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0. Introduction 

In this paper we survey some recent results on holomorphic automorphism groups of 
the complex Euclidean space en , with emphasis on question of approximation of biholo­
morphic maps and approximation of diffeomorphisms on certain classes of submanifolds 
in en by automorphisms of en. We also consider flows generated by holomorphic vector 
fields , especially by holomorphic Hamiltonian fields, and the global behavior of their orbits. 
Finally we collect t he known classification results for holomorphic flows on the plane e 2 . 

We do not consider questions of holomorphic dynamics of automorphisms, except for 
flows of Hamiltonian holomorphic vector fields (sect. 9) ; for dynamics in several variables 
we refer the reader to the recent survey [16] by Formess and Sibony. For the algebraic 
aspects of this theory we refer the reader to the survey in preparation by H. Kraft [26] . 

We denote by Auten the group of all holomorphic automorphisms of en , and by 
Aut1 en its subgroup consisting of automorphisms with Jacobian one ( J F = 1 ). While 
the group Aute 1 consists only of affine linear maps z f-+ az + b (a E e• = e\ {O}, 
b E e), these automorphism groups are very large and complicated when n > 1 which we 
shall assume throughout this paper. In particular, when n > 1, both groups are infinite 
dimensional Lie groups in the topology of uniform convergence on compacts in en. 

An important study of these groups, and especially of their actions on countable 
subsets of en , was done by Rosay and Rudin [32]. They proved that for any two countable 
dense subsets X , Y c en there is an FE Auten such that F(X) = Y. On the other hand, . 
they showed that the situation is very different for countable discrete subset s E c en: 
Every such subset can be m apped onto the standard arithmetic progression in ex {O}n-l C 
en by an injective holomorphic map F : en -+ en with J F = 1, but in general not by any 
automorphism of en . (Recall that an injective holomorphic map F: en -+ en whose image 
is a proper subset of en is called a Fatou-Bieberbach map, and its image F( en ) c e n is a 
Fatou-Bieberbach domain.) If we call two countable discrete sets E0 , E 1 c en equivalent 
when F(Eo) = E 1 for some F E Auten , then there exist infinitely many equivalence 
classes , and there exist discrete sets E c en such that the only automorphism of en 
mapping E onto E is the identity. The paper [32] also contains many interesting results 
on Fatou-Bieberbach maps, but we shall not consider this topic in the present paper. 
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The main tool used by Rosay and Rudin were special automorphisms of en , called 
shears (resp. generalized shears); see sect. 1 below. They raised the question whether the 
subgroup of Auten consisting of finite compositions of (generalized) shears is dense in 
Auten or perhaps even equal to it. 

Both of these questions were answered by E . Andersen [4] in the volume preserving 
case and by Andersen and Lempert [5] in the general case: The shear subgroup of Auten 
resp. Aut 1 en is dense in, but not equal to the whole groups (Corollary 2.2 below). The 
main step in the proof of the density result in [4,5] is a decomposition theorem, Proposition 
4.1 below, to the effect that every polynomial holomorphic vector field on en is a finite 
sum of complete polynomial fields whose flows consist of (generalized) shears. 

This approach was further developed by J. -P. Rosay and the author in [21 ]. An 
automorphism FE Auten is viewed as the time one map in the flow F1(z) (0 ::; t ::; 1) 
of a time-dependent entire holomorphic vector field X 1 . Explicitly, F1(z) is the solution at 
time t E [O, 1] of an ordinary differential equation 

Z(O) = z, 

where X 1 is a holomorphic vector field on en for each fixed t which is of class C1 in both 
variables (t,z). We can approximate X 1 on short time intervals [j/N , (j + 1) /N] C [0,1] 
by t ime independent polynomial vector fields Yj. Applying the result of Andersen and 
Lempert on decomposition of polynomial holomorphic vector fields into finite sums of 
complete shear fields, one concludes that the flow of each Yj (and therefore the flow of the 
original t ime dependent field X 1) can be approximated by compositions of (generalized) 
shears . This shows in fact that the flow of any globally defined holomorphic vector field 
X 1 on en, wherever it is defined, is approximable by automorphisms of en. In [19] we 
extended these results to symplectic holomorphic automorphisms of e 2

n by considering 
flows of holomorphic Hamiltonian vector fields. 

In [21] and in the subsequent papers [17,19,20,22] we used this technique, together 
with new results on generic polynomial convexity of totally real submanifolds in en , to 
study question of approximation of smooth mappings F: M _.. en on compact , totally 
real, polynomially convex submanifolds M c en by holomorphic automorphisms of en, 
as well as the problem of global 9-equivalence of such submanifolds in en with respect to 
various automorphism groups g C Auten. 

In another direction we survey results on dynamics of holomorphic vector fields on 
e n, with emphasis on global questions such as completeness in real and complex time, 
analysis of complex orbits, abundance or nonabundance of bounded resp. exploding orbits, 
classification of flows induced by complete holomorphic vector fields, etc. 

The paper is organized as follows. In section 1 we introduce the shear groups and 
the holomorphic symplectic groups. In section 2 we collect results on approximation of 
biholomorphic mappings between domains in en by automorphisms of en . In sections 
3- 4 we recall some properties of flows of holomorphic vector fields and indicate proofs of 
results of section 2. In sections 5- 7 we survey results on approximation by automorphisms 
on cer tain classes of real submanifolds in en. In section 8 we mention some results on 
complex orbits of holomorphic vector fields. In section 9 we survey results on dynamics of 
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holomorphic Hamiltonian vector fields on C 2 n . Section 10 contains results on classification 
of one-parameter subgroups in the automorphism group AutC2 of the plane. 

I wish to thank P. Ahern, G. Buzzard, M. Flores, J.-E. Fornress, H. Kraft , J-P. Rosay, 
W. Rudin, and D. Varolin for discussions and communication on this subject . 

1. Automorphism groups of en 

Let z = (z1' .. . ' Zn) be the complex coordinates on en. Recall that Auten is the group 
of all holomorphic automorphisms of en and Aut 1 en is the group of all automorphisms 
with Jacobian one. These preserve the complex volume form n = dz1 /\ · · · /\ dzn, in the 
sense that F*n = n. 

On the even dimensional spaces c 2 n (n 2: 1) we also have the group of symplectic 
holomorphic automorphisms. Let w be the complex symplectic form on C 2 n: 

n 

w = L dzj /\ dzn+j· 
j=l 

(1) 

A holomorphic map F : D c c 2 n ---+ c 2 n is said to be symplectic holomorphic if F*w = w. 
The symplectic holomorphic automorphism group of c 2 n is 

Aut5 pC 2 n = {FE AutC 2 n: F*w = w }. (2) 

Since wn is a constant multiple of the volume form non c 2n, every symplectic holomorphic 
map has Jacobian one. On C 2 these two classes of maps coincide. Thus 

AutspC 2n c Auti c 2n c Autc2n, 

Each of these groups contains the corresponding linear subgroup: 

GL(n,C) C Auten, SL(n,C) C Aut1Cn, Sp(n,C) C AutspC 2n. 

The automorphism groups introduced above contain the following complex one pa­
rameter subgroups (with complex parameter t E C) : 

F1(z)=z+tf(Az)v, zECn, 

G1(z) = z + (etg(J\z) - l)(z ,v)v, z E en, 

S1(z) = z +th(w(z,v))v, z E c 2
n. 

(3) 

(4) 

(5) 

Here v E en is a fixed vector of length one, A: en ---+ Ck is a C-linear map for some k < n 
satisfying Av = 0, (z, v) = I: zj'vj, f and g are entire functions on Ck, h is an entire 
function on C, and w is the symplectic form (1). 

Every map of the form (3) or (5) (for a fixed t EC) is called a shear, and maps ( 4) are 
generalized shears. This terminology was introduced by Rosay and Rudin [32], although 
automorphisms of this type have been used before. Notice that (5) is a special case of (3) . 

One can easily verify that in all three cases we have Fs o F1 = Fs+t for s, t E C, which 
means that the above are complex one parameter subgroups of the respective automor­
phism groups. 

Write z = (z'' Zn), where z' = (z1' ... 'Zn-1) E cn- 1. 
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1.1 Proposition. (i) The group (3) is SU(n , e)-conjugate to a group 

F1(z) = (z',zn +tf(z')), 

(ii) The group (4) is U(n) -conjugate to a group 

G1(z) = (z',exp(tg(z'))zn), 

(iii) The group (5) is Sp(n, e)-conjugate to a group 

St( Z) = ( Z1, .. . , Zn, Zn+ l +th( Z1 ), Zn+2, . . . , Z2n) , 

The proof is straightforward; see the appendix in [1 7] and section 5 in [5]. It follows 
that the groups (3), ( 4), and (5) belong to, respectively, Aut1 en, Auten, and Autspe2 n. 
The shears of type (5) are called symplectic. 

