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0. INTRODUCTION

Let AutC? be the group of all holomorphic automorphisms of the complex plane
C? and Aut;C? the group of automorphisms with Jacobian one. We denote by
G C AutC? the subgroup of AutC? consisting of all polynomial automorphisms of
C2. The group AutC? and its subgroups are topological groups in the topology of
uniform convergence on compacts in C2.

A (real) one parameter subgroup of AutC? is a family {¢, : £ € R} C AutC?,
depending continuously on ¢ € R, satisfying ¢, 0 ¢; = ¢54.(¢,5 € R). Equivalently,
t € R ¢, € AutC? is a continuous group homomorphism from (R,+) to AutC2.
Every such subgroup is smooth (and therefore real-analytic) in all variables, in-
cluding ¢ (see e.g. [1], p. 296). According to Corollary 2.2 in [13], every real one
parameter subgroup of AutC” extends to a complex one parameter subgroup
{¢: : t € C}. Such subgroups will also be called flows since they are obtained by
integrating complete holomorphic vector fields. Two flows ¢, 9; are conjugate in
AutC? if there exists an h € AutC? such that ¢, = h=1 o1, o h for all £. We refer the
reader to [2] and [13] for further results.

In this paper we attempt to find all flows ¢, € AutC? (¢ € R) whose time one
map is polynomial: ¢1 € G. The maps ¢, for non-integer values of # need not be
polynomial. We succeed in all cases except when the time one map ¢; is conjugate
to an affine aperiodic map. In this case we identify all flows whose infinitesimal
generator is a polynomial vector field on C2. Our results are summarized at the end
of Section 1, and the precise statements and proofs are given in Sections 3-5.

All flows with polynomial time one map which we find in this paper are conjugate
to flows that are entirely contained in the polynomial group G.

Our work provides another proof of the classification theorem for polynomial
flows {¢, : 1€ R} CG on the plane C2. These flows were classified in 1977 by
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Suzuki [22, 23]. In 1985 the result was rediscovered by Bass and Meisters [6] by
using somewhat different methods. Both proofs rely on the observation that the
polynomial degree of maps ¢; in a flow has an upper bound independent of ¢. The
proof in [6] depends on results of Jung [17] and Van der Kulk [24] concerning the al-
gebraic structure of the polynomial group G as an amalgamated free product of two
special subgroups, the affine group A and the group £ of elementary automorphisms
(see Theorem 1 below).

In this paper we also classify one parameter subgroups (flows) in the shear group
S(2) and in its subgroups consisting of g € §(2) with constant Jacobian (resp. Ja-
cobian one); see Theorem 7.1. Comparing the list of flows in §(2) with the list of
polynomial flows from [6] we see that there is only one new type of flows in S(2).

In Section 6 we find all flows in AutC? whose time one maps are shears (Theo-
rem 6.1). In particular we show that most shears do not belong to any flow.

To find flows with polynomial time one map we use a recent result of G. Buzzard
[9] (Theorem 2 below) to the effect that every polynomial automorphism of C?
which lies in a flow ¢, € AutC? is conjugate in G to an elementary automorphism
(see Section 1). This depends on a result of Friedland and Milnor [15] to the effect
that every polynomial automorphism’of C? which is not conjugate to an elementary
one has a discrete set of periodic points, and it has a periodic point which is not a
fixed point.

We begin our analysis with an elementary automorphism E in normal form,
provided by Theorem 3 below. Assuming that E is the time one map of a flow
¢, € AutC? (¢ € R) we consider the conjugation relation between E and the infinites-
imal generator V of ¢; : DE -V =V o E (Section 2). This gives two functional equa-
tions for the two component functions of the field V. Analysing these equations and
integrating the system of ordinary differential equations for the flow we obtain the
desired results. The same method is used to classify flows in the shear groups
on C2. :

We thank G. Buzzard for communicating to us his results [9], and J. E. Fornaess
for the initial communication on this subject. We thank W. Rudin for several stimu-
lating discussions and for having pointed out to us the work of Suzuki [22]. We also
thank D. Varolin for pointing out a couple of mistakes in an earlier version 'of the

paper.

1. BACKGROUND AND RESULTS

In order to put our work in context we begin by recalling some known results con-
cerning the structure of the polynomial automorphism group of C2. We denote the
complex coordinates on C? by z = (x,y). Let A be the group of all affine automor-
phisms of C2:

A(x,y) = (ax+ By +{yx + oy +n),  ad—py #0.

Let £ be the subgroup of G consisting of all automorphisms of the form

E(x,y) = (ax+ p(y),By +7)
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where a,( € C* = C\{0}, 7€ C, and p is a polynomial. Following Friedland and
Milnor [15] we will call such automorphisms elementary. A theorem of Jung [17]
asserts that the polynomial group G is generated by the subgroups A and £ in the
sense that every element of G is a finite composition of elements in A and £. The
following more precise result is due to Van der Kulk [24]; see also Rentschler [19]
and Friedland and Milnor [15]. (It appears that Van der Kulk was not aware of the
work of Jung [17].)

THEOREM 1 The group G is an amalgamated free product of the subgroups A and E.

This means that every g € G which does not belong to AN E can be represented
as a ‘reduced word’
8 =8mo8m-10-"-081, 1)

where every gj € AUE\(ANE), and every two consecutive elements g;,g;+1 be-
long to different groups A,€. Moreover, such a representation of g is unique up
to compositions by elements in .4ANE which should be thought of as units in this
representation. In particular, no reduced word equals the identity. The existence of
such a representation follows from Jung’s theorem. The essential step in the proof
of the uniqueness, given in [15] (see also [20]), is to show that the degree of the
reduced word (1) equals the product of the degrees of the g;’s. Here, the degree of
g € G is the larger of the degrees of the two polynomial components of g.

From this representation of polynomial automorphisms it follows [15] that every
g € G is either conjugate in G to an element of £ or else g is conjugate to a reduced
word of even length 2r in which the end two elements belong to different groups
A, €. Such a word is said to be cyclically reduced. The length of a cyclically reduced
word is invariant under conjugation, and the degrees of the characters in the
word are invariant up to cyclic permutations. The simplest maps of this type
are g = Ao E, with A€ A\E and E = £\ A. These include all complex Hénon map-

pings
h(x,y) = (y,p(y) — 6x),

where § € C* and p is a polynomial. (It suffices to take A(x,y) = (y,x) and E(x,y)
= (=06x + p(y),y)). While maps in £ U A have rather simple dynamical properties,
most Hénon maps (and other automorphisms represented by cyclically reduced
words of even length) exhibit very interesting dynamics; we refer the reader to
Hénon [16], Friedland and Milnor [15], Bedford and Smillie [7, 8], and Fornaess
and Sibony [12].

