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EQUIVALENCE OF REAL SUBMANIFOLDS UNDER
VOLUME-PRESERVING HOLOMORPHIC

AUTOMORPHISMS OF C

FRANC FORSTNERIC

1. Introduction. The main theme of this paper is the global equivalence of
certain types of real submanifolds in the complex euclidean space C" (n > 1)
under the group of all volume-preserving holomorphic automorphisms of C". Let
f be the complex volume form on C":

2 dz ^ dz2 A A dz,. (1)

A holomorphic mapping F: D c C" --+ C" is said to be volume-preservin9 if F*f
f. Since (F*f)(z) JF(z). , where JF is the complex Jacobian of F, this is equi-
valent to JF(z)= 1, z D. We denote by AutC" the group of all holomorphic
automorphisms of C" and by Autl C" c AutC" the group of all volume-preserving
automorphisms of C".

Definition 1. Let : be any group of holomorphic automorphisms of C".
(a) Two compact subsets Mo, M = C" are fg-equivalent if there exist a neigh-

borhood U of Mo in C" and a biholomorphic mapping F: U --+ F(U) C" such
that F(Mo) M, and F is the uniform limit in U of a sequence Fj

(b) Let M be a compact topological space. Continuous maps fo, fx:M C"
are f-equivalent if there exist a neighborhood U offo(M) in C" and a biholomor-
phic mapping F: U F(U) C" such that F o fo f, and F is the uniform limit
in U of a sequence Fj

Several observations and remarks are in order. For f AutC", our Definition
1 agrees with the definition of C"-equivalenee as introduced in [8] (Definition 2).
The same definition was used in [7] for the group AutpCz" of symplectic holo-
morphic automorphisms of C2". If f AutlC", it follows that the limit map
F: U C" satisfying Definition 1 is itself volume-preserving. Further, the maxi-
mum principle shows that a sequence of holomorphie maps which converges on a
neighborhood of a set K = C" also converges on a neighborhood of the polyno-
mially convex hull K. Therefore f-equivalence of sets Ko, K = C" implies
equivalence of their polynomial hulls. Finally, if f’ = f are holomorphic auto-
morphism groups on C" such that f’ is dense in f9 (in the topology of uniform
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convergence on compacts), then two sets in C" (or maps into C") are fg’-equiva-
lent if and only if they are f#-equivalent. For instance, the group Autl C" contains
a dense subgroup 5e", generated by shears (E. Anders6n [2]). These are automor-
phisms of the form

F(z) z + f(Az)v, z C",

where v C", A is a complex linear form on C" satisfying Av 0, and f is an
entire function of one variable. Polynomial maps of this type also form a group
5e" (the algebraic shear group) which is dense in Autl C". Thus any result on

Aut C"-equivalence is at the same time a result on 5ea"-equivalence.
Two other examples of such pairs are the group 5,, generated by the 9eneral-

ized shears, which is dense in AutC" (Anders6n and Lempert [3]), and the group, of symplectic shears on C2n which is dense in the group AutspC2n of symplectic
holomorphic automorphisms of C2" [6]. An important earlier work on the ques-
tions of equivalence and approximation by shears is the paper by Rosay and
Rudin [14].

In order to formulate our main result, we choose a holomorphic (n- 1)-form
fl on C" satisfying dfl f. To be specific we will take

where the hat indicates that the corresponding entry is deleted. If M is a smooth,
compact, oriented manifold of real dimension n 1 and f: M C" is a smooth
map, we set

(f) ;t f*fl" (2)

If M is closed, Stokes’ theorem implies that any two embeddinos fo, fx:M- C"
which are Autx C"-equivalent satisfy (fo) (fx) (see Section 3). Conversely, we
will show that in the class of real-analytic, totally real, polynomially convex era-
beddings M C", the integral (2) is the only additional invariant when passing
from AutC"-equivalence to Aut C"-equivalence. There are no additional invariants
for lower-dimensional manifolds, or for manifolds of dimension n- 1 with van-
ishing top cohomology group. The precise result is this.

