin to the origin. If f and g are equivalent,
hey are unitarily equivalent, i.e., there are unitary maps Uy, U; of
pective spaces such that g = Uz o foUj.

rollary. There exist one-parameter families of inequivalent proper
rom B™ to B*®. An example when n = 2 is the family {f,} is defined

fi(z,w) = (2, cos (t) w,sin (t) zw, sin (¢) w?).
ht,s € {0,7/2), f; is equivalent to f, only when t = s.

s the codimension N — n increases further, one obtains multi-
ster families of proper monomial maps. As we remarked above, the
1 of finding all monomial proper maps from B" to BY amounts to
. all polynomials in n real variables z = (z,,...,2,) with at most
ns, where the coeflicients are positive, and the polynomial has a
alue on the hyperplane }_ z; = 1. We illustrate this procedure in a
case. Suppose that we wish to find all quadratic monomial maps f
32 with f(0,0) = 0. There are 5 nontrivial monomials of degree at
in 2 variables. The corresponding real polynomial can be written
= az +bz? + cy + dy® + ezy, where the coefficients are non-negative.
1 p(z,1 —z) = 1, one obtains a system of linear equations of rank 3.
; this system, one sees that p can be written as

p(z,y)=az+(1—-a)z? +ey+(1-c)y* +(2—a - c)zy.

= A? and ¢ = C?. Assume A and C are non-negative. We see that
aeral monomial map of degree at most 2 from the two-ball can be
1 as a member of the 2-parameter family

) = (Az,1/1,422% Cw, /1 - C?w? /2~ A? —C?zw), A,B>0

(6.1)
rse one can apply diagonal linear isometries to this family, but such
vill be equivalent to f. One uses Theorem 6.5 to show that the maps
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in this family are inequivalent, except for the possibility of interchs
the roles of z and w.

To get higher dimensional families, one must consider monom
higher degree. To list these requires that the map must have suffic
high target dimension. We describe one more example. If f is a mor
map from B? of degree at most 8 and f(0) = 0, there are 44 undeter:
coefficients. The condition that f be proper is that p(z,1 —z) =1
amounts to 9 independent linear equations in these 44 coefficients.
every such map f is equivalent to one of those maps into the ball B*
one must specify 35 parameters to determine the map up to equivale:
one restricts the target dimension, one obtains additional linear equ
on the coefficients. For example, in (6.1), if we wish f to map to the
we must fix one parameter to be either 0 or 1. If we wish f to map
3-ball, we must specify both parameters.

We repeat that, according to Proposition 6.3, every polynomial 1
simply the composition of a linear map and a monomial map, so th
general classification of proper polynomial maps reduces to linear al;
However, the problem is not a trivial one even after this reduction.

One can use similar ideas to show that, for every n, there are
nomial proper maps from B™ that are not equivalent to monomial
From each B™, there are rational proper maps that are not equival
any polynomial map. These results are not surprising. In dimensio
is easy to see that a Blaschke product with with three distinct fact
not equivalent to a polynomial. Every Blaschke product with two f
is equivalent to the map z — 22.

It is perhaps worthwhile to note that the theory of proper maj
tween balls can be cast into a general framework that does not tre:
one dimensional case differently. The analogue of finite Blaschke pr
in several variables is the composition product as described in Thi
6.4 above. The main difference from the case n = 1 is that mult
tion increases the target dimension when n > 1, so that one needs
dimensional balls to see non-trivial polynomial or rational maps.

D’Angelo has further results on the classification problem in the :
article [DA4].

In the remainder of this section we shall explain the connection be
proper holomorphic maps from B™ and the finite subgroups of the u:
group U(n). The reference for this part are the papers [Car2], [Ru:
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' € U(n) is a finite unitary group, then quotient C™/T' can be
d as a normal algebraic subvariety V in some C¥ according to a
m of Cartan [Car2]. In order to do this we choose a finite number of
:eneous, ['-invariant holomorphic polynomials ¢;1,...,gx which gen-
:he algebra of all I'-invariant polynomials (this is possible by the
t basis theorem). Recall that a function f is called I-invariant if
: f(y(z)) for all ¥ € T and all points z in B™. The induced map
1i...,qn): C™ — C¥ is proper and induces a homeomorphism of the
nt C™/T onto the image V = Q@ (C™) C C¥. The restriction of Q to
11 B™ maps the ball properly onto a domain 2 in V.
ecall that a reflection in U(n) is an element of finite order that fixes
plex hyperplane, i.e., n — 1 of its eigenvalues equal one, and the
iing eigenvalue is a root of unity. A finite subgroup I' C U(n) is
a reflection group if it is generated by reflections. It is known that
rebra of I'-invariant polynomials always requires at least n generators,
is generated by n elements if and only if I is generated by reflections.
the quotient B™/T' is non-singular at the origin if and only if T is
e reflection group. In this case C*/I' = C™, and the ball B” is
:d by @ properly onto a bounded domain 2 C C". (See {Fe3] and
erences therein.)
udin {Ru3] proved a converse of this for proper holomorphic mappings

