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Proper Holomorphic Mappings: 
A Survey* 

Franc Forstneric 

0. Introduction 

A continuous mapping I: X --> Y is called proper if 1- 1(K) is a com­

pact subset of X whenever K is a compact subset of Y. If X and Y are 

complex spaces and I: X --> Y is a proper holomorphic mapping, then 

1-1(y) is a compact subvariety of X for all points y E Y. Consequently, 

if the space X is Stein, the preimage 1- 1(y) is finite for all y E Y. A 

special class of proper holomorphic maps are the biholomorphic maps, i.e. , 

the bijective holomorphic maps with a holomorphic inverse. 

Proper holomorphic mappings between complex spaces were studied 

in the 1950s and early 1960s; (see Remmert-Stein (RS]). Perhaps the most 

important result from this time is the Grauert's theorem on the coherence 

of direct images of a coherent analytic sheaves (Nar2]. A special but impor­

tant case of this result is the Proper Mapping Theorem of Remmert (GR): 

If I: X _, Y is a proper holomorphic mapping of complex spaces, and if A 

C X is a complex subvariety of X, then its image f (A) is a complex subva­

riety of Y. If both X and Y are Stein spaces and A C X is an irreducible 

subvariety of dimension k, then B = l(A) is an irreducible subvariety of 

Y of dimension k. Moreover, there exists a proper, nowhere dense subvari-

* The work was supported by grants from the Swedish National Sci­

ence Research Council NFR, the Institut Mittag-Leffler, and the Research 

Council of the Republic of Slovenia. 
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ety V C B, such that B\ V and A \f- 1 (V) are complex manifolds and the 

restriction f: A \f- 1 (V) ---+ B\ V is a finitely sheeted holomorphic covering 

projection. 

In this survey we shall consider proper holomorphic mappings f : D ---+ 

D' between bounded domains DCC en and D' CC eN. Such mappings 

are also known as 'finite mappings' since each preimage 1-1 ( w) is a finite 

subset of D. A map f: D---+ D' is proper when for every sequence {z;} CD 

with lim;-+ 00dist(z;, bD) = 0, we have lim;-+ 00 dist(f(z; ), bD') = 0. (Note 

that N 2'. n.) If f extends continuously to the closure of D, then the 

extended map takes the boundary bD into the boundary bD', and it satisfies 

the tangential Cauchy-Riemann equations on bD. Thus proper mappings 

f: D ---+ D' lead naturally to the geometric theory of mappings from bD to 

bD'. A good reference for the structure of proper holomorphic mappings 

between domains in en is Chapter 15 in Rudin's book [Ru2}. 

In section 1 we survey the results on the regularity at the boundary of 

proper holomorphic mappings between smoothly bounded domains in en. 
This has been a very active area of research ever since Pefferman proved 

in 1974 that biholomorphic mappings between smooth bounded strongly 

pseudoconvex domains in en extend smoothly to the boundary (Theorem 

1.2 below). We first survey the results obtained by the method of the 

Bergman kernel and the related B-Neumann problem. Most of these re­

sults have been covered in the survey by Bedford (Bedl]. There are some 

new results concerning the Condition R, the most interesting ones due to 

Boas and Straube [BSl, BS2, BS3}, as well as new regularity results for 

locally proper mappings, due to Bell and Catlin (BC2}. We also present 

an elementary approach to the regularity problem for mappings of strongly 

pseudoconvex domains, due to Pineuk and Hasanov (PH] and Forstneric 

[Fo6], that reduces the problem to the C00 version of the edge-of-the-wedge 

theorem . There is a new regularity result of Pincuk and Tsyganov for con­

tinuous C-R mappings between strongly pseudoconvex hypersurfaces, and 

an optimal regularity result due to Hasanov. 

In section 2 we consider the mappings between bounded domains in 

en with real-analytic boundaries; the main problem is to show that such 

mappings extend biholomorphically across the boundary. In one variable 

this is the classical Schwarz reflection principle. In several variables, this 

phenomenon was first discovered by Lewy (Lew] and Pincuk [Pi2} in the 

case of strongly pseudoconvex boundaries. Very interesting and far reaching 
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generalizations were obtained in recent years by several authors, and the 

research in this field is still very intensive. Most notably, the problem has 

been solved on pseudoconvex domains in en by Baouendi and Rothschild 

[BaRl] and Diederich and Fornress [DF5] . 

In section 3 we collect results on mappings between some special classes 

of domains like the ball, the circular domains, the bounded symmetric do­

mains, the Reinhardt domains, the ellipsoids, and the generalized ellipsoids. 

Besides the well-known results we present some of the recent developments. 

Perhaps the most interesting new result is the complete solution of the 

equivalence problem for Reinhardt domains by Shimizu [Shi] . 

In section 4 we present rather recent results on existence of proper 

holomorphic mappings of domains into special higher-dimensional domains 

like the ball and the polydisc. These new constructions of proper mappings, 

due mainly to L¢w [L¢w2, L¢w3], Forstneric [Fol], and Stens¢nes [Ste], were 

motivated by the construction of inner functions in the early 1980s. The 

initial construction has been improved substantially by Stens¢nes [Ste]. 

Section 5 contains regularity results for mappings into higher-dimen­

sional domains. Results in this field are still rather fragmentary in spite 

of some recent progress. Most of the results of sections 4 and 5 have been 

obtained since 1985. The reader should compare the surveys by Bedford 

[Bedl] from 1984 and by Cima and Suffridge (CS2] from 1987. 

In section 6 we present results on the classification of proper holomor­

phic mappings between balls. Although there has been a lot of progress in 

this direction recently, mainly due to D'Angelo, we do not have a systematic 

theory yet. Because of its intrinsic beauty and its interesting connections 

with other areas of Mathematics, this problem would deserve more atten­

tion. 

Since the literature on this subject is growing very rapidly, I had to 

omit certain topics in order not to make the paper excessively long. The 

selection necessarily reflects the personal choice of the author. Among the 

interesting topics that I have left out are: the branching behavior of a 

proper mapping at the boundary (see the survey by Bedford (Bed 1] and 

the papers (Bed3], (BBe]); the proper holomorphic correspondences (see 

[BB2], [BB3], (Be4], (Pi6]); the holomorphic automorphism groups (see 

[GK], [Rol], (Wong], [Fra]); the holomorphic continuation of mappings 

of real-analytic strongly pseudoconvex hypersurfaces (see [Pi3], [Vit]); the 

proper holomorphic mappings from the disc into higher dimensional do-
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mains (see [GS]), and others. 

The survey is intended for the specialists in several complex variables. 

If the reader is looking for motivation, we would like to refer him to the 

recent survey of a more general nature by Steve Bell (Be7]. 

I have tried to be accurate with respect to credits. I do not strive for 

completeness; rather I tried to present the strongest results on each chosen 

topic. If I have overlooked, some important contributions, I wish to express 

my sincere apologies to their authors. 

I started this work during the special year 1987 /88 for several complex 

variables at the lnstitut Mittag-Leffler. It is my privilege to thank Christer 

0. Kiselman and John Eric Fornress for their kind invitation to spend a 

very fruitful year in the pleasant atmosphere of this lnstitut. 

I wish to express my sincere thanks to all the colleagues with whom 

I had the pleasure to discuss and learn the subject of proper holomorphic 

mappings. I wish to thank especially John D 'Angelo for many stimulating 

conversations during our visit at the lnstitut Mittag-Leffler in the Spring 

of 1988, and for having contributed a large part of section 6 of the present 

paper. Furthermore, I wish to thank all who responded to the initial version 

of this paper with their valuable comments and suggestions: S. Baouendi 

and L.P. Rothschild, E. Bedford, S. Bell, J.P. D'Angelo, K. Diederich, N. 

Kruzhilin, A. Noell, S. Webster, and the referee. Finally I thank E.L. Stout 

who first drew my attention to proper holomorphic mappings. 

1. Boundary Regularity 

One of the central problems in the theory of proper holomorphic map­

pings is the question of regularity of mappings at the boundary: 

Does every proper holomorphic mapping of bounded domains D, D' with 

smooth boundaries in en extend smoothly to the boundary of D? 

It is a classical result due to Kellogg [Kel) that the answer is yes in 

dimension one. If D and D' are bounded by closed Jordan curves, then 

every biholomorphic mapping of D onto D' extends continuously to the 

closure of D according to Caratheodory (Ca). 

The problem is much more interesting and difficult in dimensions 

greater than one. When we know that biholomorphic mappings between 

certain domains must extend smoothly to their boundaries, the question 

of biholomorphic equivalence is reduced to a geometric problem on the 
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boundary. Using this approach, Chern and Moser [CMo] developed a theory 

of biholomorphic invariants of strongly pseudoconvex hypersurfaces. See 

also the papers of Burns et all [BSh], [BSW] on deformation of complex 

structures. 

The regularity problem has been successfully solved on a wide class of 

pseudoconvex domains, as well as on some special cases of non-pseudo­

convex domains. It is still open on general pseudoconvex domains and on 

most non-pseudoconvex domains. 

The result is false for domains in non-Stein manifolds. Barrett [Ba2] 

found a family of bounded domains Dk (k E Z+) contained in complex 

manifolds Mk of complex dimension two such that 

(i) each Dk is a hyperbolic Stein manifold that has smooth real-analytic 

boundary in Mk, 

(ii) each Dk is biholomorphic to D1 , but 

(iii) the boundaries bDk, and bDk, are not isomorphic as C- R manifolds 

when k1 f. k2. 
This means that no biholomorphic mappings f: Dk, -+ Dk, extends 

smoothly to the boundary. The manifolds Mk are not Stein. 

The most successful approach to the regularity problem is certainly 

the one via the Bergman kernel. This method has been developed mainly 

in the works of C. Fefferman [Fef], Webster [Wel], Bell and Ligocka [BL], 

Bell [Bel, Be2, Be5]), Catlin (Catl, Cat2], Bell and Catlin (BCl, BC2] , and 

Diederich and Fornaess [DF2, DF4]. The Bergman kernel method gave a 

positive answer to our question on all pseudoconvex domains of finite type 

(see Theorem 1.4 below) . 

On strongly pseudoconvex domains there are at least three other ap­

proaches which avoid the Bergman kernel. One is due to Nirenberg, Web­

ster, and Yang (NWY], the second one to Lempert [Le3, Le4], and the third 

one to Pineuk and Hasanov [PH] and Forstneric [Fo6). 

We first mention a result on boundary continuity of proper mappings. 

Theorem 1.1. If D and D' are pseudoconvex domains with C2 bound­

ary in en and f: D -+ D' is a proper holomorphic mapping, there exists 

an f > 0 and constants c1 > 0, c2 > 0, such that 

c1 dist (z, bD) 1I• :::; dist (f(z) , bD') :::; c2 dist (z, bD) ' , z E D . 

If, in addition, the infinitesimal Kobayashi m etric on D' satisfies the esti-
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mate 

Kn 1 (z,X) 2: clXl/dist(z,bD')6 , z E D',X E en 

for some c > 0 and 6 > 0, then f extends to a Holder continuous map on 

D. 

This estimate on the Kobayashi metric holds in particular if D' is 

strongly pseudoconvex (Gra] (in this case f is Holder continuous with the 

exponent 1/2 on D) or if D' is weakly pseudoconvex with real-analytic 

boundary (DFl, DF2]. The idea of the proof of Theorem 1.1 is to apply 

the Hopf lemma to the composition of the given mapping (or its inverse) 

with a bounded plurisubharmonic exhaustion function on D' (resp. D). 

The history of Theorem 1.1 is as follows. Around 1970 the result was 

proved by Margulis (Mar] and Henkin (Hen] for biholomorphic mappings 

of strongly pseudoconvex domains, using the Caratheodory metric. Pincuk 

(Pil] generalized the method to proper holomorphic mappings. A similar 

result was proved independently by Vormoor [Vor]. The first inequality 

in Theorem 1.1 for weakly pseudoconvex domains was proved for the first 

time by Range (Ran), using the at that time new bounded plurisubharmonic 

exhaustion function of Diederich and Fornress (DF8] . The Kobayashi metric 

was introduced into the picture in [DF2]. 

In 1974 C. Fefferman (Fef] made a remarkable discovery by proving: 

Theorem 1.2. Every biholomorphic mapping between bounded, 

strongly pseudoconvex domains with smooth boundaries in en extends to 

a smooth diffeomorphism of their closures. 

Fefferman's proof is based on a very careful study of geodesics of the 

Bergman metric which emanate from a point z E D close to the boundary in 

directions close to the normal direction towards the boundary. He showed 

that these geodesics give a smooth diffeomorphism of an open part of the 

unit sphere in the tangent space T.D onto an open part of the boundary 

bD. Since the Bergman metric is a biholomorphic invariant of the domain, 

the mapping carries geodesics in D to geodesics in D', and the regularity 

of the mapping on the boundary follows from its regularity in the domain. 

Fefferman's theorem and its very difficult proof stimulated intensive 

work in this field, with attempts both to simplify the proof and extend the 

result to a wider class of domains. Another problem was that his proof 
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did not apply immediately to locally biholomorphic or proper holomorphic 

mappings. 

The first simplification was obtained by Webster [Wel], who isolated a 

few crucial properties of the Bergman kernel that would imply extendability 

of the mapping. 

The main progress in this direction was done by Bell and Ligocka 

[BL] and Bell [Bel] who discovered that the extendability of biholomorphic 

mappings follows from the global regularity of the Bergman projection on 

the two domains. 

Let D be a bounded domain in en. Denote by L 2 ( D) the Hi! bert space 

of functions on D that are square integrable with respect to the Lebesgue 

measure, and let OL2(D) be the subspace consisting of all the holomorphic 

functions in L2 (D) (the Bergman space). Recall that the Bergman projector 

on Dis the orthogonal projector P: L2 (D)-+ OL2 (D). More generally, for 

each 0 -S: q -S: n, the Bergman projector Pq is the orthogonal projector from 

the Hilbert space of square integrable (0, q )-forms on D onto the subspace 

consisting of all B-closed forms (so P = P0 ). 

Following Bell and Ligocka [BL] we say that D satisfies the Condition 

R if the projector P0 is globally regular, in the sense that it maps the 

subspace C00 (D) C L2 (D) of functions that are smooth up to the boundary 

of D to itself. 

The following result was proved for biholomorphic maps by Bell [Be 1] 

(see also Bell and Ligocka [BL]). It was extended to proper maps by Bell 

and Catlin [BCl] and, independently, by Diederich and Fornress [DF4]. 

Theorem 1.3. Let D and D' be bounded pseudoconvex domains in 

en with smooth boundaries and let D satisfy the Condition R. Then every 

proper holomorphic map of D onto D' extends smoothly to the closure of 

D. 

An important independent step in the proof for mappings with non­

trival branch iocus is a d ivision theorem for functions that are holomorphic 

on D and smooth up to the boundary; see [BCl] and [DF4] . This result 

holds also for relatively compact domains in Stein manifolds [BBC]. 