MAIN THEOREM. Let M be a compact, connected, real-analytic manifold of real
dimension m, and let fo, fl: M- C" be real-analytic embeddinos (1 < m < n- 1)
such that the submanifolds f(M)= Mj c C" (j 0, 1) are totally real and poly-
nomially convex. Suppose that fo and fl are AutC"-equivalent. Then fo and fx
are also AutxC"-equivalent, provided that any one of the followin9 conditions
holds:
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(i) m < n- 2;
(ii) m n 1 and Hn-I(M; R) 0;
(iii) m n 1, the manifold M is closed and orientable, and (fo) (fl) v O.

Remark. We believe that the same conclusion holds if, in the context of (iii),
we have (fo) (fl) 0. However, there are considerable technical difficulties
in treating this exceptional case (see Section 3), and we do not pursue the matter
here. The same remark applies to Corollary 2 below. We also do not treat the more
delicate problem of Aut Cn-equivalence of n-dimensional submanifolds in C.

Recall from [8] (Theorem 3.1) that two real-analytic embeddings fo, f: M C",
whose images fo(M), fl(M)c C are totally real and polynomially convex, are
AutCn-equivalent if and only if there exists a smooth one-parameter family (isotopy)
of embeddings f: M C (0 < < 1) such that the manifold f(M) Mt C is
totally real and polynomially convex for each t. Such an isotopy always exists when
dima M < 2n/3 ([5-1, Corollary 1). Together with the main theorem this implies
the following.

COROLLARY 1. Let M be a compact, connected, real-analytic manifold of dimen-
sion m > 1. If n > max{m / 2, 3m/2}, then every two real-analytic embeddings fo,
f: M C whose images fo(M) and f(M) are totally real and polynomially convex
are Aut1Cn-equivalent.

Recall from [5] (Theorem 4.1) that the image of a generic smooth embedding
M C" is totally real and polynomially convex when 2n > 3 dim M. The condi-
tion n > m + 2 in Corollary 1 is needed to exclude the cases m 1, n 2 and
m 2, n 3 (curves in C2 and surfaces in Ca) when the integral (2) is an invariant
for volume-preserving automorphisms and their limits. The corresponding result
in these cases is the following. We denote by T the circle.

COROLLARY 2. (a) Two real-analytic embeddings fo, fx: T C2, with fo(T), fx (T)
C2 polynomially convex, are Aut C2-equivalent if and only if (fo) (f).
(b) Let M be a closed orientable surface, and let fo, f: M Ca be real-analytic

embeddings whose images fo(M), f(M) C3 are totally real and polynomially con-
vex. If (fo) (f) O, then fo and f are AutxC3-equivalent.

Notice that on C2 the volume form (1) coincides with the standard complex
symplectic form, and hence part (a) of Corollary 2 is a special case of the main
theorem in [7].

In relation to Definition 1 of fg-equivalence, we emphasize that the stronger
requirement F(Mo)= MI for some F e f# would not give interesting results for
manifolds. For instance, if Fo, F C are planar curves contained in a complex
line A C, and if F AutC satisfies F(Fo) F, then F(A) A and therefore
the restriction of F to A is a linear map. Thus, unless the two curves are linearly
equivalent, there is no automorphism of C sending one curve onto the other. For
instance, a segment and a circular arc in C cannot be mapped one onto the
other by an automorphism.
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Of course this is in sharp contrast with the situation for smooth diffeomor-
phisms. On the other hand, this stronger notion of equivalence is suitable for
certain countable subsets of C"; see Rosay and Rudin [14].

In the present paper, as well as in the earlier papers i-8] and [7-1, we only
consider equivalence of real-analytic submanifolds. In order to study the same
problem in the class of smooth submanifolds in C", one must adopt a weaker
notion of equivalence to get meaningful results. A possible definition was sug-
gested by Rosay in [13], but the concept is not well understood yet. For another
work in this direction, see [5].
Some of the methods for global approximation by automorphisms, used in the

present paper as well as in the earlier papers I-8], [5-1, [7], originated in the works
of Anders6n [2] and Andersn and Lempert [3].
The paper is organized as follows. In Section 2 we recall some standard results

on flows of (divergence-zero) holomorphic vector fields, as well as results of [2]
and [8] on approximation of their flows by (volume-preserving) holomorphic
automorphisms of C (Proposition 2.3 and Corollary 2.4). In Section 3 we prove
the main theorem. In the appendix we sketch a proof of a result on extending
closed (resp. exact) holomorphic forms from closed submanifolds in Stein mani-
folds. This result, which is needed in the proof of the main theorem, is most likely
not original, but we do not know an explicit reference.

