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2.4 Theorem: Let D C C" (n > 2) be a Runge domain and let F;:D — C™ be a
biholomorphic mapping for each t € [0,1], of class C? in (t,2) € [0,1] x D, such that Fy is
the identity on D and the domain Fy(D) is Runge in C™ for each 0 <t < 1. Then

(i) Fy is a limit of automorphisms of C" for each t € [0,1].

(ii) If JF; = 1 foreacht € [0,1] and if D is a domain of holomorphy satisfying H*~1(D; C)
=0, then F} is a limit of volume preserving automorphisms of C" for each t € [0, 1].

(iii) If n is even, if Ffw = w for each t € [0,1], and if D is a domain of holomorphy
satisfying H'(D;C) = 0, then Fy is a limit of symplectic holomorphic automorphisms
of C™ for each t.

Examples in [19] and [20] show that the conclusions in (ii) and (iii) do not hold without
the respective cohomology condition on . See also section 6 below. A sharper version of
the last result which includes regularity with respect to the parameter r € R* was proved
in [17, Theorem 1.1]. We only consider the group AutC™.

2.5 Theorem. Let Q C C" be a Runge domain, and let B be the closed unit ball in
R¥. Assume that F: B x Q) — C™ is a mapping of class C? (0 < p < oo such that for each
x € B, F, = F(z,-):Q — C" is a biholomorphic mapping onto a Runge domain Q, C C",
and the map Fy is the identity on §). Then for each compact set K C 2 and each ¢ > 0
there exists a smooth map ®:B x C* — C" such that &, = ®(z,-) is a holomorphic
automorphism of C™ for every = € B and ||F — ®||cox k) < €.

We will indicate the proof of these results at the end of section 4 below.

3. Flows of holomorphic vector fields

In this section we recall some basic notions concerning flows of vector fields.

Suppose that for each ¢ € [0,1], X; is a holomorphic vector field on a domain € in a
complex manifold M. The flow F; , is the solution of the ordinary differential equation

d
d_tFt,s<Z) = Xt(Ft,s<Z)>7 Fs,s(z) =z c Qs-

Assume that there is a domain Dy C g such that the flow Fy(z) = F; o(z) exists for all
0 <t <1andall ze€ Dy. Then Fy: Dy — Fi(Dgy) = D; C €4 1s a biholomorphic map for
each t € [0,1], Fy is the identity on Dy, and Fs; = F, 0 F;! on D,.

If the field Xy = X is time independent, its flow F} is a local one parameter automor-
phism group, i.e., Fiyy = Fy o Fs where both sides are defined. In particular, Fy ; = Fy,.

3.1 Definition. A holomorphic vector field X on a complex manifold M is said to be
complete in real (resp. complex) time if for every point z € M the flow Fy(z) of X exists
for all real (resp. complex) values of t.

The flow of a complete holomorphic vector field is a real (resp. complex) one parameter
subgroup of the automorphism group AutM.
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(¢c) every two smooth, embedded, real-analytic arcs go,g1:]0,1] — C?™ are Aute,C*"-
equivalent.

Ezample 1: The following example shows that in part (b) of Theorem 6.1 the conclusion
may fail if the curves are not polynomially convex. Let gg,g1: T — C? be the embeddings

go<6) = (6i970)7
gl(e) — (62i9763i9).

The curve Cy = go(T) bounds the smooth analytic disc {(z,0):|z| <1}, while Cy = ¢1(T)
bounds the analytic curve {(z,w): 2* = w?, |z| <0} with a singularity at the origin. Thus
A(go) = 0 = A(g1) although the curves Cy and C; are not AutC?-equivalent (see remark
1 following Def. 5.1).

Ezample 2: The map Fi(z,w) = (z,w + t/z) is a volume preserving automorphism of
C* x C for all t € C. The circle T = {(z,zZ) € C?:{z] = 1} is polynomially convex,
hence it has pseudoconvex tubular neighborhoods 2 which are Runge in C?. The same
is true for circles Fy(T) for t # —1. Theorem 5.4 implies that for such ¢, F} is a limit of
automorphisms of C? in a neighborhood of T. However, F; for ¢t # 0 is not the limit of
symplectic automorphisms of C? in any neighborhood of T. This is because the action
integral

A(Fy) = /F o wdz = 27mi(1 + )

depends on ¢, while Stokes’ theorem shows that this integral is preserved by symplectic
holomorphic automorphism of C? (and therefore by their limits).