1.2 Definition. (i) S1 ( n) is the subgroup of Aut1 en consisting of finite compositions of 
shears (3); 
(ii) S(n) is the subgroup of Auten consisting of finite compositions of (generalized) shears 

(3) and (4); 
(iii) Ssp(n) is the subgroup of Autspe2n consisting of finite compositions of symplectic 

shears (5). 

It is easily verified that 

GL(n, e) c S(n), SL(n, e) c S1(n) , Sp(n, e) c Ssp(n) . 

In fact, the group SL(n, e) is generated by the elementary matrices with diagonal entries 
one and only one other nonzero entry. Clearly such a matrix represents a linear shear (3) in 
a coordinate direction. To get the group GL(n, e) one has to add to these the dilations in 
coordinate directions, and these are compositions of linear generalized shears ( 4 ). Finally, 
the linear symplectic group Sp(n , e) is generated by symplectic shears (5) with h( () = c(. 

Another group of special interest is the group pn of all polynomial holomorphic auto­
morphisms of en and its subgroup Pf of polynomial automorphisms with Jacobian one. 
Since the Jacobian of every polynomial automorphism is constant, we have pn =Pf x e•. 
On e 2 n one also have the symplectic polynomial group P'1; c Aut.Pe2 n. 

Notice that every shear of type (3) and (5) can be approximated by polynomial shears 
of the same type by approximating the function f resp. h by polynomials. Thus the 
polynomial shear groups generated by polynomial automorphisms of type (3) resp . (5) are 
dense in the corresponding shear groups. This is not the case for generalized shears ( 4) 
with nonconstant Jacobian. 

2. Approximation by shears 

Recall that a domain D c en (not necessarily pseudoconvex) is Runge if every holo­
morphic function in Dis a limit of polynomials, uniformly on compacts in D. Every convex 
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domain in en is Runge, and so is every starshaped domain [12]. (The last result is already 
mentioned in Behnke and Thullen [9], p.130, who attribute it to B. Almer.) 

We are interested in the problem of approximating a biholomorphic map F: D --> 

D' between Runge domains in en by automorphisms of en. The following result of 
fundamental importance is due to Andersen [4] and Andersen and Lempert [5] (case (c) 
was established by the author in [18].) The topology is that of uniform convergence on 
compact sets in D. 

2.1 Theorem. Let F: D --> F(D) c en (n 2:: 2) be a biholomorphic mapping from a 
convex (or starshaped) domain D c en onto a Runge domain F(D). Then 

(a) Fis the limit of a sequence <I>1ID, <I>j E S(n) ; 

(b) if F*D = D (JF = l ), then Fis the limit of a sequence <I>1 E S 1 (n); 

(c) ifn = 2m and if F*w = w, then Fis the limit of a sequence <I>j E Ssp(m). 

2.2 Corollary. (i) The group S 1(n) is dense in Auticn for n 2:: 2; 

(ii) the group S(n) is dense in Auten for n 2". 2; 

(iii) the group Ssp(n) is dense in Aut5 pC2 n for n 2". 1. 

It is known [4,5] that the inclusions in (i) and (ii) are proper, i.e., there exist auto­
morphisms which are not finite compositions of shears. Most likely the same is true in case 
(iii) . It follows that the group of polynomial shears (3) resp. (5) in also dense in Aut1 en 
resp . Aut5 pC 2 n. 

2.3 Corollary. Every injective holomorphic map (a Fatou-Bieberbach map) F: en --> en 
onto a Runge domain F( en) c en is a limit of automorphisms of en. 

It is an open question whether every Fatou-Bieberbach domain in en is Runge. 

The following example from [21] shows that, in general, Theorem 2.1 does not hold 
for an arbitrary Runge domain D c en. Further examples can be found in [5] and [21]. 

Example: The curve 

is polynomially convex. The mapping 

F( z,w) = (z ,w + (1 - zw)( l /z -1)) 

is biholomorphic near M and fixes M pointwise. There is a basis of strongly pseudoconvex 
Runge neighborhoods D of M in C 2 such that F(D) is also Runge in C 2 . However, the 
Jacobian of F equals J F( z, w) = z, and its winding number along Mis one. Hence F can 
not be approximated by automorphisms of C 2 (or even by diffeomorphisms of C 2 ! ) in 
any open neighborhood of M. 

The following generalization of Theorem 2.1 to 'isotopies' of biholomorphic maps is 
very useful in applications , and it can be proved by the same methods. Case (i) was proved 
in [21], case (ii) in [20], and case (iii) in [19]. 
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2.4 Theorem: Let D c en (n 2'. 2) be a Runge domain and let Ft: D --+ en be a 
biholomorphic mapping for each t E [O, 1], of class C2 in (t, z) E [O , 1] x D , such that F0 is 
the identity on D and the domain Ft(D) is Runge in en for each 0:::; t:::; 1. Then 

(i) Ft is a limit of automorphisms of en for each t E [O , 1]. 

(ii) If J Ft = 1 for each t E [O, 1] and if Dis a domain of holomorphy satisfying Hn-l (D; e) 
= 0, then Ft is a limit of volume preserving automorphisms of en for each t E [O , 1]. 

(iii) If n is even, if F/w = w for each t E [O, 1], and if D is a domain of holomorphy 
satisfying H 1 (D; e) = 0, then Ft is a limit of symplectic holomorphic automorphisms 
of en for each t. 

Examples in [19] and [20] show that the conclusions in (ii) and (iii) do not hold without 
the respective cohomology condition on D. See also section 6 below. A sharper version of 
the last result which includes regularity with respect to the parameter x E Rk was proved 
in [17 , Theorem 1.1] . We only consider the group Auten. 

2.5 Theorem. Let D c en be a Runge domain, and let B be the closed unit ball in 
R k . Assume that F: B x D --+ en is a mapping of class cP (0 :::; p < oo) such that for each 
x EB, Fx = F(x , · ): D--+ en is a biholomorphic mapping onto a Runge domain Dx c en, 
and the map Fa is the identity on n. Then for each compact set J( c n and each E > 0 
there exists a smooth map .P: B x en --+ en such that iI>x = .P(x , · ) is a holomorphic 
automorphism of en for every x EB and IJF- iI>lb(BxK) < E. 

We will indicate the proof of these results at the end of section 4 below. 

3. Flows of holomorphic vector fields 

In this section we recall some basic notions concerning flows of vector fields . 

Suppose that for each t E [O , 1], Xt is a holomorphic vector field on a domain Dt in a 
complex manifold M . The flow Ft,s is the solution of the ordinary differential equation 

d 
dtFt,s(z) = Xt(Ft,s(z)) , Fs,s(z) = z En •. 

Assume that there is a domain Do C Do such that the flow F1(z) = Ft,o(z) exists for all 
0:::; t:::; 1 and all z E Do . Then Ft: Do --+ Ft(Do) = D 1 C D1 is a biholomorphic map for 
each t E [O , 1], Fa is the identity on D0 , and Fs,t = F1 o F.- 1 on D 8 • 

If the field Xt = X is time independent, its flow F1 is a local one parameter automor­
phism group, i .e ., Ft+s =Ft o Fs where both sides are defined. In particular, Ft ,s = Ft-s· 

3 .1 Definition. A holomorphic vector field X on a complex manifold M is said to be 
complete in real (resp . complex) time if for every point z E M the flow Ft(z) of X exists 
for all real (resp . complex) values oft. 

The flow of a complete holomorphic vector field is a real (resp. complex) one parameter 
subgroup of the automorphism group AutM. 
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The Lie derivative of a tensor a with respect to a vector field Xs is defined by 

For any pair t, s we have 

If a is a differential form, then 

where J denotes the contraction (see [1, p.121]). Combining the last two identities we get 

3.2 Proposition. Let F1,s be the flow of a time dependent vector field X 1 as above, and 
let a be a closed differential form on M. The following are equivalent: 

(a) F1~.a =a for all 0:::; s, t:::; l; 

(b) the form XtJ a is closed on D 1 for all 0 :::; t :::; 1. 

From now on let M = en. Let n the standard volume form and w the standard 
symplectic form (1). Recall that the divergence divX of a holomorphic vector field X 
with respect to a volume form n is the unique holomorphic function satisfying d( x Jn) = 
(div X)n . 

3.3 Definition. (a) A holomorphic vector field X on a domain D c c 2
n is Hamiltonian 

(resp. exact Hamiltonian) if the 1-form X Jw is closed (resp. exact) on D. 

