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I Introduction 

In this paper we prove a version of the 'reflection principle'  for biholomorphic 
mappings between certain domains in the complex Euclidean space C" with 
generic real-analytic (or smooth) corners, under the condition that the map  
extends continuously up to the corner manifolds. Our method is similar to 
the one in our previous article [14]. The new ingredient here is a novel way 
of applying the Hopf  Lemma in order to obtain estimates on the behavior 
of the mapping near a corner (Proposition 2.1 below). This allows us to assume 
less on the corner manifolds, provided that we assume somewhat more on the 
domains away from corners. We also obtain a global result, Theorem 1.3, for 
mappings between real-analytic, strongly pseudoconvex domains with generic 
corners. 

Let C" be the complex Euclidean space of dimension n, with complex coordi- 
nates z = ( z l ,  z2 . . . . .  z,), z j=x j+ iy j .  Let U be a bounded open set in C", and 
let &(z), 1 <j < d, be real valued functions of class cg2 on U, satisfying 

(1) C3plAOp2A...AOpd~O on  U; 

that is, the complex gradients of the pj should be independent. Here, 

�9 = j=l 2 \Ox j  tOy~- 

Condition (1) implies that the set 

(2) M = {z e U: P l (z) = p2 (z) . . . . .  Pn (z) = 0} 

is a generic Cauchy-Riemann (C-R) submanifold of U, of real dimension 2 n - d  
and of C-R dimension m = n - d .  This means that for each point p s M ,  the 
maximal complex tangent space T c M =rip M c~ iTp M to M at p has complex 
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dimension n - d and real codimension d in Tp M. We denote  by T c M the complex 
bundle over M of rank m, with fibers T c M. The domain  

(3) D = { z e U :  pj(z)<O for l <=j<d} 

contains M in its boundary  bD and has a generic corner (edge) at M. If, in 
addition, the functions P l . . . .  , Pd are (strongly) plurisubharmonic,  we call D 
a (strongly) pseudoconvex domain  with a generic corner  M. Sometimes domains  
D of  this type are called 'wedges ' ,  and the manifold M is the ' edge '  of the 
wedge D. 

If  k = r + ~ ,  with r e Z +  and 0 < c ~ < l ,  we denote  by ~k=c~r,~ the class of 
all functions that are r times cont inuously  differentiable, and whose derivatives 
of  order  r satisfy the H61der condi t ion of order  c~. Also, cgk-O=cgk if k is not  
an integer, and (~k - 0 = U (~k - 1., if k e Z +. 

0 < ~ < 1  

Our  first main  result is the following theorem. 

Theorem 1.1 Suppose that D resp. D' are strongly pseudoconvex domains in 
C" of  the form (3), with generic corners M = bD resp. M ' =  bD' (2) of class c~k, 
k >  3. I f  F: D ~ D' is a biholomorphic mapping that extends to a homeomorphism 
F: D w M --* D' w M'  and maps M to M', then F: M ~ M'  is a smooth diffeomorph- 
ism of  class cgk- 1 - o. I f  the manifolds M and M' are real-analytic, then F extends 
biholomorphically to a neighborhood of  every point pe  M. 

Note  that  a ho lomorph ic  function in D that is cont inuous  on D w M and smooth  
on M is also smooth  on D a w M  for every domain  D I = D  that  has a smaller 
opening at the corner  M [-9]. 

Theorem 1.1 is a special case of  the following result. Let 

@p(v)= ~ __~2P (p)vj~ 
�9 , =l ~zj ~ k  

be the Levi form of a function p at p e C", in direction of  the vector v = (v l, ..., v,). 

Theorem 1.2 Let D and D' be domains in C" of  the form (3), defined by plurisubhar- 
monic functions pj resp. p} of  class cg2, with generic corners M resp. M' of class 
cgk, k > 3 .  Suppose that the Levi form of every p~ (l__<j<d) is positive definite 
on the complex tangent bundle TCM, and the analogous condition holds for 
M'. I f  F: D-~D'  is a biholomorphic map that extends to a homeomorphism 
F: D u  M--* D' u M'  and maps M to M', then F: M--* M'  is a smooth diffeomorph- 
ism of  class egg- l - o. I f  the manifolds M and M'  are real-analytic, then F extends 
biholomorphically to a neighborhood of  every point pc  M. 

Remark 1 It is not  required that  the surfaces pj = 0 be smooth  or  real-analytic. 

Remark 2 Condi t ions  of  Theorem 1.1 and 1.2 imply that the manifolds M and 
M'  are strongly pseudoconvex,  in the sense that  they are locally contained in 
a strongly pseudoconvex hypersurface. Several equivalent characterizat ions of 
this condi t ion can be found in [14] ;  see also Sect. 3 below. 

The quest ion whether Theorem 1.1 holds if the functions p~, p} are merely 
weakly plur isubharmonic ,  but  the manifolds M and M'  are strongly pseudocon-  
vex, remains open. 
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Remark 3 The requirement that D and D' be finite intersections of domains 
with cg2 boundaries is too strong. However, our conditions are convenient since 
they are simple to state, and the class of such domains arises naturally in many 
contexts. It will be apparent from the proof that our method applies to biholo- 
morphic mappings between open sets in C" that are osculated from outside 
to second order by domains of this type. Also, our methods apply to more 
general wedges with generic, strongly pseudoconvex edges. (See Theorem 3.1 
in Sect. 3 below). 

