
Math. Ann, 300, 719-738 (1994) Ilnthmmt m 

�9 Springer-Verlag 1994 

Approximation by automorphisms 
on smooth submanifolds of C" 

Franc Forstneric 
Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA 

Received: 11 October 1993 

Mathematics Subject Classification (1991)." 32M05, 32E30 

Introduction 

We denote by AutC n the group of  all holomorphic automorphisms of  the 
complex Euclidean space C". This is a very large and complicated group when 
n > 2; tbr results in this direction see [5, 6, 11, 20]. In the present paper we 
further demonstrate this by showing that one can approximate smooth mappings 
F : M -+ C n on certain smooth submanifolds M C C" by restrictions to M 
of holomorphic automorphisms of C". We shall assume n > 2 throughout the 
paper. 

Recall that a real submanifold M C C n is totally real if the tangent space 
TzM at each point z E M contains no complex line. A compact set K C C n is 
polynomially convex if for every z E C" \K there exists a holomorphic polyno- 
mial P such that IP(z)] > supx IPt. For p > 1, a c~p isotopy of embeddings of  
M into C n is a ~P map F : [0, 1] • M --~ C ~ such that for each fixed t E [0, 1], 
Ft = F(t ,  �9 ) : M -+ C" is an embedding. The isotopy {Ft} is totally real (resp. 
polynomiatly convex) if  F~(M) is totally real (resp. potynomially convex) for 
ever5, t E [0, t]. In this paper all compact submanifotds M C C" can be with 
or without boundary. 

Main theorem. I f  M C C n (n >-_ 2) is a compact, totally real, potynomially 
convex submanifold o f  class cgp (2 =< p < e~) and F : M -+ C ~ is a c~,p 
mapping, then the follow#~g are equivalent: 
(i) For each ~ > 0 there exists a �9 E AutC n such that IlF - ~bIMII~(M) < e. 

(ii) For each ~ > 0 there exists a totally real, polynomially convex isotopy 
Ft : M -* C ~ (t E [0, 1]) o f  class cgp such that Fo is the identity on M and 

NF, -FII~p(M ) < ~, 

Another main result of  the paper, Theorem 4.1 and Corollary 4.2, con- 
ceres generic polynomial convexity of  low dimensional submanifolds and their 
isotopies in C n. Together with the main theorem we obtain 
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Corol lary 1. Let M C C ~ be a compact, totally real, polynomially convex 
submanifold of  dimension at most 2n/3 and o f  class g~P, 2 < p < oo. 
Then for every U p mapping F : M -+ C ~ and for every e > 0 there ex- 
ists a holomorphic automorphism �9 of  C" such that [IF - ~b]mll~,,(m) < ~. 
I f  M is real-analytic and i f  F : M --~ M'  C C" is a real-analytic diffeo- 
morphism onto another totally real, polynomially convex submanifold M'  of  
C ~, then F extends to a biholomorphic mapping in a neighborhood U of  M 
which can be approximated, uniformly in U, by holomorphic automorphisms 
o f  C". 

Proof of  Corollary 1. Consider first the smooth case. Since M is compact  and 
the dimension of  the ambient space C n exceeds 2 dim M + 1, F can be ap- 
proximated in the U p norm by an embedding F '  : M ~ C ~ [15]. By Corollary 
4.2 (Sect. 4) F '  can be approximated arbitrarily close (in UP(M)) by the map 
F1 at t = 1 in a totally real and polynomially convex isotopy Ft : M ~ C" 
which starts at t = 0 with the identity on M. Thus the condition (ii) in the 
main theorem is satisfied, and therefore F can be approximated by restrictions 
to M of  holomorphic automorphisms of  C ~. 

Suppose now that F : M ~ M '  is a real-analytic diffeomorphism between 
totally real, polynomially convex submanifolds of  C" of  dimension at most 
2n/3. By Corollary 4.2 (Sect. 4) there exists a totally real, polynomially con- 
vex isotopy {Ft} connecting F = F1 to the identity F0 = IdM on M. By 
approximation we can assume that the isotopy is real-analytic. The result now 
follows from Corollary 3.2 in Sect. 3 (or from Theorem 3.1 in [11]). This 
proves Corollary 1. 

Recall that for M C C" as in the main theorem, every U p map F : M -+ C" 
can be approximated in the cgp norm on M by entire holomorphic maps. This 
follows from the approximation theorem of  Range and Siu [18]: I f  M is a 
totally real submanifold o f  class cgp in a complex manifold X, 1 < p < 
oo, then there exists a Stein open neighborhood U of  M in X such that 
the set of  restrictions to M of  holomorphic functions in U is dense in the 
Frkchet space o f  all c~p functions on M. Results in this direction were obtained 
also by Harvey and Wells [14], H6rmander and Wermer  [16], Berndtsson [8], 
and others. Oka ' s  theorem [17, p. 55] implies that, i f  X = C" and i f  M is 
also compact and polynomially convex, the set of  restrictions to M of  all 
holomorphic polynomials one C ~ is dense in cdP(M). 

Sketch of  proof o f  the main theorem. The proof  relies to a large degree on 
methods developed in [5], [6], and [11]. The implication (i) =~ (ii) follows 
from the fact that the group A u t C  n is connected [11]. Given a �9 E A u t C  n 
satisfying (i), we choose a family (~ t}  C Aut C n, depending smoothly on the 
parameter t E [0, 1], such that ~b0 is the identity and ~bl = ~b. The family of  
embeddings Ft = t~t[M -" M --~ C ~ then satisfies (ii). 

The main ingredient in the proof  of  (ii) =~ (i) is Theorem 1.1 (Sect. 1) 
on approximation o f  parametrized families of  biholomorphic mappings between 
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Runge domains in C" by automorphisms of C". This result is a stronger ver- 
sion of Theorem 1.1 in [11]. As we have already pointed out in [ l l ] ,  the 
result follows from methods developed by Anders6n [5] and Anders6n and 
Lempert [6]. 

The implication (ii) =~ (i) is proved as follows. Given a totally real iso- 
topy Ft : M ~ C", starting at t = 0 with the identity on M, we first construct 
an isotopy of  biholomorphic mappings 7~t : f2 ~ C '~ in a neighborhood O of 
M such that 5% is the identity and q'tlM approximates F~ in ~'P(M) (The- 
orem 3.1). This step only requires that the manifold Ft(M) is totally real 
for each t E [0, 1]. The proof depends on a jet approximation theorem, The- 
orem 2.1, which generalizes the Range-Siu theorem mentioned above. If  we 
assume in addition that Ft(M) is potynolnially convex for every t, we can apply 
Theorem 1.1 to approximate ~ by a map q~ such that ~t E Aut C n for each 
t E [0, 1] (Corollary 3.2 in Sect. 3). This proves the main theorem. Note that 
Corollary 3.2 gives a stronger result than is needed in the proof of  the 
main theorem. 