(b) A holomorphic vector field X on D c en is divergence free (resp. exact divergence 
free) if the (n -1)-form Xjn is closed (resp. exact) on D. 

3.4 Corollary. Let X 1 (0 :::; t :::; 1) be a time dependent holomorphic vector field on 
D1 c en, and let F1,s: Ds -+ D1 be its flow as above. The following are equivalent: 

(a) The map Ft,s is symplectic (resp. volume preserving) for each 0:::; s, t:::; 1; 

(b) The vector field X 1 is Hamiltonian (resp. divergence free) on D 1 for each 0 :::; t:::; 1. 

In the first case (X1 Hamiltonian) we assume of course that n is even. For later 
reference we recall some basic notions of Hamiltonian mechanics, refering the reader to 
[1] and [6] for details. We denote the coordinates in c 2 n by (z,w), with z,w E en. 
Then w = I;j=1 dzi /\ dwi. A holomorphic vector field X on a domain D c c 2

n is exact 
Hamiltonian if 

Xjw = dH (6) 

for some holomorphic function H on D . If D is a domain of holomorphy satisfying 
H 1 (D; C) = 0, then every Hamiltonian holomorphic vector field on D is exact Hamil­
tonian. The function H, which is determined up to an additive constant (when D is 
connected), is called the energy function (or simply the Hamiltonian) of X. Conversely, 
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every H E O(D) determines an exact Hamiltonian holomorphic vector field X = XH on 
D by (6). It is easily verified that 

n DH D DH D 
XH = """'~~ - ~~ = (Hw, -Hz). 0 uw· uz· uz· uw· 

j=l J J J J 

(7) 

In particular, every entire functions H on e 2 n can be regarded as a holomorphic Hamil­
tonian, giving rise to a Hamiltonian vector field XH on e 2n. 

The (local) flow Ft of the field XH remains in the level sets of Hand it preserves the 
symplectic form w (Ftw = w) on the set where Ft is defined. This holds both for real as 
well as complex values of time t. 

4. Decomposition of polynomial vector fields into complete shear fields 

Simple examples of holomorphic vector fields on en which are complete in complex 
time are the shear vector fields which generate the shear subgroups (3)- (5): 

X(z) = f(Az)v , 

Y(z) = g(Az)(z , v)v , 

W(z) = h(w(z,v))v, 

z E en, 

Fields of type (8) have divergence zero, and fields of type (10) are Hamiltonian. 

(8) 

(9) 
(10) 

The following decomposition result plays a central role in proof of the approximation 
theorems in section 2. Part (ii) is due to Andersen [4], part (i) to Andersen and Lempert 
[5], and part (iii) to the author [18]. (See the appendix in [17] for a short proof of (i) and 
(ii) .) 

4.1 Proposition: Let X be a polynomial holomorphic vector field on en. 
(i) X is a finite sum of shear vector fields of type (8) and (9). 

(ii) If divX = 0, then X is a finite sum of shear vector fields of type (8). 

(iii) If n = 2m and X is Hamiltonian, then X is a finite sum of Hamiltonian shear vector 
fields of type (10). 

Of course there exist other types of complete holomorphic vector fields on en. A 
particular example on e 2 is X(z,w) = (z 2w,-zw2 ), with the flow 

Andersen proved [4] that for t #- 0 the automorphism Ft is not a finite composition of 
shears. For further examples of complete holomorphic vector fields see [2 ,6,34] and section 
10 below. 

The following result is standard; see e.g. [1, p.92]: 
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4.2 Proposition. Let X be a vector field of class C1 on a manifold M which is a finite 
sum X = I:j=l Xj of C1 fields Xj. Denote by F/ the flow of Xj and by Ft the flow of X. 
Then 

The convergence is uniform on every compact set]{ C M such that Ft(x) is defined for 
all x E K. 

Combining the above two propositions and observing that the flow of every shear 
vector field (8)-(10) on en consists of shear automorphisms (3)- (5) we get 

4.3 Proposition: Let X be a holomorphic vector field defined on all of en. Let D 
be an open subset of en and let t0 > 0. Assume that the flow Ft(z) is defined for all 
0 :S: t :S: t0 with arbitrary initial condition Fo(z) = z E D. Then the following hold for 
each t, 0 :S: t :S: t 0 : 

(i) Ft: D --+ F1(D) c en is a biholomorphic map which can be approximated, uniformly 
on compact sets in D, by automorphisms <PE S(n). 

(ii) If divX = 0, then Ft can be approximated by automorphisms <P E S1 (n ). 

(iii) If n = 2m and X is Hamiltonian, then F1 can be approximated by symplectic auto­
morphisms <PE Ssp(n) . 

The same is true for time dependent holomorphic vector fields on en. 

Sketch of proof of Theorem 2.4: We consider the family of biholomorphic maps Ft: D --+ Dt 
(0 :S: t :S: 1) as the flow of a time dependent holomorphic vector field Xt, defined on the 
domain D 1 for each t E [O, l]. Since D1 is Runge in en for each t, we can approximate Xt 
on Dt by a polynomial holomorphic vector field Y;. Similarly, if X 1 is exact divergence zero 
(resp. exact Hamiltonian) on D1 , we can approximate X 1 on Dt by polynomial divergence 
zero (resp. Hamiltonian) vector fields; see [20] resp. [19]. Such approximation is always 
possible if D1 is pseudoconvex and Hn-l(D1 ; e) = 0 (resp. H 1 (Dti e) = 0) . Finally, by 
splitting the time interval into short subintervals and approximating Yi on every subinterval 
by a time independent field it suffices to consider the case when Y is time independent. 
The result now follows from Proposition 4.3. 

Theorem 2.1 is proved by first reducing it to the case F(O) = 0, DF(O) = I, and 
applying Theorem 2.4 to the isotopy F1(z) = F(tz)/t for 0 < t :S: 1, F0 (z) = z. It is easily 
verified that, since F(D) is Runge in en, the domain F1(D) is Runge for every t. 

5. Global holomorphic equivalence of real-analytic submanifolds 

The motivation for results in this section came from a result of J .-P. Rosay [31] to the 
effect that one can approximately straighten an arbitrary smooth arc in en (n ;:::: 2) by 
automorphisms of en. He observed that, for real-analytic arcs, this is a consequence of 
Theorem 2.1 above by Andersen and Lempert. The notion of global holomorphic equiv­
alence was developed further in the papers by Rosay and the author [21] and in [19,20]. 
In this section we consider the real-analytic manifolds; the case of smooth manifolds is 
postponed to section 7. 
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5.1 Definition. Let 9 c Auten be any group of holomorphic automorphisms of en. 
A real-analytic diffemorphism F: M 0 ---> Mi between compact, embedded, real-analytic 
submanifolds M 0 , Mi c en is said to be a (}-equivalence if F extends to a biholomorphic 
mapping in a neighborhood U of Mo which can be approximated, uniformly on U, by 
automorphisms <Ii E 9. Two real-analytic embeddings Jo, Ji: M <-+ en of a compact real­
analytic manifold M into en are (}-equivalent if the diffeomorphism F = Ji o J0-i is a 
(}-equivalence. 

Remark 1: Observe that, if a sequence <Ii j E 9 converges to a biholomorphic map F in 
a neighborhood of Mo, then by the maximum principle (applied to sequences {'1>1} and 
{ <I>ji}) the same sequence converges to a biholomorphic map in a neighborhood of the 

polynomial hull Mo. The extended map takes the hull Mo biholomorphically onto Mi. In 
particular, Mo is polynomially convex if and only if Mi is . 

Remark 2: If 9' C 9 are automorphism groups such that 9' is dense in 9, then every 
(}-equivalence is at the same time a (}'-equivalence. 

The following basic result for the case 9 = Auten is due to Rosay and the author 
[21 , Theorem 3.1]: 

5.2 Theorem. Let M 0 , Mi c en (n ?: 2) be compact, embedded real-analytic sub­
manifolds (with or without boundary) which are totally real and polynomially convex. A 
real-analytic diffeomorphism F: M 0 ---> Mi is an Auten-equivalence if and only if there 
exists a one parameter family of diffeomorphisms Ft: M 0 _,Mt c en (0 :St :S 1), of class 
C2 in (t , z) E [O, l] x M 0 , such that F0 is the identity on Mo, Fi = F, and Mt = Ft(Mo) is 
totally real and polynomially convex for every t E [O, l]. 