Theorems 1.1 and 1.2 imply the corresponding global results. As a simple 
case we consider biholomorphic mappings between bounded, strongly pseudo- 
convex domains in C" with piecewise smooth, real-analytic boundaries, such 
that all corners in the boundary are generic C-R manifolds. This means that 
in a small neighborhood U of every boundary point pebD, Dc~ U is a domain 
of the form (3), where the p~ are real-analytic, strongly plurisubharmonic func- 
tions satisfying (1). 

Range proved [27] that biholomorphic mappings between domains of this 
type extend H61der continuously to the boundary. (In fact, he proved this with 
condition (t) replaced by the weaker condition dpl  A dp2 A ... A dp~+O. If (l) 
holds then the proof is almost the same as for smoothly bounded domains, 
and the mapping is H61der continous with the exponent 1/2.) Together with 
Theorem 1.1 this implies the following result. 

Theorem 1.3 Every biholomorphic mapping F:D--*D' of bounded, real-analytic, 
strongly pseudoconvex domains in C" with generic corners extends to a biholo- 
morphie map on a neighborhood of D. 

In the proof of Theorem 1.3 we will also need the following result that generalizes 
a theorem of Pinchuk [23]. 

Proposition 1.4 Let D and D' be domains in C" of the form (3), defined by ~2 
plurisubharmonic functions pj resp. p}, with generic corners M resp. M' of class 
egg, k>  3. Suppose that the Levi form of every function pj is positive definite 
on the complex tangent bundle T c M, and the analogous condition holds for M'. 
I f  F: D-~D' is a biholomorphic map that extends continuously to D u M  and 
satisfies F ( M ) c  M', then M and M' have the same dimension. 

Theorems 1.1 and 1.2 are new when 1 <d<n,  i.e., when M and M' are generic 
C-R manifolds of positive C-R dimension and of real codimension at least 
two. The two extreme case d---n and d--1 are well undestood. We shall now 
briefly recall the main known results in order to put our new theorems in 
context. 

When d=n,  the corners M and M' are generic, totally real submanifolds 
of C". If such a manifold M is real-analytic, it is locally biholomorphically 
equivalent to the totally real subspace R" c C". If F: D ~ M -~ C" is a continuous 
map that is holomorphic on D and maps M to M', the extendability of F 
follows by 'reflecting' F across M and M' and applying the classical edge-of-the- 
wedge theorem. (It suffices to assume that M' is totally reat.) If M and M' 
are merely smooth, one applies the smooth version of the edge-of-the-wedge 
theorem as in [25] and [14]; the conclusion is that F is smooth on M. 

The other extreme case is d =  1; M and M' are then hypersurfaces in C" 
that form an open part of the boundary of D resp. D'. If F: D-~D' is a locally 
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biholomorphic (or proper holomorphic) mapping that takes M to M', and if 
M and M' are pseudoconvex of finite type, then F extends holomorphically 
to a neighborhood of p in C". This result (and its smooth analogue) is due 
to several authors: Fefferman [13], Bell and Catlin [4, 5], Diederich and Forn~ess 
[10, 11], Baouendi and Rothschild [2, 3], and others. (See the survey [-17].) 
Most proofs of smooth extendability of F to M rely on the Bergman kernel 
and the ~--Neumann methods. Simpler proofs for mappings between strongly 
pseudoconvex domains were given in [15, 20, 22, 25, 26]; in this case the optimal 
loss of smoothness is just a bit more than 1/2 according to [19]. 

The intermediate case 1 < d < n has not been studied very much up to now. 
If M' has non-degenerate Levi form at F(p) for some p~M, and if F is continuous- 
ly differentiable on D u M with DFp non-degenerate on T c M, then F extends 
to a neighborhood of p according to Webster [33, 34]. A related result for 
analytic sets was obtained in [24]. 

However, it is well known that for Levi nondegenerate manifolds the most 
difficult part of the regularity problem is to obtain some small initial amount 
of regularity of F on M, for instance, to prove that F is cgl up to M. This 
point was already apparent in the paper by Nirenberg et al. [22] which offered 
the first proof of Fefferman's theorem using the reflection principle. For  mani- 
folds with degenerate Levi form one needs a higher degree of initial smoothness 
of the mapping in order to get the reflection principle going; see the papers 
[1, 2 11]. 

It seems that the only results in which 1 < d < n and F is merely continuous 
up to the edge to begin with are due to Tumanov and Khenkin [32] and 
the author [14]. Both these papers considered the regularity of local homeo- 
morphisms F: M--*M' for certain class of generic C-R manifolds, under the 
condition that F and its inverse F -1  satisfy the tangential Cauchy-Riemann 
equations on M resp. M' in the weak sense. Such mappings are called C-R 
homeomorphisms. 

If the manifold M is minimal at a point p EM in the sense of Tumanov 
[31], then the local envelope of holomorphy of M near p contains a wedge 
domain with edge M according to [31] (see Sect. 3 below). If M' is also minimal 
at the point F(p), it follows that F extends to a biholomorphic mapping between 
domains that can be closely approximated by wedges with edge M resp. M'. 
This explains the connection with the problem considered here. 

In [32] the manifolds M and M' were assumed to be defined by quadratic 
hermitian polynomials (quadrics). Under suitable assumptions on the Levi form 
it was proved that every local C-R homeomorphism F: M--,  M' extends holo- 
morphically to a neighborhood of M. In the subsequent papers [16] and [30] 
it was shown that such a mapping extends to a complex rational mapping 
on C". The main idea of the proof in [32] was to exploit a special family 
of complex balls of dimension at least two, contained in the boundary of the 
envelope of holomorphy of the quadric M resp. M'. 