The analogue of our main theorem has been proved for real-analytic sub- 
manifolds M C C n in our paper [11] with Rosay (Theorem 3.1). There we 
introduced a more restrictive notion of C"-equivalence as follows. Two em- 
beddings fo, J'~ : M --~ C ~ are C"-equivalent if there exists a biholomorphic 
mapping ~ : U --~ U'  in a neighborhood U of fo (M)  satisfying �9 o f0  = .fl, 
and a sequence ~ C AutC" such that limj_~o~ 4~/ = 4~ unifoimly on U. 
This notion of  equivalence of subsets in C n clearly implies equivalence of 
their polynomial hulls. According to Theorem 3.1 in [11], two real-analytic, 
totally real, polynomially convex embeddings fo, f l  : M --+ C" are C "- 
equivalent if and only if there exists a totally real, polynomiaUy convex isotopy 
f~ : M ---, C ~ (0 _< t _< 1) connecting f0  to f l .  This is precisely the condi- 
tion (ii) in our main theorem. We offer a simpler proof of  this result (in the 
real-analytic case) at the end of  Sect. 1. 

For smooth submanifolds the notion of C"-equivalence is obviously too 
strong since totally real submanifolds of  the same dimension are not even 
locally equivalent in this sense. A possible approach for smooth submanifolds 
has been indicated (in the case of  arcs) by Rosay [19]. In the present paper we 
consider only the approximation of maps F : M -4 C ", without attempting to 
approximate at the same time the inverse F -  1 by the inverses of automorphisms 
approximating F. 

As an application we obtain results on 'filling' by totally real, polynomially 
convex manifolds with the given boundary. A smooth embedded m-disc in C" 
is the image of an embedding of the closed ball D m C R m into C". The 
following was proved in [11] for real-analytic submanifolds. 

Corollary 2. (a) Every simple, closed, polynomially convex ~2 curve F C C n 
(n > 2) bounds an embedded, totally real, polynomially convex two-disc 
inCn. 
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(b) Every embedded two-sphere S C C n (n > 3) of  class ~2 which is totally 
real and polynomially convex bounds an embedded, totally real, polynomially 
convex three-disc in C ~. 
(c) Every closed, embedded, orientable, ~P surfitce S c C ~ (n > 3, p > 2) 
which is" totally real and polynomially convex bounds' an embedded, totally 
real, polynomially convex three-manifold in C n. 

In each case we can take the manifold Z bounded by the given curve or surface 
S to have the same smoothness as S. 

Proof (a) The curve F0 = {(~,~,0 . . . .  ,0) : 1~[ = 1} C C n bounds the totally 
real, polynomially convex disc A0 = {(~,~,0 . . . . .  0) :1~1 _-< 1}. Choose a ~2 
diffeomorphism F : F ~ F0. By Corollary 1 we can approximate F in the ~2 
sense by automorphisms �9 E AutC n. The curve ~b(F) = Fl is then a small 
~.2 perturbation of F0. If IIF - ~ l r l ] ~ , 2 ( v )  is sufficiently small, the curve Fl 
also bounds a totally real, polynomially convex disc A1 which is obtained as 
a small cg2 perturbation of A0. (We used the well known fact that polynomial 
convexity is a stable property in the class of  ~2 totally real submanifolds of  
C n [12].) Then q~-I(Aj) is the required totally real, polynomially convex disc 
in C" with boundary F. 

In case (b) we apply Corollary 1 to a diffeomorphism F : S ---+ So onto the 
unit sphere So C R 3 C C n. For part (c) observe that every closed orientable 
surface embeds into R 3 C C 3 and it bounds a domain in R 3. This proves 
Corollary 2. 

Recall that a closed curve F C C ~ that is not polynomially convex bounds 
a one dimensional complex variety A and .3 = A U F is polynomially convex 
(Wermer [24], Stolzenberg [22], Alexander [2]). Thus we have an interesting 
alternative for c~2 curves in Cn: either F bounds a complex variety or else it 
bounds a totally real, polynomially convex two-disc. 

The paper is organized as follows. In Sect. 1 we improve our result from 
[11] by including real parameters x C R k. In Sect. 2 we prove an approximation 
theorem for jets of  holomorphic functions on totally real submanifolds M c C n 
(Theorem 2.1). The result follows essentially from the methods used in [18] 
and [7]. Since it had not been stated there explicitly and lacking a reference 
we include a proof. In Section 3 we prove Theorem 3.1 on approximation of 
parametrized families of  diffeomorphisms of totally real manifolds by biholo- 
morphic mappings defined in a neighborhood. Combining this with Theorem 
1.1 gives Corollary 3.2 which yields the implication (ii) :=> (i) in the main 
theorem. Section 4 contains results on genetic polynomial convexity of  low 
dimensional totally real submanifolds of  C n, extending Theorem 5.2 in [ 11 ]. 

In the appendix we prove a result on decomposition of polynomial holo- 
morphic vector fields on C ~ into finite sums of complete fields of  special types. 
This result, which is implicitly contained in the papers of  Anders6n [5] and 
Anders6n and LemlSert [6], is of fundamental importance in the approximation 
theorems in [5, 6, 11], and also in the present paper. Since the result has not 
been stated explicitly in [5] or [6] (or anywhere else in the literature), we 
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state it here and give a short proof. We emphasize that we do not claim any 
originality on our part. (A less precise statement can be fbund in [11, Lemma 
1.3].) For a similar result on decomposition of  Hamiltonian vector fields on 
C 2" see [25]. 

1 .An approximation theorem for biholomorphic mappings 

The following result is a parametrized version of  Theorem 1.1 in [1t]. Recall 
that a domain O C C" is Runge if ever5' holomorphic function on f2 can be 
approximated, uniformly on compacts in f2, by holomorphic polynomials. 

1.1 Theorem. Let f2 c C" be a Runge domain, and let B be the closed unit 
ball in R k. Assume that F : B x f2 --~ C" is a mappin9 q f  class cfp (0 < p < 
o~z) such that .for each x E B, Fx = F(x, . ) : f2 -~ C n is a biholomorphic 
mappin9 onto a Runge domain f~x c C n, and the map Fo can be approximated 
by automorphisms o f  C ~, uniformly on compact sets in fZ Then Jbr each 
compact set K c f2 and each e > 0 there exists a smooth map eb : B • C n --+ 
C" such that ~x = cb(x, �9 ) is a holomorphic automorphism o f  C n for every 
x E B and IJF - ~JJ~,p(BxK) < & I f  in addition we have P~ ~ AutC ' ,  then we 
can choose ~ such that q)o = Fo. 

Proof. Without loss of  generality we may restrict ourselves to the case when f2 
is a pseudoconvex Runge domain in C ". This is because the envelope of  holo- 
morphy O of  every Runge domain g2 C C ~ is a (single sheeted) pseudoconvex 
Runge domain in C ~, the maps Fx : f2 --* C n extend to ~, and approximation 
on f2 implies approximation on f). By replacing Fx by Fx o Fo  I and f2 by 
F0(O) we may also assume that F0 is the identity on O. 

Fix a compact K C f2 as in the theorem, and choose a smooth strongly 
pseudoconvex domain D ~ f2 such that K C D and I)  is potynomialty convex 
in C ". Notice that .q can be exhausted by such domains since it is pseudoconvex 
and Runge in C ". Since Fx : f2 --* f2~ is biholomorphic and f2~ is Runge in 
C ~, it follows that/~-(D) is strongly pseudoconvex and Fx(D) is polynomiatly 
convex for every x E B. Finally we choose a compact polynomially convex set 
K0 c f~ such tha t / )  C Int(K0). 