Sketch of proof of Theorem 6.1: We first construct a real-analytic isotopy of embeddings
gi: T — €™ such that ¢go and g; are the given maps, the curve C; = g4(T) is polynomially
convex for every ¢, and the action integral A(g;) is independent of t. We then show that the
flow g, 0 gy ': Co — Cy can be extended to a flow of a (time dependent) exact Hamiltonian
vector fleld X, defined in a neighborhood of C; for each ¢ € [0,1]. This extension is
me in complete analogy to the real case. Let H; be a holomorphic Hamiltonian (the
energy function) of X;, defined in a tube around Cj. Since C; is polynomially convex, we
can approximate f, near C; by holomorphic polynomials. The corresponding polynomial
Hamiltonian vector fleld Y; then approximates X, near C;. The flow of ¥;, which by
construction approximates the flow of X, and hence the original low g, 0 g,*: Cy — Cy, is
itself approximable (at each time ¢) by compositions of symplectic automorphisms of C2*

according to Proposition 4.3 (ii1).
We now consider the problem of Aut; C™-equivalence of real-analytic submanifolds in

C". Let 8 be the (n — 1,0)-form

n

1 . —
Bz) =~ 2(;1)] Yajdzy Adzg e A dzg,
=
where the hat indicates that the corresponding entry is deleted. Then df = ) is the com-
plex volume form on C". If M is a smooth, compact, oriented manifold of real dimension






6 Forstneric

7. Approximation by automorphisms on smooth submanifolds of C*

In this section we consider the question of approximation of smooth mappings F: M —
C" on smooth submanifolds M C C" by restrictions to M of holomorphic automorphisms
of C".

Let M be a manifold of class C?, p > 1. A CP isotopy of embeddings of M into C" is
amap F:[0, x M — Cm of class C? such that for each fixed ¢t € [0,1], F; = F(¢,- ): M —
C" is an embedding. The isotopy {F;} is totally real (resp. polynomially convex) if the
submanifold F;(M) C C" is totally real (resp. polynomially convex) for every ¢ € [0, 1].

The following result was proved in [17].

7.1 Theorem. IfM C C™ (n > 2) is a compact, totally real, polynomially convex
submanifold of class C? (2 < p < o) and F: M — C" is a C? mapping, then the following
are equivalent:

(i) For each e > 0 there exists a ® € AutC™ such that ||F' — ®|nx]|co(a) < €

(ii) For each € > 0 there exists a totally real, polynomially convex isotopy Fy: M — C”
(t € [0. ) of class C? such that Fy is the identity on M and ||Fy — Flles(ar) < €.

Remark: If M C C" is a compact, totally real, polynomially convex submanifold of class
C? (p > 1), then the set of restrictions to M of holomorphic polynomials on C™ is dense in
the CP(M). Thus Theorem 7.1 can be viewed as an analogue of this result for mappings
M — C".

The implication (i)=(i1) in Theorem 7.1 is a trivial consequence of connectedness
of AutC". The main implication (ii)=>(i) is proved in a similar way as Theorem 5.2
by constructing an isotopy of biholomorphic mappings in a neighborhood of M which
approximates the given isotopy F} and then applying Theorem 2.4.

Recall from [17] that for compact manifolds M of class C? (p > 2) of real dimension
at most 2n/3, the set of C* embeddings M — C™ which are totally real and polynomially
convex is open and dense in the space CP(M)" of all C? mappings M — C" (in the C?
topology). This implies

7.2 Corollary. Let M C C" be a compact, totally real, polynomially convex submanifold
of class C?, 2 < p < oo, and of dimension at most 2n/3. Then the set

AwtC* |y = {F|p: F € AutC™}

of restrictions to M of holomorphic automorphisms of C™ is dense in CP(M)".