The pseudoconvexity hypothesis in the preceeding theorem may be 

dropped if both domains satisfy Condition R (BL]. 

An independent and rather difficult problem was to show that a large 

class of domains satisfies the Condition R . The most successful approach so 
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far has been the one via the regularity of the a-Neumann problem. We shall 

recall the connection only very briefly since this may be found in several 

sources (see [Ko3], [Ko4], [Bedl]). 

Let D c en be a bounded pseudoconvex domain with smooth bound­

ary. When 1 :S q :S n, the a-Neumann operator N 9 on D is the inverse of 

the complex Laplacian aa* + a*a on (0, q)-forms. For the general theory of 

the a-Neumann operator see Folland and Kohn [FK] and the survey [Ko4]. 

The connection between the Bergman projection and the Neumann 

operator is given by the Kohn's formula 

0'.Sq:Sn-1. 

Thus, if the Neumann operator N1 is globally regular, i.e., it maps C00 (D) 
to itself, then so is the Bergman projector P = P0 , whence Condition R 

holds. A more explicit connection between the regularity of the Bergman 

projection and the Neumann operator can be found in [BS2]. 

Kohn and Nirenberg proved in [KN2] that the Neumann operator N 9 

is globally regular when we have a subelliptic estimate at every boundary 

point of D. Kohn [Kol,2] showed that these estimates hold under certain 

geometric hypotheses on the boundary; in particular, we have a subelliptic 

1/2 estimate on every strongly pseudoconvex domain. Similar results were 

obtained by Hormander. Diederich and Forncess [DFl] proved such an 

estimate on weakly pseudoconvex domains with real-analytic boundaries 

in en. Catlin [Cat2] solved the problem completely on smoothly bounded 

pseudoconvex domains in en. He shows that there is a subelliptic estimate 

at a point z E bD if and only if z is a point of finite type in bD in the sense 

of D'Angelo [DAl]. This condition means, roughly speaking, that there is 

an upper bound for the order of contact of bD at z with complex analytic 

curves passing through z. 

As a consequence we see that every smoothly bounded pseudoconvex 

domain of finite type satisfies Condition R. Thus we have (see [BCl] and 

[DF4]) 

Theorem 1.4. Let D and D' be bounded pseudoconvex domains with 

smooth boundaries in en. If D is of finite type, then every proper holo­

morphic mapping of D onto D' extends smoothly to D. 

Condition R may hold even if there are no subelliptic estimates. For 

instance, it holds on pseudoconvex domains that are weakly regular in 
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the sense of Catlin [Catl]. On these domains the 8-Neumann operator is 

globally regular, which implies Condition R. Every smooth pseudoconvex 

domain of finite type is weakly regular at each point, but the converse is 

not true. For instance, every smooth pseudoconvex domain that is strongly 

pseudoconvex except at a discrete set of points is weakly regular, so proper 

holomorphic mappings of such domains extend smoothly to the boundary. 

Recently Boas and Straube [BS2, BS3] found a new method to verify 

Condition R. Their main result is that the Bergman projector and the Neu­

mann operator are globally regular (even exactly regular on Sobolev spaces) 

on smoothly bounded pseudoconvex domains in en that admit a defining 

function p whose complex Hessian is nonnegative at every boundary point 

z E bD in all directions. We shall say that such a function is plurisubhar­

monic at the boundary of D. (It does not need to be plurisubharmonic in 

any open set containing bD.) Note that this condition is somewhat stronger 

than that of pseudoconvexity where the Hessian at p must be nonnegative 

only in complex directions that are tangent to the boundary. Thus we have 

[BS3] 

Theorem 1.5. Let D and D' be bounded pseudoconvex domains in 

en with smooth boundaries, and let D admit a defining function that is 

plurisubharmonic at the boundary of D. Then every proper holomorphic 

map f : D --> D' extends smoothly to the closure of D. This holds in 

particular when the domain D is (weakly) geometrically convex. 

It is not known whether Condition R holds on all pseudoconvex do­

mains. Barrett has found a non-pseudoconvex domain with smooth real­

analytic boundary in C 2 on which Condition R fails [Bal] . It is also not 

known if Condition R is necessary for the existence of a smooth extension 

to the boundary. 

There is a local version of the regularity theorem, due to Bell [Be5] 

and Bell and Catlin (BC2] . This can be stated most naturally in terms 

of mappings of hypersurfaces that satisfy the tangential Cauchy-Riemann 

equations (in short, C-R mappings). If the mapping is merely continuous, 

one should understand that C-R condition in the distributional sense. 

Theorem 1.6. Suppose that f: M1 --> M 2 is a continuous C-R map­

ping between smooth pseudoconvex hypersurfaces, and M 1 is of finite type. 

Let z0 E M1 and w 0 = f(z 0
) E M 2 • Suppose that at least one of the 
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following hypotheses holds: 

(a) l is finite-to-one on M 1 near z 0 ; 

(b) M2 does not contain any one-dimensional analytic varieties, and the 

preimage l - 1 (w0 ) is a compact subset of M1. 

Then l is of class C00 in a neighborhood of z0 . Furthermore, if l is a 

local C-R homeomorphism near z 0
, then it is a local C-R diffeomorphism 

near z 0
• In case (b) it follows that the preimage l- 1 (w0 ) is finite and l is 

finite-to-one in its neighborhood. 

Even though the Bergman kernel method has been very successful 

m the study of the boundary regularity problem, it involves the difficult 

analysis of the B-Neumann operator and results from the theory of partial 

differential equations. For this reason the method cannot be considered 

elementary from the point of view of several complex variables . 

There are at least three alternative approaches, due to Nirenberg, Web­

ster, Yang [NWY], Lempert [Le3, Le4], and Pincuk and Hasanov [PH] and 

Forstneric [Fo6]. These methods only apply to mappings of strongly pseu­

doconvex domains. The advantage is that they rely on standard methods 

of several complex variables. The methods are entirely local and they apply 

also to the case when the boundaries have only a finite degree of smooth­

ness. The method by Pineuk and Hasanov is especially interesting and 

elementary. 

The approach by Nirenberg, Webster, and Yang [NWY] is a natural 

generalization of the extension theorem of Lewy [Lew] and Pineuk [Pi2], 

where the two boundaries are real-analytic, to the case of smooth bound­

aries. The crucial ingredient is the use of almost anti-holomorphic reflec­

tions across the boundary bD within complex lines that are transverse to the 

boundary. The extended mapping is the solution of a system of equations 

that are obtained by differentiating the initial equation and describing the 

condition l (bD) C bD' . The difficult part is to prove a transversality prop­

erty for the mapping near the boundary (Condition A, p. 319 in [NWY]) . 

The main result of the paper [NWY] is a different and more elementary 

proof of Fefferman's theorem (Theorem 1.2 above). 

Lempert obtained a proof of Fefferman's theorem from his work [Le3] 

on the extremal discs for the Kobayashi metric on strongly convex domains 

in en. Since the extremal discs are biholomorphically invariant, and since 

l is locally biholomorphic according to Pincuk [Pi4], the smoothness of 
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f follows immediately from the smoothness of the extremal discs. One 

only needs to consider discs through points close to the boundary in the 

directions that are close to the complex tangent direction to the boundary 

at the nearest boundary point. Lempert constructed these extremal discs 

by the continuity method. One part involves solving a suitable Riemann­

Hilbert boundary value problem for matrix-valued functions on the unit 

disc. The second part is to find apriori estimates for the extremal discs . 

Even though his construction is not easy, the method is very natural and 

self-contained. His foliation of strongly convex domains by the Kobayashi­

extremal discs has proven very useful in many other problems. 

Perhaps the most natural and simplest proofs of Fefferman's theorem 

were given by Pincuk and Hasanov [PH] and by Forstneric [Fo6] . Their 

approach is based on the reflection principle of Lewy [Lew] and Pincuk 

[Pi2] (see section 2 below), and on the smooth version of the edge-of-the­

wedge theorem from [PH]. The classical edge-of-the-wedge theorem was first 

used in this context by Webster [We3] . I wish to thank J . P. Rosay who 

called my attention to the work [PH] . 

The methods of Lempert [Le4], Pineuk and Hasanov [PH], Forstneric 

[Fo6], and Hurumov [Hur] give the following sharp regularity result for 

mappings of strongly pseudoconvex domains: 

Theorem 1. 7. Let D and D' be bounded, strongly pseudocon vex do­

mains in en with boundaries of class cm, m > 2. Then every proper holo­

morphic mapping f: D--> D' extends to a map of class cm - 1/ 2 - 0 (D) . 

The fact that such a mapping is necessarily locally biholomorphic was 

proved by Pineuk [Pi4]. 

Here, m > 2 may be any real number. If m = k +et, with 0 < Ct < 1, 

then cm = Ck,a is the usual Holder class. Recall that cm - o = cm if m is 

not an integer, and equals Uo<a<l cm-l,a if mis an integer. 

This result was proved in [Le4], [PH], and [Fo6], with the weaker con­

clusion that f E cm- 1- 0 (D). The last step from cm - l-o to cm- 1/ 2 - 0 was 

done recently by Hurumov [Hur], using some general regularity theory for 

elliptic equations. (Hurumov's result was announced by Pincuk at the AMS 

Summer Research Institute 1989 in Santa Cruz .) 

The following example, due to Hurumov, shows that the conclusion of 

Theorem 1. 7 is sharp. 
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Example. Let k > 3/2 be a non-integer, 

f(z1, z2) = (z1 + z~, z2), 

D = {z E C 2
:x2 + lzl 2 < 0}. 

Obviously f is a well-defined biholomorphic mapping from D onto some 

bounded domain D' C C 2
, f E c1e(D), and f tJ. C1(D) for l > k. It is easy 

to check that D' is strongly pseudoconvex and that bD' is of class c1e+ 1/ 2 • 

Subsequently, Pineuk and Tsyganov [PT] provided the same result for 

all local C-R mappings of strongly pseudoconvex hypersurfaces without 

assummg properness: 

Theorem 1.8. Every continuous C-R mapping f: M --+ M' of smooth 

strongly pseudoconvex hypersurfaces is smooth on M, with the loss of 

smoothness as in Theorem 1. 7. 

From a previous result of Pineuk [Pi4] it follows that such a map is 

either constant or a local diffeomorphism on every connected component of 

M. 

Theorem 1.8, together with a theorem of Alexander (see Theorem 3.2 

below), implies 

Corollary 1.9. Let fl C bBn be an open connected subset of the 

unit sphere in en, n 2'. 2. If f: fl --+ bBn is a continuous C-R mapping with 

range in the sphere, then f extends to an automorphism of the ball Bn. 

A similar result holds for mappings of certain quadric C-R manifolds of 

higher codimension in en; see the papers [THl, TH2], [Tum2], and [Fo8] . 

So far there is no comparable regularity result for continuous C-R. map­

pings of weakly pseudoconvex hypersurfaces without further assumptions 

on the mapping; the reader should compare this with Theorem 1.6 above. 

We shall briefly outline the proof of Fefferman's theorem given in [PH] 

and [Fo6]. For the sake of simplicity we shall assume that D and D' are 

strongly pseudoconvex domains with C00 boundaries, and f: D --+ D' is 

a biholomorphic mapping. Recall that f extends bicontinuously to the 

closures according to Theorem 1.1. 

Following Webster [We3], we associate to f a holomorphic mapping 

F(z, A) = (f(z ), f' (z )A), 
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defined in the space of pairs (z, A) where z is a point in D and A is a 

complex (n - 1) plane in en passing through z. We may consider such 

(n-1) planes as the points in the complex projective (n-1)-space cpn-l 

and take as the ambient space the manifold en x cpn- 1. Here, f'(z)A is 

the image of A by the derivative off at z. 

The mapping Fis holomorphic in the wedge domain D x cpn-i with 

the smooth, totally real edge M = {(z, T,°bD): z E bD}. Here, T,cbD is 

the maximal complex subspace of the real tangent space to bD at the point 

z. The total reality of M is equivalent to bD being Levi-nondegenerate, see 

Webster [We3]. 

The most difficult part of the proof is to show that there is a smaller 

wedge w+ with the same edge M such that the restriction of F to w+ 
extends continuously to the edge M and maps M to the totally real smooth 

manifold M' = {(z', T,cbD'): z' E bD'} associated to the second boundary 

bD'. Pineuk and Hasanov proved this using the scaling method with non­

homogeneous dilations and the theorem of Alexander [All) to the effect 

that all proper self-mappings of the ball are automorphisms. (See Theorem 

3.1 below.) In the paper [Fo6] it was shown that the continuity of F up to 

the edge follows from the Julia-Caratheodory's theorem for maps between 

balls. The method developed in [Fo6] generalizes naturally to mappings of 

certain Cauchy-Riemann manifolds of higher codimension, and we have an 

analogue of Fefferman's theorem in this setting [Fo7] . 

To a smooth, generic, totally real submanifold M C c 2n- l one can 

associate a smooth reflection <I> defined in a neighborhood of M, which 

fixes M and is almost anti-holomorphic, in the sense that its holomorphic 

derivatives vanish to infinite order on M. Let <I>' be a similar reflection 

on M'. Denote by w- the wedge <I>(W+) with the same edge M . We 

extend the mapping F to w- by setting F(p) = <I>' o F o <I>(p) for p E w- . 
The extended mapping is almost anti-holomorphic on the double wedge 

w+ U w- and continuous up to their common edge M. The C00 version 

of the edge-of-the-wedge theorem [PH] now implies that the restriction of 

F to M is smooth; hence, f is smooth on bD. 

Pincuk and Hasanov gave a direct proof of the last step using the 

Cauchy integrals. Alternatively, one can understand this step in terms of 

the C00 wave front set (see Hormander [Hol ]). Composing F with a smooth 

diffeomorphism which maps the edge M to an open subset of R 2n- l and 

which is 8-flat on M (i.e., its a derivatives vanish to infinite order on M), we 
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may deal with a wedge whose edge is an open subset of R 2n-
1. Passing to a 

smaller wedge, we may also assume that w+ = M +if and w- = M - if, 

where f is an open convex cone in R 2n- 1 . Let f° C R 2n-i be the closed 

dual cone (the polar off). Since F is almost holomorphic in w+, the C00 

wave front set of FIM at a point Z E M is contained in f 0 (see [Hol], p. 

257). By the same argument for w- the wave front set is contained in 

-f0 . Since the intersection f 0 n -f0 is empty, the wave front set is empty 

at Z, i.e., F is smooth in a neighborhood of Z. 

Several problems appear if one tries to use this method on domains 

that are not strongly pseudoconvex. First, the associated manifold M is no 

longer totally real. Furthermore, if f is branched, one cannot even define 

F as above. Also, the method of dilations does not apply directly since the 

limit domain would no longer be the unit ball. Even so, it would be nice 

to see this approach extended to a larger class of pseudoconvex domains. 