In the first step we approximate F by a polynomial map 6) : R k • C" ~ C ~ 
in variables (x ,z)  such that 6)(0,z) = z (z E Cn), and 

1IF - O J I ~ p ( B •  < ~:/3. 

Such approximations exists according to the following lemma which we state 
in a more general form for a future reference. 

1.2 Lemma. Let f ( x , z )  be a function o f  class ~P (0 ~ p < oc) on a domain 
of  the form (2 = UxeB{x} x f2x C R k x C ' ,  where each f2x is a Runge domain 

in C" and B is a closed ball in R k. I f  f ( x ,  . ) is holomorphic on ~2x for each 
f ixed x E B, then jor  every ~ > 0 and for  ever)' compact set E C 0 there is a 
polynomial 9(x,z) in variables (x,z)  E R k x C", satt~fyin9 JJf - 0J[~',(E) < ~. 



724 F. Forstneric 

I f  z ~ f (x~  is a polynomial in z for some fixed x ~ E B, we can choose g 
as above such that f ( x  ~ �9 ) =  g(x ~ �9 ). 

Proof For a fixed x ~ E B we develop f in Taylor series in the x-direction at 
X0: 

f ( x , z )  = ~ ~ O ~ f ( x ~  - x ~  ~ +Rp(x ,x~  
I~[<p �9 

where [Rp(x,x~ = o ( ] x -  x~ uniformly with respect to z in a compact 
subset of  f2xO. We approximate the coefficients D~f(x~ on f2xO, uniformly 
in a neighborhood of  E N ({x0} x ~ o ) ,  by holomorphic polynomials g~(z) 
(N -<- p). The polynomial 

1 

l~l=<p 

in the variables (x,z) approximates f in the ~P norm on E for x close to x ~ 
We can patch these approximations, which are local in x but global in z, into 
a global approximation g on E by using a suitable approximate partition of  
unit), on B, consisting of polynomials in x. The last statement in Lemma 1.2 
is clear from the construction. This proves Lemma 1.2. 

We continue with the proof of  Theorem 1.1. The Cauchy estimates in 
the z-variable imply that on the smaller se t /3  C Ko the map Ox = O(x, �9 ) 
approximates Fx in any ~s norm, uniformly with respect to x E B. I f  we choose 
s -- 2 and if e > 0 is sufficiently small, then Ox is a biholomorphic map in a 
neighborhood of D, and it maps D onto a strongly pseudoconvex domain Dx = 
O~(D) C C n lbr every x E B. Moreover, since Dx is a small ~2 deformation 
of the strongly pseudoconvex domain F~(D) C O x  with polynomially convex 
closure,/)x is also polynomially convex in C n for every x ~ B, provided that 
e is sufficiently small. (Recall from [12] that the polynomial convexity and the 
Runge property are ~2-stable properties in the class of  strongly pseudoconvex 
domains in C~.) 

We consider O as the time one map of  the flow t E [0, 1] - ,  O(tx, z), 
starting with the map (x,z) -~ z at t = 0. Its infinitesimal generator is the time 
dependent vector field on C n, 

d 
V(t,x,z ) = -~sO(SX, OS ~ (z )) Is=, 

n 

= ExAOO/Oxj l ( tx ,  OS ' ( z ) ) ,  z 
j= l  

whose coefficients are real-analytic functions on the set/3 = U(t,x)et0,1]• B ( t ,x )x  

bL~ which are holomorphic on z E/5~ for each fixed (t,x). 
It will be convenient to extend the parameter x to nearby complex values. 

There exist an opefi neighborhood B0 C C k of  B x {i0} C C k and a number 
T > 1 (close to 1) such that V and its flow are defined for t E [0, T] and 
x E B0. 
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Using Lemma 1,2 we can approximate V in the ~P norm on /) by a 
polynomial vector field 

w(t ,x , z )  = ~ t ix~Wl(z ) ,  j , l  ~ Z+, ~ c Zk+, 

where each W~(z) is a holomorphic polynomial vector field on C" and the sum 
is finite. Let v-(t,x,z) be the flow of W with respect to the time variable t, 
subject to the initial condition ,~(0,x,z) = z. Write ~t = ~(t, . , �9 ). If  the 
approximation of V by W is sufficiently close, there is an open neighborhood 
B1 of B x {tO} C C k such that f f( t ,x,z) is defined for all t C [0, 1] and all 
(x,z) E Bl x / ) ,  and we have 

The lemma in the Appendix implies that each polynomial vector field Wt(z) 
on C '~ is a finite sum of  complete polynomial vector fields whose flows are 
one parameter subgroups of AutC'L By changing the enumeration we may 
suppose that each field W t above is of  this type, with the corresponding flow 
t E R ~ S[ E AutC ~. 

To complete the proof of  Theorem 1.1 it remains to approximate the flow 
of  W by suitable compositions of  flows 3 t as in [11]. Here is the precise result 
we need (for time independent fields). An excellent reference is Abraham and 
Marsden [1, p.78]. 

1.3 Proposition. Let V i (1 < j < m) be ~,t vector fields' on a rnanifoM M, 
with flows F{~ Let F~ be the flow o f  V = ~j=l  VJ. Then 

Ft(x) lira (Ft!, N m X = o . . . .  F;/N) (X), X E M .  

(Each side is defined if  and only i f  the other is'. ) The convergence is unijorm 
on any compact set K C M such that Ft(x) is defined Jot all x E K. 

To prove Theorem 1.1 we choose a large integer L and subdivide the time 
interval [0, t] into L subintervals [m/L, (m + 1 )/L]. For t C [m/L, (m + 1 )/L] we 
replace W(t,x ,z)  by the time independent field on C ~ 

W(m/L,x,z ) = ~ (m/L )Jx ~ Wt(z ) . 
.L~..l 

The flow of  (rn/L)ix~Wt(z) for a fixed x E B1 consists of  automorphisms of  C" 
(generalized shears). Applying Proposition t.3 on each segment [m/L, (m+ t )/L] 
and letting L ~ cx~ we obtain a unifom~ approximation of the time one map 
~t by holomorphic maps cb : Be • C" --+ C ~, where B2 C BI is a smaller 
neighborhood of  B in C k, such that ~bx E Aut C" for each x C B2. I f  the 
approximation is sufficiently close on Be •  the Cauchy estimates imply 

Ilq ~ -  EIIJ~,(BxK) < ~:/3. 

Thus JIF - cbll~(BxK) < e as required. Theorem 1,1 is proved. 
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Proo f  o f  the main theorem for  real-analytic man(/bids. Suppose that the mani- 
fold M C C" is real-analytic. By approximation we can assume that the isotopy 
Ft : M ~ Mt C C" satisfying (ii) is real-analytic as well. Let V be the in- 
finitesimal generator of  {Ft}: 

d 
V( t ,w)  = w-F~(z)ts=t, w = F~(z), z r M, 0 <_ t <_ 1 . 

a s  

Then Ft(z)  is the solution of the ordinary differential equation 

d 
-~ttFt(z) = V(t, Ft(z)) ,  Fo(z) = z C M . 