2. Divergence-zero holomorphic vector fields and flows. In this section we re-
call some standard results on vector fields and their flows which will be needed in
the proof of the main theorem. We refer to Abraham and Marsden [1] for the
details. In the last part we also recall results of I-2] and [8-1 on approximation of
flows of divergence-zero holomorphic vector fields by the volume-preserving auto-
morphisms of C (Proposition 2.3 and Corollary 2.4).

Recall that the (local) flow Ft of a holomorphic vector field X on a complex
manifold ’ is the solution of the ordinary differential equation

d
d-it V,(z) X(V,(z)), Fo(z) z e vZ.

For each compact set K c c ’ there is a number T > 0 such that the flow Ft(z)
is defined for all z e K and Itl < T. Each map Ft is injective holomorphic where
defined. The connection between the Lie derivative Lx and the flow Ft of X is
given by I-1, page 92]

d
d? e?(Lx),

where is any tensor field on . In fact, at time 0, this is just the definition of
the Lie derivative Lx. If the vector field X is holomorphic, then Lx maps holo-
morphic tensors (vector fields, forms,...) to holomorphic tensors.
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We will have to consider flows of time-dependent vector fields Xt(z) which are
holomorphic in z for each fixed t, and of class cgl in (t, z); see [1, page 92]. Such a
field is usually defined on a domain D c R x ’ of the form

U {t}
tJ

where each D is a domain in the complex manifold ’ and J is an interval in
R containing 0. The flow F,s of such a field is defined as the solution of the
equation

d
d--t F,.,(z)= X,(F,.,(z)), &.,(z) z.

Again, every time-forward map F,s is injective holomorphic where defined. The
basic connection between the Lie derivative and the time dependent flow is

d
F, F,(Lx,) (3)

dt

which holds for any time-independent tensor on ’ [1, page 92].
Suppose now that f is a holomorphic volume form on a complex manifold ’,

i.e., a nonvanishing holomorphic form of top degree n dim ’. The diveroence
divn X of a holomorphic vector field X with respect to f is the unique holomor-
phie function satisfying

Lxf (divta X). f. (4)

We will write div X when it is clear which volume form is meant. When f is the
standard volume form (1) on C" and X =1 Xj(O/Ozj), we have

div X OXj (5)
j= Oz

Combining (3) and (4), we get

_dFf F(div X, f)
dt

This identity implies the following lemma.

LEMMA 2.1. Let / be a complex manifold with a holomorphic volume form .
If Xt is a time-dependent holomorphic vector field, defined on an open subset of
R x //, such that the flow Ft, o(Z) is defined for z D /and 0 < < T for some
T > O, then the followin9 are equivalent:
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(a) divn X, 0 on D Ft, o(D c /l for each e [0, T];
(b) Fsf f on Ds for each t, s e [0, T-I.
The following result plays a central role in the proof of the main theorem. This

is essentially due to Anders6n [2]; see also Lemma 1.4 in [8].

PROPOSITION 2.2. Let Xt be a divergence-zero holomorphic vector field on C"
for each e [0, 1] such that (t, z) - Xt(z is of class cd. Let D be an open set in
C and let 0 < T < 1. Assume that the flow Ft(z Ft, o(Z) exists for 0 < t < T
and z D. Then Ft for 0 < < T is a volume-preserving biholomorphic map of D
onto Ft(D which can be approximated, uniformly on compact sets in D, by volume-
preserving automorphisms of C.