We mention a theorem of a different nature. One may ask whether 

the continuity of a proper m apping at the boundary is the consequence of 

suitable local assumptions on the two boundaries. A result of this type is 

due to Forstneric and Rosay [FR]; we shall only cite a special case. 

Theorem 1.10. Let f : D --+ D' be a proper holomorphic map of a 

domain D C en onto a bounded domain D' c en. Assume that bD is of 

class C2 and strongly pseudoconvex in a neighborhood of a point z 0 E bD. 

If there is a sequence {zJ} C D converging to z0 , such that the image 

sequence {f(zj )} C D' converges to a point w 0 E bD' and bD' is of class 

C2 and strongly pseudoconvex in a neighborhood of w 0 , then f extends to 

a Holder continuous map with the exponent 1/ 2 on a neighborhood of z0 

in D. 

Note that there are no conditions on the two boundaries away from the 

points z 0
, resp. w 0

• One needs to assume much less on the two boundaries. 

What is important is to have good local holomorphic peaking functions on 

D' near w 0
. The theorem was proved by a localization of the Kobayashi 

metric in a neighborhood of a certain pseudoconvex boundary point of a 

bounded domain in en . Of course the theorem does not give a nything 

new if the domains have globally smooth boundaries. However, a slightly 

stronger version of the theorem gives: 
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Corollary 1.11. Let D be a domain in en with a plurisubharmonic 

defining function of class ci+• for some € > 0, and let D' be a bounded 

domain in en whose boundary is of class C2 and strongly pseudoconvex 

outside a closed, totally disconnected subset E C bD'. Then every proper 

holomorphic mapping of D onto D' extends continuously to D. 

If neither of the two domains D, D' C en has smooth boundary, there 

is no reason why a biholomorphic or proper map should extend continuously 

to the closure. Fridman [Fri] has shown that there is a bounded domain D 

in C 2 with piecewise-smooth boundary and a biholomorphic mapping of D 
onto the unit polydisc in C 2 that does not extend continuously to D. Also, 

there is a domain D in C 2 whose boundary is real-analytic and strongly 

pseudoconvex, except at one point z E bD, and there is an automorphism 

of D that does not extend continuously to D U {z} [FR]. Another example 

from [FR] shows that the condition in the Corollary is sharp, in the sense 

that the conclusion may be false if the exceptional set E C bD' is a circle. 

We mention a result of Lempert [Le5] in which the usual pseudocon­

vexity assumptions are replaced by a global geometric condition. Recall 

that a domain D is star-shaped with respect to a point z0 E D if the line 

segment from any point z E D to z 0 is contained in D. The domain is 

strictly star-shaped if, in addition, the line segment from any boundary 

point z E bD to z 0 intersects bD at an angle that is uniformly bounded 

away from 0. 

Theorem 1.12. Let D and D' be bounded, strictly star-shaped do­

mains with real-analytic boundaries in en. Then every biholomorphic 

mapping of D onto D' extends to a Holder continuous homeomorphism 
- _, 

of D onto D . 

We close the section with some open problems. 

1. As mentioned at the beginning of the section, it is not know whether 

mappings between bounded domains in en with smooth boundaries 

extend smoothly to the closure. A class of special domains on which 

the problem has not been solved are the Hartogs domains in en for 

n > 2, except of course the pseudoconvex domains of finite type. For 

domains in e 2 see Theorem 3.12 below. 

2. In the local extension theorem of Bell and Catlin (Theorem 1.5) one 

would like to remove the hypothesis that the fiber 1- 1 
( w 0 ) is com-
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pact. More precisely, let f: M 1 ----> M2 be a continuous C-R mapping of 

smooth pseudoconvex hypersurfaces on finite type. Is f also smooth? 

3. Is it possible to extend the elementary approach by Pincuk and 

Hasanov to a wider class of domains? 

4. Study the regularity of C-R mappings between smooth generic C-R 

submanifolds in en of codimension d > 1. It is well-known that the 

one-sided holomorphic extension of C-R functions is replaced by holo­

morphic extension into wedges (see section 2 below). What is the 

correct analogue of a proper mapping in this setting? Under what 

geometric conditions is every local C-R homeomorphism of such C-R 

manifolds smooth? For partial results in this direction see [Fo7]. 

5. Bedford and Bell proved in [BB2] that every proper holomorphic self­

mapping of a bounded pseudoconvex domain D c en with real­

analytic boundary is biholomorphic. Is the same true when bD is 

smooth? 

2. Analyticity of e-R Mappings 

In this section we present results on the following extension problems: 

Local extension problem. Let M, M' C en be (germs of) smooth real­

analytic hypersurfaces at the origin. Locally near the origin M splits the 

space in two open half-spaces M- and M+ . Suppose that a continuous 

mapping f: M - u M ----> en is holomorphic on M- and maps M into 

M'. Under what conditions does f extend holomorphically to an open 

neigborhood of the origin in en? 

Global extension problem . Let D and D' be relatively compact do­

mains with smooth real-analytic boundaries in en (or in n-dimensional 

Stein manifolds). Does every proper holomorphic mapping/: D ----> D' ex­

tend holomorphically to a neighborhood of D? 

In one variable the map in the local problem extends according to the 

Schwarz reflection principle. In the global problem one first applies the 

classical theorem of Caratheodory to obtain a continuous extension off to 

D. 

From now on we shall always assume that n ::: 2. The first exten­

sion result in several variables was obtained in 1974 by Lewy [Lew) and 

Pincuk [Pi2] for strongly pseudoconvex hypersurfaces (see Theorem 2. 1 
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below). Even though the global extension problem is still open on non­

pseudoconvex domains in en' it has been solved for the pseudoconvex do­

mains by Baouendi, Bell, and Rothschild [BaBR, BaRl, BaR2] and, inde­

pendently, by Diederich and Fornress [DF5]. (See Theorem 2.2 below.) It 

was also solved on domains in C2 with smooth algebraic boundaries [DF6]. 

Results in this direction have been obtained in recent years by several au­

thors, see [We2, We3, We5, BBl, Be2, Der, Han, DW, BaJT]. 

As we have mentioned in section 1, Barrett [Ba2] constructed examples 

of biholomorphic mappings between domains in non-Stein manifolds that 

do not extend even continuously to the boundary. The common feature 

of such examples is that the boundaries of the domains contain complex 

analytic varieties. This is not possible for bounded domains with real­

analytic boundaries in en (DFl]. 

The formulation of the problem is intentionally a bit vague. Typically 

one would like to prove the existence of a holomorphic extension under 

few or no extra conditions on the map f. Of course, one has to put some 

conditions on M and M' . For instance, if M and M' are Levi-flat, f need 

not extend. The. simplest example of this type is M = M ' = {(z1 , z2 ) E 

C2: !Rz1 = O},f(z1,z2) = (z1,Z2 + g(zi)), where g(() is a holomorphic 

function on {!R( < O}, smooth on {!R( ::=:; O}, that does not extend holomor­

phically across {!R( = O}. 
The conditions on the two hypersurfaces can sometimes be traded with 

the conditions on f. In most results one assumes that f is not merely 

continuous, but also smooth. Often the smoothness of f follows from one 

of the regularity theorems in section one. 

The set M - plays an auxiliary role. The hypothesis that f is holomor­

phic on M - guarantees that the restriction f IM is a C-R map. It follows 

by a usual complexification argument that f will extend holomorphically 

to a neighborhood of the origin if and only if f IM is real-analytic at 0 E M. 

Thus our problem is a special case of the following 

Regularity problem. Let f: M ---> M' be a C-R mapping of smooth 

real-analytic hypersurfaces at the origin in en. Under what conditions is 

f real-analytic at the origin? 

If M does not contain a complex hypersurface passing through the 

origin, then every C-R function f on M extends holomorphically to one 

side of M, say M - , according to Trepreau (Tre]. Hence, the two problems 
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are equivalent in this case. 

The second formulation of the problem can be generalized immediately 

to C-R mappings of real-analytic C-R manifolds of higher codimension in 

en. The one-sided holomorphic extension of f is replaced in this case by 

holomorphic extension to wedges with edge M. We shall mention some 

results of this type below. 

If the Levi form of M at 0 has at least one positive and one negative 

eigenvalue, then every C-R function (and even every C-R distribution) on 

M extends to a holomorphic function in a neighborhood of the origin in 

en [BaCT]. Thus the problem is only interesting when the eigenvalues of 

the Levi form at 0 have the same sign. 

Our subject started around 1974 with the following 'reflection princi­

ple ' due to Lewy [Lew] and, independently, Pineuk (Pi2]: 

Theorem 2.1. Let Mand M' be real-analytic hypersurfaces at the ori­

gin in en . Assume that f : M - u M __, en is a map of class C1 that is holo­

morphic in M- and f(M) CM'. If the derivative f'(O) is non-degenerate 

and M' is strongly pseudoconvex at 0, then f extends holomorphically to 

a neighborhood of the origin in en . If M is also strongly pseudoconvex at 

0, then f'(O) is necessarily non-degenerate. 

We recall briefly the idea of the proof. The tangential C-R operators 

on the hypersurface M play a very important role . These are complex 

vector fields of type (0, 1) that are tangent to M. Let r be a real-analytic 

real-valued defining function of M near the origin, i.e., 

M = {z E en: r(z, z) = O}, (2.1) 

where r(O) = 0, dr -::j:. 0. We may assume that 8r/ 8zn(O) -::j:. 0. Then we may 

take as the basic tangential C-R operators on M 

L ] 
8r/ 8zj a 
8r/ 8z n 8zn' 

l S j S n - 1. 

Suppose that r' is a real-analytic defining function of the second hyper­

surface M '. Let 0 E M and /(0) = 0 E M'. Applying the L/s to the 

identity 

r' (f( z), f( z) ) = 0, z E M, (2.2) 
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we obtain n - 1 additional identities on M: 

t ;;: (f(z), (J(z))L,fj(z) = 0, 
j=l J 

z E M, 1 ::; s ::; n - 1. (2.3) 

We consider (2.2)-(2.3) as a system of n holomorphic equations in 

the unknowns (!1 , ... , fn)· A simple calculation shows that its complex 

Jacobian with respect to f is nonvanishing at the origin, provided that the 

Levi form of r' is nondegenerate on T(j M' and f' (0) is injective on T0c M. 

Solving the system, we obtain a new set of identities 

(2.4) 

where Q is a holomorphic function in all arguments. 

Recall that f is holomorphic in M-. Fix a complex line I' c en trans­

verse to M . Its intersection with M is a real-analytic curve / that splits 

I' locally in two half-lines -y+ = I' n Af+ and ,- = I' n M - . Since fJ-r 
extends holomorphically to , - , its conjugate f 11 extends holomorphically 

to 1+. By extending the real-analytic coefficients of Lj from -y to holomor­

phic function on r we can also extend the functions Lj f 11 to 1+. Thus 

the right-hand side of (2.4) defines a holomorphic extension of f to 1+ . 

This can be done uniformly on a family of parallel lines, so we obtain a 

holomorphic extension off across the origin. This proves Theorem 2.1. 

If M' is not strongly pseudoconvex at the origin, or if the derivative 

f'(O) is degenerate, the implicit function theorem does not apply. A natural 

idea then is to differentiate the equations (2.3) further with respect to the 

operators Lj, obtaining more and more equations. This idea was pursued 

by several authors, see the papers [Der, Han], and the papers cited below. 

Of course, the map f must be smooth to begin with. 

The result has been generalized to mappings between much wider 

classes of hypersurfaces, and also to mappings between C-R manifolds of 

higher codimension in en. The following outstanding global result follows 

from the independent works of Baouendi, Bell, and Rothschild [BaBR], 

[BaRl], Diederich and Fornress [DFS], and from Theorem 1.4 above: 

Theorem 2.2. Let D and D' be bounded pseudoconvex domains 

with smooth real-analytic boundaries in en. Then every proper holomor­

phic mapping of D onto D' extends to a proper holomorphic mapping from 
- - I 

a neighborhood of D onto a neighborhood of D . 
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The analytic part of this theorem is a consequence of more general local 

extension results, obtained in the papers [DF5], [BaRl], [BaBR), [BaR2], 

[BaBR4), that we shall now describe. Because of the larger number of re­

sults following the pioneering work of Lewy and Pineuk we shall concentrate 

on the most important contributions. We try to be as accurate as possible 

with respect to credits and priorities, which seems a difficult task in the 

present case. 

Essentially there have been two main lines of development; one by 

Webster [We2, We3], Diederich and Webster [DW], and Diederich and 

Forncess [DF5]; the other one by Baouendi, Jacobowitz, and Treves [BaJT], 

Baouendi, Bell and Rothschild [BaBR), and Baouendi and Rothschild 

[BaRl, BaR2, BaR4]. We should also mention a paper by Bedford and 

Pincuk [BP2]. 

We shall first deal with mappings of hypersurfaces, deferring the map­

pings between C-R manifolds of higher codimension to the end of this sec­

tion. 

In the paper [We3], Webster showed how Theorem 2.1 can be proved 

using the classical edge of the wedge theorem, at least when the hypersur­

faces are strongly pseudoconvex. An important contribution of Webster 

in (We2] and (We3] is the introduction of the so called 'Segre varieties' to 

the mapping problem; see (2.5) below. Implicitly these varieties already 

appeared in the works of Lewy and Pincuk , but Webster made this much 

more explicit. 

An important step in extending the result to more general hypersur­

faces was the paper (DW] by Diederich and Webster in 1980. They proved 

that a biholomorphic mapping f: D ----> D' between pseudoconvex domains 

with real-analytic boundaries, such that f and 1- 1 are sufficiently smooth 

up to the boundary, extends holomorphically to every point z E bD\E out­

side a real-analytic subset E C bD of real codimension at least two in bD. 

The technique developed in this paper was later improved by Diederich and 

Forncess [DF5] in 1987, where they proved a rather general local extension 

result (see Theorem 2.3 below) that implies Theorem 2.2. 

In the paper [DW), the authors recognized the importance of the con­

dition of essential finit eness, see definition below. This terminology is due 

to Baouendi, Jacobowitz, and Treves (BaJT], who introduced the condition 

in a slightly different but equivalent form in 1985. 



Proper holomorphic mappings: a survey 317 

The paper by Baouendi, Jacobowitz, and Treves was an important 

contribution in the development of this theory. They showed in particular 

that, if the hypersurface M is essentially finite and M' is of finite type at 

the origin, then every smooth C-R diffeomorphism /: M -+ M', f(O) = O, 

is real-analytic near 0. The point is that they proved extendability of 

the mapping at every point where the two requirements are met. The 

authors replaced the implicit function theorem by a more delicate method 

of systematic elimination of variables in a set of analytic equations. They 

also obtained results on extendability in the case of C-R manifolds of higher 

codimension. Their approach was developed further in the papers (BaBR] 

and (BaRl, BaR2, BaR4]. We shall return to the paper (BaJT] at the end 

of this section; see Theorem 2.8 below. 