The condition that a group G is an amalgamated free product A& implies that
certain types of its subgroups G’ C G are conjugate to a subgroup of A or to a
subgroup of £. This is the case if G’ has bounded length with respect to the amal-
gamated product decomposition of G (Serre ([21], Chap. I, No. 4.3, Théorem 8). If
G is a topological group and B = ANE is a closed subgroup, then the same holds
for every connected abelian Lie group G’ C G; in particular, every subgroup of G
isomorphic to R or C is conjugate to a subgroup in A or in £. This follows from
a theorem of Moldavanski [18, 25]. Serre’s result was used in the classification of
polynomial flows by Bass and Meisters [6]. We shall use Moldavanski’s result in
Section 7 for the classification of one parameter subgroups of S(2).
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The following result was communicated to us by G. Buzzard:

THEOREM 2 (Buzzard [9]) Ler ¢, C AutC? be a one parameter group of automor-
phisms of the plane such that ¢, € G. Then ¢y is conjugate in G to an elementary map
Ecé.

The proof uses the following result from [15]. If g = gy, 0---0g; is a cyclically
reduced word of even length 2r > 2, then

(a) the number of fixed points of g is finite (bounded from above by the degree
of g), and

(b) there exists a point zy € C? which is a periodic point of g but not a fixed point
of g.

Granted this, Theorem 2 is proved as follows (Buzzard). Assume that ¢1 € G is
conjugate to a reduced word g of even length 2r >2 : ¢; = h™1og o h. Replacing ¢,
by the conjugate subgroup /o ¢, 0 h~! we may as well assume ¢y = g. Let z € C2
be a periodic point of g which is not a fixed point of g. Then g"(zo) = zo for some
n > 2. Using the group property of ¢, and the assumption g = ¢ (hence g" = ¢,,)

we have
8" (¢:(20)) = Pn(P:(20)) = P1(Pn(20)) = $:(8"(20)) = b1 (20)-

This means that the entire orbit {¢:(zo) : # € R} (which is a nontrivial closed curve
since ¢1(z9) # zp) belongs to the fixed point set of g”. Since g" is a cyclically re-
duced word of length 2rn > 2, this contradicts the property (a) above. Therefore ¢
must be conjugate to an elementary automorphism. (]

In the case when ¢, € G is a polynomial flow the result can be seen as follows.
Suppose that ¢; = E is a reduced word of even length 2r > 2. Choose an integer
n>r and consider the map g = ¢/, € G. If g were conjugate to an element in £,
then so would be g” = E which is not the case. Thus g is conjugate to a cyclically
reduced word g of even length 2m > 2. Then E = g” is conjugate to §" which is a
cyclically reduced word of length 2mn > 2n > 2r. This is a contradiction since the
length of a cyclically reduced word is invariant under conjugation in G.

The last argument shows more: If g € G is a cyclically reduced word of even length
2r, and if g = h" for some he G and n>1 (i.e., h is an nth root of g in the sense
of composition), then n divides r and h is conjugate in G to a reduced word of length
2r /n. In particular, a nonlinear Hénon map (or any element of the form 4o E with
Ae A\E and E € £\ A) does not have a root of any order in G.

In our analysis of flows we will refer to the following classification of elementary
maps, due to Friedland and Milnor [15].

THEOREM 3 Every element in £ is conjugate in £ to one of the following maps:

(a) (x,y) = (ax,By),
(b) (x,y) = (x +1,By) or (x,y) = (ax,y +1),
(©) (x,y) = (B%(x + y%), By),
(@) (%)= (B4(x + y4q(y"):0y).
In each case we have o, € C*. In case (c) we have d > 1. In case (d) we have d > 0,

B is a primitive rth root of 1 for some r > 1, and q is a nonconstant polynomial
satisfying q(0) = 1.
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A special but important class of automorphisms are shears

E(x,y) =(x+ p()y), (2)

where p is an entire function. If p is constant, say p = 1, this is a map of type (b)
with § = 1. If p is a nonconstant polynomial, and if we normalize the coefficient
with the lowest power of y in p to 1, then (2) is a map of type either (c) or (d),
again with g = 1.

We now describe the results of this paper; the precise statements and proofs are
given in Sections 3-6. Let E be one of the normal forms in Theorem 3 and let
¢: € AutC? (r € R) be a real one parameter group (flow) such that ¢1=E. We
prove the following:

1. If E is an aperiodic diagonal linear map of type (a) with no nontrivial reso-
nances (a7 # 1 when p,q > —1, p and g not both 0), then the flow ¢, is diagonal
linear (Theorem 3.1):

¢,(x,y) = (eutx’ekty), et = a, eA = 16

When there are nontrivial resonances between « and S, there exist nonlinear flows
¢ satisfying ¢; = E, but each of them is conjugate to a linear flow.
2. If E is of type (c) and g is not a root of one, then ¢; is of the form

¢i(x,y) = (€N (x+1y?),eMy), e =p. 3)

(See Theorem 4.2.) If § is a root of one, there exists an infinite dimensional family
of flows with ¢; = E (also non-polynomial ones), but each of them is conjugate in
AutC? to a flow of the form (3).

3. If p is an entire function on C with at least two different zeros, we show
(Theorem 4.1) that the only flow ¢; € AutC? whose time one map is the shear (2)
is

¢:(x,y) = (x +1p(y),y). 4

It follows that maps E € € of type (d) with 8 # 1 do not belong to any flow (part (a)
of Theorem 4.2). This was proved independently by Buzzard [9].

4. If E is an affine map of type (b), we find all flows ¢, with ¢; = E whose
infinitesimal generator is a polynomial vector field on C2. (If the flow itself is poly-
nomial, its infinitesimal generator is also polynomial, but the converse is not true.)
When § is not a root of 1, every such flow with a polynomial generator is of the
form

¢,(x,y)=(x+t,e)"y), 6A=ﬁ'

(See Theorem 5.1.) If 8 is a root of one, there exist other flows with ¢; = E, but
they are all conjugate to flows of this form. There exist many other flows through
E whose infinitesimal generator is not polynomial, but we don’t know how to get all
of them.

5. A generalized shear on C? is an automorphism of the form

f(x,) = (e8Vx + h(y),y),
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where g and h are entire functions on C. These and the shears (2) play a very
important role in the approximation theorems; see [4, 5, 14, 20]. Of course f is not
polynomial unless g is constant and 4 is a polynomial. If g is nonconstant, we show
that f is the time one map of a flow ¢; € AutC? if and only if

e80) 1
h(y) = mi—kb()’)

for some entire function b and some k € Z (Theorem 6.1). In particular, 4 must
vanish on the set {y € C: g(y) =2mim, m€ Z, m # —k} for some k € Z. Hence
most generalized shears do not lie in any flow.