This was proved in [2] and, in a more explicit form, in [8] (Lemma 1.4). The
proof depends on the fact (Anders6n [2]) that every polynomial (time-indepen-
dent) divergence-zero vector field on C" is a finite sum of complete fields of the
form

X(z) f(Az)v, z e C",

where v e C", A is a complex linear form on C" satisfying Av 0, and f is a
holomorphic polynomial in one variable. (See also the appendix in [5].) The flow
of this field is given by

6,(z) z + tf(Az)v, z C", t e C,

and it belongs to the shear group 5a" c Autl C". The proof of Proposition 2.2 for
time-dependent fields follows by approximating the field Xt for on short time
intervals [k/N, (k + 1)/N] c [0, 1] by the time-independent divergence-zero field

Xk/N. We refer the reader to [5] or [8] for the details.
In Proposition 2.2 it is very important that the field X is defined globally on

C" for each t. Alternatively, it suffices to assume that X is defined on Dt F(D)
and it can be approximated, uniformly on compacts in Dr, by divergence-zero
fields defined on C".

In order to get the precise result that we need, we recall the connection between
vector fields and forms of degree n 1. Let ’ be a complex manifold of dimen-
sion n with a holomorphic volume form f. To each holomorphie vector field X
on /, one associates the holomorphie (n 1)-form ixf, where ix denotes the
contraction by X. Since f is nondegenerate, this defines an isomorphism between
holomorphic vector fields and holomorphic (n- 1)-forms on every domain
O c //. If f is the standard volume form (1) on C" and if X 7=1 Xj(O/Oz.),
then
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Recall [1, page 121] that for any differential form we have

Lxo d(ixoO + ix(doO.

Applying this to t2 (for which df 0) and using (4) we get

(div X). f Lxf d(ixf).

Hence div X 0 if and only if d(ixf) 0. Of course this can be verified immedi-
ately in the case when f is the volume form (1) on C and div X is given by (5).

Recall that a domain D c C is Runge in C if every holomorphic function on
D is a limit of holomorphic polynomials, uniformly on compacts in D.

PROPOSITION 2.3. Let Xt be a time-dependent holomorphic vector field on an
open subset of R x C. Let D C be a domain of holomorphy such that the flow
Ft(z Ft, o(Z) of X is defined for all z D and for 0 < < T for some T > O. Set
D Ft(D C. Assume that for each [0, T] the holomorphic (n 1)-form gt

ixt on Dt is exact, and Dt is Run#e in C. Then for each [0, T] the map F is a
limit of volume-preservin# holomorphic automorphisms of C, uniformly on compacts
in D.

Remark. It is reasonable to call a holomorphic vector field X, for which the
form cx ixf is exact holomorphic, an exact diverflence-zero vector field, and its
flow an exact volume-preservin# flow. This is in complete analogy with the situa-
tion in symplectic geometry where one distinguishes between locally Hamiltonian
versus exact Hamiltonian vector fields and flows (see [1] and [7]).

Proof of Proposition 2.3. Recall that on a domain of holomorphy D C
(and on any Stein manifold D), the de Rham cohomology group HP(D; C) for
each p Z/ coincides with the group of closed holomorphic p-forms modulo
exact holomorphic p-forms [11, page 58]. Since D and therefore Dt Ft(D) is a
domain of holomorphy for [0, T-I, the assumption implies that gt dflt for
some holomorphic (n- 2)-form fit on Dr. Since Dt is assumed to be Runge in C,
we can approximate the coefficients of fit, which are holomorphic functions on
by holomorphic polynomials. Thus we obtain (n- 2)-forms fit on C which ap-
proximate t uniformly on compacts in Dr. The exact (n 1)-forms t d/t then
approximate gt on compacts in Dr. The holomorphic vector field Y on Cn, defined
by t i,tf, has divergence zero, and it approximates Xt uniformly on a chosen
compact in Dr. It is possible to choose Y such that it is smooth in t, and such that
Y- XI is arbitrarily small on a given compact set g o<t,.<r {t} x Dr. (See

[5-1, Lemma 1.2). Since Y is globally defined on C", the flow of Y, which by
construction approximates the flow Ft of X on D, is itself a limit of volume-
preserving holomorphic automorphisms of C" according to Proposition 2.2. This
proves Proposition 2.3.