We shall now explain the main idea of the papers by Diederich and 

Webster (DW] and Diederich and Fornress (DF5]. Suppose that, near the 

origin in en, the hypersurface M is defined by (2.1 ). If we set w = z and 

vary z and w independently, we obtain a holomorphic function r(z, w) of 

2n variables. The set 

M 0 = {(z, w) E e 2n: r(z, w) = O} 

is a local complex hypersurface in e 2n, called the polar of M. It is the 

complexification of the totally real submanifold {(z, z): z E M} C e 2n. 

For each fixed w E en we define the Segre variety 

Qw = {z E en: r(z, w) = O}. (2.5) 

This is a nonsingular local complex hypersurface near the origin in en, the 

intersection of the polar M 0 with a hyperplane w = constant. These hyper­

surfaces were apparently first introduced by Segre (Seg] in a different con­

text. Their importance in the mapping problem comes from the following 

simple observation, due to Webster (We2]. Let M' = {z E en: r'(z, z) = O} 

be another real-analytic hypersurface, and let f: U -+ U' be a holomorphic 

mapping between small neighborhoods of 0 in en, satisfying J(M) C M' 
and /(0) = 0. This means that r'(f(z), f(z)) = 0 for z E M. Hence we 

have an identity 

r'(f(z), f(z)) = p(z, z)r(z, z) 

for z E en near 0, with p(z, z) a real-analytic function. Setting z =wand 

varying z and w independently we have an identity 

r'(!(z), f(w)) = p(z, w)r(z, w) 
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for z and w in a suitably smaller neighborhood of the origin in en. If we 

fix w and let z E Qw, both sides of the identity are zero, so we conclude 

that f( z) E Qj (w )' Here, Q~, is the Segre variety associated to M'. This 

shows that 

J ( Qw) is contained in Qj (w) 

for all w E en near 0. The same is true if M' C cN with N > n; this 

was exploited in [Fo4). If f is locally biholomorphic, we may apply the 

same argument to 1- 1
, thus showing that the family of varieties { Qw} is 

invariantly attached to M . 

Let A,,, denote the fiber of the mapping w --> Qw: 

(2.6) 

This is also a local complex variety in en . We list some elementary but 

important properties of these sets (see [DW] or [DFS]): 

(a) z E Qw if and only if w E Q., 

(b) zEQ, ifandonlyifzEM, 

( c) z E A,, 

(d) if z EM, then A, is a complex subvariety of M, and 

(e) Aw =n{Q,:z E Qw}· 

Suppose now that f is holomorphic only in one side M - of the hyper­

surface and smooth on M - UM. If w E M + is close to 0, then Qw n M ­

is a nonempty complex hypersurface, so we can try to find a point w' E en 
such that 

(2.7) 

If such a w' exists and is unique, it is natural to set f ( w) = w' and hope 

that this would give a desired holomorphic extension off. 

There are several problems. To show that there exists at least one point 

w' satisfying (2. 7) we must use the.condition that f is smooth on M- UM 

and maps M to M'. The condition (2. 7) makes no sense for points w E M 
since Qw may then be contained in M + U { w}. However, in actual proof, 

(2. 7) is replaced by a differential condition involving the Taylor coefficients 

of the Segre varieties and the mapping which makes sense also for w E M. 

A more serious problem is related to the fact that the mapping w E Qw 

need not be one-to-one. It turns out that it is sufficient to require that this 

mapping be finite-to-one. The importance of this condition was first recog­

nized by Diederich and Webster [DW]. In a slightly different but equivalent 
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form it was introduced and given a name by Baouendi, Jacobowitz, and 

Treves (BaJT]: 

Definition. A smooth real-analytic hypersurface M C en is said to 

be essentially finite at 0 E M if the subvariety 

Ao= {z E en: Qz = Qo} = U{Qz: z E Qo} 

of M is equal to {O} (in the sense of germs at the origin). 

Before proceeding, we collect some observations about this property 

(see (DW] and [BaJT]). 

1. If M does not contain any positive dimensional complex subvariety, 

then it is essentially finite. (This is trivial since V is a complex subva­

riety of M.) 

2. From 1. and a result of Diederich and Fornress [DFl] it follows that 

every compact real-analytic hypersurface in en is essentially finite at 

each point. 

3. If M contains a germ of a complex hypersurface through the point 0, 

then M is not essentially finite. 

4. If a real-analytic hypersurface M is essentially finite, then it is of fi­

nite type in the sense of Bloom and Graham [BIG] . (This is in fact a 

restatement of 3.) 

5. The real hypersurface M c e3 defined by 

is pseudoconvex in a neighborhood of the origin, and it is essentially 

finite even though it contains the complex line z1 = w = 0. 

The assumption that M is essentially finite at 0 implies that dim A, 

= 0 for all z close to the origin. Hence, for each w, there will be at most 

finitely many points w' satisfying (2.7) . It turns out that the set 

X = {(w,w'):w E M +, J(Qw n M - ) C Q~ .}, 

localized suitably near the origin, is an n-dimensional complex subvariety 

in e 2
n that is a branched covering over Af+. 

If M is essentially finite at 0, then it can not contain a germ of a 

complex hypersurface at 0 according to the property 3 above. Hence we may 
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assume, according to a result of Baouendi and Treves [BaT] and Trepreau 

[Tre], that all holomorphic functions on Af+ extend holomorphically to a 

full neighborhood of the origin (otherwise M- has this property and we can 

simply extend f across 0) . By extending the canonical defining functions of 

the analytic cover X _, M+ we can extend X to a complex n-dimensional 

SU bvariety in a full neighborhood of the origin in e 2n . This extension 

contains the graph 

f1 = {(z,f(z)) :z EM- UM} 

of f . Hence each component of f satisfies an identity Pj (fj; z) = 0, where 

Pj(t; z) is a Weierstrass polynomial int. Since fj is C 00 on M, it follows 

from the Artin-Rees lemma that JIM is real-analytic at 0. 

This outline can be used to prove the following local extension result , 

due to Diederich and Fornaess [DF5] and, independently and simultaneously, 

to Baouendi and Rothschild [BaRl] (see also [BaBR] for the case n = 2) . 

Let z = ( Z1, ... , Zn) be the coordinates in en. 

Theorem 2.3. Let M, M' c en be smooth real-analytic hypersur­

faces at the origin, with tangent space Rzn = 0 at 0. Assume that M 

is essentially finite at the origin. If f = (Ji, . . . , fn ) is a smooth map­

ping on M - UM that is holomorphic in M - and satisfies the conditions 

f(M) C M', f(O) = 0, and 8fn(0)/8zn f; 0, then f extends holomorphi­

cally to a neighborhood of 0 in en. 

Actually, both papers [BaRl] and [DF5] give a similar result under 

somewhat weaker hypotheses, but they do get more technical. We refer the 

interested reader to the original papers. In the case when f: M -> M' is 

a smooth local C-R diffeomorphism at 0, Theorem 2.3 was also proved by 

Bedford and Pincuk [BP2]. 

The transversality condition 8fn(0)/8zn is satisfied when M and M' 

are pseudoconvex and f maps the pseudoconvex side of M to the pseudo­

convex side of M' [Fn2]. Since every compact real-analytic hypersurface in 

e n is essentially finite, Theorems 1.4 and 2.3 imply Theorem 2.2 above. 

In the subsequent paper [BaR4], Baouendi and Rothschild have ob­

tained a sharper local result on holomorphic extendability (see Theorem 6 

in [BaR4]). With the appropriate choice of local holomorphic coordinates 

it suffices to require that M is essentially finite and the transverse com­

ponent fn of the given smooth C-R mapping f : M ----> M' is not flat at 0. 
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The conclusion then is that f IM is real-analytic at 0. They also proved 

extendability under the asssumption that M' is essentially finite at 0 and 

the mapping f is either of finite multiplicity or else it is not totally de­

generate at O; we refer the reader to [BaR4] for the definitions and precise 

formulation. The first of these two cases falls under the scope of Theorem 

2.3. Namely, if M' is essentially finite, then it is of finite type in the sense 

of Bloom and Graham. If, in addition, f is of finite multiplicity at 0, it 

follows that the transverse component fn satisfies 8fn(0)/8zn -f::- 0 [BaR4, 

Theorem 1], and also that M is essentially finite [BaRl]. Thus Theorem 

2.3 applies. 

In the case when both M and M' are Levi nondegenerate, it suffices 

to use the first order information carried by Qw, i.e., the tangent space 

TzQw at a point z E Qw. The mapping (z, T,Qw)--> (w, TwQz) is an anti­

holomorphic reflection that fixes the totally real manifold {(z, T, M): z E 

M}. Using these reflections one can reduce the extension problem to 

the edge-of-the-wedge theorem. (See Webster [We3].) We explained this 

method in connection with the result of Pineuk and Hasanov (Theorem 1. 7 

above). 

The results that we have mentioned so far are not sharp, in the sense 

that they only give sufficient conditions for extendability that are , generally 

speaking, not necessary. Baouendi and Rothschild [BaR2] have obtained a 

particularly beautiful sharp result in C 2 that we shall now describe. 

Let M be a smooth real-analytic hypersurface at the origin in C 2 . If 
f: M - --> C 2 is a holomorphic mapping that extends smoothly to M - u M, 

we shall say, following [BaR2], that f is not totally degenerate at 0 if its 

Jacobian determinant det(8JJ/8zk) is not flat at 0, i.e., its Taylor series 

at 0 does not vanish identically. We say that a real-analytic hypersurface 

M has the refl ection property at 0 if any holomorphic mapping defined on 

one side of M as above and not totally degenerate at 0, mapping M into 

another real-analytic hypersurface M' c C 2
, extends holomorphically to a 

full neighborhood of 0 in C 2 • The main result of [BaR2] is 

Theorem 2.4. A real-analytic hypersurface M C C 2 has the re­

flection property at 0 if and only if M is not locally biholomorphically 

equi val en t to the hypersurface {SS z2 = 0} . 

We have seen above that the hypersurface {S.Sz2 = O} does not have 

the reflection property. Also, if M is any hypersurface in C 2 on which 
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there is a smooth C-R function g which extends holomorphically only to 

M-, then the mapping f = (g, 0) is a totally degenerate mapping from 

M to M' = {~.S'z2 = O} which does not extend holomorphically in any 

neighborhood of 0. (This example is taken from [BaR2]). Hence Theorem 

2.4 is optimal. 

Recall that a bounded domain D c en is said to be algebraic if there 

exists a real polynomial r(z, z) on en such that Dis a connected component 

of the set {z E en: r(z, z) < O} and dr(z) # 0 for z E bD. Using the 

Qw varieties, Webster proved [We2] that biholomorphic mappings between 

strongly pseudoconvex algebraic domains in en are c;,/gebraic, i.e., the graph 

of the mapping is contained in an n-dimensional algebraic subvariety X of 

e 2n. Recently, Diederich and Forncess [DF6] proved the following results 

concerning mappings of algebraic domains. 

Theorem 2.5. Let D, D' CC C 2 be algebraic domains and f : D ---. 

D' a biholomorphic mapping. Then f extends holomorphically to a neigh­

borhood of D. 

Theorem 2.6. Every proper holomorphic mapping f: D ---. D' be­

tween algebraic domains D, D' CC en extends continuously to D. 

There is an older result, due to Diederich and Forncess (DF3], for map­

pings of non-pseudoconvex domains in e 2
. 

Theorem 2. 7. Let Di, D 2 C e 2 be bounded domains with smooth 

real-analytic boundaries. Assume that the set of strongly pseudoconvex 

boundary points of Dj is separated from the set of strongly pseudoconcave 

boundary points by a real-analytic, totally real submanifold Mj C bDj 

for j = 1, 2. Then every biholomorphic mapping f : Di ---. D2 extends 

continuously to D1. 

It follows that f extends holomorphically to a neighborhood of D 1 . 

Since f clearly maps M 1 into M2, the extendability off at points of Mi 

follows from the edge-of-the-wedge theorem. 

We now return to the paper [BaJT] by Baouendi, Jacobowitz, and 

Treves, where the authors considered the analyticity of smooth C-R dif­

feomoprhisms between generic real-analytic C-R manifolds in en. Such a 
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manifold M is given locally by a set of real equations 

r1(z, z) = 0, .. . rd(z, z) = o, (2.8) 

where each r; is real-analytic in a neighborhood of the origin, and 8r1 /\ 

. .. /\ 8rd -f. 0. Everything should be understood in the sense of germs at 

the origin. Write n = m + d; then we have dim M = 2m + d and CR 

dim M = m. As before we define the poiar of M by 

M 0 = {(z, w) E e 2n: r;(z, w) = 0, 1 '.S j '.S d}, 

and for each fixed w E en we define a local complex submanifold of en of 

complex dimension n - d by 

Qw = {(z,w) E en:r;(z , w) = 0, 1 '.S j '.S d}. 

J ust as before we pose the following 

Definition. (See[BaJT].) A generic real-analytic C-R manifold M C 

en is said to be essentially finite at 0 EM ifthe subvariety V = n{Q,: z E 

Q0 } of M is equal to {O} (in the sense of germs at the origin). 

Let A C Rd be a non-empty open convex cone with vertex 0 in Rd . 

Suppose that M is given by (2.8). We define a wedge W(A) c en with 

edge M by 

~w - ¢(z, z, ~w) EA. 

As usual we think of W(A) as a germ of a domain at the origin. 

The main result of the paper [BaJT] is: 

Theorem 2.8. Suppose that M and M' are real-analytic generic C­

R submanifolds at the origin in en of C-R dimension m > 0, satisfying the 

following two conditions: 

(a) There is a nonempty open convex cone r C Rd such that every C-R 

function on M extends (in the sense of distributions) to a holomorphic 

function in a wedge W(A) with edge M; 

(b) M ' is essentially finite at 0. 

Then every C00 -smooth C-R diffeomorphism f : M ___, M' with f(O) = 0 

is real-analytic at 0 (and therefore it extends holomorphically to a neigh­

borhood of 0 ) . 



324 Chapter 17 

There are several known results on holomorphic extension of C-R func­

tions to wedges; see the papers [BaCT, BaR3]. We mention an interesting 

and strong result of Tumanov (Tuml]. 

Definition. A generic C-R manifold M C en is called minimal at 

the point z E M if there exists no C-R manifold N C M, pasing through 

z, of smaller dimension than M, but of the same C-R dimension. 

Tumanov proved that at every point z E M at which M is minimal, 

all C-R functions on M can be extended to some wedge with edge on M . 

If M is a hypersurface in en, then it is minimal when it does not contain a 

complex subvariety of maximal dimension n - 1. In this case the result of 

Tumanov is just the one-sided extension theorem of Baouendi and Treves 

[BaT] and Trepreau (Tre] . The result ofTumanov, together with Theorem 

2.8, implies 

Corollary 2.9. Let M and M' be generic real-analytic C-R manifolds 

at the origin in en . If M is minimal at 0 and M' is essentially finite at 

0, then every smooth C-R diffeomorphism f: M -+ M' with f(O) = 0 is 

real-analytic at 0. 