In [14] we established the regularity of C-R homeomorphisms for strongly 
pseudoconvex C-R manifolds (2) that are over-extendable. Recall from [14] 
that M is said to be over-extendable at a point p~M if every C-R function, 
defined on a neighborhood o fp  in M, can be extended in some smaller neighbor- 
hood of p to a holomorphic function on a wedge domain ~V(F, U) with edge 
M (Sect. 3) whose cone F is larger than the Levi cone Cp(M) of M at p. (See 
Sect. 3 for the definition of Cp(M)). The main result of [14] was the following. 
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Theorem. I f  M and M' are smooth (resp. real-analytic) C-R manifolds (2) that 
are strongly pseudoconvex and over-extendable at points p e M  resp. q6M', then 
every local C-R homeomorphism F: M ~ M', F(p)= q, is smooth (resp. real-analyt- 
ic) in a neighborhood of p in M. 

The condition of over-extendability is too strong since it does not hold for 
quadrics, and it is difficult to verify. It holds for instance when the third order 
homogeneous part  of the Taylor expansion of the defining function of M at 
p is sufficiently independent of the second order part  (the Levi form); cf. [14, 
Theorem 2.2]. 

Our results in this paper  do not depend on over-extendability, but we pay 
the price by assuming that F is a biholomorphic mapping between domains 
whose boundaries are reasonably nice away from the corners. In Sect. 3 we 
show that the results in our present paper, as well as the Theorem of [14] 
stated above, can be deduced from the same technical result (Theorem 3.1) that 
was proved in [14], although it was not stated there explicitly. 

It would be interesting to see whether the regularity results obtained here 
can also be obtained by the Bergman kernel methods that were very successful 
in the hypersurface case. In this connection we remark that the sup norm esti- 
mates for the 0-equation have been established on domains with generic corners 
by Range and Siu [28]. (See also [21].) 

The paper  is organized as follows. In Sect. 2 we obtain the relevant informa- 
tion on the behavior of F near corners (Proposition 2.1 and Corollary 2.2), and 
we prove Proposition 1.4. In Sect. 3 we indicate how the methods of [14] give 
a proof  of Theorems t.1 and 1.2. Finally we prove Theorem 1.3. 

2 Behavior of the mapping near a generic corner 

Before stating the results of this section we establish some notation that will 
be used throughout  the paper. 

Let M c C "  be a smooth manifold of the form (2), where the functions pj 
satisfy (1). We shall identify the real tangent space TpC" with C" in the usual 
way. The almost complex operator  J on T, C" then corresponds to multiplication 

by i=lf~--  1 on C". Condition (1) implies that for each peM,  TpM is a direct 
sum T v m = T c M �9 L v, where T c m = Tp m c~ iT v m is a complex subspace of 
dimension m = n - d and Lp is a real subspace of dimension d that is real orthogo- 
nal to T c M .  We will take Nv=iL v as the canonically chosen normal space 
to M at p. Clearly we have a decomposition 

(4) Tv C" = Tv M G Nv = TC M O Lv @ Nv. 

There exists a family of linear transformations UveGL(n, C), depending con- 
tinuously (even smoothly) on the point peM,  satisfying 

(5) Uv(T c M ) =  C"  • {0} d, Uv (Lv)= {0} m x R d, Uv (Np)-- {0}" • iR d. 

The fibers N v form the normal  bundle N~--~M in C". By the tubular neighborhood 
theorem there is a neighborhood V of M in U c C "  that is diffeomorphic to 
a neighborhood of the zero section in N. We denote by ~: V ~  M the projection 
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onto M with fibers n - l ( p ) =  Np n V, where we identify Np is the obvious way 
with the corresponding affine subspace of C" at p. 

Correction to [14] In the paper [14] we erroneously claimed that there exists 
a family of unitary transformations Up (p~M) satisfying (5). Specifically, such 
transformations were used in [14, Propositions 3.2, 3.3, 5.3, 6.1, and 6.2]. How- 
ever, the proofs given there remain valid since they do not depend on this 
extra condition. We apologize to the readers of [14] for the inaccurate claim. 

Let D ~  U c C "  be a domain (3) with corner M. We denote by d(z, M) the 
distance from a point ze  U to M. Clearly d(z, M) is proportional to the function 
max { -  p](z): 1 <=j<=d} on D, in the sense that their quotient is bounded from 
above and bounded away from zero on D. 

For  e > 0 small we set 

(6) D e = {z ~ D : IPj (z)l > E d (z, M), 1 =<j -< d}. 

D~ is a domain with corner M that has strictly smaller opening along M 
than D. As e ~ 0, the domains De increase to D. 

The following proposition is of crucial importance. 

Proposition 2.1 Let D, D ' c C  n be domains of the form (3) with generic corners 
M c bD resp. M' c bD' of class cgk, k > 3. Suppose that D' is defined by plurisubhar- 
monic functions pj, 1 <=j<= d', and the Levi form of every p) is positive definite 
on TCM '. I f  F: D ~ D '  is a holomorphic mapping that extends continuously to 
D u  M and satisfies F ( M ) c M ' ,  then for each e > 0  sufficiently small and each 
set Uo~ U there exist constants C>0,  3 > 0  and a subset U ~  U' such that 

(a) d(F(z), M')>= Cd(z, M) for z e D e n  Uo, and 
(b) F(D~n Uo) CD; c~ U~. 