COROLLARY 2.4. Let D C be a domain of holomorphy satisfyin# H-I(D; C)
O, and let Ft" D D C (0 < < 1) be the flow of a time-dependent holomor-
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phic vector field X such that Fo is the identity on D. Assume that for each [0, 1],
div X 0 on Dr, and the domain Dt is Runge in Cn. Then for each [0, 1] the
map Ft: D D can be approximated by volume-preserving holomorphic automor-
phisms of Cn, uniformly on compacts in D.

Proof. The condition div Xt 0 implies that the holomorphic (n- 1)-form
tt ix,t) is closed. Since H"-I(D; C) H"-I(D; C) 0, it follows that 0 is exact,
and therefore Proposition 2.3 applies, m

Remark. This result was stated incorrectly in [8] (part of Theorem 1.1), where
the cohomology condition H"-(D; C)= 0 was missing. The following example
shows that the result fails without this condition. (See also the forthcoming
correction to [8-1 in Inventiones Mathematicae.)

Example. The map F(z, w) (z, w + t/z) is a volume-preserving automorphism
of C. x C for all C. The circle T {(z, ) C2: Izl 1 } is polynomially con-
vex, hence it has pseudoconvex tubular neighborhoods f which are Runge in C2.
The same is true for the curve T F(T) for each t. All conditions in Corollary
2.4, except the cohomological one, are satisfied. However, Ft for 0 is not the
limit of volume-preserving automorphisms of C2 in any neighborhood of T. This
can be seen by calculating the integral of the form 0 w dz on T: The integral
equals 2hi(1 + t) and so it depends on t, while this quantity is preserved by the
uniform limits of volume preserving automorphisms of C2 (see Section 3). On the
other hand, each F is a limit of (non-volume-preserving) automorphisms of C2 in
a neighborhood of T according to Theorem 1.1 in [8]. Of course it is far from
obvious how to get such an explicit approximation.

An example of this type exists for every n > 2. Let S be the (n 1)-dimensional
sphere, embedded as a hypersurface in Rc C. There exists a closed, but
nonexact holomorphic (n- 1)-form in a tubular neighborhood of S such
that s : 0. The flow F of the divergence-zero vector field X defined by

ixf is a family of volume-preserving mappings near S such that F cannot
be approximated by volume-preserving automorphisms of C when is small but
not 0.

3. Construction of exact volume-preserving isotopies. In this section we prove
the main theorem. Let fo, f: M C" be real-analytic embeddings which are AutC"-
equivalent by a biholomorphic map F, defined in a neighborhood of fo(M) (see
Definition 1). We begin by showing the necessity of the condition &(fo) (f:)
for Aut C"-equivalence in case (ii). To this end we suppose that there is an F as
above such that F lim_,oo F in a neighborhood of Mo fo(M) C", where
F Auto_C" for all v Z+. The closed orientable manifold M_o bounds a compact
n-cycle Mo in C" in the homological sense. (We can take Mo to be a pieeewise
smooth manifold with boundary Mo.) Since dfl f and F*f f, the Stokes
theorem gives
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Letting v c, we get Mo fl VtUo)fl u, fl, which means ’(fo) (fx).
In the remainder of the section we prove that the conditions in the main theo-

rem are sufficient for Autl C"-equivalence of fo and fl. Recall from ([8], Theorem
3.1) that real-analytic, totally real, polynomially convex embeddings fo, fl:M
C" are AutC"-equivalent if and only if there exists an isotopy of embeddings
f: M C" (0 < < 1), connecting fo to f, such that the submanifold Mt f(M)
c C" is totally real and polynomially convex for each t. By approximation we
ensure that the map

f: [0, 1] x M Cx+", f(t, x) (t, f(x)),

is real-analytic. If M is closed, oriented, of dimension n 1, and if (fo) (fx)
: 0, we can ensure in addition that

(f) (fo), 0 < < 1. (6)

This can be done by first noting that, since the integrals (f) are complex-valued,
a generically chosen isotopy f (0 < < 1) will satisfy (f) 0 for all [0, 1].
Let (R)c(zl, z2,..., z,) (cz, z2,..., z,). Then (R)*fl eft, and therefore ((R)c o f)
c(f) for every map f: M C". Replacing the original isotopy f by (R), o f,,

with ct (fo)/(f), gives (6). Clearly, the rescaling by (R) preserves the other
relevant properties of the embedding such as real-analyticity, total reality and
polynomial convexity.