On Levi-nondegenerate C-R manifolds the result of Theorem 2.8 holds 

if f is merely of class C1 , see [BaJT]. In this case the same result was proved 

earlier by Webster (We6]. On hypersurfaces, Theorem 2.3 above is stronger 

than Theorem 2.8 where the mapping is assumed to be non-branched. An 

alternative proof of Theorem 2.8 for hypersurfaces was given by Bedford 

and Pincuk [BP2] . 

We conclude the section by mentioning some open problems. 

1. One of the assumptions in Theorem 2.4 is that the mapping f is not 

totally degenerate. Suppose that the real-analytic hypersurfaces M , 

M' c en are not biholomorphically equivalent to S'zn = 0. If f : M -+ 

M' is a smooth C-R mapping that is totally degenerate at O, does it 

follow that f is constant? 

2. Find necessary and sufficient conditions for extendability of holomor­

phic mappings in dimension n > 2 (see Theorem 2.4 for n = 2). 

3. In a typical extension result one first uses one set of ideas to prove 

that the mapping is smooth on the boundary and another set of ideas 

to prove that it extends across the boundary. It would be more sat-
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isfactory to be able to go from the small initial amount of regularity 

directly to holomorphic extension. On strongly pseudoconvex hyper­

surfaces the methods of Lem pert [Le4], Pincuk and Hasanov [PH] and 

Forstneric [Fo6] are of this kind. Also, Bell proved [Be2] that the holo­

morphic extendability of a mapping/: D _, D' between pseudoconvex 

real-analytic domains in en follows from the global analytic hypoel­

lipticity of the 8-Neumann problem for D, which is known to hold on 

strongly pseudoconvex domains. It seems that there is so far no suc­

cessful approach of this kind for arbitrary pseudoconvex real-analytic 

domains in en. 
4. Suppose that f: M _, M' is a C-R homeomorphism of generic real­

analytic C-R manifolds in en, f(O) = 0. If both M and M' are 

minimal at 0 (in the sense of Tumanov [Tu]), is f real-analytic at 

O? This problem seems to be open even on Levi non-degenerate C-R 

manifolds (see [Fo7]). 

3. Mappings of Special Domains 

One of the most special domains in en is certainly the unit ball: 

n 

Bn = {z E en: lzl2 = L lz;l2 < 1}. 
j=l 

Recall that the automorphism group of Bn is generated by the unitary 

group U(n), together with the involutions 

,.i. ( ) _ a - Paz - saQaz 
't'a Z - ' 1 - (z, a) 

where (z,w) = 2:;7=1 z;w;,Paz = i:::!a,Qaz = z - Paz, and Sa = (1 -

iai2)112. See Rudin [Ru2]. 

It follows that the group Aut Bn acts transitively on the ball. Con­

versely, when n > 1, Bn is the only bounded, strongly pseudoconvex do­

main in en with a transitive group of automorphisms, according to Wong 

[Wong] and Rosay [Rol]. See also [Ru2, p . 327] . 

We now consider the proper holomorphic maps of Bn onto itself. When 

n = 1, such maps are precisely the finite Blaschke products [Rul , p.164]: 

m 

II 
z - a · F(z) = eiB1 _ J , 
1 - a ·z 

i= l ] 

8; E R , a, E B1, m E Z+ . 
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Thus the space of proper holomorphic maps B 1 ----> B 1 is infinite dimen­

sional, and every such map is rational. 

The situation is quite different for n > 1. It is much more difficult for 

a domain D c en with n > 1 to admit proper self-mappings that are not 

automorphisms. The first evidence of this was the following theorem, due 

to Alexander [All]: 

Theorem 3.1. If n > 1 and /: Bn ----> Bn is a proper holomorphic 

mapping, then f is an automorphism of Bn. 

An elementary proof of this theorem can be found in Rudin's book 

[Ru2, p.316]. The theorem can be reduced to the following local result (see 

[Ru2, p. 311]): 

Theorem 3.2. Let n > 1. Suppose that OJ is an open subset of Bn 

(j = 1, 2) whose boundary bOj contains an open subset rj of bBn, and 

suppose that f is a biholomorphic map of0 1 onto 02. 

If there is a sequence { ak} in 0 1 , converging to a point a E r 1 which is 

not a limit point of Bn n b01 , such that the sequence bk = f( ak) converges 

to a point b E r 2 which is not a limit point of Bn n br22 , then f extends to 

an automorphism ofBn. 

The best result in this direction is due to Pineuk and Tsyganov [PT], 

see Corollary 1.9 above. 

It is worth mentioning the history of this problem. In 1907 Poincare 

[Po] proved the following result for n = 2: Let U be an open ball centered 

at a point a E bBn and let f: U ----> V C en be a biholomorphic map that 

takes bBn nU to bBn n V. Then f extends to an automorphism of Bn. This 

was proved for arbitrary n > 1 in 1962 by Tanaka [Ta] who was apparently 

not aware of Poincare's work. The same result was rediscovered by Pettes 

(Pe] and Alexander [All]. 

Subsequently Alexander [Al2] proved Theorem 3.1 using the fact that 

the map f extends smoothly to Bn according to a theorem of Fefferman 

(Theorem 1.2). Pincuk reduced the smoothness requirement C1 (Pi2] . The 

proof of Theorem 3.2 given in Rudin's book [Ru2] avoids Fefferman's the­

orem and is rather elementary. Finally Pincuk and Tsyganov proved in 

[PT] that every nonconstant local continuous C-R mapping of bBn to itself 

extends to an automorphism of Bn (Corollary 1.9) . 
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Alexander's theorem has been extended to several classes of domains. 

Diederich and Fornress proved in [DF7] that every proper holomorphic map­

ping from a smoothly bounded, strongly pseudoconvex domain in en onto 

another smoothly bounded domain in en is locally biholomorphic, hence a 

holomorphic covering projection. If the target is simply connected, the map 

is biholomorphic. Thus, if D CC en is strongly pseudoconvex and simply 

connected, then every proper self-map of D is an automorphism. Also, ev­

ery proper holomorphic self-mapping of a bounded pseudoconvex domain 

in en with smooth real-analytic boundary is an automorphism according 

to Bedford and Bell [BB2). It is an open problem whether the same holds 

for smooth bounded domains of finite type in en. In this direction, Pan 

(Pan) proved that every proper holomorphic self-map of a pseudoconvex 

Reinhardt domain D C en(n > 1), such that the Levi determinant of D 

does not vansh identically on bD, is an automorphism of D . He proved the 

same result for certain special pseudoconvex domains that are not of finite 

type. 

In a different direction, Henkin and Novikov (HN) and Henkin and 

Tumanov [THl, TH2, Tum2) proved the same result for all classical Cartan 

domains, as well as for a wide class of Siegel domains of the second kind. 

We shall state only a special case of these resuits: 

Theorem 3.3. Let D C cn(n > 1) be an irreducible bounded symmet­

ric domain (in the sense of E. Cartan; see Piatetsky-Shapiro [Pia]). Then 

every prope; holomorphic map f: D-+ Dis an automor-pl1ism of D . 

Next we consider mappings between bounded circular domains D , D ' E 

en. Recall that a domain D is circular if it is invariant under the rotation 

Tsz = ei9 z for all 8 E R. The following classical result is due to H. Cartan 

[Carl): 

Theorem 3.4. If f: D -+ D' is a biholomorphic mapping of bounded 

circular domains in en containing the origin, and if f(O) = 0, then f is a 

linear mapping. 

This result has been generalized to proper holomorphic mappings by 

Bell [Be6]. 

Theorem 3.5. Suppose that D and D' are bounded circular domains 

m en which contain the origin. If f: D -+ D' is a proper holomorphic 
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mapping such that l(O) = 0, then l must be algebraic. If we further 

assume that l- 1 (0) = {O}, then l is a polynomial mapping. 

Recall that a mapping is algebraic if its graph r = {(z, w): w = l(z)} 
1s an algebraic variety, i.e., it is defined by polynomial equations. Bell 

first proved this result in the papers [Be3] and [Be4] using the Bergman 

kernel function. In [Be4] he also proved that every proper holomorphic 

correspondence l of D onto D' satisfying l-1(0) = {O} is algebraic. The 

proof given in [Be6] is elementary; it does not involve the behavior of l 
near the boundary or the properties of the Bergman kernel. 

Next we consider the mappings between bounded Reinhardt domains. 

For each a E en we denote by Ta: en ---+ en the linear map Taz = 
(al Z1 I ••• ' an Zn). A domain D c en is called a Reinhardt domain if 

Ta(D) = D for each a= (a1, .. . ,an) with jajl = 1for1 :S: j :S: n. 

Recently Shimura [Shi] solved the equivalence problem for arbitrary 

bounded Reinhardt domain. A similar result was obtained independently 

by Barrett [Ba3] under an additional but rather weak hypothesis on the 

two domains. 

Theorem 3.6. ([Shi], Theorem 1, page 131.) If two bounded Rein­

hardt domains D, D' in en are biholomorphically equivalent, then there 

exists a biholomorphic mapping l: D---+ D' of the form 

1 :S: i :S: n, (3.1) 

where b; E e\{O} for i = 1, ... , n and A = (a;j) E GL(n, Z). Moreover, if 

we assume in addition that D and D' contain the origin, then there exists 

a biholomorphic map D ---+ D' of the form z; ---+ r;zo(i) where r; > 0, 

1 :S: i :S: n, and ~ is a per mu ta ti on of the indices. 

The last result when both domains contain the origin has been proved 

before by Sunada [Sun] . For n = 2 the result goes back to Thullen [Thu] . 

While the approach by Barrett is analytic (he studied the Bergman ker­

nel function), the approach by Shimizu is algebraic. Denote by T(D) the 

subgroup of the holomorphic automorphism group Aut(D) consisting of all 

maps Ta, a = (al, ... , an), jaj I = 1 for 1 :S: j :S: n . The most important step 

in the proof of Shimizu is to show that T(D) is a maximal torus in the con­

nected component G(D) of Aut(D) containing the identity map. If l: D __, 
D' is a biholomorphic map, then the set T(D') = {loTaol- 1 : Ta E T(D)} is 
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another maximal torus in G(D'). By the conjugacy theorem of Hochschild, 

the maximal tori T(D') and T(D') in the connected Lie group G(D') are 

conjugate, i.e., there is an automorphism g E G(D') such that gT(D')g- 1 = 
T(D'). Hence we have g(JT(D)f- 1 )g-1 = (gf)T(D)(gf)- 1 = T(D') . This 

implies that the map gf: D----> D' takes the tori {TClz: la11 = ···Jani = 1 in 

D into tori in D'. Shimizu proved that such a map has to be algebraic of 

the form given in Theorem 3.6 above. 

Shimizu obtained further results on the automorphism group of bound­

ed Reinhardt domains D c ( C* t . The logarithmic image of such a domain 

is the set 

log(D) = {(-logJz1I,. .. - loglznl):z ED} C Rn. 

The second main result of [Shi] (page 136, Theorem 2) is 

Theorem 3.7. If Dis a Reinhardt domain in (C•)n whose logarith­

mic image has the convex hull containing no complete straight lines, then 

every automorphism in the connected component of the identity is of the 

form (z1 1 ••• ,zn)----> (a1z1, ... ,anzn) where lajl = 1for1 s; j s; n. It 

falJows that every automorphism of Dis of the farm (3.1), with lbil = 1. 

A description of the automorphism group of certain Kobayashi hy­

perbolic Reinhardt domains has been obtained independently by Kruzhilin 

[Kru]. For instance, if such a domain does not intersect the coordinate 

hyperplanes, then all its automorphisms have the form (3.1), with lb;I = 1. 

(See [Kru], Theorem 2 and its Corollary.) 

The paper by Shimizu [Shi] containing several further results on the 

automorphism group of two-dimensional Reinhardt domains. 

The classification of proper holomorphic mappings between Reinhardt 

domains will necessarily be more complicated. For instance, we can map 

an annulus in C properly onto the disc. 

Barrett proved in [Ba3] the following extension result for proper holo­

morphic mappings of Reinhardt domains. 

Theorem 3.8. Let f: D ----> D' be a proper holomorphic mapping of 

bounded Reinhardt domains in en. Suppose that there is an integer k, 0 s; 
k S n, such that D n {zj = O} # 0 for j = 1, ... , k, and D n {zj = O} = 0 
for j = k + 1, .. . , n . Then f extends holomorphically to a neighborhood of 

D. 
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Denote the integer k in the formulation of the last theorem by k(D) . 
Clearly, k(D) = 0 means that Dis contained in (C*t. For such domains 

we have the following rigidity result due to Bedford [Bed2]: 

Theorem 3.9. Every bounded Reinhardt domain D C (C* t is rigid 

rn the sense of Cartan: If f: D _, D is a holomorphic mapping such that 

the induced map J.: H 1 (D, R) _, H 1 (D, R) on the first homology group of 

D is non-singular, then f is an automorphism of D. 

Bedford also introduced a metric on H1(D, R) such that every holo­

morphic mapping f: D _, D' of bounded Reinhardt domains D, D' C (c•r 
for which J. is an isometry of the form f(z) = (c1z" 1

, ••• , Cnz"n ). 

Landucci [Lan) and Dini and Primicerio [DP] have obtained results on 

mappings between Reinhardt domains of the form 

where a = (a1 , ... , an) E R'.f. . If all a; equal 1, we have the unit ball. 

Otherwise En (a) is a weakly pseudoconvex Reinhardt domain that can 

be mapped properly onto the ball Bn by the mapping (z1 , . .. , zn) ---> 

(z~', . .. , z:;n ) . These domains are usually called generalized ellipsoids . The 

following theorem was proved by Landucci [Lan] in the case when a; E Z+, 

and was generalized to a; E R+ by Dini and Primicerio [DP3): 

Theorem 3.10. There exists a proper holomorphic mapping f: En(a) 
--+ En (,B) if and only if after a permutation of indices a;/ ,B; = h; E N. 

Moreover, if the a 'sand ,B's are integers, then every such mapping is 

equivalent up to reordering of indices and an automorphism of En(,B), to 

the map 

(3.2) 

Dini and Primicerio [DP4) have extended this result to proper holo­

morphic mappings f: R _, D, where R is a Reinhardt domain and D is 

a smoothly bounded strongly pseudoconvex domain in en, n > 1. The 

conclusion then is that, up to an automorphism of D, f is equivalent to the 

mapping (3.2). 

In [DP3) and [DP4] there are also results on factorization of proper 

mappings by groups of automorphisms, similar to that of Rudin [Ru3] for 

mappings from the ball. 
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The last theorem is partly contained m the more general result of 

Bedford [Bed3, Theorem 3]. 

In the papers [DPl] and [DP2) Dini and Primicerio characterized the 

Reinhardt domains D C en that admit a proper holomorphic mapping 

onto a generalized ellipsoid. 