Set ~r = U0_<t_<l{t} x F, (M)  C C "+l . Since Ft (M)  is totally real and polyno- 

mially convex for each t E [0, 1], M is a totally real and polynomially convex 
submanifold of  C "+1 . The vector field V is real-analytic on ~r, and hence it 
extends to a holomorphic vector field (with values in C") in a neighborhood of  

in C "+1 . The flow ~ t  of  this extended field V is a family of  biholomorphic 
mappings, defined in a neighborhood ~ of M and depending analytically on t, 
whose restriction to M equals Ft. 

By polynomial convexity of M we can approximate V, uniformly in a fixed 
neighborhood 0 of M in C "+1, by a holomorphic polynomial field W(t , z )  
(with values in C~). If  the approximation is sufficiently close, the flow of W 
is defined for all z in a neighborhood U C f2 of  M and for all t r [0, 1], and 
it approximates .~-t uniformly on U for each fixed t. 

We conclude the proof exactly as above, by decomposing W into a finite 
sum of  complete fields W 1 (Lemma in the Appendix) and applying Proposition 
1.3. This gives uniform approximation of ~ t  by automorphisms of C" in a 
smaller neighborhood UI of  M, and hence the ~P approximation on M for 
any p (by Cauchy estimates). 

2 A jet approximation theorem 

Let z = (zl . . . . .  z,), z/ = xj + iyj, be the complex coordinates on C ~, and 
let (xl . . . . .  xn, yl . . . . .  y,,) be the corresponding real coordinates. I f  U c C" is 
an open subset, f E UP(U),  and ~ r Z 2~ is a multiindex of  total weight + 

=l~j = < p, we denote 

#l~lf 
O ~ f ( z )  - 8x~;----~y~2,(z " ' ' ~  z E U .  

Similarly we set for ~ e Z ~ [~[ < p, 

al~lf ~.~f _ al~lf 
a~,f - 8z~' ... aZn ~"' # ~ '  ... aE] ~ " 

We shall also write O/ f  = ~f /~s 1 < j < n. 
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For a closed set K C C '~ and p E Z+ we denote by alp(K) the space of 
jets of  cgp functions on K. Each such jet is determined by a ~6 P function f ,  
defined in an open neighborhood of  K in C n (depending on f ) ;  two functions 
f and g determine the same p-jet on K if f - g  has vanishing derivatives up 
to order p at all points of K. Clearly the addition and multiplication of jets 
are well defined operations, hence ~p(K) is an algebra. If  K is compact, we 
endow ~p(K) with the norm 

[lflIp, X = sup{[D~f(z)l :z E K, 0 < I~[ < p } .  

A p-jet f E gp(M) is said to be holomorphie if 

D[~(~j.f)(z)=O, z E K ,  1 <=j <=n, [3EZ2+ ~, I[31 <= p - l .  

We denote by ~ p ( K )  the vector space of all holomorphic p-jets on K. Notice 
that the product of  two holomorphic p-jets on K is again a holomorphic p-jet 
on K. 

I f M  C C n is a totally real submanifold of class ~P and K C M is 
a compact subset in M, then every function f E ~qP(M) can be extended 
to a cgp function in a neighborhood of K such that the extension deter- 
mines a holomorphic p-jet on K [9, p. 147]. Moreover, if M is generic (of 
real dimension n) and K is the closure of  an open subset of  M, then every 
f E c,~P(M) determines a unique holomorphic p-jet on K, since all derivatives 
of  order < p at points z E K are determined by the tangential derivatives of  
f on M via the Cauchy-Riemann equations. If, on the other hand, the real 
dimension of  M is smaller than n, then a holomorphic p-jet which extends 
f E ~P(M) iS not uniquely determined. 

2.1 Theorem (Jet approximation theorem). Let M C C ~ be a totally real sub- 
man~foM of class WP, p > 1. There exist Stein open neighborhoods D of  M 
in C n with the following property. Given a holomorphic p-jet f C ,~p(M), a 
compact set K C M, and an e > O, there exists a holomorphic function F in 
D such that ] I F -  filp, K < g'" 

In the generic case when dimR M = n, Theorem 2.1 follows immediately from 
the approximation theorem of Range and Siu [18] since the approximation in 
cs implies p-jet approximation. Notice, however, that we can not reduce 
the result to the generic case since our manifold M need not be contained in 
any generic totally real submanifold of  C ~. 

The result of  Theorem 2.1 holds also if we replace C ~ by an arbitrary 
complex manifold X, provided that we define the topology on the spaces of 
jets with respect to a fixed Riemann metric on X. 

Proof of  Theorem 2.1. We may assume that M has real dimension m < n, 
as the result follows from [18] for m = n. For each z E M we set T~'M = 
T~M ~3 i TzM, and we let TCM -~ M be the complex vector bundle of  rank m 
with fibers TCM. There exists a complex vector bundle N --* M over M, of  
rank d = n - m > 0 and of  class ~P, such that TCM | N = TCn[M. If  M is 
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~oo, we can take N to be the complex normal bundle to M whose fiber N: at 
z E M is the orthogonal complement of TCM in T~C n, In general this bundle 
is only of class U p- l ,  but we can approximate it by a U p bundle. 

We identify N~ with the corresponding d-dimensional affine complex plane 
passing through z. If Uo is sufficiently small tubular neighborhood of M in C n, 

then Z =  (U~MNz)NUo is a cg~p submanifold in U0 containing M. Moreover, 

is foliated by pieces of d-dimensional complex planes 27~ = N~ N U0, and 
hence it is a Levi flat C-R manifold of C-R dimension d = n -  m. 

Let rr : 2; ---, M be the projection with fibers rc-l(z) = .Y~, z E M. We cover 
M by open sets UJ c u0 in C" such that Z. C U i whenever z E Uj N M, and 
such that there exists a closed totally real submanifold M / C  Uy of dimension 
n and of class U p, containing M N Uj-. To obtain My we let Uy be small enough 
such that the bundle N is trivial over M n Ui, and we let Mj correspond to a 
totally real subbundle of rank d in NIMnu,; that is, M/ is foliated by pieces of  
totally real planes of  dimension d in the fibers Z~. 

According to the local approximation theorem of Range and Siu [18, The- 
orem 2.1 1 ] every point a E M N Uj has a pair of neighborhoods W ~ V ~ Uj 
in C" such that for every U p function f on C", with supp f N Z C W, there is 
a sequence of holomorphic polynomials Fk on C" such that Fk t vn~t, --+ f l  vnM, 
in UP(V n M/) as k --~ oc, and Fk -+ 0 uniformly in an open neighborhood 
E C C n of any compact set L C (V\I~ ~) AMy. 