Consider now a diffeomorphism F: My, — M; of class C? (1 < p < oo) between
submanifolds Mo, M; C C". One may ask whether there exists a sequence ®; € AutC”
such that &; converges to F on My (in the CP topology) and, at the same time, the
sequence of inverses CI)]”fl converges to the inverse F'~': M; — My on M;. A result of this
type was first proved by J.-P. Rosay [31] for C*® arcs in C™. Unlike in the real-analytic
case (section 5), one can not expect the convergence of the approximating sequence ®; in

any neighborhood of M.
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real values of time when starting at any point in C,. The orbit C, is said to be nontrivial

if C, # {z}; this 1s true if and only if X(z) # 0.

A proof of the following simple result can be found in [18] (Proposition 3.2). It depends
on the observation that for every complex orbit C, C M of X which is complete in real
time, the Riemann surface R, is a strip in C of the form

R, ={t+1se€C —b(z) <s<alz)} CC,

with a(z),b(z) € (0, o0].

8.1 Proposition. Every nontrivial complex orbit of a holomorphic vector field which is
complete in real time is isomorphic to one of the following Riemann surfaces:

(a) the complex line C;

(b) the punctured complex line C* = C\{0};
(c) a torus;

(d) the disc U = {z € C:|z| < 1};

(e) the punctured disc U* = U\{0};

(f) an annulus A(r) ={z € C:1 < |z] < r}.

Remark: If the manifold M is Stein then there are no toral orbits. If M is hyperbolic,
then all nontrivial orbits are of types (d)—(e) since the surfaces (a)-(c) are nonhyperbolic.
Notice that the fundamental group of C, has at most one generator unless C, is a torus.

Suppose now that a holomorphic vector field X on a complex manifold M is R-
com te. Let

M={(¢2)z €M, —b(z) < ¢ <a(2)} CC xM,

where a(z) and b(z) are as above. We call M the fundamental domain of the complex flow
of X. The functions a and b are lower semicontinuous on M. The following was proved
in [18, Proposition 2.1]:

8.2 Proposition. If the manifold M is Stein, then the functions —a, —b are (negative)
plurisubharmonic on M, and the fundamental domain M C C x M is pseudoconvex
(hence a Stein manifold).

8.3 Corollary. If M is a Stein manifold such that every negative plurisubharmonic
function on M 1s constant, then every R-complete holomorphic vector field on M is
C-complete. This holds in particular if M = C™" or if M = C™\ A for some complex
hypersurface A C C™.

The reason is that the plurisubharmonic functions —a and —b defining M must be
constant, and therefore the flow extends to all complex values of time by the group property
of flows.

The following result from [18] {(Theorem 3.3) shows that holomorphic vector fields on
Stein manifolds which are complete in real time have a ‘generic type’ of complex orbits.
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attraction. Thus W¥(p) N W*(q) # 0. Since this behavior is stable under small perturba-
tions of the field, X can not be approximated by complete holomorphic fields. In fact, the
closure of the set of complete holomorphic vector fields on C™ is nowhere dense in the set
of  holomorphic vector fields (in the topology of uniform convergence on compacts).

9. Flows of holomorphic Hamiltonian vector fields

Proposition 8.1 is useful in determining whether a given holomorphic vector field is
complete or not by examining its complex orbits. We shall illustrate this by looking at
Hamiltonian vector fields on the plane C2.

Suppose that X is a Hamiltonian holomorphic vector field on C? with the energy
function H (see section 3). Let 2 = {p € C%: X(p) = 0}. It is easily seen that for each
point p = (zg,wq) € C?\XT the complex orbit C), through p is the connected component of
the set {(z,w) € C*\%: H(z,w) = H(zg,wo)}. Thus, to show that the vector field X is
not complete, it suffices to find such a component which is not isomorphic to any of the
surfaces listed in Proposition 8.1.

We first consider polynomial Hamiltonians H on C2?. In that case every level set
{H = ¢} is an affine algebraic curve in C? which closes up to a projective algebraic curve
in CP?. Hence every orbit of the Hamiltonian vector field Xy is obtained by removing
at most a finite number of points from a compact algebraic curve. The only Riemann
surfaces listed in Proposition 8.1 above which have this property are C and C*. Together
with Theorem 8.2 this proves the following [18, Lemma 7.1].