A short proof can be found in [17]. Here is the main idea of the proof. By approx­
imation we may assume that {Ft} is real-analytic also in t. Its infinitesimal generator 
Xt is a vector field of type (1,0) on en, defined and real-analytic along Mt. Since Mt is 
totally real and polynomially convex, Xt can be extended to a holomorphic vector field in 
a neighborhood of Mt which is a uniform limit of polynomial holomorphic vector fields. 
The result now follows from Proposition 4.3. 

Combining Theorem 5.2 with a result on genericity of polynomial convexity of low 
dimensional totally real submanifolds [21,17] we obtain ([17], Corollary 1): 

5 .3 Corollary. Let M be a compact real-analytic manifold and let J 0 , Ji : M _, en be 
real-analytic, totally real, polynomially convex embeddings. If dim M :S 2n/3, then Jo and 
Ji are Auten-equivalent. 

Explicit examples to which Corollary 5.3 applies are curves in en for n ?: 2 and 
surfaces in en for n?: 3. In this case we have the following more precise results (see [21], 
Theorem 4.2 and Corollary 6.3): 

5.4 Theorem. Let T be the circle. If J0 , fi :T _,en (n?: 2) are real-analytic em­
beddings such that both curves Jo (T) and Ji (T) are polynomially convex, then Jo and Ji 
are Auten-equivalent. Moreover, given an embedded, real-analytic, polynomially convex 
curve r c en, a biholomorphic map F: D _, en defined in a neighborhood of r can be 
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approximated by automorphisms of en in some smaller neighborhood of r if and only if 
F(I') is polynomially convex and the winding number of the Jacobian J(F) along r equals 
zero. 

For a stronger result on equivalence of curves see Theorem 6.1 below. 

5.5 Theorem. Let M c en (n 2: 3) be a compact, embedded, real-analytic surface that 
is totally real and polynomially convex. A biholomorphic mapping F: U --+ en, defined in 
a neighborhood of M, can be approximated by automorphisms ofCn near M if and only if 
F(M) is polynomially convex and the Jacobian J(F): M --+ C* is homotopic to a constant 
on M. In particular, if M is a two dimensional sphere, then F can be approximated by 
automorphisms of en near M if and only if F(M) is polynomially convex. 

The following result [21, Corollary 4.1] follows directly from Theorem 2.1. 

5.6 Corollary. All manifolds are assumed to be embedded and real-analytic. 

(a) Any two totally real, polynomially convex, k-dimensional discs in en (k < n) are 
A utCn-equivalent. 

(b) Any two arcs in en are Auten-equivalent. 

(c) Any two embedded analytic discs in en are Auten-equivalent. 
Moreover, if M c en is as in (b) or ( c ), then every biholomorphic map F: D --+ en in 
a neighborhood D of M in en can be approximated in a smaller neighborhood of M by 
automorphisms of en. If M is a k-disc as in (a), then F can be so approximated near M 
if and only if the image F(M) is polynomially convex in en. 

6. Global symplectic and volume preserving equivalence 

In this section we recall the results of [19] and [20] on 9-equivalence in the cases when 
9 is either Aut5 pC2 n or AutiCn. 

Choose a (1, 0)-form e on c 2 n such that de = -w; to be specific we will take 

n 

e = 2-:zn+jdZj. 
j=l 

Denote by T the circle. For a smooth map g: T --+ c 2 n we define the action integral 

A(g) = - lg•e. 
The following is the main result of [19]. 

6.1 Theorem. Let g0 ,g1 :T--+ c 2
n be two real-analytic embeddings of the circle into 

c 2 n. If g0 and g1 are Autspc 2n-equivalent, then A(g0 ) = A(g1). Conversely we have 

(a) if A(go) = A(gi)-:/= 0, then g0 and g1 are Aut.pC2 n-equivalent; 

(b) if A(go) = A(g1) = 0, then go and gi are Aut.PC2n-equivalent provided that the 
curves g0 (T), g1 (T) C C 2n are both polynomially convex; 
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( c) every two smooth, embedded, real-analytic arcs go, g1: [O, l ] _, e 2
n are Aut5 pe2 n­

equivalent. 

Example 1: The following example shows that in part (b) of Theorem 6.1 the conclusion 
may fail if the curves are not polynomially convex. Let g0 , g1 : T _, e 2 be the embeddings 

go(B) = (ei8,0), 
g1(B) = (e2i8,e3ie). 

The curve Co= go(T) bounds the smooth analytic disc {(z , O): lzJ::; l}, while C1 = g1(T) 
bounds the analytic curve {(z, w ): z 3 = w 2

, lzl ::; O} with a singularity at the origin. Thus 
A(g0 ) = 0 = A(g1 ) although the curves C0 and C1 are not Aute2 -equivalent (see remark 
1 following Def. 5.1). 

Example 2: The map Ft( z,w) = (z,w + t /z) is a volume preserving automorphism of 
e* x e for all t E e. The circle T = {(z, z) E e 2

: lzl = l} is polynomially convex, 
hence it has pseudoconvex tubular neighborhoods D which are Runge in e 2 . The same 
is true for circles Ft(T) fort # - 1. Theorem 5.4 implies that for such t , Ft is a limit of 
automorphisms of e 2 in a neighborhood of T. However, Ft for t # 0 is not the limit of 
symplectic automorphisms of e 2 in any neighborhood of T. This is because the action 
integral 

A(Ft) = { wdz = 27ri(l + t) 
JF,(T) 

depends on t, while Stokes' theorem shows that this integral is preserved by symplectic 
holomorphic automorphism of e 2 (and therefore by their limits). 

Sketch of proof of Theorem 6.1: We first construct a real-analytic isotopy of embeddings 
gt: T _, e 2 n such that go and g1 are the given maps, the curve Ct = gt(T) is polynomially 
convex for every t, and the action integral A (gt) is independent oft. We then show that the 
flow gt o g01: Co _, Ct can be extended to a flow of a (time dependent) exact Hamiltonian 
vector field Xt, defined in a neighborhood of Ct for each t E [O, l] . This extension is 
done in complete analogy to the real case. Let Ht be a holomorphic Hamiltonian (the 
energy function) of Xt, defined in a tube around Ct. Since Ct is polynomially convex, we 
can approximate Ht near Ct by holomorphic polynomials. The corresponding polynomial 
Hamiltonian vector field Yt then approximates Xt near Ct. The flow of Yi, which by 
construction approximates the flow of Xt and hence the original flow gt o g0

1: C0 _, Ct, is 
itself approximable (at each time t ) by compositions of symplectic automorphisms of e 2 n 

according to Proposition 4.3 (iii). 

We now consider the problem of Aut1 en-equivalence of real-analytic submanifolds in 
en. Let (3 be the (n -1 , 0)-form 

where the hat indicates that the corresponding entry is deleted. Then d(3 = D is the com­
plex volume form on e n. If M is a smooth, compact, oriented manifold of real dimension 
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n - 1 and f: M -+ en is a smooth map, we set 

If M is closed, Stokes's theorem implies that any two embeddings Jo, Ji: M -+ en which 
are Aut1 en -equivalent satisfy B(f0 ) = B(fi). The following results were proved in [20]. 

6.2 Theorem. Let M be a compact, connected, real-analytic manifold of real dimension 
m, and let Jo, fi: M -+ en be real-analytic embeddings (l ::::; m ::::; n - 1) such that the 
submanifolds fj(M) = Mj C en (j = 0, 1) are totally real and polynomially convex. 
Suppose that Jo and fi are Auten-equivalent. Then Jo and fi are also Aut1 en-equivalent 
provided that any one of the following conditions holds: 

(i) m::::; n - 2; 

(ii) m = n - 1 and Hn-l(M; R) = 0; 

(iii) m = n - 1, the manifold Mis closed and orientable, and B(fo) = B(f1 ) -f. 0. 

Remark: We believe that the conclusion in part (iii) holds also when B(f0 ) = B(fi) = 0. 

The proof of Theorem 6.2 is analogous to that of Theorem 6.1, except that we replace 
Hamiltonian flows by flows of exact divergence zero vector fields. Combining Theorem 6.2 
with 'corollary 5.3 we get 

6.3 Corollary. Let M be a compact, connected, real-analytic manifold of dimension 
m ~ 1. Ifn ~ max{m+2,3m/2}, theneverytworeal-analytic embeddings f 0 , fi:M-+ en 
whose images f 0 (M) and fi (M) are totally real and polynomially convex are Aut 1 en _ 
equivalent . 

Recall that T is the circle. 

6.4 Corollary. (a) Two real-analytic embeddings fo, .fi: T -+ C 2 with polynomially 
convex images f 0 (T) , fi(T) are Aut 1 C 2 -equivalent if and only if B(fo) = B(f1). 