The proof of this local approximation result in [18] (see also [8]) uses 
kernel methods. The same local result can be obtained in a simpler way by 
convolution with the Gauss kernel as in Baouendi and Treves [7]. We recall 
the idea. Choose local coordinates such that a = 0 and ToMj = R" | {i0}. 
We assume that Mj is small so that T~My is sufficiently close to ToM/ for 
all z E My. Let f E UP(C ") have compact support contained in an open set 
W C C n such that W NMj ~ Mj. Set 

h~(z) = f f ( ( ) e  -~t~-~]~ d(l A . . .  A (, 
M, 

(the convolution of  f with the complex Gauss kernel), where [ z -  (]~ -- 
g /  , ' z  . ~j=l( ,  j _ (j)2. As z --~ + ~ ,  this family of entire functions converges to f 

in UP(Mj) (see [7]). Moreover, at z ~ +cx~, the kernel function converges 
to zero exponentially in the cone F~ = {z E C n : ~ [ z - ( ] 2  > 0} with 
vertex ( and axis ( + R ~. If ( E Mj and Mj is sufficiently small, we have 
Mj C {(} U F~. The intersection Fw ---- n~Ewn~tj F~ contains in its interior a 

compact set L C ( V \ W ) N  Mj which disconnects Mj. Therefore IntFw also 
contains an open neighborhood E C C n of L, and the sequence h~ converges to 
0 in E as z ~ oo for every such f .  This gives the local approximation result. 

In order to make the approximating function Fk well defined in a neigh- 
borhood of M and small outside the given neighborhood V of a, we solve 
a Cousin problem as in [18, Sect. 3]. We can choose a pair of open sets 
D1, 02 C C n such that 
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(i) D = DI U D2 C Uo is a Stein domain containing M, 
(it) M n W c D2 c V, M \ V  C D~ c Uo\W, and 

(iii) D~ N D2 C E, where E is chosen as above. 
Since D = Di U D2 is Stein, the Cousin problem F~ - F ~  = Ft on D~ f? D2 

has solutions F~ ~ C(Di) (j  == 1,2). Moreover, as Fk --~ 0 on D1 f3 D2 C E 
when k --~ ec, the open mapping theorem for Fr6chet spaces implies that there 
are solutions F~, F~ converging to zero on compact sets in Dt resp. D2 as 
k --~ co, Setting 

f F~ on D1 , 
fk l /~ + F~ on D2, 

we get a sequence of  holomorphic functions in D which converges to f in 
C~'p(~C]j ("t D 2 ) and to zero in Dt, 

Let K C M be a compact subset as in the theorem, and let {L~} be the 
open sets chosen at the beginning of  the proof. We cover K by finitely many 
sets Wj ~ Vj as above such that Y~- c Ui for some i = i(j). For each g~ 
we also have a Stein neighborhood Dj of  M as above. Since there are only 
finitely many Wj's, we may take Dj = D independent of  j (by taking their 
intersection), 

Choose a c~,p partition of  unity )~j on a neighborhood of  K in M, with 
supp)~j C W/riM. Then ~j = X/o n : E ~ R is a C-R function on S (since it 
is constant on the fibers S:), supported in C}(j)nZ, and {~i} is a ~gP partition 
of unity on a neighborhood of K in S, We extend each ~bj to a cs function 

on C" such that ~Oj vanishes to order p -  1 on S [9, p. 147]. The extended 
function ~i then determines a holomorphic p-jet on M. Finally we choose a 
smooth function X on C n which equals one in a neighborhood D ~ c D of K 
and has compact support in. D. We choose the support of  Z sufficiently close 
to M so that supp(z~j)  C Wj. 

Let f be a ~;P function on C n which determines a hotomorphic p-jet on 
M. We have f = ~ j f z q Q  on D t A Z. Since the support of  f z O j  is contained 
in Wj, there exists a holomorphic function f i  in D which approximates f z O i  
as close as we want in ~r N Vj f? D) and is as small as we want on 
D\Vj. Since the p-jet of  fz~bj at M is holomorphic and since the manifold 
M/~j) is generic, it follows that ] I f / -  fz~bjIlp, x is small, i.e., the p-jet of  
f /  approximates the p-iet of  j')~bj on K. The sum F = ~ j j )  is then a 
hotomorphic function in D whose p-iet on K approximates the p-jet of  f on 
K. This completes the proof of  Theorem 2.1. 

3 Approximation of diffeomorphisms on totally real manifolds 

in this section we prove the following approximation result. 

3.1 Theorem, Let M C C n be a compact, totally real submanifold in C n of  
class ~P (2 < p < oo), with or without boundary, and let B be the closed 
unit ball in R k. Assume that F : B x M ~ C" is a ~P map such that for 
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each f i x ed  x E B, Fx = F(x,  �9 ) : M  -~ C n is a ~W-diffeomorphism o f  M onto 
another totally real submanifoM M~ c C n, and Fo is the identity on M = Mo. 
Then .for each ~ > 0 there exists an open set f2 C C ~ containing M and a 
real-analytic map q~ : B x f2 ~ C n such that q~x = ~(x,  �9 ) : f2 ~ Cbx(f2) is 
biholomorphic j o r  each x E B, ~bo is the identity, and ]IF - cb[l~(8• ) < ~. 
I f  M and F are real-analytic, there is a �9 as above such that cble• = F. 

3.2 Corollary. Let  F : B • M --+ C n be as in Theorem 3.1, and assume in 
addition that the manijold M~ = Fx(M)  C C n is polynomially convex for  each 
x E B. Then j o r  each ~ > 0 there exists a reaLanalytic map q~ : B • C n --+ C ~ 
such that IIF - ~b[[~(~• < ~, 4~x E AutC" Jbr each x E B, and q~o is the 
identity. 

Proo f  o f  Corollat T 3.2, Choose a map ~b : B • f2 --+ C" as in Theorem 3.1. 
Since Fx(M) is polynomially convex for each x E B, the same is true for 
q~x(M), provided that e is sufficiently small. By Lemma 2.2 in I11] there is 
a smaller neighborhood U C f2 of  M in C n such that ~bx(U) is Runge in C" 
for every x E B. Now apply Theorem 1.1 to 4). This proves Corollary 3.2, 
provided that Theorem 3.1 holds. 

Proo f  o f  Theorem 3.1. Set Mx = F~(M) C C n. Let N x --~ Mx be a com- 
plex normal bundle to M~ as defined in the proof of  Theorem 2.1 (Sect. 2), 
depending smoothly of  class ~KP on both variables (x ,z)  (x E B,z  E M~). 

3,3 Lemma. There exists a fami ly  o f  complex bundle isomorphisms ~ x  . 
N o ~ N x, o f  class ~P in (x ,~)  E B • N ~ such that the following diagram 
commutes: 

N O ~ N x 

1 l 
M o - ~  Mx. 

P r o o f  This follows from the well known fact that a vector bundle N = 
Ux~B{x} • N x over a product manifold B x M is isomorphic to the prod- 
uct bundle B x N O (see [15, p. 90]). An elementary proof was indicated (in 
the case when B = [0, 1]) in [11] (remark at the end of  Sect. 3). We omit the 
details. 