At the end of Section 5 we give an example of a polynomial (quadratic) flow
#; whose time one map ¢ is affine but not elementary (¢1 € A\), and such that
¢; ¢ AUE for any time 0< 7 < 1. This example invalidates the proof of Theorem
2.1 in [10, p. 348]. More precisely, the example shows that the part of the proof on
p. 351 in [10] is incorrect. The mistake has been corrected in the forthcoming paper
[11] by the same author.

2. SPECIAL SYSTEMS OF ORDINARY HOLOMORPHIC DIFFERENTIAL
EQUATIONS

In this section we outline our method and we recall how to solve certain systems of
ordinary differential equations in the plane.

Let ¢; € AutC? (z € R) be a one parameter automorphism group of the plane C2.
Its infinitesimal generator is the holomorphic vector field V' = (F,G) on C?, defined
by

d
V(x’))) = Zi_t¢t(x’y) _0'

Conversely, the flow ¢,(x,y) = (X,Y) is the solution at time ¢ of the system of
ordinary differential equations

X =F(X,Y), Y=GX)Y), X0)=x  Y(0)=y. (5)

We refer the reader to Abraham and Marsden [2] for the general properties of
solutions of such systems.
By differentiating the identity ¢; o ¢s(x,y) = ¢r+s(x,y) on s at time s = 0 we get

D§(x,y)-V(6y) = V(#(x.y),  tER.

Here D¢, denotes the derivative with respect to the space variables, while the dot
always denotes the time derivative. At time ¢ = 1 this gives the following condition
relating the vector field V' and the time one map ¢, = E:

DE(x7y)'V(x’Y) = V(E(x7y))' (6)

Our classification of flows with ¢; = E € £ is based on the analysis of this condi-
tion, called the commutation relation, when E € £ is one of the normal forms from
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Theorem 3 (Section 1). The condition is a set of two functional equations for the
component functions F and G of the vector field V.

In most cases to be considered the condition (6) implies that the second compo-
nent G is independent of x : G = G(y). Granted this one can explicitly integrate the
system of equations (5) as follows. The second equation in (5) defines a complete
flow in each complex line {x = const}. Therefore G is linear in y, G(y) = Ay +c.
If A # 0, we can write G(y) = A(y — yo)(¥o = —c/X), and the solution equals

Y(t,y) = ¥y = yo) + yo. ()
If G = ¢ = const., we have
Y(t,y)=y+ct. (8)
We insert this solution into the first equation for X in (5):
X =F(X,Y(ty), X(0)=x.

By hypothesis this equation is integrable for all £ € R and all initial conditions
X(0) = x € C, y € C. We denote the solution by X (¢, x,y). For each fixed ¢ € R and
y € C the map x € C — X(¢t,x,y) € C is injective holomorphic and therefore linear.
It follows that F(x,y) is linear in x,

F(x,y) =a(y)x + b(y)

for some entire functions a,b on C. We thus have an inhomogeneous, time depen-
dent linear equation for X:

X =a(Y(Ly)X +b(X(1,y),  X(0)=x.

If we set

Alt,y) = /0 a(Y(r,y))dr,

L
B(t,y) = /0 e~ ATYb(Y (1, y))dr,

where Y(7,y) is given either by (7) or (8), then the solution is
X (t,x,y) = e (x + B(1,)).

The flow ¢,(x,y) = (X (¢, x,y),Y(t,y)) maps every line y = const. to another such
line. The flow is polynomial if and only if a(y) = p = const. and b is a polynomial. It
is worthwhile writing down this special case explicitly because it will arise in several
cases treated below. Assume that the second component of the flow is given by (7).

Let b(y) = > k0 be(y — yo)¥. Then A(t,y) = ut and

X(t,x,y) = et (x + Zbk(y —yO)ka(f)) ;

k>0
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where
: e®A—mE 1) /(kA—p);  if kA—p#0,
() =/ (BN g — {( )/ (kA — ) . p#
1 if kA—p=0.

3. FLOWS WHOSE TIME ONE MAP IS DIAGONAL LINEAR

The main result of this section, Theorem 3.1, gives a complete classification of flows
¢; € AutC? (r € R) whose time one map is diagonal linear and aperiodic (of type
(a) in Theorem 3). The nondiagonal linear maps (Jordan blocks) are of type (c)
with d = 1, and this case is covered by Theorem 4.2 below. For the periodic case
see Propositions 3.2.

In the classification theorem we will need the following notion of resonance.

DEFINITION The numbers o, € C* have a resonance of type (p,q) if aPp? =1,
where p and q are integers. The resonance is nontrivial if at least one of the numbers
P, q is nonzero.

Clearly the set of all resonances between a and § is an additive subgroup of
Z2. A resonance of type (0,q) means that 8 is a gth root of 1, and a resonance of
type (—1,q) mean that a = $9. If none of the numbers a,f is a root of 1, then any
nontrivial resonance is an integer multiple of a base resonance.

THEOREM 3.1 Let ¢; € AutC? be a flow whose time one map ¢, = E is diagonal
linear and aperiodic:
E(xy) = (ax,fy), afeC, E#1 (r21)

(a) If a and (3 have no nontrivial resonances (p,q) with p,q > —1, then the flow
¢, is diagonal linear:

Pi(x,y) = (eMx,eMy), et =a, e*=p. 9)

If a = (a resonance of type (—1,1)) then ¢, is linearly conjugate (but not
necessarily equal) to a flow (9).

(b) If a is not a root of 1 but f is a primitive qth root of 1 for some q>1 (a
resonance of type (0,q)), then

¢e(x,y) = (x exp (ut +> an(y - YO)nanq(t)> ,eN(y —yo) + yo) ;

n>1

(10)

where et = a, e* = f3, a, € C, yo = O unless § = 1, and ci(r) = (e — 1)/ Ak.
Every one of these flows is conjugate to the flow (9).
(¢) If a, B have a base resonance (p,q) for some p,q > 1, then

#(x) = (xem ([ tf(e”xpyq)df) o [ tg(e”xl’y‘f)dr)) ,

(11
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where ¢ = 2min for some n€Z and f,g are entire functions on C satisfying
pf+qg=c ef®=q,esO® = B.If c =0 then f and g must be constant. The
flow (11) is conjugate to the linear flow (9) with p = f(0) and X = g(0).

(d) If a = p? for some q > 2 (a resonance of type (—1,q)) then ¢, is either of the
form (9) or of the form

$u(%,y) = (e (x + by?e(r)),e™y), (12)

where et = a, e* = f§, gA — p = 2min # 0, b € C, and c(t) = (e>™" — 1) /27in.
The flow (12) is conjugate to the linear flow (9).

Remarks 1. In parts (b) and (d) the analogous results hold if we switch the roles
of a and f. The flow (10) with yo =0 is a special case of (11) with p =0 and
g =c¢/q = A constant.