(b) Let M be a closed orientable surface, and let fo , fi: M -+ C 3 be real-analytic em­
beddings whose images fo(M) , fi(M) C C 3 are totally real and polynomially convex. If 
B(fo) = B(f1) -f. 0, then fo and fi are Aut1 C 3 -equivalent. 

Example [20]: Let S be the (n - 1)-dimensional sphere, embedded as a hypersurface in 
Rn c en. It is easy to find a closed, but non-exact holomorphic ( n - 1 )-form a in a tubular 
neighborhood U of S such that fs a -f. 0. Let X be the divergence zero holomorphic vector 
field in u defined by the formula Cl' = x Jn, where n is the complex volume form on en. Its 
fl.ow {Ft} is a family of volume preserving biholomorphic mappings near S such that F1 for 
each sufficiently small t can be approximated by automorphisms of en near S (Theorem 
5.2), but not by volume preserving automorphisms of en when t -f. 0 is small. The reason 
is that 

:tB(Fi) lt=o =ls a -f. 0 

(see [20]) and hence the integral B(F1) depends on t. 



186 Forstneric 

7. Approximation by automorphisms on smooth submanifolds of en 

In this section we consider the question of approximation of smooth mappings F: M --> 

en on smooth submanifolds Mc en by restrictions to M of holomorphic automorphisms 
of en. 

Let M be a manifold of class cP' p 2: 1. A CP isotopy of embeddings of M into en is 
a map F: [O , 1] x M--> en of class cP such that for each fixed t E [O, lj , Ft= F(t, · ): M--> 
en is an embedding. The isotopy {Ft} is totally real (resp. polynomially convex) if the 
submanifold Ft(M) C en is totally real (resp. polynomially convex) for every t E [O, l]. 

The following result was proved in [17]. 

7.1 Theorem. If M c en (n 2: 2) is a compact, totally real, polynomially convex 
submanifold of class cP (2 ::; p < ()()) and F: M --; en is a CP mapping, then the following 
are equivalent: 

(i) For each E > 0 there exists a 1> E Auten such that llF - -I>IMlb(M) < E. 

(ii) For each E > 0 there exists a totally real, polynomially convex isotopy Ft: M --> en 
(t E [O , 1]) of class cP such that Fo is the identity on Mand llF1 - FllcP(M) < E. 

Remark: If M C en is a compact, totally real, polynomially convex submanifold of class 
CP (p 2: 1), then the set of restrictions to M of holomorphic polynomials on en is dense in 
the cP(M). Thus Theorem 7.1 can be viewed as an analogue of this result for mappings 
MI-+ en. 

The implication (i)=;.(ii) in Theorem 7.1 is a trivial consequence of connectedness 
of Auten . The main implication (ii)=;.(i) is proved in a similar way as Theorem 5.2 
by constructing an isotopy of biholomorphic mappings in a neighborhood of M which 
approximates the given isotopy Ft and then applying Theorem 2.4. 

Recall from [17] that for compact manifolds M of class cP (p 2: 2) of real dimension 
at most 2n/3, the set of cP embeddings M '----+ en which are totally real and polynomially 
convex is open and dense in the space CP(Mr of all CP mappings M 1-+ en (in the cP 
topology) . This implies 

7 .2 Corollary. Let M C en be a compact , totally real, polynomially convex submanifold 
of class cP, 2 ::; p < oo, and of dimension at most 2n/3. Then the set 

of restrictions to M of holomorphic automorphisms of en is dense in cP(Mr. 

Consider now a diffeomorphism F: Mo --> M 1 of class cP (1 ::; p ::; oo) between 
submanifolds M 0 ,M1 C en. One may ask whether there exists a sequence -I>j E Auten 
such that -I>j converges to F on Mo (in the CP topology) and, at the same time, the 
sequence of inverses 1>j1 converges to the inverse F-1: M1 -->Mo on M1. A result of this 
type was first proved by J.-P. Rosay [31] for C00 arcs in en. Unlike in the real-analytic 
case (section 5), one can not expect the convergence of the approximating sequence 1>j in 
any neighborhood of Mo. 
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The following result was proved by E. L0w and the author [22]. 

7 .3 Theorem: If F: Mo -t Mi is a smooth (C 00
) diffeomorphism between smooth, 

compact submanifolds Mo, Mi C en which are totally real and polynomially convex, then 
the following are equivalent: 

(i) There exists a totally real, polynomially convex isotopy of embeddings F1 : M 0 -t en 
such that Fo is the identity on Mo and Fi = F ; 

(ii) there exists a sequence <I>j E Auten (j E Z+) such that limj~oo <I>j lMo = F and 
limj~oo <I>j1 IM, = p-i in the C00 topology on the respective manifolds. 

We expect to obtain a sharp version of the last result for CP diffeomorphisms between 
cP submanifolds for 3 :::; p < oo. We believe that in this case the approximating sequence 
<I>j can be chosen so that the convergence in Theorem 7.3 takes place in the CP topology 
on Mo resp. Mi. 

In the proof of Theorem 7.3 we must solve a certain 8-problem in small tubular 
neighborhoods around totally real submanifolds in en. One possible approach is to use 
the £ 2-methods as in Hormander and Wermer [24] (see also [37]). This method has an 
inherent loss of derivatives; it can be used to prove Theorem 7.3 , but it does not give the 
sharp result in case of finite smoothness. In that case we intend to use a result of N. 0vrelid 
(in preparation) on solution of the 8-problem in tubes around totally real manifolds by 
means of an integral kernel. 

8. Complex orbits of holomorphic vector fields 

Let X be a holomorphic vector field on a complex manifold M. Recall that its local 
fl.ow F1(z) (t ER) is the solution at time t of the differential equation 

Z = X(Z) , Z(O) = z EM. (11) 

There exists a maximal open interval J(z) = (-/3(z),a(z)) CR, containing the origin, 
such that F1(z) is defined fort E J(z). The functions a and -/3 with values in (0, oo] are 
lower semicontinuous on M. If a(z) < oo then F1(z) leaves every compact set in M as 
t E J approaches a( z), and similarly for - /3 ( z). The set { F1 ( z): t E J ( z)} is called the real 
orbit of X through z. 

We recall the notion of complex orbits of a holomorphic vector field; see [18] for details . 
Locally near t = 0 one can solve the equation (11) for complex values oft. This gives a 
holomorphic mapping Z(t), defined in a neighborhood of 0 in the complex plane, with 
values in the manifold M. By analytic continuation we can extend the local solution to 
a maximal global solution Z: Rz -t M , which is defined and holomorphic on a connected 
Riemann domain Rz spread over C and which can not be analyt ically continued to any 
larger Riemann domain over C. Its image Cz = Z(Rz) C M is called the complex orbit 
of X through z. 

We say that the complex orbit Cz of a point z E M is complete in real time if 
J(z') = (-oo , +oo) for every point z' E Cz, i.e., the equation (11) can be solved for all 
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real values of time when starting at any point in C,. The orbit Cz is said to be nontrivial 
if Cz =f. {z }; this is t rue if and only if X(z) =f. 0. 

A proof of the following simple result can be found in [18] (Proposition 3.2). It depends 
on the observation that for every complex orbit Cz C M of X which is complete in real 
time, the Riemann surface Rz is a strip in C of the form 

Rz = {t+ is E C:-b(z) < s < a(z) } C C , 

with a(z), b(z) E (0, oo]. 

8.1 Proposition. Every nontrivial complex orbit of a holomorphic vector fi eld which is 
complete in real time is isomorphic to one of the following Riem ann surfaces: 

(a) the complex line C ; 

(b) the punctured complex line C* = C\{O} ; 

(c) a torus; 

(d) the disc U = {z E C : lzl < l} ; 

(e) the punctured disc U* = U\{O}; 

( f) an annulus A(r) = {z EC: 1 < lzl < r}. 

Remark: If the manifold M is Stein then there are no toral orbits. If M is hyperbolic , 
then all nontrivial orbits are of types (d)-(e) since the surfaces (a)- (c) are nonhyperbolic. 
Notice that the fundamental group of Cz has at most one generator unless Cz is a torus. 

Suppose now that a holomorphic vector field X on a complex manifold M is R­
complete. Let 

M = {((, z): z E M , -b(z) < S<( < a(z)} C C x M, 

where a(z) and b(z) are as above. We call M the fundamental domain of the complex flow 
of X. The functions a and b are lower semi cont inuous on M. The following was proved 
in [18, Proposition 2.1]: 

8.2 Proposition. If the manifold M is Stein , then the fun ctions -a, -b are (negative) 
plurisubharmonic on M , and the fundamental domain M C C x M is pseudoconvex 
(hence a Stein m anifold). 