3" to domains in C":

eorem 6.6. If f:B™ — Q is a proper holomorphic map onto a
n Q C C* n > 2, then there are a finite reflection group I' C U(n)
' automorphism ¢ of B™ such that f = noQo¢, where @:B™ — B™/T’
quotient projection, and n: B™/I" — Is a biholomorphic map.

udin proved the theorem under the additional hypothesis that f is
s C! on the closed ball B". A result of Bedford and Bell [BB3, BB4]
per holomorphic correspondences of strongly pseudoconvex domains
that this smoothness hypothesis is not required. Bedford and Bell
i a similar result for mappings from smoothly bounded pseudoconvex
nsin C™ to normal complex analytic spaces of dimension n. (See also
)

nce there exists a classification of all finite reflection groups, we have

rresponding classification of proper holomorphic mappings from B™
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to domains in C™ (see [Ru3]). If U C T is a reflection that fixes
complex hyperplane ¥ C C™, then every map f that is invariant und
must branch at all points of £. It follows that the image @ = f(B™)
not have smooth boundary.

On the other end of the scale among the subgroups of U(n) lie
fized point free groups. These are the finite subgroups of U(n) with
property that 1 is not an eigenvalue of any v € T'\{1}. Equivalently, 4
no fixed points except the origin. The action of I' on C™\{0} is wit
fixed points, so the origin is the only singularity of the quotient va
C"/T'. The quotient of the sphere 8B™ /T is a real-analytic manifold, c:
the spherical space form. The quotient projection can again be realize
a polynomial mapping Q: C* — C¥, where N is the minimal numb
generators for the algebra of I'-invariant polynomials on C™*. We can
a smoothly bounded, strongly pseudoconvex domain 2 C C¥ such
Q:B™ — Q2 is a proper mapping.

Again we have a converse of this, due to Forstneri¢ [Fo3]:

Theorem 6.7. Let f: B™ — Q,n > 2, be a proper holomorphic 1
ping into a relatively compact, strongly pseudoconvex domain 2 in a
plex manifold. If f extends to a C' map on ﬁn, then there exists a 1
fixed point free unitary group I' C U(n) and an automorphism ¢ o.
such that f = noQo ¢, where Q: B® — B™/T is a quotient projection,
n: B™ /T — f(B™) is the normalization of the subvariety f(B™) of Q.

The set f(B™) is a subvariety of § according to the theorem of I
mert. For the notion of normalization see [Nar|. The proof of this &
is considerably simpler that the proof of Theorem 6.6. It is easy to ur
stand why T' must be fixed point free. Since f is assumed to be of
C! on the boundary, it does not branch there, hence the branch loc
compactly contained in B™ and thus finite. On the other hand, f o ¢
branched along the fixed point set of every v € I'\{1}, which is a i
subspace of C™. It follows that this subspace is the trivial one, so v
without fixed points on C*\{0}.

One difference between Theorems 6.6 and 6.7 is that in the first
the map fo¢ ™! is precisely I'-invariant, in the sense that the quotient s
is biholomorphic to the image f(B™). In Theorem 6.7 this is no longer
An example is the map (z, w) — (2%, 2w, w) that is one-one except or

disc w = 0 where it is two-to-one. It seems that most proper maps of
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1ot invariant under any non-trivial group.

There is a classification of finite fixed point-free unitary groups that
carried out in order to solve the Clifford-Klein spherical space form
lem. Spherical space forms are the complete, connected Riemannian
ifolds of constant positive curvature. Every such is the quotient of a
re S, = {z € R™:|z| = r} by a finite fixed point free orthogonal group
O(n). The classification of real fixed point-free groups can be reduced
le complex ones, so it suffices to treat the unitary case I' C U(n). A
tiful and detailed exposition can be found in Chapters 5-7 of Wolf’s
. [Wolf]. For a brief introduction see also the paper [Fo3].