2. If a = B¢ (case (d)) and B is an rth root of 1 for some r > 1, then the map
E (which is now periodic with period r) is the time one map of many other flows.
Some of them are given by (18) in Sect. 4 below (with e* = § and y, = 0).

3. The only polynomial flows of types (10) and (11) are the linear ones. The
flows (11) with ¢ = 0 and f,g nonconstant are of interest even though they are not
a part of our classification. They can be written in the form

Pe(x,y) = ('), ye~ PRy = xPyq,

where £ is an entire function on C. These flows remain in the level sets of xPy9,
and hence they are proper in terminology of M. Suzuki [22]; for a classification of
such flows see Theorem 4 in [22]. The time one map of these flows is linear only if
h is constant. When p =g =1 (af = 1) we get the flows

P(x,y) = (xe™C)), ye~tht))

which are volume preserving (symplectic). We refer the reader to Section 6 in [13]
for the classification of the complex volume preserving flows ¢, € AutC? (¢ € C).

Proof of Theorem 3.1 The commutation relations (6) for the infinitesimal gener-
ator V = (F,G) are

aF(x,y) = F(ax,fy),  pG(x,y) = G(ax,fy). (13)

We expand F and G in power series in x and y and compare the coefficients of
terms x?y4. If this term appears in F (with a nonvanishing coefficient), we get
aP~1B9 =1, i.e., a resonance of type (p — 1,q). Similarly, if this term appears in G,
we get a resonance of type (p,g — 1).

CASE (a) If a,f0 have no nontrivial resonances (p,q) with p,q > —1, it follows
from (13) that F = px and G = Ay for some p,A € C. Hence the flow ¢, is of the
form (9). If a = # 1, (13) only shows that F and G are linear in x and y, and
hence the flow is linear: ¢,(x,y) = exp(At)(x,y)" for some 2 x 2 matrix A. Since
exp(A) is the scalar matrix representing E, A4 is linearly conjugate to a diagonal
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matrix with eigenvalues p, A satisfying e# = e* = a, but p and A need not be equal.
Therefore the flow ¢, is conjugate (but not necessarily equal) to a flow (9). In fact,
since E is self-conjugate by any linear map, any flow ¢, which is linearly conjugate
to a flow (9) has the same time one map E. However, the matrix representing ¢,
for non-integer values of ¢ need not be diagonal, and we get non-diagonal linear
flows with ¢; = E.

CasE (b) Consider first the case when § = 1. The commutation relations (13) im-
ply that G is independent of x and F contains only terms which are linear in x.
Thus G = G(y) and F(x,y) = a(y)x for some entire function a. By completeness
of the flow we get G(y) = A(y — yo) (the case G(y) = ¢ # 0 is impossible since it
would integrate to the flow Y (¢,y) = y + ¢t whose time one map is y + ¢ # y). In-
tegrating the equations (5) as in Section 2 we get the flow (10) with p = a(y,) and
qg=1.

The case when § is a primitive gth root of 1 for some g > 1 can be reduced to the
case 8 = 1 by replacing E with its iterate E9(x,y) = (a?x,y). We first find all flows
¢; satisfying ¢, = E9. These are given by (10) with e?* =1, e?* = af, and with
nq replaced by #n in the summation. In this family we then identify the flows which
also satisfy ¢; = E. This requires e# = a, e* = 3, yo = 0, and c,(1) = 0 whenever
the term y” appears in the sum (with a nonvanishing coefficient). The last condi-
tion is satisfied when » is a multiple of g, and we get the flow (10). The automor-
phism

h(x,y) = (XCXP =Y an(y —yo)"!/ngX |,y —yo

n>1
conjugates this flow to (9).

CASE (¢) We now have a resonance af3? =1 for some p,q > 1. Since E is not
periodic, none of the numbers a,3 is a root of 1, and therefore every resonance
is a multiple of a base resonance. Thus we may assume that (p,q) is a base reso-
nance. The commutation relations (13) imply that F and G have the following spe-
cial form:

F(x,y) = xf(xPy?),  G(x,y) = yg(xFy?)

for some entire functions f and g. The resonance condition implies that E and it
iterates remain in the level sets of the function u = x?y9.

We now calculate the derivative of u along the flow ¢;. We use the lower case
letters for the initial position and the upper case letters for the value along the flow.
We have

U=pXPlyix + qxPyily
= pXPYIf(U)+qXPYIg(U)

=U(pf(U)+qg(U)).
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By hypothesis this is a complete flow in the U-plane, and therefore pf(U) + gg(U)
= ¢ = const. By integration we get

U(t,x,y) = e xPy1, e =1.

The last condition e¢ = 1 follows from U o E = U. We now insert this solution into
the equations for the flow ¢, = (X,Y):

X = X[(exPy), YV =Yg(e"xry?), XO)=x Y(0)=y.

Integrating this system of homogeneous equations we get the flow (11).
Let & and k be the entire functions on C satisfying 4(0) = k(0) = 0 and

RO = () —=FO)/eC,  K'(Q) = (8(¢)—8(0))/cC.

Then th
T h(xFyT) | gh(x?y?)
®(x,y) = (xe™ 77, yet0)

is an automorphism of C? such that 1o ¢, 0 @ is the linear flow (9), with y = f(0)
and A = g(0).

CASE (d) We now have a = 7 (g > 2). Since E is aperiodic, a and § are not roots
of 1, and thus (—1,q) is the only resonance between o and 8 with both numbers
> —1. The relation (13) implies

G =Ay, Flny)=px+byl,  ApbeC
Integrating the system (5) we obtain the flow (12) when g\ — p # 0, and the flow

¢ (x,y) = (7 (x + thy?),eMy)

when gA = p. In the last case the time one map ¢; is not linear unless b = 0 and
the flow is of the form (9).

If gA— p # 0, we set d = b/(gA — p) and @®(x,y) = (x + dy?,y). Then & € AutC?
and ®~!o ¢ o @ is the linear flow (9). This completes the proof of Theorem 3.1. H

In Theorem 3.1 we have excluded the case when E is periodic since our methods
do not apply in this case. However, a result of Suzuki [22] gives:

PROPOSITION 3.2 If E € AutC? is a periodic map and ¢, € AutC? (t € R) is a flow
satisfying ¢1 = E, then ¢, is conjugate in AutC? 1o a linear flow (9).

Proof By Corollary 2.2 in [13] every flow {¢; : t € R} C AutC? extends to all
a complex flow {¢, : 1 € C} C AutC?. Since E is periodic, ¢, is also periodic, say
¢x = 1. Hence ¢; = Yexp(arisjky, Where 95 (s € C*) is a holomorphic action of the
group C* on C%. According to Theorem 5 in [22] every such action is conjugate in
AutC? to an action

¥s(x,y) = (5" x,8"y),  s€C’, mnel
This implies Proposition 3.2. &
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4. FLOWS WHOSE TIME ONE MAP IS OF TYPE (c) OR (d)

In this section we find all flows ¢, € AutC? (¢ € R) such that ¢; = E is of type (c)
or (d) in Theorem 3. We begin with the simplest case when E is a shear.