Remark. We believe that in the exceptional case (fo)= (fx)= 0 one can
still choose the isotopy f: M C" such that ’(f) 0 for all [0, 1], and the
other properties hold. For closed curves in C this is a special case of Proposition
3.1 in [7]. For higher-dimensional manifolds the required technical details seem
considerable, and we will not prove this here.

Let M f(M) c C". We will show that each real-analytic diffeomorphism f o

f-:Mo M extends to a volume-preserving biholomorphie mapping F, defined
in a neighborhood of Mo in C", such that each map F, and in particular F F,
is a limit of volume-preserving automorphisms of C". This will complete the proof
of the main theorem.
For a fixed [0, 1], we let

E(t) f( [O, t] xM)= {t} x M,
O<t<l

X X(1).

This is a compact real-analytic submanifold in Cx+" which is fibered over [0, 1"1 =
R and whose fiber over [0, 1] is Mr. Since M is totally real and polynomially
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convex for each t, E is also totally real and polynomially convex. We define a
vector field X(t, z) Xt(z) of type (1, 0) along E, with values in Cn, as the infini-
tesimal generator of f:

d
d-f(x Xt(f(x)), x M, 0 < < 1. (7)

We emphasize that X is a section of T(I’)C whose coefficients are real-analytic
functions on E. Then the map f o fo-l: Mo Mt is the flow of X which starts
with the identity on Mo at time 0.

PROPOSITION 3.1. Keep hypotheses as above. There exists a real-analytic vector

field Yt(z) Y(t, z) with values in Cn, defined in an open neighborhood U o<t< {t)
x Ut of Z, in [0, 1] x C, such that

(i) Yt Y(t, ") is holomorphic in Ut for each fixed t,
(ii) Y X on E, and
(iii) the holomorphic (n 1)-form t irtf is exact in Ut for each [0, 1].

Once the proposition is proved, we obtain the main theorem as follows. Let Ft
be the flow of Y such that Fo(z)= z for z Mo. Since Y X on M for each
t [0, 1], we get Ft o fo(x) f(x) for x M and [0, 1]. This implies that Ft(z)
is defined for all z in an open neighborhood Uo c C" of Mo and for all [0, 1-1.
Moreover, since div Y 0 for all [0, 1], each Ft is a volume-preserving biholo-
morphic map of Uo onto Ut Ft(Uo) C". Since the manifold Mt is totally real
and polynomially convex for each [0, 1], we can shrink the neighborhood Uo
such that Ut is pseudoconvex and Runge in C" for each [0, 1-1 ([8], Lemma
2.2). Hence the conditions of Proposition 2.3 are satisfied, and therefore each map
Ft for e [0, 1] is a limit of volume-preserving holomorphic automorphisms of
C". The map F F1 realizes the Aut C"-equivalence of the embeddings fo and fx.
This establishes the main theorem, provided that Proposition 3.1 holds.

Proof of Proposition 3.1. Let X be defined by (7), and set

ot ixtD, 0 < < 1. (8)

This is a real-analytic section of T*t-’)C over Mt which depends analytically
on [0, 1].
We claim that t extends to an exact holomorphic (n- 1)-form t in a neigh-

borhood Ut C" of Mr, depending analytically on [0, 1-1, with some unifor-
mity in the size of Ut with respect to t. Once we have such extension, we define a
holomorphic vector field Y on Ut by t irf. Clearly this field satisfies Proposi-
tion 3.1, and the main theorem follows.
Denote by it: Mt C the inclusion map. Recall that t is a holomorphic form

of degree n 1. If H-I(M; C) 0, the pull-back form i*0 is necessarily exact on

Mt for each [0, 1-1. (It even vanishes when dim M < n 1.) The corollary in
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the appendix (in the parametrized version) implies that st extends to an exact
holomorphic form t in a neighborhood of M such that the extension is real-
analytic in all variables, including 6 [0, 1].