8.3 Corollary. If M is a Stein manifold such that every negative plurisubharmonic 
fun ction on M is constant, then every R-complete holomorphic vector fi eld on M is 
C-complete. This holds in particular if M = en or if M = cn\A for some complex 
hypersurface A c en. 

The reason is that the plurisubharmonic functions -a and - b defining M must be 
constant , and therefore the flow extends to all complex values of time by the group property 
of flows. 

The following result from [18] (Theorem 3.3) shows that holomorphic vector fields on 
Stein manifolds which are complete in real time have a 'generic type' of complex orbits. 
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8.4 Theorem. Let M be a connected Stein manifold and X a holomorphic vector field 
on M which is complete in real time (Def 3.1). Then there exists a pluripolar set EC M, 
invariant under the flow {Ft:i ER} of X and containing the zero set of X, such that 
for every z E M\E the complex orbit Cz of X through z is of the same type (a), (b), or 
( d)- (e). If this generic orbit type is U* or an annulus, then the flow Ft has a period A > 0 
and it factors through an action of the circle group (S , +) on M. The action {Ft: t ER} 
extends to an action of C on M (i.e., X is complete in complex time) if and only if the 
generic complex orbit is either C or C*. This is always the case when M = en. 

For actions of C on Stein spaces the existence of a generic orbit type (C or C*) was 
proved by Suzuki [34, Proposition 2]. His proof shows that when the generic orbit type is 
C* , then Cz is isomorphic to C* for every z outside a closed analytic subset of M. For 
related results see Richardson [30]. 

Another result which seems important in the study of dynamical properties of complete 
holomorphic vector fields is that those complex orbits which are not simply connected tend 
to have at most one limit point , amd this point is a fixed point of the flow . The precise 
result is as follows ([18, Theorem 4.1 ], [34]): 

8.5 Theorem. Let X be an R-complete holomorphic vector field on a Stein manifold 
M, and let C be a nontrivial complex orbit of X. If C is isomorphic to an annulus, then 
C is closed in M. If C is isomorphic to the punctured disc U*, or if C is isomorphic to the 
punctured plane C* and X is C-complete, then the limit set of C consists of at most one 
point which is a critical point of X. In particular, if M = en, then every orbit of type C* 
has at most one limit point. 

The proof in [18] (or in [34]) shows that, if C is a complex orbit of type C* and if p 
is a limit point of C , then CU {p} is a smooth complex manifold at p. If we had two such 
limit points p, q, then CU {p, q} would be a holomorphically embedded Riemann sphere 
in M which is impossible since M is Stein. A similar result holds for orbits of type U*. 

8.6 Corollary. Let X be a complete holomorphic vector field on en ( n > 1) with a 
hyperbolic critical point p such that the unstable manifold wu(p) has complex dimension 
one. Then wu(p) is closed in en. In particular, wu(p) does not intersect the stable 
manifold w•(q) of any other critical point of X. 

Proof: Since wu(p) is a complex manifold of complex dimension one (an injectively 
immersed C), the set C = wu(p)\{p} is a complex orbit of X which is necessarily of 
type C*. Since pis a limit point of C, C can not have any other limit point according to 
Theorem 8.5. If wu(p) n w•(q)-:/= ©,then q is a limit point of C , a contradiction. 

Corollary 8.6 can be used to construct holomorphic vector fields on en which can not 
be approximated by complete fields. The following example is due to Buzzard and Fornress 
(private communication, November 1994). 

Example (Buzzard-Fornaess): Let X(z,w) = (z(z - 1),-w). Then p = (1,0) is a hy­
perbolic critical point of X whose unstable manifold wu(p) contains the segment I = 
(0,1) x {O} , and q = (0,0) is an attracting critical point which contains I in its basin of 
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attraction. Thus wu(p) n W•(q) -=f- 0. Since this behavior is stable under small perturba­
tions of the field, X can not be approximated by complete holomorphic fields. In fact , the 
closure of the set of complete holomorphic vector fields on en is nowhere dense in the set 
of all holomorphic vector fields (in the topology of uniform convergence on compacts). 

9. Flows of holomorphic Hamiltonian vector fields 

Proposition 8.1 is useful in determining whether a given holomorphic vector field is 
complete or not by examining its complex orbits. We shall illustrate this by looking at 
Hamiltonian vector fields on the plane C2 . 

Suppose that X is a Hamiltonian holomorphic vector field on C2 with the energy 
function H (see section 3) . Let I; = {p E C 2 : X(p) = O}. It is easily seen that for each 
point p = (z0 , wo) E C 2 \I; the complex orbit Gp through pis the connected component of 
the set {(z,w) E C 2 \L; :H(z,w) = H( z0 ,w0 )} . Thus, to show that the vector field Xis 
not complete, it suffices to find such a component which is not isomorphic to any of the 
surfaces listed in Proposition 8.1. 

We first consider polynomial Hamiltonians H on C 2 . In that case every level set 
{ H = c} is an affine algebraic curve in C2 which closes up to a projective algebraic curve 
in CP 2

. Hence every orbit of the Hamiltonian vector field XH is obtained by removing 
at most a finite number of points from a compact algebraic curve. The only Riemann 
surfaces listed in Proposition 8.1 above which have this property are C and C *. Together 
with Theorem 8.2 this proves the following [18, Lemma 7.1]. 

9.1 Lemma. If X is a polynomial Hamiltonian vector fi eld on C 2 and if C is a nontrivial 
complex orbit of X which is R-complete, then the closure C in CP 2 is an algebraic curve 
of genus 0 (C is normalized by the Riemann sphere), and C is also C-complete. 

By analyzing the holomorphic type of generic level sets of H , using the Riemann­
Hurwitz formula, one gets the following [18, Proposition 7.2]. 

9.2 Proposition. Let H (z, w) = I:;1=i Hi (z, w) be a polynomial of degreed 2". 3 on C 2 , 

with Hi its homogeneous part of degree j. Suppose that (0, 0) is the only common zero 
of the following four polynomials: Hd , Hd -i, f)Hdjaz , f)Hdjaw. Then the Hamiltonian 
vector field XH = (Hw , -Hz) on C 2 is not complete. In fact, every regular level set of H 
contains a point p such that the flow F1(p) of XH is not defined for all real t. 

To motivate the next result we recall the well known result that, if Q(x) 2". 0 is a 
nonnegative smooth real function on R , the Hamiltonian vector field X(x, y) = (y, -Q'(x )) 
with the energy function H( x, y) = y2 /2 + Q( x) is complete on R 2 . In contrast to this we 
have [18 , Proposition 7.3]: 

9.3 Proposition. If f is an entire function on C which is not affine linear, then the 
vector fi eld X( z, w) = ( w , f(z)) on C 2 is not complete. 

Notice that Xis a Hamiltonian vector field with the energy function H (z , w) = w2 /2+ 
Q(z), where Q' (z) = -f(z). The proof in [18] uses elementary Morse theory and it shows 
that every regular level set of H contains a point p such that the flow F1(p) of X is not 
defined for all real t . 



Holomorphic Automorphisms of en 191 

9.4 Corollary. If f is an entire function on C which is not affine linear, there exists a 
point (z0 ,i0 ) E C 2 such that the second order ordinary differential equation 

Z = f(Z), Z(O) = z0 , Z(O) = io 

can not be integrated for all real t E R . 

The Corollary follows from Proposition 9.3 by introducing the variable w = i and 
changing this second order equation to the Hamiltonian system i = w , w = f(z). 

In theory of Hamiltonian mechanics one basic question is whether most orbits go to 
infinity. This question was studied in the holomorphic case by Fornress and Sibony [14,15] 
who showed that for most Hamiltonian holomorphic vector fields on c 2 n , most orbits go 
to infinity. 

In order to formulate their results precisely we first recall from [14] the notion of 
singular orbit of a holomorphic vector field X on en. At this point X need not be 
Hamiltonian. Let {Ft:i ER} be the local flow of X. 

9.5 Definition. The orbit Ft( z) of a point z E en is said to be singular if there is a 
sequence 0 < t1 < t2 < t3 < ... such that limj~oo IFi;(z)I = 00. The set of points z E en 
with nonsingular orbits is denoted by Kx. 

In other words) the orbit is singular if the set {F1(z) : 0 < t < T} is unbounded, where 
TE (0, oo] is the largest number such that the flow F1(z) is defined on [O, T) . If T < oo , 
then by general properties of flows the orbit of z is necessarily singular since jF1(z)I-+ oo 
when t ---+ T. Thus the points z E en with nonsingular orbits are those for which the 
flow Ft(z) is defined and bounded for all t ~ 0. The set Kx is always of type Fa, i.e., a 
countable union of closed sets. 