THEOREM 4.1 Let g be an entire function on C and

E(x,y)=(x+8()y) (x,y)ECZ.
Suppose that ¢, € AutC? (¢ € R) is a flow satisfying ¢; = E.

(2) If g has at least two distinct zeros, then ¢; is the flow

$u(x,y) = (x +18(y):¥)- (14)
(b) If g(¥) = c(y — yo)? for some d > 1 and c € C*, then ¢, is either the flow (14)
or else it is conjugate in AutC? to a flow

De(x,y) = €M (x +te(y — yo)),eM(y—yo) +y0), € =1, (15)

_ Proof Let V =(F,G) be the infinitesimal generator of ¢,. The commutation
relation (6) gives the following equations:

F(x,y)+8'(1)G(x,y) = F(x +8(¥),y)
G(x,y)=G(x +8()y)-
Iterating the second equation we get
G(x,y) = G(x+kg(y),y), keZ

Assume that g has a zero, say g(yo) = 0. Fix an € € C* and choose a sequence y; € C
such that kg (yx) = € and limg .o, yx = yo. This gives

G(x,y1) = G(x + yr8 i)y k) = G(x + €, yi).

Since the holomorphic functions G(x,-) and G(x + ¢,-) coincide along the sequence
yr with an accumulation point in C, they coincide identically by the uniqueness
principle. Hence G(x,y) = G(x +¢,y). Since this holds for every € € C*, it follows
that G is independent of x : G = G(y). Hence our system of differential equations
for the flow is of the special type treated in Section 2:

G(y)=Ay+c,  F(x,y)=a(y)x+b(y).

We cannot have A =0 and c¢ # 0 since in this case the second component of the
flow would be Y (#,y) = y + tc, and this does not equal y (the second component
of E) at time ¢ = 1. Thus we have

GO)=Ap—yo),  Y(ty)=e¥(y—yo)+ o
The condition Y(1,y) = y implies e* = 1. The first equation in (16) now gives

(16)

a(y) = Ay - yo)%)- (17)
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If A =0, we have a = 0 and the first equation for the flow is X = b(y). The flow

equals
¢t(x’y) = (x + tb(.y)iy)

Comparing with E at time 1 we see that b = g, and we get the flow (14).

Suppose now A # 0. If g has a zero at y; € C, then g'/g has a pole at y;. Since
a is an entire function, the equation (17) has no solutions unless y; = yo. Thus, if g
has at least two different zeros, (17) has no solutions unless A = 0 and the flow is
given by (14).

If g has only one zero yo, we can write g(y) = (y — yo)%e"®) for some d > 0 and
some entire function 4. Then the function a defined by (17) is entire, and we can
proceed by integrating the system of equations for ¢, as in Section 2. Of course we
must compare the time one map ¢; with E, and this gives further conditions on the
functions 4 and b. We will carry out this process explicitly only in the case when
g is a polynomial, g(y) = c(y — yo)?. The equation (17) then gives a = dA = const.
For every entire function b(y) = Y, bx(y — yo)* we get a solution ¢, = (X,Y) given
by

XUJJ)=J”<x+w@~mf+§:m@~quag,

k#d

(18)

Y(t’x’y) = e)\t(y —yO) + Yo,

where
e(k —d)Xt _ 1

Ak —d)

=1 )=

(k # d).

Notice that the power series defining X converges for each ¢ € C and for all (x,y) €
C2, and hence the above is a complex one parameter group of automorphisms of
C2. Each of these groups satisfies ¢; = E since the terms with k # d disappear at
the integer values of ¢. It is verified easily that ¢, = hlo ¥, o h, where h € AutC? is

the automorphism
br
h(x,y) = (x - Z m}’ka)’)

k#d
and 1, is the flow (15). This completes the proof of Theorem 4.1. |

The next theorem classifies flows whose time one map if of type (c) or (d) in
Theorem 3 (Section 1).

THEOREM 4.2

(a) If E is an elementary map of type (d) and if § # 1, then E does not belong to
any flow ¢, € AutC2. If § = 1, the only flow satisfying ¢1=Eis

¢i(x,y) = (x +1y%q(y"),y). (19)

(b) If E is of type (c) in Theorem 3 and (3 is not a root of one, then every flow ¢,
satisfying ¢1 = E is of the form

$i(x,y) = (€M(x +1yh),eNy), e =p. (20)
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(c) If E is of type (c) and (8 # 1 is a primitive rth root of 1 for some r > 1, then
all flows satisfying ¢1 = E are described by (21) below, and each of them is
conjugate in AutC? to one of the flows (20). If B = 1, the flows satisfying ¢1 =
E are given by (14) or (15) in Theorem 4.1 above.

G. Buzzard [9] proved by a different method that maps E € £ of type (d) do not
belong to any flow unless § = 1.

Proof Suppose first that E is of type (d) with § # 1:
E(xy) = (B*x+y’q0").py), A =1 d=0,

where g is a nonconstant polynomial with g(0) = 1. Then E” equals

E"(x,y) = (x + ry?q(y"),y).

Since q has a zero ¢ # 0, g(y") has zeros at all roots of y" = c. Since r > 1, part
(a) in Theorem 4.1 shows that the only flow satistying ¢, = E” is (19). This flow
satisfies ¢; = E only if § = 1.This proves part (a).

Consider now the case when E is of type (c) in Theorem 3:

E(xy)=(B%(x+y")py), dx1
If g" = 1 for some r > 0, then

E'(x,y) = (x +ry%,y).

We choose r so that 3 is a primitive rth root of one. In order to use Theorem 4.1 we
rescale the time and write ¢, = v,,. Then the flow ), satisfies 1, = E” and hence is
of the form (18) with e* = 1. Going back to ¢, we must replace A by A/r; hence ¢;
is of the form (18) with e* = § and ¢ = 1. The condition ¢; = E holds if and only
if yo =0 and byci(1) = 0 for all k # d. Since e* = § is a primitive rth root of 1,
we have c,(1) =0 if and only if k —d is a multiple of r. This shows that the only
nonzero coefficients by in (18) are those for which k —d = mr for some integer m
(and of course k > 0). Hence

=d+mr#d

$i(x,y) = (e‘“‘ <X+tyd+ > bky"ck(t)),e”y), e*=p. (21
k

As in the proof of Theorem 4.1 we see that the flow (21) is conjugate in AutC? to
the flow (20).

It remains to consider the case when E is of type (¢) and § is not a root of one.
We will first prove that

G)=2Xy, e*=p.
The commutation relations (6) are
BUF(x,y) +pdy? "I G(xy) = F(B* (x + y*), By),

(22)
BG(x,y) = G(B*(x + y*), By).
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Iterating the second equation we have

B*G(x,y) = G(B*(x + ky?),B*Y). (23)

Replacing E = ¢; by E~! = ¢_, if necessary we may assume that || < 1. Inserting
x =y = 0in (23) gives G(0,0) = 0.