Remark. We shall see in the proof that the assumption on the Levi form of 
the functions p) on T c M' and the continuity of F up to M is required only 
in the proof of (b). Part (a) holds without these assumptions. 

Corollary 2.2 Let D and D' be domains with generic corners M resp. M' as 
in Proposition 2.1. I f  F: D ~ D' is a biholomorphic map that extends continuously 
to D u M and satisfies F(M) c M', there exists for each ~ > 0 and Uo c U a constant 
C > 0 such that 

(7) (l/C) d(F(z), M')<d(z,  M)< Cd(F(z), M'), z~Dec~ U o. 

Proof. The right inequality is Proposition 2.1(a). By Proposition 2.1 (b), F maps 
t t ~ r D, n Uo into D'~nU6 for some 6 > 0  and U / ~ U .  Applying Proposition 2.1(a) 

to F -  1 on D~ n U~ we obtain the left estimate in (7). This proves Corollary 2.2. 

In order to prove Proposition 2.1 we need the following Hopf  Lemma near 
corners. 

Lemma 2.3 (Hopf Lemma near a generic corner.) Let D c U be domain (3) with 
generic corner M c bD (2) of class cgk, k > 3. Fix Uo ~ U and e > O. 

(a) I f  p is a continuous, negative, plurisubharmonic function on D, there is a con- 
stant C > 0 such that 

p(z)<_ - C d ( z ,  M), zEDen Uo. 
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(b) I f  p is a continuous, plurisubharmonic function on D (not necessarily negative, t) 
that extends continuously to Dw M with plM=O, there is a constant C > 0  such 
that 

p(z)<Cd(z ,m),  z~D~:nUo. 

Remark. In several places in literature, the Hopf Lemma has been used on 
domains D with little boundary regularity (e.g., piecewise smooth or convex 
domains) by considering negative plurisubharmonic functions on cones F r c D  
with a given vertex pebD. In this case we have a rate of decay p(z)< - C d ( z ,  p)a, 
where the exponent a >  1 depends on the opening (angle) of the cone. This, 
however, only gives fractional estimates in (7) which are not good enough for 
our purposes. 

Proof of Lemma 2.3 The proof relies on the fact that for a domain D with 
a generic corner M c b D ,  every smaller domain D~n UocO of the form (6) can 
be exhausted, at least in some neighborhood of M, by analytic discs of uniform 
size, contained in D, that abut the edge M along an open piece of their boundary 
(again of uniform size). Actually, for (a) we only need linear discs in D that 
touch M at a single point; this was already proved in [14, Corollary 3.4]. In 
the proof of (b) we need discs that have a boundary arc contained in M. 

Let L p ~ T p M  and Np=iLp be as in (4). Denote by Sp be the unit sphere 
of L; (in the Euclidean norm). The disjoint union of sets Sp for p e M  is a 
sphere bundle S~---~M over M. We shall denote the points of S by (p, v), where 
p~M and veSp is a vector tangent to M at p, of unit length, orthogonal to 
T c M. Similarly, points of the normal bundle N will be written in the form 

(p, i t v), where p e M, v ~ Sp c Lp, t > 0, and i -- ~ - 1 .  Set 

A + ( r ) = { ~ = x + i y e C : - r < x < r ,  0 < y < r } = C .  

Lemma 2.4 Let S~--*M be the sphere bundle defined above. For each relatively 
compact subset M o C M  there exists a mapping cb'S x A+ (r)~ C" of class (gl 
for some r > 0, satisfying the following properties for each (p, v)e S: 

(a) The map 4)(p, v, .): A+ ( r )~  C" is an embedding that is holomorphic on A+ (r), 

(b) q~(p, v, 0 )=p  and (Ofb/~x)(p, v, 0)=v (x = 9~), and 
(c) ~(p, v, x ) e M f o r  - r < x < r .  

Intuitively speaking, the image A(p, v)~ C" of A+ (r) by r v, ") is an embedded 
analytic disc in C", ~1 up to the boundary, with the boundary arc 

E(p, v)= {q~(p, v, x): - - r < x < r }  c M  

contained in M. The arc E(p, v) passes through p, and its tangent vector at 
p is v. In applications, M o will be a neighborhood of a chosen point Poem 
in M. 

We shall omit the construction of 4~ because similar constructions have 
been done elsewhere and are well known by now. One uses the Bishop's method 
[6], together with the implicit function theorem approach developed by Hill 
and Taiani [18]. See for instance the papers [7, 8, 12], and [29]. 

Let us mention that the construction of such analytic discs is entirely elemen- 
tary when M is real-analytic. It suffices to take a family of smooth real-analytic 



56 F. Forstneric 

arcs E(p, v ) c M ,  depending smoothly on (p, v)eS, such that peE(p, v) and the 
tangent vector to E(p, v) at p equals v. We complexify each of these curves 
to obtain a family of local complex curves A (p, v) in C ~, each of them divided 
in two half-spaces by M. The half-space of A(p, v) determined by the vector 
iveNp is the required disc A(p, v). 

We continue with the proof  of Lemma 2.3. Consider the mapping (P: f2 ~ N 
--, C", defined on a suitable neighborhood t2 of the zero section in the normal 
bundle N by 

~P(p, iyv)=~(p ,v ,  iy), peMo,  yeS  v, y>O. 