We continue with the proof of  Theorem 3.1. For each point z E Mx we 
identify the fiber N~ with the corresponding affine complex subspace of C n. 
The map (z, ~) E N x ~ z + ~ embeds a small neighborhood of  the zero section 
in N x onto a generic Levi flat C-R manifold S x C C" containing &Ix. Let 
f x  : ~0 ~ Sx be the map which corresponds to ~':  : N O ~ N x. Since ~ x  
is complex linear on the fibers of  N ~ f x  is a C-R map for every x E B. We 
consider B as a subset in R k C C k. Let f ( x , z )  = f X ( z )  be the corresponding 
C-R map of  class c4P on the C-R submanifold B • 2;0 C C k+n. By construction 
f extends the map F : B • M --~ C n. 
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When M and F are real-analytic, the above construction gives a real- 
analytic C-R mapping f on the generic, real-analytic C-R manifold B x So. It 
follows that f extends to a holomorphic map 4) in a neighborhood of  B x So 
in C k+" [9, p. 141]. 

In the smooth case we can extend f to a ~P map on C k+n such that g f  
vanishes to order ( p -  1 ) on B x 22o [9, p. 147]. The extension thus determines 
a hotomorphic p-jet on the totally real submanifold B x M C C k+" with values 
in C n (Sect. 2). According to Theorem 2.1 in Sect. 2 we can approximate the 
p-jet of  f arbitrarily close in the p-jet norm on B x M by the p-jet o f  a 
holomorphic mapping 4 : U • ~2 -+ C", defined on an open neighborhood of  
B x M  in C ~+'. 

By construction, the partial one-jet o f  f~  = f ( x ,  �9 ) with respect to the 
z-variable is nondegenerate at every point z c M = M0. Hence the derivative 
D~4(x, �9 ) is also nondegenerate tbr every z C M, provided that the one-jet 
o f  4 is sufficiently close to the one-jet o f  f on B • M. Moreover, as J:~ is 
diffeomorphic on M for every x E B, the same is true for 4x = 4(x, . ). It 
follows that the neighborhood f2 o f  M can be chosen sufficiently small such 
that 4x : f2 --~ C n is biholomorphic onto its image for every x E B. Finally, 
since 4o approximates the identity f 0  on S ~ we may replace 4x for small 
x E B by a suitable convex combination o f  4~ with the identity map and thus 
arrange that 4o is the identity. Theorem 3.1 is proved. 

Similarly one can prove the tbllowing result. 

3.4 Proposition. Let  F : M --~ M ~ be a U p diffeomorphism between compact, 
totally real submanifold~ M , M  ~ C C~L Then the jbllowin(! are equivalent: 
(i) There is a sequence o f  nei,qhborhoods Uj o f  M and biholomorphic maps 

41 : Uj ~ C" such that limj-~oo 114jlM - F I I ( / , , , ( M  ) = O.  

(ii) There exists a complex bundle isomorphism ~ : N --+ N '  o f  the complex 
normal bundles re : N --~ M, re' : N '  -~ M',  such that re' o ,~  = F o re on N. 

Proo f  (i) =:~ (ii) I f  q~ is a biholomorphic map on a neighborhood of  M, 
taking M onto M1 = 4 (M) ,  it induces an isomorphism ~ : N --+ N 1 o f  the 
complex nmxnal bundles N --+ M resp. N l --+ M 1 by taking ~ = z o D4 ,  
where ~ : TC~[M, ~ N I is the linear projection with kernel TCMt. Moreover, 
if tt4-FiI~,,,(M) is small, the map qb = 4 o F - t  : M I --~ Ml is a diffeomorphism 
which is close to the identity on M' .  Thus 4) can be covered by a vector bundle 
isomorphism O : N t --~ N 1 o f  the corresponding complex normal bundles; it 
suffices to take Oz to be the linear projection o f  the fiber N~ ~ to N~,(~) in the 

direction o f  TCM '. Then o ~ = O -1 o r : N --+ N '  satisfies (ii). 
(ii) ~ (i) The isomorphism .~- : N ~ N t, which we may assume to be of  

class U p by approximation, gives rise to a nondegenemte holomorphic p-jet f 
along M as in the proof o f  Theorem 3.1 above. According to Theorem 2.1 we 
can approximate the p-jet f on M by the p-jet o f  a holomorphic mapping 4 ,  
defined on a neighborhood U of  M. I f  the approximation is close enough in 
the sense o f  jets on M,  the map 4 in biholomorphic in a smaller neighborhood 
of  M, and (i) holds. This proves Proposition 3.4. 
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4 Generic polynomial convexity of low dimensional submanifolds in C n 

All manifolds in this section are compact, with or without boundary. If  M C C" 
is a totally real submanifold, we denote by NM its complex normal bundle as 
in the proof of  Theorem 2.1; i.e., NM --~ M is a complex vector bundle of 
rank n - dim M whose direct sum with the complexified tangent bundle to M 
is TcnIM. 

The following result was proved in [11, Theorem 5.2] for curves and 
surfaces. 

4.1 Theorem. (a) Let  M C C n be a totally real ~P submanijbld ( p  > 2) with 
dimR M < n. I f  the complex normal bundle N M  admits a section over M with 
at most  finitely many zeros, then there exist arbitrary small c6P deformations 

f 4  o f  M in C n which are polynomially convex (and totally real). 
(b) Let  Ft : M ~ C ~ (0 < t < 1) be a ~,P isotopy ( p  > 2) such that 

d imM < n and F l ( M )  = Mt is totally real fo r  every t E [0, 1]. I f  the complex 
normal bundle to Mo admits a section with at most finitely many zeros, then 
there exist arbitrarily small cgp deformations {Ft} o f  {Ft} such that the 
manifold F t ( M )  is polynomially convex for  every t C [0, 1]. Moreover, i f  
Mo and M1 are already polynomially convex, we may choose {Ft} such that 
Ft = Ft fo r  t = O and t : 1. 

Remark  1. Most likely the additional condition on the complex normal bundle 
to M is not necessary, but at this time we do not know how to prove the result 
without it. Notice that for totally real isotopies as in the theorem the complex 
normal bundles to Mt are isomorphic. Therefore the existence of such a section 
for one value of t implies the existence for all values of t. The condition is 
always satisfied when dim M < 2n/3 since in this case a generic section of 
NMo (which is a vector bundle of  real rank 2n - 2 dim M >_- dim M) has at 
most finitely many zeros. 

Remark  2. Theorem 4.1 fails entirely for closed submanifolds M C C ~ of 
dim M > n, as the polynomial hull M of such a manifold has topological di- 
mension at least d i m M +  1 [3, 4, 13]. The result is false even for n-dimensional 
totally real discs in C ~. In fact, a small modification of the lagrangian disc in C 2 
with nontrivial polynomial hull, constructed by Duval [10], gives a lagrangian 
disc D C C 2 with the property that the polynomial hull of every small defor- 
mation of D contains an open subset of  C 2. (This was communicated to me by 
Duval.) This example is particularly striking since lagrangian discs (and discs 
which are sufficiently close to being lagrangian) do not bound any analytic 
varieties. 