Case 1 |B] <1 Write
G(x,y) = Z Grsx"y’.

r+s>1

Inserting this expansion into (23) and dividing by 5% we get

G(x,y)=B7F > G ¥ (x+kyty ey’

r+s>1

= Go,1y+G1,oﬁk(d_1)(x+kyd)+ Z Gr,sﬁk(dr+s~1)(x+kyd)rys-
rHs2d

In the last sum we have dr +5—1> 1, and therefore the sum converges to 0 for
each fixed (x,y) as kK — oo. If d > 1, the same is true for the second term on the
right. If d = 1, the second term on the right is not bounded as k — oo unless Gy =
0. Hence we must have G1p = 0, and in the limit as k — co we get

G(x,y) = Ay, A=Gyy.

Case 2 || =1 Fix an €€ C and pick a sequence y; € C such that ky{ = ¢. Then
yk — 0 as k — oco. Choose a subsequence k; € Z, such that §% — 1 as k; — oo. By
expanding G(x,y) = 3,50 Gr(x)y" and inserting into (23) we get

Y Grx)y =) G (B (x + ky?)peDyr (24)

r>1 r>1
Passing to the limit along the subsequence yx; we get
Go(x) = Go(x +¢).

Since this holds for every ¢, we conclude that Gy is a constant, and G(0,0) = 0 gives
Gy = 0. Thus the terms with r = 0 cancel out of the equation (24). We divide the
new equation by y and repeat the same argument to get that G; is constant. Again
we cancel out the terms with r = 1, divide by y and repeat the same argument
to conclude that G, is constant. Comparing the terms with r = 2 in (24) we have
G, = G,f* and hence G, = 0. Continuing inductively we show that G, = 0 for all
r > 2, and hence G(x,y) = Ay (A = G1).

We have shown that G(x,y) = Ay. It follows that F is linear in x : F(x,y) =
a(y)x + b(y) (Section 2). Inserting this into the commutation relation (22) for F
we get

B4 (a(y)x + b(y)) + B%dy* Ay = a(By)(B(x + y%)) + b(By).
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Equating the coefficients of x gives a(y) = a(8y). Since § is not a root of one, it
follows that a(y) = a is a constant. We then have

Fb(y) + prdy? = ap’y? + b(By),
Bb(y) = b(By) = b%y%(a —d)).

Expanding b(y) = 3_50bjy’ we get

> by (B = p') = By (a - a).

j20
Since 3 is not a root of 1, we conclude that b; = 0 unless j = d, and therefore

a=d\,  b(y)=by’ (b=by).
Thus the infinitesimal generator is

V(x,y) = (dAx +by?,Ap),

and the flow ¢; is equal to (20) (with b = 1). This completes the proof of Theorem
4.2. =

Combining Theorem 3.1 and Theorem 4.2 we obtain

COROLLARY 4.3 Every flow ¢, € AutC? whose time one map ¢, = E is linear is
conjugate in AutC? to a linear flow.

5. FLOWS WHOSE TIME ONE MAP IS AFFINE

THEOREM 5.1 Let ¢; € AutC? be a flow whose infinitesimal generator V = (F,G)
is polynomial and whose time one map ¢1 = E is of type (b) in Theorem 3:

E(x,y) = (x +1,0y).
(a) If B is not a root of 1, then
i(ny)=(x+reNy), et =p. (25)
(b) If B is a primitive rth root of 1, then ¢ is of the form

9(x,y) = (x 045 ba(y — Yo enr (1, (5 — yo) + )’0) , ()

n>1

where e* =3, yo =0 unless =1, b, € C, and c(t) = (e*¥ —1)/k\. This
flow is conjugate in AutC? 1o the flow (25).

Proof The commutation relation (6) for V' = (F,G) is
F(x,y) = F(x+1,5y),
pG(x,y) = G(x +1,0y).



AUTOMORPHISM GROUPS 261

CasEl1f=1 We have
F(x,y)=F(x+1Ly), G(xy)=G(x+1y).

Since F and G are assumed to be polynomials, it follows that they only depend
on y. Thus G(y) = A(y — yo) and F(y) = 3", bi(y — yo)*. Integrating the system (5)
and comparing the time one map with E gives a flow of the form (26) with r = 1
and e* = 1. This flow is conjugate to (25) by the automorphism

h(x,y) = (x — Y by —yo)*/kAy — )’0) -
k>1

CASE 2 g" = 1 for some r >1 Choose r so that § is a primitive rth root of 1. Then

E"(x,y) = (x +r,y). By the previous case the flow ¢, is of the form (26), except

that we now have e* = § and yo = 0. This is completely analogous to the reduction

in the proof of Theorem 4.2.

CASE 3 fis not aroot of 1 By inserting the expansions

F(x,y)=ZFj(x)yf, G(x7Y)=ZGj(x)yj

j20 j>0
into the commutation relation we get
Fj(x) = p/Fj(x +1) = b Fj(x + k),

. . (27
Gj(x) = p71G(x + 1) = pFUDG(x + k).

Recall that F; and G; are assumed to be polynomials.

Suppose first that |3] < 1. We get that Fy is periodic and thus constant. Letting
k — oo we also get Fj(x) =0 for j > 1. In the same way we see that G is constant
and G;(x) =0 for j # 1. Thus V(x,y) = (4, Ay), and the flow is of the form (25).
(We have used the condition ¢; = E to get p = 1.)

The case |3] > 1 is handled in the same way by letting £k — —oo. In the remaining
case when || =1 we see from (27) that each F; and G, is bounded along the
sequence {x +k : k € Z,} and therefore constant. Thus F = F(y) and G = G(y).
Using again the commutation relations we have

F(y)=F(By), BG()=G(By).

Expanding F and G in power series and using the hypothesis that 8 is not a root of
1 shows that F is constant and G(y) = Ay (e* = f); hence the flow equals (25) as
before. This completes the proof of Theorem 5.1. [

EXAMPLE The following is a counterexample to the proof of Theorem 2.1 in [10]. We
integrate the system of equations

X = Ax, y=Ay + x + bx?
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for some A = 2min, n € Z\{0}. The solution is
d:(x,y) = (eMx,eM(y + tx + bx*(eM — 1)/)).

Then ¢1(x,y) = (x,y + x), so ¢1 € A\E. However, ¢; ¢ AUE unless eM = 1. In par-
ticular, if A = 2mi, the map ¢, does not belong to AU E for any 0 <t < 1, and hence
its representation as a reduced word has length at least three. Of course ¢, is conjugate
to a flow in £ by a quadratic automorphism of C?, but the point is that we have to
choose the conjugating map correctly.