Theorem 3.11. Let D be a Reinhardt domain in en containing the 

origin. If there exists a proper holomorphic mapping f: D-> En(a), then 

there also exists a proper polynomial mapping of D on to En (a). If D 

is a Reinhardt domain in en and f: D _, En (a) is a proper polynomial 

mapping, then there are a E (e•r and /3 E Nn such that D = Ta(En(/3)). 

Here, Ta(z1, ... ' Zn) - (a1z1, ... ' anzn)· From Theorem 3.10 it then 

follows that /Ji/ a; E N. 

Another special class of domains that have been classified up to biholo­

morphic mappings are the real ellipsoids; see the paper by Webster [We2] . 

In the same paper Webster found sufficient conditions on two algebraic real 

hypersurfaces in en that force every biholomorphic mapping between the 

two hypersurfaces to be birational. 

In [La2] Landucci treated the proper holomorphic mappings in certain 

class of bounded pseudoconvex Reinhardt domains with center 0 that lies 

in the boundary of these domains, and the boundaries are not smoth at 0. 

The global condition R is not satisfied, but the mappings are nevertheless 

nice away from 0. 

Finally we mention a result of Boas and Straube [BSl] on mappings of 

complete Hartogs domains in e 2
. 

Let ta(z',zn) = (z',azn) for a E e. Recall that a domain D C en is 

called a H artogs domain with respect to the variable Zn if Ta ( D) C D for 

all lal = 1. A domain is complete Hartogs if Ta(D) C D for all lal '.S 1, 

i.e., it is of the form D = {lznl < h(z1, ... , Zn-1)}. 

Boas and Straube proved in [BSl] that on smooth, bounded, complete 

Hartogs domains in e 2
, the Bergman projection exactly preserves the dif­

ferentiability of the functions as measured by Sobolev norms. This implies 

Theorem 3.12. Every biholomorphic mapping between smooth 

bounded complete (not necessarily) pseudoconvex) Hartogs domains in C 2 

extends smoothly to the boundaries. If the boundaries are real-analytic, 
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then the mapping extends holomorphically to a neighborhood of the clo­

sure. 

The correspondent problem seems open in dimensions n > 2. 

4. Existence of Proper Holomorphic Mappings into Balls 

It is well-known that each pseudoconvex domain D C en and, more 

generally, each Stein manifold D admits proper holomorphic mappings 

f: D _, en+i and proper holomorphic embeddings f: D -> e 2n+l (see 

[Ho2]). 
The existence of such mappings into bounded domains in eN is a much 

more delicate problem. An obvious necessary condition is that D admits 

plenty of bounded holomorphic functions. However, the unit polydisc b. n 

c en for n > 1 can not be mapped properly into any ball BN c eN 

or, more generally, into any bounded domain 0 C cN on which every 

boundary point p E bO is a local peak point [Ru2, p . 306] . There is 

even a quantitative explanation for the non-existence of proper mappings 

f: !:in-> BN; see [Ru2, p. 308], [Al3], and [Le2]. 

Suppose now that D C en is a bounded, strongly pseudoconvex do­

main with c" boundary for some k 2: 2. When n = 1, Stout proved in 

[Sto] that there is a proper holomophic embedding f: D -> B 3
, smooth of 

class c"- 0 on D, such that the components off have constant modulus on 

bD. There also exist proper holomorphic mappings f: D -> B 2 with these 

properties. 

From now on we shall assume that n > 1. By a well-known theorem of 

Fornress [Fn 1] and Henkin [HC] there is a proper holomorphic embedding 

f: D -> 0 into a strongly convex domain 0 c eN with cir. boundary, such 

that f is holomorphic in a neighborhood of D and is transverse to bO . The 

integer N is large and depends on D. 

A question arises whether a similar result could hold if we insist that 

0 be some special domain, say the unit ball BN C eN for some N . If we 

also insist that f is holomorphic on D, then the boundary of D must be 

real-analytic since it is defined by the analytic equation I: I fj ( z) I 2 = 1. If 

bD is smooth of class C", it would be natural to require that f be of class 

C'(D) for some s ~ k. 

In this and the next section we shall describe the present state of the 

knowledge on the following questions: 

I 
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(1) Which domains DC en admit proper holomorphic mappings (embed­

dings) f: D--> BN? How large must N be in terms of D and n? 

(2) How smooth can such mappings be on D? 

(3) Do there exist proper holomorphic mappings f: D --> BN with 'wild' 

boundary behavior? 

(4) Suppose that bD is real-analytic and f is somewhat smooth on D. 

Does this imply that f extends holomorphically across bD? 

The first positive evidence for the existence of proper mappings of 

strongly pseudoconvex domains into balls was given by Lempert [Lel] m 

1981: 

Theorem 4.1. If D c en is a bounded, strongly pseudoconvex domain 

with C2 boundary, there exists a sequence of functions {fj }, each of them 

holomorphic and nonconstant in a neighborhood of D, such that the series 

I:j:1 IJ;(z)l 2 converges for all z ED and equals 1 for z E bD. 

Thus, f = (!1 , h .. . ): D --> l2(e) is a holomorphic mapping of D 

into the complex Hilbert space l 2 (e) of all square-convergent complex se­

quences, such that bD is mapped to the unit sphere. 

In his recent paper [Le6] Lempert proved that for strongly pseudocon­

vex domains DCC en with real-analytic boundary we can find a sequence 
00 

{fj} as above such that the series I: lfj (z) 12 is locally uniformly convergent 
j = l 

on an open neighborhood of D. In other words, we can find C-R embed-

dings of every compact strongly pseudoconvex real-analytic hypersurface 

Mc en into the unit sphere of the Hilbert space l 2 (e). 
Around 1984 it was shown by Faran (unpublished) and, independently, 

by Forstneric [Fol] that the analogue of the convex embedding theorem of 

Fornress and Henkin, with 0 being the unit ball of any finite dimensional 

complex space, fails : 

Theorem 4.2. For each n > 1 there exist bounded strongly pseudo­

convex domains D in en with smooth real-analytic boundaries such that 

no proper holomorphic mapping f: D --> BN for any N extends to a C00 

map on D. 

The set of domains satisfying the conclusion of this theorem is of the 

second category in the natural topology on the space of domains. There 

exist formal obstructions for the existence of local holomorphic embeddings 
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of real-analytic hypersurfaces into spheres of any dimension. The main idea 

of the proof is similar to the heuristic argument of Poincare [Po] for the 

existence of local biholomorphic invariants of hypersurfaces in en for n > 1. 

These methods did not shed any light on question (1). The break­

through came in 1984 when L¢w proved that the unit ball can be embed­

ded as a closed complex subvariety of a high-dimensional polydisc [L¢w2]. 

In fact, his method applies to every bounded strongly pseudoconvex do­

main instead of ball. L¢w's technique was inspired by the construction of 

inner functions developed by Hakim and Sibony [HS] and L¢w [L¢wl] . A 

modification of his method also gives embeddings of bounded strongly pseu­

doconvex domains D C en into balls (Forstneric [Fol] and L¢w [L¢w3]). 

Similar results have been obtained independently by Aleksandrov [Ale]. To 

summarize, we have 

Theorem 4.3. Let D be a bounded, strongly pseudoconvex domain 

with C2 boundary in en. There are integers Ni and N2 such that 

(a) For each N ~ Ni there exist proper holomorphic embeddings f: D----> 

BN. Some of these embeddings extend continuously to D, but there 

also exist embeddings that are not continuous at bD. 

(b) For each N ~ N 2 there exist proper holomorphic embeddings 

f : D ----> b.N. 

In fact, if N is sufficiently large, there are plenty of proper maps 

f: D ----> BN, in the sense that every holomorphic mapping g: D ----> eN 
with supz ED lg(z)I < 1 can be approximated, uniformly on compacts in D, 
by proper holomorphic maps f : D ----> BN [L¢w3]. 

The proof of Theorem 4.3 is based on a constructive procedure found 

by L¢w [L¢w2]. It also resembles the construction of inner functions on 

strongly pseudoconvex domains due to Hakim and Sibony [HS] and L¢w 

[L¢wl]. 

We consider the case when the target is BN . Starting with a holomor­

phic map f = J0 : D ----> BN, smooth on D, one constructs a sequence of 

maps fk: D ----> BN, converging uniformly on D, such that limk ~oo lfk(z)I 

= 1 for z E bD. The limit map f = limk~ oo fk is continuous on D, holomor­

phic on D, and it maps D properly to BN . At each step of the procedure 

we add to Jk a correction term gk to obtain the next map Jk+i = t' + gk . 

Each correction term is a combination of holomorphic peak functions that 

are smooth on D, chosen in such a way that the infimum infzEbD lfk(z)I 
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increases sufficiently fast towards one, while at the same time the sequence 

of corrections g"(z) is uniformly convergent on D. The main idea is to 

choose the correction term g" ( z) to be orthogonal to the vector f k ( z) for 

each point z in a discrete subset of the sphere bBn. Moreover, for nearby 

points of the given discrete set the vectors g" at these points are approxi­

mately orthogonal to each other. In this way we assure that the norm of 

the mapping increases in a controlled way at each step. 

A similar construction gives proper maps into polydiscs; this time we 

have to push the maximal value of the components max1:o;j:o;n(sup,ED 

Jfj(z)I) towards 1. 

Using this technique L¢w proved the following, somewhat more general 

result [L¢w3]: 

Theorem 4.4. Let De en be a bounded, strongly pseudoconvex do­

main with C2 boundary. Then for all sufficiently large m the following holds. 

If if> is a continuous positive function on bD, f: bD ----+ cm is a continuous 

mapping satisfying lf(z)I < </>(z) for each z E bD, K is a compact subset of 

D and € > 0, there exists a continuous mapping g: D ----+ cm, holomorphic 

in D, such that 

lf(z) + g(z)I = </>(z) for z E bD; Jg(z)I < € for z EK. 

The mapping g can be chosen to vanish to any prescribed order at an 

interior point of D. 

Using the above theorem we can construct proper holomorphic embed­

dings into balls that do not extend continuously to the boundary. We choose 

a holomorphic map h: Bn ----+ CP which does not extend continuously to B n, 

but whose norm Jh(z)I extends continously to Bn and satisfies Jh(z)I < 1 for 

all z E If'. Ifwe apply Theorem 4.4 with f = 0 and </>(z) = (1- Jh(z)l2) 112 , 

we find a map g: Bn ----+ cm such that F = (h, g ): Bn ----+ BP+m is proper 

holomorphic. Clearly F does not extend continously to B n . If h is a 

one-to-one holomorphic immersion, then F is an embedding. Thus Theo­

rem 4.4 implies the following corollary which was proved independently by 

Forstneric [Fo 1]. 

Corollary 4.5. If N is sufficiently large (depending on n), then there 

exist proper holomorphic embeddings F : Bn ----+ BN which do not extend 

continuously to If'. 
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This is in sharp contrast with the results on smooth extension of proper 

holomorphic mappings between domains in en. 
The technique of L¢w was used by Globevnik [Glo) to prove the fol­

lowing interpolation result for proper holomorphic mappings. 

Theorem 4.6. Let n 2: 1. There is an integer N(n) such that for every 

N ;::: N(n) the following holds: Let K C bBn be an interpolation set for 

the algebra A(Bn) . Then every continuous mapping f: K --1 bBN has a 

continuous extension f: If' --1 BN which is holomorphic on Bn and satisfies 

j(bBn) C bBN . 

We can choose the interpolation set K C bBn such that there exists a 

continuous surjection g: K --1 bBN. Extending g as above one obtains the 

following result [Glo): 

Corollary 4.7. Let n ;::: 1. For every N 2: N(n) there is a continuous 

map g: Bn --1 BN that is holomorphic in Bn and satisfies g(bBn) = bBN . 

The corollary shows that proper holomorphic maps into higher dimen­

sional domains may have a very large boundary cluster set, even when they 

extend continuously to the boundary. In particula r, there exist non-rational 

proper holomorphic maps between balls of different dimensions. 

In the above results, the dimension N is large compared to n, and it 

depends on D. New ideas were introduced to this problem by B. Stensl1)nes 

[Ste). By a very careful refinement of Li1lw's technique, she proved 

Theorem 4.8. Let D be a bounded, strongly pseudoconvex domain 

with CCX) boundary in en. Then there exist proper holomorphic mappings 

f : D --1 6,n+l into the (n + 1)- dimensional polydisc. 

The key improvement due to Stensl1)nes is the use of very carefully 

selected holomorphic peaking functions in D that are smooth on D. The 

analogous result for ball as the target domain was proved by Dor [Dorl J 

and, independently, by Hakim [Ha): 

Theorem 4.9. Let D be as in Theorem 4.8. Then there exist proper 

holomorphic mappings f: D --1 Bn+l that extend continuously to D. Also, 

for each n there exist proper holomorphic mappings from Bn to Bn+l that 

a re not rational. 
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We shall see in section 5 below that rational proper maps of Bn to BN 

map affine complex hyperplanes in en to affine hyperplanes in eN. Dor 

and Hakim constructed proper mappings f: Bn _, Bn+I that do not have 

this property. According to Theorem 5.1 such maps cannot be of class C2 

on any open part of the boundary of Bn. 

In his recent paper [Dor2], Dor proved the following extension result 

for proper mappings between balls. We consider Bn as a subset of Bn+l 

via the embedding z---> (z, 0). 

Theorem 4.10. Every proper holomorphic mapping J: Bn - l _, BN, 

1 < n < N, can be extended to a proper holomorphic mapping F: Bn _, 
BN. 

It seems likely that these methods can be applied to a more general 

class of domains. All that one needs are good holomorphic peaking func­

tions for points in bD. An evidence for this is the recent result of Noel and 

Stens¢nes [NSt]: 

Theorem 4.11. For every bounded pseudoconvex domain D c e 2 

with real-analytic boundary there exists a proper holomorphic mapping 

from D into the unit polydisc in e 3
, and a uniformly continuous proper 

holomorphic map from D into the unit ball of e 3
. 

In the other direction, Sibony [Sib] constructed the following coun­

terexample: 

Theorem 4.12. There is a smoothly bounded pseudoconvex domain 

DC e 2 that does not admit a proper holomorphic mapping into any convex 

domain 0 C eN, 

The domain D is not of finite type; in fact, it contains an open set 

foliated by dense complex analytic curves. 

The following two questions are of interest: 

(1) Does every pseudoconvex domain with real-analytic boundary in en 
admit a proper holomorphic map into some ball? 

(2) Does every strictly linearly convex domain D C en (i.e., x, y E D, xi: 
y, and t E (0, 1) imply that tx + (1 - t)y ED) admit such maps? 

The known results give rather satisfactory positive answers to questions 

1 and 3 stated at the beginning, and a partial negative answer to question 2. 
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However, no progress whatsoever has been made toward the construction 

of mappings f: D ---> BN that would be somewhat smooth on the boundary. 