In the remaining case when M is a closed, connected, orientable manifold of
dimension n 1, the group H"-I(M; C) is isomorphic to C, and an (n 1)-form cz
on M is exact if and only if t 0 (see [4]). To complete the proof we need the
following lemma.

LEMMA 3.2. If Xt is the vector field defined by (7) and s is defined by (8),
then

d
(f,) f, ,, o < < 1.

dt

Proof. This is an application of the Stokes theorem. Recall that dfl f. Fix a
6 [0, 1]. Then

(f,) (fo) fu /- u /
0

The result follows by differentiating both sides on l.

Since our isotopy f was constructed in such a way that (f) is independent of
t, Lemma 3.2 implies that vtt st 0 for all 6 [0, 1]. Hence the pull-back i*g is
exact for each t, and the corollary in the appendix applies as before. This proves
Proposition 3.1 and therefore the main theorem, m

APPENDIX

Extension of closed holomorphic forms

THEOREM. If M is a closed complex submanifold in a Stein manifold X, there
exists an open Stein nei#hborhood f X of M with the followin# property. Given
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a holomorphic p-form on such that d(ire) O, there exists a closed holomorphic
p-form on f satisfyin9 ]M e[vt. If ie is exact, then can be chosen to be
exact on .

Here, i: M c_ X is the inclusion map, ite is the pull-back of z to M, and z]t is
the restriction of cz to points of M. In fact, it suffices to assume that e is a p-form
on X which is only defined and holomorphic along the submanifold M.

Proof. According to a theorem of Docquier and Grauert [10, page 257], the
submanifold M has Stein neighborhoods fl c X such that there exists a holomor-
phic retraction r" )-, M. (In [10] the result is proved when the ambient mani-
fold is C", and the general result follows from the embedding theorem for Stein
manifolds; see [11, page 132].) Fix such an fl, and set cz eo / el, where eo
r*(icz) and 01 0- czo. The holomorphic form Zo on f is closed since dzo
zr*(dioO O. Moreover, if ir0 dfl, then 0o r*(dfl) dOr*fl) is exact holo-
morphic on f. It suffices now to prove that the form 1 lu has an exact holomor-
phic extension on f, since the form % + then satisfies the theorem.
We first show that for every point Zo M there is an open Stein neighborhood

U c f of Zo and a holomorphic (p 1)-form y on U satisfying

Tlv O, dTltv Itv. (9)

To do this we choose local holomorphic coordinates z (z’, z") on f, with z’
C and z" e C (n dim X, m dim M), such that in these coordinates Zo 0
and M {z" 0}. Write

l(z)= as(z)dzs,
#J=p

where J (Ja, Jp) Z+, 1 < Ja < J2 <"" < J, < n, and dzs dz, ^ ^ dz,.
Consider a typical term as(z)dzs. If J c {1, m}, this term is tangential to
M {z" 0}. Since ita 0 by definition of aa, it follows that as(z’, 0) 0 for
every such term. Hence we do not need to consider terms of this type since they
restrict to 0 on M c U.

Suppose now that J contains an index Js > m. Write J { is} w J’. We have

d(as(z)z, dzs,) (- 1)-las(z) dzs + z das(z) ^ dzs,.

This shows that the form ’s (- 1)-as(z)z dzs, satisfies (9) if we replace by
the term as(z) dzs. Taking Ys, we obtain a local form y satisfying (9).
We now globalize this construction in a standard way. Cover f by open Stein

sets U such that for every j there exists a holomorphic (p- 1)-form V on U
satisfying (9). Let U, U U, and define
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This is a 1-cocycle on the cover q/= { U} which satisfies

Ti,jlMt,.j 0, dTi.jlMt,.j O.