As we remarked above, every fixed point free group I' C U(n) induces
yper, [-invariant holomorphic map f from B™ to some strongly pseu-
nvex domain Q2 C CV. The problem becomes interesting if we require
arget domain Q to be the unit ball B¥ for some N. If the map is suf-
itly smooth on B"™ and therefore rational, we obtain severe restrictions
1e group I'. In order to explain the main result of [Fo3], we have to
1 that the basic structure of fixed point free groups I' C U(n).

All Sylow p-subgroups of I for odd p are cyclic. The Sylow 2-subgroups
ither cyclic (groups of Type A) or generalized quaternioic (groups of
B). The fixed point-free groups of Type A have two generators; they
lassified in [Wolf, p. 168]. The simplest such groups are the cyclic
ps generated by e/, where ¢ is a root of unity.

Groups of type B are subdivided into five subtypes; they are classified
:ction 7.2 of [Wolf]. The finite subgroups of SU(2) are all fixed point
and they play a special role in the classification. Besides the cyclic
ps (of type A), SU(2) contains binary dihedral and binary polyhedral
ps which arise as the preimages of the rotation groups of regular Pla-
: solids in R3. These groups are of type B. Each of them has a basis of
: invariant polynomials gy, ¢2, g3, satisfying one relation. These invari-
can already be found in Klein’s book [KI, pp. 50-63]. We do not know
.y systematic treatment of the invariant theory of other fixed point free
ps.

Recall that a unitary representation of an abstract group I' is a homo-
hism 7: ' — U(n). The integer n is the degree of x. The representa-
is fixed point free if 1 is not an eigenvalue of 7(vy) for any v # 1. The
:sentation is irreducible if it is not the direct sum of two other represen-
ns. (See Chapter 4 in [Wolf] for a concise account of the representation
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theory of finite groups.)

Theorem 6.8. Let m:T — U(n),n > 2, be a fixed point-free represt
tation. If there exists w(I')-invariant rational proper mapping f: B™ — 1
for some N, then the group T is of type A, l.e., all of its Sylow subgrot
are cyclic, and the irreducible fixed point free representations of I' are

odd degree. If n = 2* for some k, then T is cyclic.

It is not known which fixed point-free groups I' C C™ of type A actua
induce a I-invariant proper map from B™ to some ball. For n =2 1t see

that there are only two known examples:
(1) T is the cyclic group in U(2), generated by the matrix (8 S), wh

€ = e2™/% The corresponding invariant mapping f: B2 — B"*!}
components ,/(;)zj wn=J,0 < j <k, so it is homogeneous of order

An example of this kind exists for every n.

e O ;
0 2), where € = e?™/* a
€

k= 2r + 1 for some r € Z4. A basis of invariants is

(2) T is the cyclic group generated by (

1 - 2r - 1
227'+ ,221' 1 r—-3 2" 2r+ .

w, z w ., w

D’Angelo proved in [DA3] that there is, up to equivalence, exac

one proper mapping f:B? — B”t? whose components are constz

multiples of these monomials. He obtained an explicit expression

the coefficients and listed the first few of these nraps [DA3, p. 214]

Another way of asking the question about the existence of proj
maps between balls that are invariant under a group is in terms of C
embeddings. If T' C U(n) is a finite fixed point free group, the quoti
S(T') = bB™/T is a C-R manifold that is locally equivalent to the sphu
at each point. The question is for which T’ does S(I') admit a global
R immersion or embedding into a sphere bB™ for a sufficiently large .
Clearly such an immersion extends to a proper holomorphic map of |
into BY, and vice versa, the restriction of a I'-invariant proper mappi
f:B™ - B¥ smooth on ﬁn, to the sphere 8B™ induces a C-R immersi
of §(I') to bB™. Since f induces a mapping of tangent bundles that
spects the C-R structure, it may be possible to obtain obstructions to su
C-R immersions by the methods of algebraic topology (Chern classes, etc
Perhaps there is an alternative proof of Theorem 6.8, using topologi
methods.
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Although there has been a substantial progress toward the classifica-
of maps between balls in recent years, there are still a lot of open
lems. The composition theorem of D’Angelo (Theorem 6.4) allows us
rinciple to list all proper pelynomial maps of certain degree between
ven pair of balls, although the corresponding algebraic problem is not
1ys easy to solve. The classification problem for rational maps between
;s seems to be much more difficult.
In our opinion, the classification problem for mappings between balls
rves more attention since it combines in a nice way the methods of
plex analysis with those from algebra, the representation theory of fixed
t free groups, the theory of invariants, differential geometry, and pos-
r other areas of Mathematics.

Institut of Mathematics,
University of Ljubljana,
Ljubljana, Yugoslavia
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