4.2 Corollary. Let  2 < p < oo. For every compact cgp submanifoM M C 
C n with dim M < 2n/3 there exist arbitrarily small cgp deformations i(f c 
C ~ which are totally real and polynomially convex. Moreover, i f  F : M --~ 
F ( M )  C C n is a cg ~p diffeomorphism such that both M and F ( M )  are totally 
real and polynomially convex, there exists a totally real, polynomially convex 
~P isotopy Ft : M ~ C ~ (t E [0, 1]) such that Fo = IdM and F1 = F. 
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Proof of  Corollary 4.2. According to Lemma 5.3 in [11] every submanifold 
M c C" with d i m M  < 2n/3 can be deformed to a totally real submanifold 
by an arbitrary small smooth deformation. Moreover, if F : M ~ F(M)  is a 
diffeomorphism such that both M and F(M)  are totally real submanifolds o f  
C n o f  dimension < 2n/3, there exists a totally real isotopy Ft "M ~ C n such 
that F0 = Idu  and Fl =- F.  The condition on the normal bundle required in 
Theorem 4.1 is satisfied since d i m M  < 2n/3. Therefore Theorem 4.1 implies 
that we can defonTt the isotopy {Ft) to an isotopy which is totally real and 
polynomially convex, This proves Corollary 4.2. 

Proof o f  Theorem 4.1. We shall first describe the basic step in the proof, the 
separation o f  hulls procedure, abbreviated SOH. The main idea was developed 
in [ t l ]  in the case o f  curves and surfaces in C n for n > 2 resp. n > 3. 

It suffices to consider submanifolds o f  class ~ .  Let M C C ~ be a smooth, 
compact, totally real submanifold o f  dimension m < n, with or without bound- 
ary. Let H C C" be a real hyperptane which intersects both M and its bound- 
ary bM transversely. Denote by M + resp. M -  the intersections o f  M with the 
closed half  spaces o f  C ~ defined by H. 

4.3 Lemma (Separation o f  hulls-SOH). Suppose that M + and M -  are poly- 
nomially convex, and the complex normal bundle NM ---+ M admits a nonzero 
section over M f-1 H. Then Jbr every open neighborhood U of  M N 1I there 
exist arbitrarily small smooth deformations ~I of  M such that ~7[ is poly- 
nomially convex and )(4\ U = M \  U. 

Proof of  Lemma 4.3~ We may assume that H = {z E C" : ~ n ( z )  = 0} 
for some complex linear projection rt : C" ~ C. For each set I c R we 
define M(I)  = {z E M : ~J~ ~(z) E I}.  Thus M + = M([0 , r  and M -  = 
M ( ( - c ~ ,  0]). Fix a neighborhood U of  M M H in C n. 

For sufficiently small e > 0 the sets M1 = M ( ( - c ~ , ~ ] )  and M2 = 
M ( [ - e ,  cx~)) are still polynomially convex, and their intersection M0 = M1 N 
M2 = M([-e ,e , ] )  is contained in U. By decreasing ~ if  necessary we may 
also assume that every t E [ -e ,  e] is a regular value o f  9~ 7ZlM, and there is a 
nonzero section v o f  NM over M0. Fix such an e. 

After a small deformation of  M,  supported in U, we may assume that 
M and the transverse vector field v are real-analytic on Mo, and all other 
properties are preserved. We claim that there exists a hotomorphic function 
g in a neighborhood V C U o f  Mo such that g = 0 on Mo and d g : ~ 0  on 
Mo. To construct g we first observe that the field v splits the bundle N into 
a direct sum N = N o O Cv o f  real-analytic bundles over Mo. Let S C V be 
the germ o f  real-analytic submanifotd near M0 (and containing Mo), consisting 
o f  points o f  the form z(q,w,s) = q + w + sv(q) for q E Mo, w E N~, and 

s E R. Here, N ~ is the fiber o f  N o at q. Clearly S is a C-R maniIbld o f  C-R 

dimension m = n -  dim M - 1, foliated by complex subspaces N~ o f  dimension 
m. The function on L' defined by g(z(q,w,s)) = s is real-analytic and C-R, and 
therefore it extends to a holomorphic function g in a neighborhood of  M0 [9, 

p. 1411. 
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We now choose two disjoint closed intervals Jo,Jl C (-/3,~). Since M0 is 
polynomially convex, we can approximate g in some fixed neighborhood of M0 
arbitrarily close by holomorphic polynomials P. Then dP approximates dg near 
M0, so dP4=O in a fixed neighborhood of Mo. Thus the level sets {P = c} near 
M0 are smooth complex hypersurfaces which approximate the level sets of  g. I f  
the approximation is close enough, we can deform M as little as necessary so 
that we push the sector M(Jo) into the level set {P = 0}, and at the same time 
we push the sector M(J1 ) into another level set {P = c} for some arbitrary 
small c 4= 0. The deformation can be made within any given neighborhood of 
M(JO) U M(J1 ), and it will not affect the polynomial convexity of M1 and M2, 
provided that it is small enough. 

We claim that the deformed manifold, still denoted by M, is polynomially 
convex. To prove this, choose any point z0 E ~t and let v be a Jensen repre- 
senting measure for z0, supported on M [23, p. 108]. I f  v has any support on 
the set M(Jo), then 

log IP(z0)l ~ f log [Pldv = f log ]P[dv + f log ]Pldv = - ~  
M M(Jo) M\M(Jo) 

since P = 0 on M(Jo); hence P(zo) = 0. Analogous argument applied to ]P-c[ 
shows that, if v has any support on M(Jl ), then P(zo) = c. This means that the 
support of  v does not meet at least one of the two sets M(Jo), M(J1 ). Hence 
the projection n(suppv) C C does not meet at least one of the two strips 
J0 • JR, J1 • iR. The Runge approximation theorem implies that n(supp v) can 
not be disconnected by such a strip. It follows that v is either supported entirely 
by M1 or entirely by M2. Since these two sets are polynomially convex, we 
have z0 E Ml U M2 = M. Thus/~t = M as claimed, and Lemma 4.3 is proved. 

We now turn to the proof of  Theorem 4.1. We first consider case (a). 
The idea is to apply Lemma 4.3 finitely many times, starting with sufficiently 
small open pieces of  M which are polynomially convex (since M is totally 
real). The pieces can be obtained by slicing M in 2n real coordinate di- 
rections 41 . . . . .  ~2n on C" by suitably chosen family of  parallel hyperplanes 
~j = cj, t ( j  = 1 . . . . .  2n; l E Z)  which intersect the manifold M and its bound- 
ary bM transversely. Since the transverse field v has at most finitely many 
zeros on M, we can choose the cuts so that none of the zeros of v belong to 
any of these hyperplanes. We denote the resulting pieces of  M by M~, where 
5 = ( ~ 1  . . . . .  52n ) E Z 2" are multiindices. The component ~j denotes the position 
of the piece in the direction ~j. Of  course M~ = 0 for large 151. 