It seems plausible that such maps should exist if N is large and that their 

smoothness should increase with N. The present methods do not yield 

anything better than f E C(D). To be very specific, we pose the following 

Open Problem. Let n > 1. Does there exist a proper holomorphic 

mapping f : Bn ---> BN for some N such that f is of class C1 on F'' but 

f is not holomorphic in a neighborhood of Bn (and hence not a rational 

mapping in view of Theorem 5.1)? 

5. Regularity of Mappings into Higher Dimensional Domains 

Recall that , by a theorem of Alexander [All ] (Theorem 3.1 above ), 

every proper holomorphic self-mapping of the unit ball Bn (n > 1) is an 

automorphism of Bn and, therefore, a rational map (linear fractional). We 

mentioned in section 4 (Theorem 4.9) that for N > n there exist non­

rational proper holomorphic mappings f: B n ---> BN that are continuous on 

Bn. However, if J is sufficiently smooth on Bn, then f must be rational. 

More precisely: 

Theorem 5.1. Forstneric [Fo4]) Let U be an open ball centered at a 

point z E bBn . If N > n > 1 and f : Bn n U ---> cN is a mapping of class 

cN - n+I that is holomorphic in B n n u and satisfies J(bBn n U) c bBN , 

then J is rational, f = (p1 , . .. , PN) / q, where the Pi 's and q are holomorphic 

polynomials of degree at most N 2 
( N - n + 1). 

Cima and Suffridge proved (CS4J that such a mapping has no singu­

larities on the closed ball If', and thus it extends to a proper holomorphic 

map of Bn to BN tha t is holomorphic in a neighborhood of Bn. The same 

was proved before by Pini':uk , but not published. 

Corollary. If N > n > 1 and f : B n ---> BN is a proper h olom orphic 

map that extends to a map of class cN -n+i on If', then f is rational, of 

degree at m ost N 2 (N - n + 1). 

Most likely the given bound on the degree of f is not optimal. The 

existence of the bound implies that the space of all rational proper mappings 
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f: Bn ----> BN is finite dimensional when n > 1. Theorem 5.1 may be 

important in the classification of proper maps between balls; see section 6 

below. 

Special cases of Theorem 5.1 have been proved by several au tho rs: 

Webster [We4] for N = n + 1 2:: 4 and f E C3 (Bn); Faran [Fal] for N = 
n + 1 = 3 and f E C3 (if'); and Cima and Suffridge [CSl] for N = n + 1 

and f E C2 (If'). The proof of Theorem 5.1 was inspired by the methods 

of the paper by Cima and Suffridge (CSl]. 

There is an analogous result, due to Forstneric (Fo4], for proper holo­

morphic mappings of more general domains of different dimensions. 

Theorem 5.2. Let DC en and D' C eN(N > n > 1) be pseudo­

convex domains, bounded in part by strongly pseudoconvex, real-analytic 

hypersurfaces M c en (resp. M' c eN ). If f: D u M --t eN is a C00 

mapping that is holomorphic in D and maps M to M ' , then f extends 

holomorphically to a neighborhood of every point in an open, everywhere 

dense subset of M. In the case when the target D' is the unit BN, the same 

conclusion holds under the weaker assumption that f is of class cN-n+I on 

DUM. 

In the case N = n + 1, D' is the ball BN, and f E C3 (D), the result 

of Theorem 5.2 was proved by Webster [We4]. A theorem of this type 

in codimension one for arbitrary strongly pseudoconvex domains with real­

analytic boundaries was also announced in [CKS], but the proof given there 

does not appear to be entirely correct . 

According to Pincuk (personal communication), f extends holomor­

phically across each point of the hypersurface M, provided that the target 

D' is the ball BN. A result of this type was announced in [Pi5], but a proof 

has not been published. 

Theorem 5.2 was proved in [Fo4] using the Qw varieties associated to 

the hypersurfaces M and M' (see (2.6) in Section 2 above). The method 

is similar to the one developed by Webster, Diederich, and Fornress [DW, 

DF5]. In the paper [Fo4] the author associated to the mapping f in an 

invariant way an upper semicontinuous, integer valued function v: M ---+ Z +, 

called the deficiency off, that measures the rate of degeneracy off at the 

given point z E M. If f is holomorphic in a neighborhood of z in en, then 
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11(z) is the dimension of the analytic variety 

S, = {w' E eN: f(Q,) C Q~,} 

at the point f(z). Thus 11(z) = 0 means that f(z) is an isolated point 

of S,, which says that the restriction off to Q, locally determines QJ(z) 
among all varieties Q~, for w' close to f(z ). If this happens, we say that 

f is non-degenerate at z. If f is only smooth on bD, the definition of 11 is 

more complicated. Instead of simply restricting f to Q, one has to consider 

the Taylor development off along Q,. (See section 4 in [Fo4].) The main 

result of [Fo4] is the following pointwise extension theorem: 

Theorem 5.3. (See [Fo4], Theorem 6.1.) Assume that the hypotheses 

of Theorem 5.2 hold. If the deficiency function 11: M ---> Z+ is constant in 

a neighborhood of the point z E M, then f extends holomorphically to a 

neighborhood of z in en. In particular, f extends to a neighborhood of 

each non-degenerate point z E M. 

Since 11 is upper semicontinuous, it is locally constant on an open dense 

subset of bD, so Theorem 5.2 follows from Theorem 5.3. 

Similar results on holomorphic extensions were obtained by Faran 

[Fa3]. In the setting of Theorem 5.2, with f merely of class C2 on Du M, 

he proved that f extends at z E M provided that it satisfies certain non­

degeneracy condition involving first and second derivatives in the complex 

tangent directions to M at z . This restricts the range of possible codimen­

sions. The main result of [Fa3] is 

Theorem 5.4. Let Ui be an open set in en, U2 an open set in eN . 

Let Oj C Ui be proper open subsets so that each Mi = brlj n U1 is a 

real-analytic, strongly pseudoconvex hypersurface. Let f: Ui ---> U2 be a 

mapping of class C2 that is holomorphic on Oi and maps Mi into M2 . If 

the second fundamental form off is non-degenerate at a point z E Mi, 
then f extends holomorphically to an open neighborhood of z in en . 

The appropriate definition of the second fundamental form can be 

found on page 8 of [Fa3]. As a corollary, Faran obtained the result of 

Theorem 5.2 in the case when N = n + 1 and f is merely of class C3 on 

DUM. 
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If f is holomorphic in a neighborhood of z E M1, and if the second 

fundamental form of f at z is non-degenerate, then the deficiency 11(z) 
equals zero, so the condition of Theorem 5.3 is fulfilled. The improvement 

in Theorem 5.4 is that f is only assumed to be of class C2
• 

In the setting of Theorem 5.2 it is not known whether f extends holo­

morphically to a neighborhood of each boundary point of D. The proof 

given in [Fo4] does not apply at a point where the deficiency is not locally 

constant. The result of Theorem 5.2 is proved in [Fo4) under slightly weaker 

conditions on Mand M'. 
In the remainder of this section we shall describe the idea of the proof 

of Theorem 5.1. (We refer the reader to Section 7 in [Fol) for the details.) 

Let (z, w) = Lf=l ZjWj for z, w E en. The conditions on f imply that 

there is a function p E c•- 1(if' n U), wheres= N - n + 1, such that 

(f(z),f(z)) -1 = p(z)((z,z) - 1), 

Fix a point z 0 E bBn n U . If f is holomorphic in a full neighborhood of z 0 , 

then p is real-analytic near z0
, so that we can polarize the above identity 

to obtain 

(f(z),f(w)) - 1 = p(z, w)((z, w) - 1), z, w E en near z0
. 

For w E cn\{O} we denote by Qw the affine hyperplane 

Qw = {z E en: (z, w) = l} = w/jwj 2 + w.L. 

The above polarized identity implies that for each w near z0
, f maps the 

affine hyperplane Qw c en into the analogous affine hyperplane Q'J(w) 

C CN associated to bBn . This is the fundamental property of proper 

mappings between balls that are holomorphic across the boundary. 

If f is merely of class c• on Bn n U one can prove by a standard com­

plexification arguement that the Taylor polynomial f' of f at a boundary 

point z E bBn maps Q, = z.L to QJ(z) = f(z).L. Let A, C QJ(z) be the 

smallest affine subspace in cN containing the image of f' ( Q z). In the 

non-degenerate case we have A, = Qf(z) for some z E bBn, so QJ(z) is the 

only affine hyperplane in cN containing f'(Q,). The same is then true for 

points w E U\lf' close to z : there is a unique w' E eN such that the affine 

hyperplane Q~. contains f(Qw n Bn) . One can then show that the induced 

mapping w --> w' is a holomorphic extension off to a neighborhood of z 
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in en. By studying the form of the extension one can also prove that f is 

a rational mapping. This part is due to Cima and Suffridge [CSl]. 

In the degenerate case the dimension of Az is smaller than N - 1 for 

each z E bBn n U. Fix a point for which this dimension is maximal, say, 

k. If U is a sufficiently small neighborhood of z in en, then one can show 

that the set X C (U\IJ) x CN, defined by 

X = {(w,w') : f(Qw n Bn n U) c Q~.}, 

is a complex analytic variety whose fibers Xw are affine subspaces of cN of 

dimension m = N - k - 1. Moreover, by analyzing the form of the defining 

equations, one can prove that X extends to a rational variety in Cn X CN 

whose intersection with the product of the two spheres (Un bBn) x bBN 

equals the graph {(z,f(z)):z EU n bB,.'} of the mapping f on bD. It 

follows that f itself extends to a rational mapping. 

Examples show that the rational variety X that contains the graph 

of f may in fact be larger than the graph. It would be interesting to see 

whether the variety X has any relevance in the classification problem for 

proper mappings between balls (see section 6) . 

It seems that the regularity of mappings into higher dimensional hy­

persurfaces is still very poorly understood. 

6. Classification of Mappings between Balls 

One would like to know what are all the proper holomorphic mappings 

f: Bn --> BN for a given pair N 2: n 2: 1. If N = n = 1, these are the 

finite Blaschke products, and if N = n > 1, these are the automorphisms of 

Bn according to the theorem of Alexander (Theorem 3 .1) . If N > n , such 

maps are abundant according to the results in section 4, and we cannot 

expect to have any reasonable classification unless we pose some additional 

conditions on the map. 

Further results are known if the map f is smooth of class C' (Bn) on the 

closed ball for a sufficiently large s, depending on n and N. Since Theorem 

5.1, with s = N - n + 1, covers all known regularity results for mappings of 

balls, we shall assume from now on that the mapping f is rational. Recall 

that f is then holomorphic in a neighborhood of If according to Cima a nd 

Suffridge [CS4]. 

Two proper mappings f , g: Bn __, BN are said to be equivalent if there 

exist automorphisms¢, '</J of the respective balls such that g = 1/; o f o ¢ . 
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It seems that the first result in the case of positive codimension was 

obtained by Webster [We4]: If n ;::: 3, then every proper holomorphic map 

f : Bn ----> Bn+l that is of class C3 on If' is equivalent to the linear embed­

ding (z1 , ... , Zn)----> (z1 , ... , Zn, 0). An alternative proof was given by Cima 

and Suffridge [CSl] who reduced the smoothness assumption to f E C2 (If'). 
This was extended by Faran [Fa2] to the case N ::; 2n - 2. Thus we have 

Theorem 6.1. If f: Bn ----> BN is a rational proper mapping and N ::; 

2n - 2, then f is equivalent to the linear embedding z ----> (z, 0). 

For N = 2n- 1 there is a proper polynomial mapping En: Bn ----> B 2n- 1, 

that is not equivalent to a linear mapping. 

There are precisely four equivalence classes of mappings B 2 ----> B 3
. 

Their classification is due to Faran [Fal] and, independently, to Cima and 

Suffridge [CS3]: 

Theorem 6.2. Every rational proper mapping f: B 2 ----> B 3 is equiva­

lent to one the mappings: 

(z, w) ----> (z, w, 0), 

(z, w) ----> (z 2
, hzw, w 2

), 

(z, w)----> (z3
, .J3zw, w3

), 

(z, w)----> (z2
, zw, w). 

Further results on classification were obtained by D'Angelo [DA2, DA3, 

DA4]. For instance, he found that there are precisely 15 non-equivalent 

proper mappings B 2 ----> B 4 whose components are monomials (see [DA2]). 

Besides the four mappings to the three-ball listed above there are nine new 

discrete examples and two one-parameter families. 

D' Angelo's approach to the classification problem relies on two key 

observations. One is that the classification of proper monomial mappings 

of balls can be reduced to an algebraic problem. If we set lzj 12 = lj, then 

the mapping f(z) = (caza), z E en, with N components is proper from 

Bn to BN if and only if l/(z)l2 = La lcaJ2ta = 1 when lzl2 = t1 + t2 + 
... tn = 1. Conversely, each polynomial in the variables t = ( t 1 , ... , tn) 

with nonnegative coefficients that has constant value 1 on the hyperplane 
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Ej=1 tj = 1 gives rise to a proper monomial mappings from Bn to some 

ball. 

The second observation is that the study of proper polynomial map­

pings of balls can be reduced to monomial mappings. Suppose that f = 
(Ji, .. . ' !N ): en -+ eN is a polynomial mapping. Write each component 

as a sum of monomials: fj =La Cj,aZ 0
, and let h = (c;,az 0

) be the map­

ping from en to eM whose components are all the monomials Cj,aZa that 

appear in f. The order of the components is irrelevant. We then have: 

Proposition 6.3. Let f: en -+ eN be a polynomial mapping, and let 

h: en -+ eM be the associated monomial mapping as above. If f is a 

proper mapping from Bn to BN, then h is a proper mapping from Bn to 

BM. 

This simple but very useful fact was noticed by Forstneric [Fo5, p . 67, 

Lemma 4.1] and, independently, by D'Angelo [DA2). This result can be 

formulated by saying that each polynomial proper mapping f: Bn -+ BN 

is a composition Loh of a proper monomial mapping h: Bn -+ BM and a 

linear mapping L: eM -+ eN. 

Using simple algebraic methods, D' Angelo obtained in [DA3] an in­

teresting decomposition theorem for proper polynomial mappings of balls. 

We define the extend operation E that acts on proper mappings from 

Ir to other balls. The operation E associates to each proper mapping 

f = (fi, ... ,fN):Bn -+ BN the proper mapping Ef:Bn ---+ BN+n-l 

with the components Ef = (!1 , .• . ,fn-i.ZdN, . .. znfN)· For example, if 

n = 2, E(id)(z, w) = (z, zw, w 2
) . This operation is the analogue of multi­

plication by z in one variable. We also have the inverse E - 1 : If f = Eg for 

some proper mapping g: Bn -+BM, then E - 1 f = g. Using the observation 

concerning the monomial maps and Proposition 6.3, D'Angelo proved in 

[DA3] the following: 

Theorem 6.4. Each polynomial proper mapping f: Bn -+ BN can be 

obtained by a successive application of a finite number of operations Aj 

on proper mappings from Bn to balls, starting with the identity map on 

Bn. Each operation Aj is either the extend E, its inverse E - 1, or the 

composition with a linear mapping. 