We consider each entire function H E 0( c 2 n) as a holomorphic Hamiltonian, giving 
rise to a holomorphic Hamiltonian vector field XH (7). Denote the set of nonsingular 
orbits of XH by J{H (Def. 9.5). The main result of Fornress and Sibony [15, Theorem 3.4] 
IS 

9.6 Theorem. There exists a dense G6 set [ C O(C 2 n) of holomorphic Hamiltonians 
such that for each H E [ the set J{H has empty interior. 

Fornress and Sibony also obtained a number of interesting results for the Fatou set 
Ux c Kx of holomorphic Hamiltonian vector fields on c 2 n. 

9. 7 Definition. Let X be a holomorphic vector field on en . For each constant 0 < c < oo 
we denote by U x ( c) the set of all points z E en for which there is a neighborhood V of z 
such that 

supjFt(w)I < c 
t;::o 

for all w E V. 

The set Ux = Uo<c<oo Ux(c) is called the Fatou set of X . Any connected component of 
U x is called a Fatou component. 

Notice that U x is contained in intKx, and it is the largest open set on which the flow 
Ft of X exists for all time 0::; t < oo and the family {F1 : t ~ O} is locally bounded. By a 
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category argument U x is an open dense subset of the interior of Kx. It is shown in [15, 
Proposition 3.3] that every Fatou component is a Runge domain in en. 

The following result is proved in [15, Theorem 3.5]. 

9.8 Theorem. Let X be a Hamiltonian holomorphic vector field on ezn with Bow Ft 
and Fatou set Ux. Let W(c) (0 < c < oo) be a connected component of the set Ux(c) 
(Def. 9. 7). Then F1 is an automorphism of W( c) for each t E R. The closure G of 
{Ftlw(c):t ER} is a Lie subgroup of AutW(c), isomorphic to a torus Tk for some k:::.; n. 
The vector field X is conjugate on W( c) to a field Y = ( i81 z1, . .. , iBnzn, 0, ... , 0). 

A related question is how many orbits of a holomorphic vector field X on en go to 
infinity in finit e time. Following [13] we say that the (real) orbit of a point z E en explodes 
if the integral curve {Ft(z): t :'.'.'. O} through z is unbounded on some finite time interval 
[O , t0 ) CR+. The following result was proved by Formess and Grellier [13]. 

9.10 Theorem. There is a dense set [ of entire functions on e 2 such that for every 
H E [ the Hamiltonian vector field X H has a dense set of points in e 2 with exploding 
orbits. 

They proved a similar result for holomorphic Reeb fields on e 3 . Observe that Propo­
sitions 9.2 and 9.3 above also give exploding orbits of either X or -X. 

Example: There exist Hamiltonian holomorphic vector fields X on e 2 such that X is 
a limit of complete Hamiltonian fields , but every real orbit of X explodes. One way to 
construct such fields is as follows (see [18]). Let F be a polynomial automorphism of e 2 

with an attracting fixed point p such that the basin of attraction D(p) is not all of e 2
. 

Then D(p) is a Fatou-Bieberbach domain which intersects every complex line in a bounded 
set [8,32], and there is a biholomorphic map G: e 2 ...__. D(p) with Jacobian one which is a 
limit of automorphisms of e 2 (and hence a limit of automorphisms Gj with Jacobian one). 
If Y is any constant vector field on e 2 , then X = DG- 1 · Y is a Hamiltonian field which 
is a limit of complete Hamiltonian fields Xj = DGj1 

· Y, but every orbit of X explodes. 

10. Flows on the complex plane e 2 

In this section we collect some results on classification of actions F: R x e 2 .....,. e 2 by 
holomorphic automorphisms Ft E Au t e 2 . Recall (Corollary 8. 3) that every such action 
extends to an action of e on e 2 . Equivalently, we may consider such actions as flows 
of the complete holomorphic vector fields on e 2 , and also as one parameter subgroups of 
Aute2 . 

The following types of holomorphic flows on e 2 have been classified: 

1. polynomial flows (Theorem 10.1 below); 

2. flows in the shear groups S(2) , S1 (2), and S1 (2) x e• (Theorem 10.4 below); 

3. proper flows (Theorem 10.5 below) ; 

4. symplectic flows (Theorem 10.6 below); 

5. most flows whose time one map is polynomial. 
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Recall that P 2 is the polynomial automorphism group of ez. Let ( x, y) be the complex 
coordinates on e 2 . The following classification of polynomial flows is due to Suzuki [35] 
and, independently, to Bass and Meisters [7]. 

10.1 Theorem. Every one parameter subgroup {Ft : t ER} of the polynomial automor­
phism group P 2 is conjugate in P 2 to one of the fallowing: 

</!1(x,y) = (eµtx,e>..ty), >.,µEe, 

rPt(x,y) = (x+tf(y),y), fa polynomial, 

rPt(x,y) = (en\t(x +tyn),e\ty), >.Ee*, n E Z+. 

(12) 

(13) 

(14) 

Previously R. Rentschler has proved [29] that the every algebraic action of e on e 2 

is algebraically conjugate to an action (13). 

The methods used in [7] and [35] are quite different from each other. Suzuki first 
showed that every one parameter subgroup { ¢;1: t E R} C P 2 has bounded degree, i.e., 
deg</>t ~ N for some N independent of t E R . This implies that there exist a polynomial 
embedding H: en -+ eN for some N and an N x N matrix A such that 

Ho Ft(z) = exp(tA) · H(z), z E en, t ER. 

Suzuki then analysed several cases to obtain the classification. 

The proof of Bass and Meisters has two main ingredients. One is the theorem of Van 
der Kulk [36] and Rentschler [29] (see also Jung [25] and Friedland and Milnor [23]) to 
the effect that the polynomial automorphism group P 2 is an amalgamated free product 
P 2 = A* [ of the affine automorphism group A of e 2 and the group [ of all elementary 
polynomial transformations 

E(x,y) =(ax+ p(y),/3y +'Y), 

where a, j3 E e*, 'Y E e , and p is a polynomial. This means that every element g E P 2 

which does not belong to A or [ can be represented by a word g = · · · erarer-1 ar-1 · · · of 
finite length, in which the ej 's belong to £\A and the a/s belong to A\£. The elements 
in An [ are treated as units in this representation. 

The second main ingredient is an algebraic theorem of Serre to the effect that every 
subgroup 7{ C A* [ in an amalgamated free product group whose elements have uniformly 
bounded length with respect to the given amalgamated free product structure is conjugate 
to a subgroup in A or in £. Since every one parameter subgroup of P 2 has bounded 
degree, it has bounded length and therefore Serre's theorem aplies. One then identifies 
and classifies all one parameter subgroups of A and £. 

It is known [26] that the analogous decomposition of the polynomial automorphism 
group pn does not hold when n 2 3. On the other hand, it has been proved recently 
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that the shear groups on C2 (see section 1) also admit an amalgamated free product 
decomposition. Let EC S(2) be the subgroup consisting of all automorphisms of the form 

E(x,y) = (ea(y)x + b(y),fJy + /'), (15) 

where a and bare entire functions on C, fJ E C*, and I' E C. Maps of this form will be called 
elementary in analogy to the polynomial case when a is a constant and b is a polynomial 
(see [23]). Ahern and Rudin proved in [3] that the group S(2) is an amalgamated free 
product S(2) = A* E, where A is the affine automorphism group on C 2 and Eis the group 
(15). Analogous result holds for the groups S1 (2) (Jacobian one) and S1 (2) x C* (Jacobian 
constant but not necessarily one); see de Fabritiis [10,11]. In these cases the group E 
consists of automorphisms (15) for which a is constant and, in the volume preserving case, 
eafJ = 1. 

In order to obtain the analogue of Theorem 10.l for the shear groups one uses the 
following result of combinatorial group theory. 

10.2 Theorem. Let g be a topological group which is a free product g = A * E of 
subgroups A and E, amalgamated over their intersection B = An£. Suppose that B is 
closed in(}. Then any topological subgroup of(} which is isomorphic to R or C is conjugate 
in g to a subgroup in A or in E. 

Theorem 10.2 follows from a result of Moldavanski ([27] or [38], Theorem 0.3); we 
refer the reader to the forthcoming paper [2] for the details. The same result holds for 
connected abelian Lie subgroups in A* E. 

10.3 Corollary. Every one parameter subgroup of the shear group S(2) is conjugate in 
S(2) to a subgroup of E (15). The analogous result bolds for one parameter subgroups in 
S1 (2) and S1 (2) x C*. 

It is immediate that every subgroup in A is linearly conjugate to a subgroup in E (by 
conjugating the relevant matrix to its Jordan form). 