Replacing the term bx?* in the equation for y above by a series Zk>2bkxk one
gets flows of any degree, and also non-polynomial flows, whose time one map is the
non-elementary affine map (x,y) — (x,x +y).

6. FLOWS WHOSE TIME ONE MAP IS A GENERALIZED SHEAR

THEOREM 6.1 Let
f(x,y) = (€8x + h(y),y), (28)

where g and h are entire functions on C and g is nonconstant. There exists a flow
¢, € AutC? such that ¢1 = f if and only if

o) —
M) = o () (29)

g(y)+2mi
for some entire function b and some k € Z. If we set a = g + 2wik, the flow equals
e (x,y) = (Vx + (€00 = Db(y)/a(y),y)
= ("O(x + b(y)/a(y)) — b(y)/a(y), y)- (30)

Note that the function (e8 —1)/(g + 27ik) is entire and its zero set is
{yeC:g(y)=2min, n€Z, n# —k}.

If f lies in a flow, then A must vanish on this set for some k € Z. This shows that
most generalized shears (28) do not belong to any flow in AutC2.

Proof of Theorem 6.1 The kth iterate of f equals
TE(y) = (€*80x + h(y)(e*s®) — 1)/ (50 — 1), ).
Since g is nonconstant, the open set
Q= {(xy)eC*: Rg(y)< 0}
is nonempty, and we have

Jim fE(xy) = (h0)/(1=eEP),y), (R €D (31)
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Consider the commutation relations (6) for the infinitesimal generator V' = (F,G)
of ¢,:
e8F + (e8g'x+ )G =Fof,

G=Gof. (32)

We iterate the second equation, G = G o f¥, and let k — co. It follows from (31)
that G is independent of x on (2 and therefore on C2. Thus

G(x,y)= Ay —yo)  F(x,y)=a(y)x+b(y).

(See Section 2.) We insert this into the first equation in (32); for simplicity we delete
the variables whenever possible:

eS(ax+b)+ (e8g'x + K)A(y — yo) = a(ex + h) + b.

This is a linear equation in x. Comparing the coefficients of the linear terms we get
g'A(y —yo) = 0 and hence A = 0 (since g is assumed to be nonconstant). Therefore
G =0 and the second component of the flow is constant: Y (¢,y) = y. The first
component of the flow is

X (t,x,y) = €“Ox + (0 — 1)b(y)/a(y).
Comparing with f at time ¢ = 1 we get
ef = e, (e —1bja=h

Thus a = g + 2wik for some k € Z, h is given by (29), and the flow ¢, is given by
(30). This proves Theorem 6.1. B

7. FLOWS IN THE SHEAR GROUPS
We denote by £ the set of all maps E : C?> — C? of the form

E(x,y) = (e#Vx + h(y),By +7), (33)

where g and 4 are entire functions, 8 € C*, and y € C. In analogy to the polynomial
case we will call such maps elementary. It is easily verified that £ is a subgroup of
AutC?.

We denote by & the set of maps (33) with Jacobian one; clearly this requires that
g is constant, so a = ef € C*, and af = 1. We denote by & the set of maps (33)
with constant nonvanishing Jacobian; this requires that g is constant.

Recall that A is the complex affine group on C2. Let S§(2) be the subgroup of
AutC? generated by £ and \A. Similarly we let S;(2) be the group generated by &
and A;, where A; contains all affine maps with Jacobian one. Finally let S.(2) =
81(2) x C* be the group generated by & and A. Clearly S¢(2) consists of maps in
S(2) with constant Jacobian.

THEOREM 7.1 Every one parameter subgroup {¢, :t € R} C §(2) is conjugate in
S8(2) to one of the following:
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(i) ¢t(x’y) = (e,utx,e)\ty), ’\7/1’ € G
(i) ¢¢(x,y) = (x +tf(y),y), where f is an entire function on C;
(i) ¢/(x,y) = (€20 (x — b(y)) + b(y),y), where a is a nonconstant entire function
and b is a meromorphic function such that the product ab is entire;
(iv) ¢i(x,y) = (™ (x +1y"),e*y), A€ C*, ne Z,.

Every subgroup of §1(2) is conjugate in S1(2) either to a linear group (i) with A + p =
0 or to a group (ii). Every subgroup of Sc(2) is conjugate in Sc(2) to one of the groups
(i), (ii), or (iv).

Observe that the groups (i) and (iv) are polynomial, and (ii) is polynomial when f
is a polynomial. Comparing this with the classification of one parameter polynomial
groups on C? in [6] or in [22] we see that the only new type in S(2) is (iii). A group
of type (iii) is not polynomial unless g is constant and b is polynomial; in this case
(iii) is conjugate to a linear group (i) with g = p and A = 0.

Proof Ahern and Rudin proved in [3] that the group S(2) is a free product of
the subgroups £ and A, amalgamated over their intersection B = ANE. Earlier
C. de Fabritiis proved [10, 11] that the groups S51(2) resp. S.(2) are amalgamated
free products of their subgroups & and A; resp. & and A. B

We will need the following result of combinatorial group theory.

THEOREM 7.2 Let G be a topological group which is a free product G = AxE of
subgroups A and €, amalgamated over their intersection B = ANE. Assume that B
is closed in G. Then any topological subgroup of G which is isomorphic to R or C is
conjugate in G to a subgroup of A or to a subgroup of £.

COROLLARY 7.3

(i) Every real one parameter subgroup of S(2) is conjugate in S(2) to a subgroup
of E.
(ii) Every one parameter subgroup in S1(2) is conjugate to a subgroup of &.
(iii) Every one parameter subgroup of S.(2) is conjugate to a subgroup of &..

It is immediate that every subgroup in A is linearly conjugate to a subgroup in &£
(by conjugating the relevant matrix to its Jordan form).

Proof of Theorem 7.2 The proof is the same in the real and the complex case, so
we will consider a real subgroup {¢, : t € R} C §. First we show that for every ¢ € R
the element ¢, is conjugate in G to an element in A or in £. Let g be the element
in the conjugacy class of ¢, whose reduced word with respect to the amalgamated
product structure in G has the shortest length. If g does not belong to either A or &,
then g must have even length 2r > 2, since otherwise the two end elements in the
word representing g belong to the same group A,£, and hence g could be shortened
by conjugating it with one of the end elements. (See [15] for the details.) If g = A™
for some & € G and m € N, it follows that 4 also has even length 2k and mk =r. In
particular, g cannot have roots of order larger than r with respect to composition,
and hence it cannot lie in a flow, a contradiction.
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Next we want to show that we can choose an 4 € G such that A~ 1o ¢: o h belongs
to the same group A or £ for all € R. C. de Fabritiis [11] observed that one can
apply the following theorem of Moldavanski ([18] or [25, Theorem 0.3]):

THEOREM If H is an abelian subgroup of an amalgamated free product group G =
AxE, then precisely one of the following holds:

() M is conjugate in G to a subgroup of A or E:
(1) M is not conjugate to any subgroup of A or &, but H = U;;Hj, where Hy C
H, C -+ is a nested chain of subgroups such that each H ; Is conjugate in G to
a subgroup of B = ANE;
(ii) H = F x (g) is the product of a subgroup F conjugate to a subgroup of B and
a subgroup (g) generated by an element g € G which is not conjugate to any
element of A or €.