The properties of q~ imply that ~ is an embedding of class ~ t  of (2 onto a 
neighborhood 7'(~2) of Mo in C". Along the zero section of N, 71 is tangent 
to the map (p, i yv )eN ~ p + i y w C "  that is linear on fibers Np of N. 

Inside each space Lv we let Fp be the set consisting of all tangent vectors 
w L p  such that the vector i w N p  points to the interior of the domain D. To 
give a precise definition, let p~ . . . . .  Pd be the defining functions of D (3). Since 
the form dp~=apj+ffpi  annihilates TpM, the form i~p~ is real valued on L v 
for each j = 1 . . . .  , d, and F~ can be defined by 

(8) Fp={v=(vl  .... v,)eLp: ~ . Opi d} , k=xt~Z~zk(P) Vk<0, l=<j=< . 

Clearly Fp is an open cone in Lp with vertex at the origin. Similarly we can 
define cones Fp(e) corresponding to domains D~ (6). 

Choose numbers 0<ez  <e~ <e, and let D~cD~I cD~2cD be the correspond- 
ing domains (6) with corner M. Let Fp(e~) be the cone (8) at peM,  associated 
to the domain D~I. The following properties of q~ and ~ follow from Lemma 2.4 
and the implicit function theorem: 

(i) there is a number  r~, 0 < r l < r ,  such that 4~(p, v, ( ) eD~  for each peMo ,  
veFp(el)c~Sp, and ( ~ A + ( r 0 ;  

(ii) the image of the set 

(2(el) = {(p, iyv): peMo,  veFp(el)nSp,  0 < y < r l }  c N  

by the mapping ~ contains D,c~ V o for some open set Vo~.C" with V o ~ M = M o .  
Note that t?(el) is a wedge in the bundle N whose edge is the zero section 

of N. The map 7 j takes Q(el) onto a wedge-like domain that contains D~c~ Vo 
and is itself contained in D. 

We can now complete the proof  of Lemma 2.3. According to (ii) every point 
z e D ~  Vo is of the form z=cb(p, v, iy)eA(p, v) for some peMo and veFp(el)~Sp. 
We apply the one-variable Hopf  Lemma to the subharmonic function p o 4~(p, v, �9 ) 
on A+ (rl). In case (a) when p is negative on D we get 

p(~(p, v, iy))< - C y ,  0 < y < r  1, 

for some C > 0. Note  that the set 

K =  {4~(p, v, x +  ir l) : pe M o, v e Fp(el) r~ S p, Ix] <r i}  
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is relatively compact  in D, and hence p < -  C ' <  0 on K. This implies that the 
constant C in the estimate above can be chosen independently of (p, v). By 
construction of our discs, the distance d(z, M) from z = 4~(p, v, iy) to the edge 
M is proport ional  to y, uniformly with respect to p and v. Thus the estimate 
(a) follows. 

In case (b) we take into account that p = 0  on M, and consequently p is 
bounded from above near M. Since p(eb(p, v, x))=0  for - - r<x<r ,  the Hopf  
Lemma implies 

p(cb(p,v, iy))<Cy, 0 < y < r ~  

for some rl >0 ,  with a constant C > 0  independent of peM o and VeFp(eOc~Sp. 
This implies the estimate (b). Lemma 2.3 is proved. 

d 

Proof of Proposition 2.1 The function p ' =  ~ p} is negative plurisubharmonic 
j = l  

on D', and - p ' ( z )  is proport ional  to the distance d(z, M') from the edge. Apply- 
ing Lemma 2.3 to the continuous, negative, plurisubharmonic function p'oF 
on D we get p ' (F(z) )<-Cd(z ,M)  for zeD~c~Uo, which is equivalent to (a). 
Similarly we obtain estimates pj(F(z)) < - Cd(z, M) for 1 < j  < d. Notice that we 
did not use the hypothesis that F is continuous up to M and maps M to 
M r ' 

In order to prove (b), we fix a point peM and choose local holomorphic 
coordinates near the point q=F(p)eM' in which q---0, and T o M ' = C ' x R  a. 
Write the coordinates in the form z=(z', z"), where z ' e C  m and z"=u"+iv"eC a 
(u", v"~Ra). Locally near 0, M' is of the form v"=4)(z', ~', u"), where q~ has values 
in R a and it vanishes to second order at 0. Set 

T (Z) ~" ]l) t, - -  ~b (Z ' ,  Z ' ,  U" ) [2  = [l)Hl2 AV (terms of order > 3). 

The Levi form of z at 0 is strictly positive definite on {0}" x C a and it vanishes 
on C m x {0}. Since the Levi form of every p) is assumed to be strictly positive 
definite on T c M' = C" x {0} e, it follows that the function p~ + c z is strongly plur- 
isubharmonic near 0 for a sufficiently large constant c>0 .  Choose c > 0  and 
a neighborhood Vo of q in C" such that p}+cz is strongly plurisubharmonic 
on Vo for every 1 < j  < d. Let Uo ~ U be a neighborhood of p such that F(Uo c~ D) 
is relatively compact  in V o. 

If c 1 > 0 is sufficiently small then the function - c ~  p~, + pj + c ~ is still strongly 
plurisubharmonic on V0, and it equals zero on M'c~ Vo. Its composition with 
F is a plurisubharmonic function on D c~ Uo that equals zero on M n U o. Apply- 
ing Lemma 2.3 (b) on a smaller domain D~ c~ U~ (/./1 c Uo) we get 

--ca p'k(F(z))+pj(F(z))+cz(F(z))<c2 d(z, M), z~D~c~ U1. 