One can describe one parameter subgroups {F1:t ER} CE in the elementary group 
E (15) by using the methods in section 2 of [2]. The infinitesimal generator V =(Vi, Vz) 
of Ft has the form 

Vi(x,y) = a(y)x + b(y) , 

An automorphism <I> of C 2 conjugates V to the field V satisfying D<I>· V Vo <I>. A 
preliminary linear change of coordinates in the y variable conjugates V to a field in which 
Vz is either >..y ( >.. E C) or Vz = 1. Conjugating V with shears <I>( x , y) = ( x + g(y ), y) 
and generalized shears <I>(x,y) = (xe9(Yl,y) (and taking into account Corollary 10.3) one 
obtains the following classification result [2, Theorem 7.1]: 

10.4 Theorem. Every real one parameter subgroup { F1 : t E R} of the generalized shear 
group S(2) is conjugate in S(2) to one of the following: 

(i) ef>t( x, y) = ( x +if (y ), y), where f is an entire function on C; 
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(ii) <f>t(x,y) = (ea(y)t(x - b(y)) + b(y) , y), where a is a nonconstant entire function and b 
is a meromorphic function such that the product ab is entire; 

(iii) <f>t(x,y) = (eµtx,e:>.. 1y), >.,µEC; 

(iv) <f>t(x,y) = (en:>..t(x +tyn),e:>..1 y), >.EC*, n E Z+. 
Every subgroup {Ft} C S1(2) x C* (t ER) is conjugate in S1(2) x C* to one of the groups 
(i), (iii), or (iv). Every subgroup {Ft} C 51 (2) ( t E R) is conjugate in S1 (2) either to a 
group (i) or to a linear group (iii) with >. + µ = 0. 

Observe that the groups (iii) and (iv) are polynomial , and (i) is polynomial when f is 
a polynomial. Comparing this with the classification of one parameter polynomial groups 
(Theorem 10.1) we see that the only group of new type in 5(2) is (ii). 

In the paper [2] we attempted to describe all real one parameter subgroups Ft E AutC2 

whose time one map F 1 is a polynomial automorphism E E P 2 . The maps Ft for non­
integer values of t need not be polynomial. We succeeded in all cases except when the 
time one map E is conjugate to an affine aperiodic map. In the last case we identified 
all flows with polynomial infinitesimal generator. We will not state the results of [2] here 
since there are too many different cases to consider. In [2] we also identified all generalized 
shears on C 2 which belong to a flow; it turns out that most do not belong to any flow. 
This should be compared with results of Palis [28]. 

In [35] Suzuki classified proper flows {F,: t E C} on the plane C 2 . Recall that a flow 
is called proper if the complex orbit Cz = {Ft(z): t E C} of every point has at most a 
discrete set of limit points in C 2 ; hence its closure Cz is an analytic curve in C 2 . The 
classification is as follows [35, Theorem 4]. 

10.5 Theorem: Every proper holomorphic flow on C 2 is conjugate in AutC 2 to one of 
the following flows: 

(i) lin ear flow </> 1(x,y) = (en:>..tx,em:>..ty), where>. EC* and m,n EN= {1,2,3, ... }; 

(ii) shear flow </> 1( x, y) = ( x + tf (y ), y), where f is an entire function on C; 

(iii) <f>t(x,y) = (e:>..(y)t(x - b(y)) + b(y) , y), where bis a meromorphic function and>., >.b 
are entire functions on C; 

(iv) <f> 1(x,y) = (en:>..(z)tx,e-m:>..(z)ty) , where m,n E N, z = xmyn , and>. is an entire 

function on C; 

(v) flows of the form a-1 op1 oa, where a(x,y) = (x,x 1y+P1(x)), l EN, P1 is a polynomial 
of degree :::; l - 1 such that P1(0) # 0, and Pt is a flow of type (iv) above such that 
>.(z) has a zero of order 2". l/m at z = 0. 

The proof is based on a previous result of Suzuki [33] to the effect that every proper 
action of C on C 2 has a meromorphic first integral H. Recall (Theorem 8.2) that every 
complex orbit of a C-action is isomorphic to either C or C* , and most orbits are of the same 
type. Outside the fixed point set of the action the complex orbits correspond to connected 
components of the level sets of H ; hence most of these are isomorphic to either C or C*. 
Results of Nishino and Saito imply that for such a function H there is an automorphism 
<I> of C 2 such that Q = Ho <I> is a rational function of a special type. Clearly <I> conjugates 
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the flow F1 to a flow whose first integral is Q. Suzuki then identified all flows on C2 whose 
first integral is one of these special functions Q. 

Every symplectic holomorphic flow on e 2 is proper since the energy function (Hamil­
tonian) of the infinitesimal generator is a holomorphic first integral. Using this observation 
we proved in [18] (Theorem 6.1): 

10.6 Theorem. Every symplectic flow {F1: t E C} c Aut1 e 2 is conjugate in AutC2 to 
one of the following: 

iP1(x,y) = (x,y + th(x)), 

1/J1(x, y) = (et,X(xy)x , e-t>.(xy)y)' 

(16) 

(17) 

where h resp. A is an entire function on e. In the first case the flow is conjugated to a 
flow (16) by a symplectic automorphism of e2 . 

We see by inspection that (16) and (17) are the only symplectic flows from the list 
of equivalence classes of proper flows given by Theorem 10.5. However , since conjugation 
by non-symplectic automorphisms does not preserve symplectic flows, additional work is 
needed to prove Theorem 10.6. We don't know whether in the second case the flow is 
conjugate to (17) by a symplectic automorphism of e 2 . 

11. Open problems 

Problem 1: Classify one parameter subgroups of AutC2 . Partial results are given m 
section 10 above. 

Problem 2: Classify one parameter subgroups of the polynomial automorphism group on 
C 3 (or en for n:::: 3). 

Problem 3: Which properties of a holomorphic vector field make it nonapproximable by 
complete fields ? See Corollary 8.6 and the example following it. 

Problem 4: Is every Fatou-Bieberbach domain in en Runge? Equivalently, is every injec­
tive holomorphic mapping F: en --t en (Fatou-Bieberbach map) a limit of automorphisms 
of en ? This question has already been raised by Rosay and Rudin [32], but it remains 
unsolved. 

Problem 5: Recall that the shear group S(n) is dense in Auten. The proof of Theorem 
1.1 in [18] implies the following stronger result: If M is a closed ball in R k for some k E Z+ 
and <I>: M x en --ten is a map of class cP (0:::; p:::; oo) satisfying <I>x = <I>(x, ·) E Auten 
for every x EM, then <I> can be approximated in the cP topology (uniformly on compacts 
in M x en) by maps <I>': M x en --ten such that <I>~ E S(n) for x EM. For which other 
manifolds M is this true? In particular , does this hold when M is the circle, a sphere, a 
torus? 

Problem 6: On en one can define (n -1) shear groups Sk(n) for 1:::; k:::; n -1 by letting 
Sk(n) be the group generated by all shears of the form (3) and (4), where A is a linear 
projection into cm for some m :::; k. Are these groups all distinct ? 
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Problem 7: Let D c en be a smoothly bounded, strongly pseudoconvex Runge domain 
diffeomorphic to the ball, and let F: D ---> en be a biholomorphic map onto a Runge 
domain F(D) c en. Is Fa limit of automorphisms of en ? 

Problem 8: Suppose that <I> is an automorphism of e 2 whose Jacobian J<I> is a function 
of the product xy, where ( x , y) are complex coordinates on e 2 . Does it follow that J <I> is 
constant ? If so, then every flow in Theorem 10.5 which is conjugate in Aute2 to a flow 
of the form (16) is already conjugate to such a flow in Aut1 e 2 . More generally, which 
nonvanishing functions are the Jacobians of automorphisms of e 2 (en)? 

Problem 9: Suppose that <I> E Aute2 fixes pointwise both coordinate axes and the point 
(1, 1). Does it follow that J<I>(l , 1) = 1 ? If t here exists a <I> as above such that (1, 1) is 
an attracting fixed point (this requires I J <I> ( 1, 1) I < 1), then its basin of at traction is a 
Fatou-Bieberbach domain in (e*)2 [32]. 

Problem 10: Suppose <I> is an automorphism of en with finite period (i.e., q,m is the iden­
tity for some m E N). Is <I> linearizable? Is every finite subgroup of Auten linearizable? 
For partial results see [3] and [26]. 

Problem 11: Find characterizations of en in terms of its automorphism group. 

Several other problems concerning automorphisms of en and Fatou-Bieberbach maps 
are mentioned in papers [21] , [26], and [32] . 
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