This result can be thought of as the several variables analogue of de-
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composing a proper map f: D. --+ D. to a finite Blaschke product. Another 

result of D'Angelo [DA2) that is useful in the classification problem is: 

Theorem 6.5. Suppose that f and g are polynomial proper maps be­

tween balls that map the origin to the origin. If f and g are equivalent, 

then they are unitarily equivalent, i.e., there are unitary maps U1, U2 of 

the respective spaces such that g = U2 of o U1. 

Corollary. There exist one-parameter families of inequivalent proper 

maps from Bn to B 2n. An example when n = 2 is the family {ft} is defined 

by 

ft(z, w) = (z, cos (t) w, sin (t) zw, sin (t) w 2
). 

For each t, s E [O, ?r /2), ft is equivalent to f, only when t = s. 

As the codimension N - n increases further, one obtains multi­

parameter families of proper monomial maps. As we remarked above, the 

problem of finding all monomial proper maps from Bn to BN amounts to 

finding all polynomials inn real variables x = (x 1 , ..• , Xn) with at most 

N terms, where the coefficients are positive, and the polynomial has a 

fixed value on the hyperplane I: Xj = 1. We illustrate this procedure in a 

simple case. Suppose that we wish to find all quadratic monomial maps f 
from B2 with f(O, 0) = 0. There are 5 nontrivial monomials of degree at 

most 2 in 2 variables. The corresponding real polynomial can be written 

p(x, y) =ax+ bx2 + cy +dy2 + exy, where the coefficients are non-negative . 

Setting p(x, 1 - x) = 1, one obtains a system of linear equations of rank 3. 

Solving this system, one sees that p can be written as 

p ( x, y) = ax + ( 1 - a) x 2 + cy + ( 1 - c) y2 + ( 2 - a - c) x y . 

Put a= A 2 and c = C 2 . Assume A and C are non-negative. We see that 

the general monomial map of degree at most 2 from the two-ball can be 

written as a member of the 2-parameter family 

f(z, w) = (Az, Jl,A2 z2
, Cw, .Jl=-G2 w2

, J2 - A 2 - C 2 zw), A, B 2: 0 

(6 .1) 
Of course one can apply diagonal linear isometries to this family, but such 

maps will be equivalent to f. One uses Theorem 6.5 to show that the maps 
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in this family are inequivalent, except for the possibility of interchanging 

the roles of z and w. 

To get higher dimensional families, one must consider monomials of 

higher degree. To list these requires that the map must have sufficiently 

high target dimension. We describe one more example. If f is a monomial 

map from B 2 of degree at most 8 and f(O) = 0, there are 44 undetermined 

coefficients. The condition that f be proper is that p ( x, 1 - x) = 1. This 

amounts to 9 independent linear equations in these 44 coefficients. Thus 

every such map f is equivalent to one of those maps into the ball B 44 , and 

one must specify 35 parameters to determine the map up to equivalence. If 

one restricts the target dimension, one obtains additional linear equations 

on the coefficients. For example, in ( 6.1 ), if we wish f to map to the 4-ball, 

we must fix one parameter to be either 0 or 1. If we wish f to map to the 

3-ball, we must specify both parameters. 

We repeat that, according to Proposition 6.3, every polynomial map is 

simply the composition of a linear map and a monomial map, so that the 

general classification of proper polynomial maps reduces to linear algebra. 

However, the problem is not a trivial one even after this reduction. 

One can use similar ideas to show that, for every n, there are poly­

nomial proper maps from nn that are not equivalent to monomial ones. 

From each Bn, there are rational proper maps that are not equivalent to 

any polynomial map. These results are not surprising. In dimension 1 it 

is easy to see that a Blaschke product with with three distinct factors is 

not equivalent to a polynomial. Every Blaschke product with two factors 

is equivalent to the map z -+ z 2
• 

It is perhaps worthwhile to note that the theory of proper maps be­

tween balls can be cast into a general framework that does not treat the 

one dimensional case differently. The analogue of finite Blaschke product 

in several variables is the composition product as described in Theorem 

6.4 above. The main difference from the case n = 1 is that multiplica­

tion increases the target dimension when n > 1, so that one needs larger 

dimensional balls to see non-trivial polynomial or rational maps. 

D' Angelo has further results on the classification problem in the recent 

article [DA4]. 

In the remainder of this section we shall explain the connection between 

proper holomorphic maps from Bn and the finite subgroups of the unitary 

group U(n). The reference for this part are the papers [Car2], [Ru3] and 



Proper holomorphic mappings: a survey 347 

[Fo3]. 

If r c U(n) is a finite unitary group, then quotient en /r can be 

realized as a normal algebraic subvariety V in some eN according to a 

theorem of Cartan [Car2]. In order to do this we choose a finite number of 

homogeneous, f-invariant holomorphic polynomials q1, ... , qN which gen­

erate the algebra of all f-invariant polynomials (this is possible by the 

Hilbert basis theorem). Recall that a function f is called f-invariant if 

f(z) = J('Y(z)) for all 'Y E rand all points z in Bn. The induced map 

Q = (q1 ... , qN ): en -> eN is proper and induces a homeomorphism of the 

quotient en ;r onto the image v = Q (en) c eN. The restriction of Q to 

the ball Bn maps the ball properly onto a domain 0 in V. 

Recall that a reflection in U(n) is an element of finite order that fixes 

a complex hyperplane, i.e., n - 1 of its eigenvalues equal one, and the 

remaining eigenvalue is a root of unity. A finite subgroup r C U(n) is 

called a reflection group if it is generated by reflections. It is known that 

the algebra of r-invariant polynomials always requires at least n generators, 

and it is generated by n elements if and only if r is generated by reflections. 

Thus, the quotient Bn /r is non-singular at the origin if and only if r is 

a finite reflection group. In this case en /r = en, and the ball Bn is 

mapped by Q properly onto a bounded domain 0 c en. (See [Fe3] and 

the references therein.) 

Rudin (Ru3] proved a converse of this for proper holomorphic mappings 

from Bn to domains in en: 

Theorem 6.6. If f: Bn -> 0 is a proper holomorphic map onto a 

domain 0 c en, n ~ 2, then there are a finite reflection group r c u ( n) 
and an automorphism¢ ofBn such that f = rioQo¢, where Q: Bn -> Bn /I' 
is the quotient projection, and ri: Bn /I' -> is a biholomorphic map. 

Rudin proved the theorem under the additional hypothesis that f is 

of class C1 on the closed ball Bn. A result of Bedford and Bell (BB3, BB4] 

on proper holomorphic correspondences of strongly pseudoconvex domains 

shows that this smoothness hypothesis is not required. Bedford and Bell 

proved a similar result for mappings from smoothly bounded pseudoconvex 

domains in en to normal complex analytic spaces of dimension n. (See also 

[BaB] .) 

Since there exists a classification of all finite reflection groups, we have 

the corresponding classification of proper holomorphic mappings from Bn 
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to domains rn en (see [Ru3]). If U c r is a reflection that fixes the 

complex hyperplane ~ c en l then every map f that is invariant under r 

must branch at all points of~. It follows that the image 0 = f(Bn) does 

not have smooth boundary. 

On the other end of the scale among the subgroups of U(n) lie the 

fized point free groups. These are the finite subgroups of U(n) with the 

property that 1 is not an eigenvalue of any 'YE r\{1}. Equivalently, 'Y has 

no fixed points except the origin. The action of r on en\{O} is without 

fixed points, so the origin is the only singularity of the quotient variety 

en /r. The quotient of the sphere bBn /r is a real-analytic manifold, called 

the spherical space form. The quotient projection can again be realized by 

a polynomial mapping Q: en ---4 eN l where N is the minimal number of 

generators for the algebra of r-invariant polynomials on en. We can find 

a smoothly bounded, strongly pseudoconvex domain 0 C eN such that 

Q: Bn __, 0 is a proper mapping. 

Again we have a converse of this, due to Forstneric [Fo3]: 

Theorem 6. 7. Let f: Bn ____, 0, n 2: 2, be a proper holomorphic map­

ping into a relatively compact, strongly pseudoconvex domain n in a com­

plex manifold. If f extends to a C1 map on Bn, then there exists a finite 

fixed point free unitary group r c U(n) and an automorphism ¢ of Bn 

such that f = T/ o Q o ¢, where Q: B n ____, Bn /r is a quotient projection, and 

ri: B n /r --+ f (Bn) is the normalization of the subvariety f (Bn) of 0. 

The set f (Bn) is a SU bvariety of n according to the theorem of Rem­

mert. For the notion of normalization see [Nar]. The proof of this result 

is considerably simpler that the proof of Theorem 6.6. It is easy to under­

stand why r must be fixed point free. Since f is assumed to be of class 

C1 on the boundary, it does not branch there, hence the branch locus is 

compactly contained in Bn and thus finite. On the other hand, f o ¢ - 1 is 

branched along the fixed point set of every 'Y E r\{1}, which is a linear 

SU bspace of en. It follows that this SU bspace is the trivial one, SO / acts 

without fixed points on en \ {O}. 
One difference between Theorems 6.6 and 6.7 is that in the first one, 

the map f 0 ¢ - 1 is precisely r-invariant, in the sense that the quotient space 

is biholomorphic to the image f ( Bn). In Theorem 6. 7 this is no longer true. 

An exam pie is the map ( z, w) ----> ( z 2
, zw, w) that is one-one except on the 

disc w = 0 where it is two-to-one. It seems that most proper maps of balls 
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are not invariant under any non-trivial group. 

There is a classification of finite fixed point-free unitary groups that 

was carried out in order to solve the Clifford-Klein spherical space form 

problem. Spherical space forms are the complete, connected Riemannian 

manifolds of constant positive curvature. Every such is the quotient of a 

sphere Sr= {x E Rn: lxl = r} by a finite fixed point free orthogonal group 

r c O(n). The classification of real fixed point-free groups can be reduced 

to the complex ones, so it suffices to treat the unitary case r C U(n). A 

beautiful and detailed exposition can be found in Chapters 5-7 of Wolf's 

book [Wolf). For a brief introduction see also the paper [Fo3). 

As we remarked above, every fixed point free group r C U( n) induces 

a proper, f-invariant holomorphic map f from Bn to some strongly pseu­

doconvex domain 0 c cN. The problem becomes interesting if we require 

the target domain 0 to be the unit ball BN for some N . If the map is suf­

ficiently smooth on If' and therefore rational, we obtain severe restrictions 

on the group r. In order to explain the main result of [Fo3], we have to 

recall that the basic structure of fixed point free groups r c U(n). 

All Sylow p-subgroups of r for odd pare cyclic. The Sylow 2-subgroups 

are either cyclic (groups of Type A) or generalized quaternioic (groups of 

type B). The fixed point-free groups of Type A have two generators; they 

are classified in [Wolf, p . 168). The simplest such groups are the cyclic 

groups generated by fl, where f is a root of unity. 

Groups of type B are subdivided into five subtypes; they are classified 

in Section 7.2 of [Wolf). The finite subgroups of SU(2) are all fixed point 

free, and they play a special role in the classification. Besides the cyclic 

groups (of type A), SU(2) contains binary dihedral and binary polyhedral 

groups which arise as the preimages of the rotation groups of regular Pla­

tonic solids in R 3 . These groups are of type B. Each of them has a basis of 

three invariant polynomials q1 , q2, q3 , satisfying one relation. These invari­

ants can already be found in Klein's book [Kl, pp. 50-63). We do not know 

of any systematic treatment of the invariant theory of other fixed point free 

groups. 

Recall that a unitary representation of an abstract group r is a homo­

morphism 7r: r --> U(n) . The integer n is the degree of 7r. The representa­

tion is fixed point free if 1 is not an eigenvalue of 7r('Y) for any "( /; 1. The 

representation is irreducible if it is not the direct sum of two other represen­

tations. (See Chapter 4 in [Wolf) for a concise account of the representation 
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theory of finite groups.) 

Theorem 6.8. Let ?r: r-+ u(n), n 2'. 2, be a fixed point-free represen­

tation. If there exists ?r(I')-invariant rational proper mapping f: Bn -+ BN 

for some N, then the group r is of type A, i.e., all of its Sylow subgroups 

are cyclic, and the irreducible fixed point free representations of r are of 

odd degree. If n = 21: for some k, then r is cyclic. 

It is not known which fixed point-free groups r C en of type A actually 

induce a r-invariant proper map from Bn to some ball. For n =· 2 it seems 

that there are only two known examples: 

(1) r is the cyclic group in U(2), generated by the matrix ( ~ ~),where 
f = e2"'i/l:. The corresponding invariant mapping f: B 2 ----> Bn+l has 

components j (~)zJ wn-j, 0 :S j ~ k, so it is homogeneous of order k. 

An example of this kind exists for every n. 

(2) r is the cyclic group generated by ( ~ f~)' where € = e2"'i/1:. and 

k = 2r + 1 for some r E Z+. A basis of invariants is 

2r+l 2r - l 2r - 3 2 2r+l 
z 'z w, z w ' ... 'w 

D' Angelo proved in [DA3] that there is, up to equivalence, exactly 

one proper mapping f: B 2 
----> Br+ 2 whose components are constant 

multiples of these monomials . He obtained an explicit expression for 

the coefficients and listed the first few of these maps [DA3, p. 214] . 

Another way of asking the question about the existence of proper 

maps between balls that are invariant under a group is in terms of C-R 

embeddings. If r C U(n) is a finite fixed point free group, the quotient 

S(f) = bBn /r is a C-R manifold that is locally equivalent to the sphere 

at each point. The question is for which r does S(f) admit a global C­

R immersion or embedding into a sphere bBn for a sufficiently large N? 

Cleariy such an immersion extends to a proper holomorphic map of Bn 

into BN, and vice versa, the restriction of a f-invariant proper mapping 

f: Bn ----> BN, smooth on If', to the sphere bBn induces a C-R immersion 

of S( I') to bBn. Since f induces a mapping of tangent bundles that re­

spects the C-R structure, it may be possible to obtain obstructions to such 

C-R immersions by the methods of algebraic topology (Chern classes, etc.). 

Perhaps there is an alternative proof of Theorem 6.8, using topological 

methods. 
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Although there has been a substantial progress toward the classifica­

tion of maps between balls in recent years, there are still a lot of open 

problems. The composition theorem of D'Angelo (Theorem 6.4) allows us 

in principle to list all proper polynomial maps of certain degree between 

a given pair of balls, although the corresponding algebraic problem is not 

always easy to solve. The classification problem for rational maps between 

balls seems to be much more difficult. 

In our opinion, the classification problem for mappings between balls 

deserves more attention since it combines in a nice way the methods of 

complex analysis with those from algebra, the representation theory of fixed 

point free groups, the theory of invariants, differential geometry, and pos­

sibly other areas of Mathematics. 

Institut of Mathematics, 

University of Ljubljana, 

Ljubljana, Yugoslavia 
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