Dividing this inequality by -pj(F(z))>O and deleting the last term on the left 
hand side (that is positive) we obtain 

cx p'k(F(z))/pj(F(z))< 1 +c2 d(z, M)/(-p'j(f(z))<c3, zeD~c~ U 1. 

We used the previous estimate pj(F(z))< -Cd(z ,  M). 
The upshot is that each quotient (p'koF)/(p]oF) is uniformly bounded on 

D~c~ UI. Clearly this implies that the point F(z) lies in a domain D'~cD' for 
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a suitable 6>0 .  From the construction it follows that the constants involved 
in these estimates can be chosen uniformly for points p in a relatively compact  
subset of M, so the part  (b) follows. This completes the proof  of Proposition 2.1. 

Proof of Proposition 1.4 The proof  is essentially the one given by Pinchuk 
[23]. We shall estimate the Bergman kernel function KD(z) of D, restricted to 
the diagonal, when z approaches the corner M within a smaller domain D~= D 
of the form (6). 

Denote by A k the unit complex polydisc of dimension k. Let M (2) be 
of real codimension d in C". For  each pEM we denote by Np the normal 
space to M at p as in (4), considered as an affine subspace of C" passing 
through p. Choose numbers 0 < e l  <~. Fix a point poeM. 

As in [23, Lemma 1.4], we can find a neighborhood ~2 = C" of Po and families 
of one-to-one holomorphic maps fp, gp: ~2 ~ C" (local changes of coordinates), 
depending continuously on p~(2c~ M, such that 

and 

fv(D~lc~(2c~Nv)~A a-1 x Bn-d+ x ~fp(D n (2), 

gp(Dn~)=A d-1 •  n-a+l,  

dtimes n - d t i m e s  

fp(p)=gp(p)=(1 . . . .  ,1, 0 . . . . .  0)=e0. 

For  each point z~Dc~(2 close to Po we let p=~(z)eMc~(2 be its projection 
onto M. The distance from points fp(z) and gv(z) to e 0 is then comparable 
to d(z, M). Moreover, the left inclusion for fp implies that for every point 
z~D~ c~ ~2 close to Po, the distance from f,(z)(p = g(z)) to each face of the domain 
A a- 1 x B" a+ 1 is comparable  to d(z, M). 

By comparing the Bergman kernel function Ko(z) with the Bergman kernel 
of the domain A d- 1 • B , -a+  ~ we now get the estimates 

Ca d(z, M)-(n+a)~KD(Z)~=C2 d(z, M) -~"+a), z~D~c~Q, 

for some constants Cx and C 2 independent of z. The left estimate follows from 
the inclusion involving gp, with p=~z(z), and the right estimate follows from 
inclusions involving fp. 

Let F: D~D'  be a biholomorphic map as in Proposition 1.4, mapping the 
corner M cbD of codimension d into corner M ' c D '  of codimension d'. The 
Bergman kernel functions of D and D' are related by 

K D, (F(z))IS(F) (z)[ 2 = KD(Z), 

where J(F) is the Jacobian determinant of F We must prove that d=d'. To 
reach a contradiction suppose that d :# d'. 

Consider first the case d<d'. Let z~D~c~(2. By Proposition 2.1 and Corol- 
lary 2.2, the image w=F(z) lies in D~ for some 6 > 0 ,  and the distances d(z, M) 
and d(w, M') are comparable.  Combining the estimate on KD(z) from above 
with the estimate on KD,(w) from below we get 

[J(F) (z)[ z <= C a d(z, M)-~"+a)/d(w, M')-~"+a') <= C4 d(z, M) d'-d. 
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Since d ' > d ,  it follows that  J(F)(z) is bounded  near  M and has limit zero on 
M. Since M cbD is a generat ing submanifold  of  C", the uniqueness theorem 
of Sadullaev [29] implies that  J(F)= 0 on D, a contradict ion.  

Similarly, if d>d', we combine  the est imate on KD(z) f rom below with the 
est imate on KD,(w) f rom above  ( w =  F(z)sD'6) to get 

]J (F) (z)[- 2 < C5 d(w, m')-("+d')/d(z, M)-~"+d) <= C6 d(z, M) a-d'. 

It follows that  the ho lomorph ic  function 1/J(F)(z) on D has limit zero on M c  
bD. Thus  the function 1/J(F) is zero on D, a contradict ion.  Proposi t ion  1.4 
is proved.  

Remark. Ins tead of using the Bergman  kernel we could also use the osculat ing 
maps  above  and the est imates on the infinitesimal K o b a y a s h i  metric (or the 
K o b a y a s h i  volume). 

3 A regularity theorem for C-R homeomorphisms 

In this section we will explain how Theorems  1.t and 1.2 can be p roved  by 
using the methods  developed in [14]. 

We must  recall the te rminology of [14]. Let  M be a C-R manifold  of the 
form (2). In  suitable local ho lomorph ic  coordinates  (z, w) (z ~ C m, w ~ C a, m + d --- n) 
defined in a ne ighborhood  U of a chosen point  peM (which we take to be 
the origin p = 0), the manifold  M is given by 

(9) m = {(z, w)~ U: ,3 wj = Qj(z, 5) + Rj (z, 5, 9t w), 1 <j < d}, 

where Q=(Q1 . . . . .  Qd) is a hermit ian quadra t ic  form on C m with values in R e, 
called the Levi form of M at 0, and R =(R1 . . . . .  Re) is a smoo th  function with 
values in R e that  vanishes to third order  at the origin. We associate to M 
the Levi cone at the origin, defined by 

Co(M) = Co {Q(z, 5): zeCm\{0}}.  