We continue with the proof of Theorem 7.2 as in [11]. Let H = {¢, : ¢ € R} Cg.
We want to show that H is of type (i) in the theorem above. Clearly type (iii)
is impossible since every ¢, is conjugate to an element of A or &. Suppose now
that H is of type (ii). Let C; = {teR: ¢; € H;}, so R= Ui Cj. Let hj € G be
an element which conjugates the subgroup #; into B : hj_l o¢,oh; € B for every
t € Cj. Since B is closed in G and the group operations are continuous, the same
is true for every ¢ € C;. Since R = |J . C;, the Baire category theorem implies that
one of the sets 6,- has a nonempty interior. But then the group property implies
that C; = R and therefore the element & = h j conjugates H into B in contradiction

to our assumption. Thus 7 is of type (i) as claimed. This completes the proof of
Theorem 10.2. |

Remark The proof of Theorem 7.2 clearly extends to the case when H is a
connected abelian Lie group, for instance, H = T* x R™, where T* is a torus.

To complete the proof of Theorem 7.1 it now suffices to classify the one pa-
rameter subgroups in the groups £ (33) and its subgroups &,&,. Since the second
component of (33) every elementary map (33) is a linear automorphism of the y-
axis which does not depend on x, it follows as in Section 2 that the infinitesimal
generator V' = (V4,V3) has the form

i(x,y) =a(y)x+b(y),  Va(y)=Ay+7. (34

We can simplify the field I further by conjugating it with automorphisms ® of C2.
The conjugate field I is determined by the relation D& -V =V o .

Conjugating V' by linear automorphisms &®(x,y) = (x,ay + ) we get a field as
above in which the second component is either V5(y) = Ay (A € C) or Va(y) = 1.
We consider several cases.

CASE 1 V5(y) = Ay, A#0 We can change the function a to a constant by conju-
gating V' by a generalized shear ®(x,y) = (e80)x,y), where g is an entire function
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to be determined later. The conjugation equation is

e gl'edx ax+b
D(I)'V(x’”:<o 1 )< Ay )

3 (eg(ax +b)+ Axyg’eg)

= .

3 ((a + Ayg')(e8x) + beg>

- . ,
This shows that

71(x,9) = @)+ Ayg' ) +b(eE®,  Va(x,y) = Ay

Let a(y) = Ekzoakyk and g(y) = Y;»08kY*. Then a+Ayg' =3 (a + kAgi)yk.
By choosing gx = —ar/Ak for k> 1 we get a+ Ayg' = ag. Denote this constant
by p. Thus the conjugated field (which we again denote by V') is of the form

Vi(x,y) = px +b(y),  Va(xy) =AMy
To simplify b we conjugate by a shear ®(x,y) = (x +4(y),y):

D& V(x,y) = <(1) q’iy)) (/LxA;Lb> _ (,ux+1;\;-)\y61'>_

The new first component is V1(x,y) = p + b(y), where

b(y) = b(y) + Ayd'(¥) — ng(y) = > _(be + (kA= p)qi)y*
: k>0

CASE 1.1 kX # pforall k € Z, Set g = bi/(p— k). Clearly g(y) = S qry* con-
verges on the entire plane C. The corresponding automorphism @ conjugates V' to
the linear field ¥ (x,y) = (Ax, uy) whose flow is type (i) in Theorem 7.1.

CASE 1.2 nX = p for some (unique) integer n € Z, The only term in b which we
can not eliminate as above is b,y". If b, = 0, we have a linear flow (i). If b, #0,
we conjugate ¥ further by (x,y) — (x/bn,y) and get the field

Wi(x,y)=px+y",  Walxy) =Xy
whose flow is given by (iv) in Theorem 7.1.

CASE 2 V, =0 This case was treated in Section 6 above. If a4 is not identically
zero, the flow is given by (30). This flow is of type (iii) in Theorem 7.1 if a is
nonconstant. If @ = y is constant, the function b/p in (30) is entire and hence the
flow is conjugate (by a shear) to the linear flow (i) in Theorem 7.1. If a = 0, we
have a shear flow (ii).
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CASE 3 I, =1 As in Case 1 we conjugate V' by a generalized shear @(x,y) =
(xeg(y) y):
<eg xegg’) (ax + b) 3 ((a +g")e8x + beg>
0 1 1 ) 1 '

If we choose g such that a(y) +g'(y) = 0, then the conjugated field is of the form
V(x y) = (b(y), 1). Conjugating this field by a shear ®(x,y) = (x + g(y), y) such that
q'(y) = —b(y) we get the field (0,1) whose flow is ¢:(x,y) = (x,y + ). The map
(x,y) = (y,x) conjugates it into the flow 9,(x,y) = (x +¢,y) of type (ii). This com-
pletes the classification of flows in §(2).

Next we consider one parameter subgroups in S.(2). By Corollary 7.3 we may
assume that the group is contained in &, and hence its infinitesimal generator is of
the form (34) with a = p = constant. After the initial conjugation as above we may
assume that V2 = Ay or V,.= 1. In the first case we can complete the classification
as above by conjugating with shears and dilations. In the second case when V5 = 1
we cannot eliminate p as in Case 3 above since that would require conjugation by a
generalized shear. Instead we conjugate by a shear ®(x,y) = (x + g(»),y):

1 g\ /px+b px+b+q
D(I)'V(x’y)=<0 1)( 1 >=< | )

The conjugate field is V' (x,y) = (ux + b, 1) where

b(y) = b(y) + 4'(y) — pa(y).

If we let C be the entire function satisfying C'(y) = —b(y)e™* and q(y) = C(y)e*’,

we get b = 0, and the new field is (px, 1). Its flow is ¢;(x,y) = (e*' x,y + t). The map

(x y) = (y,x) conjugates it either to (iv) (with n =0 and g = A) or to (ii) (with
=1).

The analysis in the remaining case S1(2) is similar to S.(2). After the initial con-
jugation the infinitesimal generator V' is of the form (34), with a = y = constant and
A+ p=0.1If A, pu # 0, we conjugate V' by a shear ®(x,y) = (x + q(y),y) as in Case
1 above to eliminate b; hence the flow is conjugate to (i). If A = p = 0, we get the
shear flow (ii) with f = b. This completes the proof of Theorem 7.1. E
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