Every two pieces M~, M3 for which 1 5 -  r] = 1 satisfy the conditions 
of  Lemma 4.3 (or else they do not meet at all). Hence we can make the 
union of  these two pieces polynomially convex by a small smooth deformation, 
supported in a prescribed neighborhood of the common border of  the two 
pieces. Of  course this will affect the other neighboring pieces, but since our 
deformation can be made arbitrarily small, we may assume that the pieces of  
M and their unions that were already polynomially convex stay polynomially 
convex (and totally real). 
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In order to be able to apply Lemma 4.3 at every stage of our deformation, 
we must perform the procedure in certain order. We fix ~' = (a2 . . . . .  a2n) E 
Z2,-l  and perform the SOH procedure finitely many times in the first coordi- 
nate direction ~1, once for each pair of adjacent pieces M(~,,~,) and M(~+l,~,). 
If two such pieces do not intersect or one of  them is empty, we do not have 
to do anything in that step. To simplify the notation we denote the perturbed 
manifold by the same letter. This process gives a new perturbed manitbld for 
which the union of  pieces M(~,~,) over all values of  a~ E Z is polynomially 
convex. We denote this union by M~,, with a' E Z :~-1. 

We perform this procedure for every value of  ~ E Z 2"-~ for which 
there are any nonempty pieces M(~,:,). After that we fix a multiindex a'~ = 
(u3 . . . . .  u2,) E Z 2"-2 and perfoi~ the SOH procedure with the polynomiatly 
convex pieces M(~S, ), ~2 E Z, obtained in the previous step. This produces 
larger polynomially convex pieces M~, of M for all ~" E Z 2"-2. 

Repeating the procedure in all coordinate directions we obtain in finitely 
many steps a perturbation of M which is polynomially convex. This completes 
the proof of Theorem 4.1 in case (a). The same proof is easily adapted to 
totally real isotopies in part (b) (see [1 I] for d imM = 2). We leave out the 
details. 

Remark. Observe that in the SOH procedure we can avoid any finite set 
of  points of  M or, more generally, any closed subset of zero length. Hence 
Theorem 4.1 also holds for manifolds M which have a finite number of points 
p E M at which the tangent space TpM contains a complex line (complex tan- 
gents), provided that M is locally polynomially convex near such points. The 
problem becomes more serious if the set of complex tangents of M contains 
curves. It would be interesting to know whether the result holds even for such 
manifblds, as long as they are locally polynomially convex and of dimension 
less than n. 

Appendix: Decomposition of polynomial vector fields on C n 

A vector field X on C ~ is said to be complete (in real time) if  the differential 
equation ~ = X(z),  z(O) = z ~ can be integrated for all t E R, starting at any 
point z ~ E C n. The tbllowing result is essentially due to Anders~n [5] and 
Anders6n and Lempert [6]. 

Lemma. Every holomorphic polynomial vector field X on C ~ is a fn i te  sum 
of  complete vector fields o f  the Jollowin9 two types: 

V(z) = f (Az )v ,  W(z) --- f (Az) (z ,  v)v, (*) 

where v E C n, Ivl = 1, A is a complex linear form on C" satisfying Av = 
O, f is a polynomial in one variable, and {z,v) = ~=IzjS) .  I f  divX = 

~=iOXj/Ozj : O, then X is a finite sum of  vector field9 of  the first type. 
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Proo f  A vector field V(z)  = f ( A z ) v  of the first type in ( , )  is complete, with 
the flow 

F t ( z ) = z + t f ( A z ) v ,  z E C " ,  t E C .  

Each Ft is a polynomial automorphism of C n with Jacobian one, Automor- 
phisms of this type are called shears [20]. The vector field W ( z )  = f ( A z ) ( z ,  v)v 
of the second type is also complete, with the flow 

Gt(z~ = z + (e,r~A~ _ I) (z ,v/v ,  t ~ c .  

Automorphisms of  this type are called generalized shears, or overshears [6]. 
We claim that div V = 0 in the first case and div W(z)  = f ( A z )  in the 

second case. This can be verified directly, but the following proof is more 
elegant. Choose an A E SU(n, C) satisfying Av = e~ (the base vector in the 
coordinate direction z,). Then, writing z = (z~,z,), we have A . V(z)  = (Z(Az) 
and A �9 W ( z ) =  gY(Az), where 

V(z)  = 9(z ' )e , ,  W(z )  = 9(z ' ) z ,e ,  , 

and the function 9(z t) = f ( A A - l z )  is a polynomial independent of z, (since 
A A - l e ,  = Av  = 0). Clearly div P = 0 and div/~'(z) = 9(z').  Since conjugation 
by A E SU(n,C) preserves divergence, we get div V = 0 and div W(z )  = 
o(Az)  = f ( A z )  as claimed. Notice that the conjugate flows are of the form 

A o Ft o A - l ( z )  =- (z ' , z ,  + tO(z ' ) ) ,  

A o Gt o A - l ( z )  ~--- (zt, etO(Z')Zn). 

Suppose now that X = (X1 , . . . ,Xn)  is a polynomial vector field on C". 
Consider first the case divX = 0. Since divergence lowers the order of terms 
in the Taylor expansion of X by one, it suffices to prove the decomposition 
result in the case when each component of X is a homogeneous polynomial of 
degree m. Choose multiplicatively independent numbers al . . . . .  a,-1, and set 
a~ = 1. For instance, one may take at . . . . .  a~-I to be the first n -  1 primes. 
Write a k �9 z -- ~= l ( a j )kz j .  A simple argument [5, p. 231] shows that there 
exists a number M C Z+ such that every homogeneous polynomial p( z )  of 
degree m on C n can be written in the form 

M 
p(z )  = ~ c k ( a  k �9 z )  m 

k=0 

for some coefficients co, c l , . . . ,  CM C C. Applying this to the component Xj of 
X f o r j C { 1  . . . . .  n - l }  we get 

M 
X j ( z )  = ~ C j ,  k ( a  k �9 z )  m . 

k=0 

Set 
vJ ' k ( z )  = cj ,  k ( a  k �9 z ) ( e j  - a~e~) , 
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where el . . . . .  e ,  denotes the standard basis o f  C". Clearly each vector  field V j,k 
is o f  the first type in (*). Let 

v = ~ v  ~,k = (v~ . . . . .  v . ) ,  
j,k 

the sum runn ing  over  1 < j < n -  1 and 0 < k < M. Then ~ = X i  for 

1 _< i < n - 1, hence X = V + (Xn - Vn)en. Since d i v X  = 0 = div V we get 

0 = div ( X  - V)  = O(X, - V, )/~3z,. 

Thus the funct ion (Am - Vn) is independent  o f  z, ,  and hence (X, - V,)e,  is again 
a vector field o f  the first type in (*). This  completes  the proof  for divergence 
zero vector  fields. 

In the general  case when  d i v X : l : 0  we decompose  the divergence into a 
finite sum 

d i v X ( z )  = ~ q j ( 2 j z ) ,  

where the qj ' s  are polynomials  in one variable and the 2 j ' s  are l inear forms 
on C n [6, Proposi t ion 3.7]. For  each j we choose a vector  vj C C" sat isfying 

Iv]t = 1 and 2jvj = 0, and set 

Vj(z)  = q j (2 jz ) (z ,  vj)vj,  1 <= j < m .  

Each Vj is a vector  field o f  the second type in ( . ) ,  and div Vy(z) = q/ (2 jz) .  
Writ ing X = ~--~=l Vj + ) (  we have d i v ) (  = 0. By the first part o f  the proof  ) (  
is a finite sum o f  vector fields of  the first type in ( . ) .  This proves the lemma. 
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