(Co denotes  the l inearly convex hull.) 

Definition. (a) A convex cone F = R e is strongly convex if there is a vector  a e R  d 
such tha t  a.x>O for all xeF,  and if the closure /~ contains  no line th rough  
the origin in R e. 
(b) The manifold  M (9) is strongly pseudoeonvex at 0 if the Levi cone Co(M) 
is s t rongly convex. 

Not ice  tha t  a s t rongly convex cone does not  contain  the origin. It  was shown 
in [14, Propos i t ion  4.4], that  M is s t rongly pseudoconvex  at the origin if and 
only if M is contained,  locally near  the origin, in a s t rongly pseudoconvex  
hypersurface.  Thus  the two definitions of s t rong pseudoconvexi ty  of M are equiv- 
alent. It  is easily seen that  the cone Co(M) is s t rongly convex if and  only if 
there is a a e R  d satisfying 

d 

ajQj(z, 5)>O for all zeCm\{0} .  
i=1 
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To every open cone F c R d with vertex 0 we associate the wedge domain 

(10) ~q/-(F, U)= {(z, w)e U: 3 w - ( Q ( z ,  ~)+ R(z, ~, Nw))eF} 

with edge M. Let S be the unit sphere of R d. If Fo c F~ c R d are cones (always 
with vertex 0) such that S c~ F o is relatively compact in S n F~, we say that the 
cone F o is finer than F~ and denote this relation by Fo<F~. The notation 
3r162 Uo)< ~#r(F1, U1)means that Fo<F1 and Uo~U 1 . 

The following result was proved in [14], although it was not stated explicitly. 
All sets and mappings should be understood as germs at the origin. 

Theorem3.1 Let F: M ~ M ' , F ( O ) = O ,  be a homeomorphic mapping between 
smooth manifolds M, M ' c  C" of the form (9). Assume that there exist wedges 
3~11<~W2<~//" (resp. qC/~l'<qCr2'<qr ) of the form (10), with edge M (resp. M'), 
such that the following hold near the origin: 

(a) The cone F of ~ (resp. F' of qCF') is such that Co(FuCo(M))  (resp. 
C o ( F ' u  Co(M'))) is strongly convex. 
(b) F extends to a continuous map on qr u M that is holomorphic on ~2 and 
satisfies F ('tr c ~lr F (~W2) c qr 
(c) F - t  extends to a continuous map on q///2'w M' that is holomorphic on qr 
and satisfies F -  1 ( ~S)  C ~ .  

Then F: M ~ M' is a smooth diffeomorphism near the origin. I f  M and M' are 
smooth of  order k>3,  then F]M is smooth of order c~k- l -O near O. I f  M and 
M' are real-analytic, then F extends to a biholomorphic mapping in a neighborhood 
of the origin in C". 

We give a brief outline of the proof  of Theorem 3.1. In [14] we assumed that 
the manifolds M and M' are over-extendable at the origin. Using this assumption 
we proved in [14, Proposition 5.1], that F and F -~ extend to holomorphic 
mappings on suitable wedges such that the conditions of Theorem 3.1 are sat- 
isfied. This was the only place in [14] where the over-extendability was used. 

In Sects. 5 and 6 of [14] we only used the conditions given in Theorem 3.1 
above. First we proved linear distance estimates comparing d(z, M) with 
d(F(z), M') for points z~#/~l [14, Proposition 5.2]. This is replaced by Corol- 
lary 2.2 in the present paper. The condition that the cone Co(FwCo(M))  is 
strongly convex implies that, in suitable local holomorphic coordinates near 
the origin, there exist d strongly convex 'barrier functions' p* . . . . .  p~', with 
linearly independent complex gradients at the origin, satisfying p*[M=0 and 
p.* < 0  on ~ for 1 <j<d .  Similar barriers exist for the wedge 3q/~'. This is the 

J 
content of Proposition 4.3 in [14]. 

Using the distance estimates for F and the barrier functions as above, we 
obtained in [14, Proposition 5.3] the relevant estimates on the derivative DF(z) 
of F at points z e ~r 

Finally, in Sect. 6 of [14] we used these estimates, together with a 'reflection 
principle' for generic C-R manifolds that was developed by Webster in [33] 
and [34], to prove that F is smooth on M. The same method was explained, 
for the case of hypersurfaces, in our paper [15]. We recall briefly the main 
idea. 

Let fr162 n) be the Grassman manifold of complex m-dimensional sub- 
spaces of C", where m = n -  d is the C-R dimension of M and M'. We associate 
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to M resp. M' a submanifold M resp. M'  in the complex manifold x = c n  
x N(m, n) by setting 

) ~ =  {(z, T c M): zeM}, 

and similarly for M'. Notice that M projects one-to-one onto M. 
Webster proved in [33] that M is totally real at the point (p, T c M) over 

peM if and only if the Levi form of M at p is nondegenerate, which is the 
case here. However, M is not generic in X unless d = l, because its dimension 
is too small. 

The map  F: 3q/---* ~ '  is covered by the holomorphic map 
F: ~ x ~ ~ ~ '  x ~, defined by 

F (z, A)=(F (z), DF(z)(A)). 