We denote by Ck the sheaf of germs of holomorphic differential k-forms on f and
by t the subsheaf of Ck consisting of germs of k-forms satisfying ’lu 0 and
dTlM O. If f 60 is a germ of a holomorphic function on f and , eke, then the
formula d(f) df ^ + f d implies f, . Hence Ck is an analytic sheaf on
f for each k > 0, and {)’i,} is a 1-cocycle with coefficients in the sheaf

LEUMA. The sheaf is coherent analytic for each k > O.

We refer the reader to I-9] or !-11-1 for the definition and main results on (coher-
ent) analytic sheaves.

If the lemma holds, Cartan’s Theorem B (see [11, page 199] or [9, page 124])
implies Hl(f; -)= 0. This means that every Cousin-I problem with coeffi-
cients in this sheaf is solvable (after passing to a finer cover if necessary). Thus
there exist holomorphic (p 1)-forms i on U satisfying

ffflMrt, 0, dffilMt, O, , j y,j yj on Ui,

The form V which equals V- on Ui is then globally defined on , and it
satisfies d’[M x IM. Thus dv is the required exact holomorphic extension of
This proves the theorem, provided that the lemma holds.
The proof of the lemma is an exercise in multilinear algebra. Given a point

Zo e M, we choose local holomorphic coordinates ( (z, w) on fl, centered at Zo,
such that z C’ (m dim M), w Cd (d dim f m), and M {w 0}. The
result is obvious for k 0 since o is the sheaf of germs of holomorphic functions
which vanish to second order on M {w 0}. For k 1 we first observe that
the following 1-forms belong to :

WiW dgk, WiW) dWk, W dw, w dw / wj dw.

In the last case we take :/: j. It is easy to show that these forms (for all possible
values of i, j, k) generate each stalk of as an (9-module. To get local generators
for , k > 1, it suffices to multiply these 1-forms with the standard basis holo-
morphic (k 1)-forms. This.shows that the sheaves are locally finitely gener-
ated. Similarly one shows that the sheaf of relations between these generators is
locally finitely generated; we leave out the details. Therefore the sheaft is coher-
ent analytic, m
COROLLARY. Let M be a compact, real-analytic, totally real submanifold in a

complex manifold X. Given a (p, O)-form on X, whose coefficients are defined and
real-analytic on M, satisfying d(ir)= O, there exists an open Stein neighborhood
c X of M and a closed holomorphic p-form on f such that lu lu. If ir is

exact, the extension can be chosen to be exact holomorphic.
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Remark. Note that, unlike in the theorem, the size of the neighborhood f in
the corollary depends on the form aiM.

Proof. Since M is totally real in X, it is the zero level set of a nonnegative,
smooth, strongly plurisubharmonic function p, defined in a neighborhood of M
(see [12], Proposition 1.3). The sublevel sets p < e for small e > 0 are a basis of
Stein neighborhoods of M in X. If f is sufficiently small, M is contained in a
unique closed complex submanifold M c f (the com_plexification of M) of com-
plex dimension m dim M. By shrinking f and M we may assume that the
real-analytic form a, defined initially on M, extends to a form , defined on M,
whose~ coefficients (in local holomorphic coordinates) are holo_morphic functions
on M. The form itself has values on X, i.e., it is a section over M of the appropri,s
ate exterior bundle on X. Since ia is closed (resp. exact), the pull-back of to M
is also closed (resp. exact). The corollary now follows from the theorem above.

Remark. The theorem and its corollary also hold in the parametrized version.
We state the corollary in the case of one real parameter since this is the result
that we need in Section 3.

Let Mt X be a family of compact, real-analytic, totally real submanifolds, de-
pending real-analytically on the parameter 1-0, 1]. Assume that for each fixed
t [0, 1] we have a (p, O)-form a on X, defined and real-analytic along Mt, such
that the dependence of a on is real-analytic as well. Assume that for each
[0, 1], a pulls back to a closed (resp. exact) form on Mt. Then there exists a closed
(resp. exact) holomorphic p-form in a neighborhood U X (0 < < 1) which
depends real-analytically on [0, 1]. This parametrized version can be proved by
using the same methods.
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