Here, DF(z)(A) is the image of Aefr by the derivative of F at z. 
Using the estimates on F as explained above, we proved in Sect. 6 of [14] 

that there exists a wedge domain ~ ~ 3q/~ x ~ c X with edge (corner) M such 
that P extends continuously to ~ w M  and maps M to M'. More precisely, 
the boundary value of P on ~ is given by 

F(p, TC M)=(z, TC M'), pEM, q=F(p)eM'. 

This is the content of Proposition 6.2 in [14]. 
When the manifolds M and M'  are real-analytic, we completed the proof  

by intersecting the wedge ~/~ with the complexification Z c X of M in X. The 
wedge ~/~ is such that ~/~ ~ X is also a wedge domain in 22, with edge M. Since 
M is a generic totally real submanifold of its complexification X, we can reflect 
PI~ across the edges M and M'  and apply the edge-of-the-wedge theorem within 
I;. This proves that F extends holomorphically across M. 

If M and M' are merely smooth, we use an approximate (asymptotic) com- 
plexification of the two manifolds and apply the smooth version of the edge-of- 
the-wedge theorem as in [14] or [25]. The conclusion is that /~ is smooth 
on M, and hence F is smooth on M. This proves Theorem 3.1. 

Reduction of Theorems 1.1 and 1.2 to Theorem 3.1 Let F: D ~ D' be a biholo- 
morphic mapping as in Theorem 1.1 or 1.2, mapping the corner manifold M 
of D homeomorphical ly to the corner M' of D'. We fix a point poeM and 
consider our sets and mappings as germs near the points Po resp. qo---F(po)~M' 
which we take to be the origin in C". 

Applying Proposition 2.1 to F and F -1 we obtain smaller domains 
D~cD~, c D  and D'~D'~ cD'  of the form (6), with corner M resp. M', satisfying 

F(D~)~D'~, and F-~(D'~)~D~. 

To complete the proof we observe that we can insert between every two 
domains D~cD~, of the form (6) with corner M (0<e l  <e) a wedge domain 
3q/~ = ~ ( F ,  U) of the form (10) with edge M, at least in a sufficiently small neigh- 
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borhood of the origin. It suffices to take a cone F that is strictly between the 
cones (8) of D, and D~ at 0. 

Moreover,  since the functions Pi defining the domain D (3) are plurisubhar- 
monic, it is easily seen that the cone (8), associated to D at the origin OeM, 
contains the Levi cone Co(M) in its closure and is itself strongly convex. Thus, 
D is locally near 0 contained in a wedge ~ff(F, U) whose cone F is strongly 
convex and contains the Levi cone Co(M). The same holds for D'. 

This shows that the conditions of Theorem 3.1 are satisfied if we choose 
the wedges such that ~t/~cD~cD~,c~UzcD~r and D'~c~C/~'~z'~D'6~c 
D ' ~  ~U'. Thus Theorems 1.1 and 1.2 follow immediatelly from Theorem 3.1. 

Remark. Notice that the role of Proposition 5.1 in [-14] (that depended on over- 
extendability of M resp. M') is replaced here by Proposition 2.1 and Corol- 
lary 2.2, applied to F and F-1 .  

Remark. Recently, Webster [-35] found a new 'reflection principle' on generic, 
Levi non-degenerate, C-R manifolds M c C". The idea is to lift M to a generic 
totally real manifold M * ~ C " x  CP "-~, of dimension 2 n - 1 .  The fiber of M* 
over a point p~M is the set of all complex hyperplanes S = T p  C" (considered 
as points in CP" -  x) whose intersection with Tp M has codimension one in T v M. 
(Note that this intersection is either of codimension one or two.) It remains 
to be seen whether this type of reflection would simplify the proof  of our exten- 
sion theorems. 

Proof of Theorem 1.3 For  every point pebD we denote by d(p) the largest 
integer such that p is contained in a corner manifold M ~ bD (2) of real codimen- 
sion d in C". Clearly the function p~bD--.d(p)~Z+ is upper semicontiuous. 
The set 

Mk = {p~bD: d(p)=k} cbD 

for k = 1, 2 . . . .  , n is a locally closed, real-analytic manifold of codimension k 

in C", and Mk = Q) Mj. In particular, M1 is the set of smooth boundary points 

of bD. j=k 

According to Range [27], F extends to a homeomorphism F: D--.D'. We 
claim that F(Mk)= M'k for every k, where M~ is the analogous set in bD'. Theo- 
rem 1.3 then follows from Theorem 1.1 by extending F to a neighborhood Vk 
of every M k. Clearly I"1 u V2 u . . .  w V, is a neighborhood of bD, so we get an 
extension of F across bD. 

In order to reach a contradiction we suppose that there is a point Po~Mk 
such that F(po)=qo~M' k, for some k'4:k. We may take k>k' since the same 
argument can be applied to F - 1  at qo. Choose a neighborhood ~o of Po in 
M k and set 

ka = min {d(q): q=F(p), p~og) <k. 

Let pleco be a point at which the minimum occurs. Then we have d(F(p))=k~ 
for all p in some neighborhood ~o 1 c~o of Pl. Thus, F maps the corner (3) 1 c M k 
into the corner M~, for k:~kl. This contradicts Proposition 1.4. Thus, F must 
take Mk to M~ for every k. Since F is homeomorphic  from bD to bD', it follows 
that F(Mk) = M'k for every k as claimed. This proves Theorem 1.3. 
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