9.1 Lemma. IfX isa polynomial Hamiltonian vector field on C? and if C is a nontrivial
complex orbit of X which is R-complete, then the closure C in CP? is an algebraic curve
of genus 0 (C is normalized by the Riemann sphere), and C is also C-complete.

By analyzing the holomorphic type of generic level sets of H, using the Riemann-
Hurwitz formula, one gets the following [18, Proposition 7.2].

9.2 Proposition. Let H(z,w) = Z?:l Hi(z,w) be a polynomial of degree d > 3 on C?,
with H7 its homogeneous part of degree j. Suppose that (0,0) is the only common zero
of the following four polynomials: H?, H*' 9H?/8z, 0H®/0w. Then the Hamiltonian
vector field Xp = (H,,—H,) on C? is not complete. In fact, every regular level set of H
contains a point p such that the flow Fy(p) of Xy is not defined for all real t.

To motivate the next result we recall the well known result that, if Q(z) > 0 is a
nonnegative smooth real function on R, the Hamiltonian vector field X (z,v) = (y, —Q'(z))
with the energy function H(z,y) = y?/2 4+ Q(z) is complete on R?. In contrast to this we
have [18, Proposition 7.3}:

9.3 Proposition. If f is an entire function on C which is not affine linear, then the
vector field X (z,w) = (w, f(2)) on C? is not complete.

Notice that X is a Hamiltonian vector field with the energy function H(z,w) = w?/2+
Q(z), where Q'(2) = —f(2). The proof in [18] uses elementary Morse theory and it shows
that every regular level set of H contains a point p such that the flow Fy(p) of X is not
defined for all real ¢.
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that the shear groups on C? (see section 1) also admit an amalgamated free product
decomposition. Let £ C §(2) be the subgroup consisting of all automorphisms of the form

BE(z,y) = (e*Wx + b(y), By +7), (15)

wherea  d b areentire functionson C, 8 € C*, and v € C. Maps of this form will be called
elementary in analogy to the polynomial case when a is a constant and b is a polynomial
(see [23]). Ahern and Rudin proved in [3] that the group S(2) is an amalgamated free
product §(2) = Ax &, where A is the affine automorphism group on C? and £ is the group
(15). Analogous result holds for the groups & (2) (Jacobian one) and &;(2) x C* (Jacobian
constant but not necessarily one); see de Fabritiis [10,11]. In these cases the group £
consists of automorphisms (15) for which a is constant and, in the volume preserving case,
et = 1.

In order to obtain the analogue of Theorem 10.1 for the shear groups one uses the
following result of combinatorial group theory.

10.2 Theorem. Let G be a topological group which is a free product G = A * & of
subgroups A and £, amalgamated over their intersection B = AN E. Suppose that B is
closedin G. Then any topological subgroup of G which is isomorphic to R or C is conjugate
in G to a subgroup in A or in £.

Theorem 10.2 follows from a result of Moldavanski ([27] or [38], Theorem 0.3); we
refer the reader to the forthcoming paper [2] for the details. The same result holds for
connected abelian Lie subgroupsin A £.

10.3 Corollary. Every one parameter subgroup of the shear group §(2) is conjugate in
8(2) to a subgroup of € (15). The analogous result holds for one parameter subgroups in
§1(2) and §;(2) x C*.

It is immediate that every subgroup in A is linearly conjugate to a subgroup in € (by
conjugating the relevant matrix to its Jordan form).

One can describe one parameter subgroups {Fy:t € R} C € in the elementary group
£ (15) by using the methods in section 2 of [2]. The infinitesimal generator V = (V1, Va)
of Fy has the form

Vi(z,y) = aly)z + bly), Va(y) = Ay +-

An automorphism @ of C? conjugates V to the field V satisfying D&V = Vo ®. A
preliminary linear change of coordinates in the y variable conjugates V to a field in which
V; is either Ay (A € C) or V; = 1. Conjugating V with shears ®(z,y) = (z + g(v),y)
and generalized shears ®(z,y) = (zeg(y)7y) (and taking into account Corollary 10.3) one
obtains the following classification result [2, Theorem 7.1]:

10.4 Theorem. Every real one parameter subgroup {Fy:t € R} of the generalized shear
group 8(2) is conjugate in §(2) to one of the following:

(i) ¢+(z,y) = (z +tf(y),y), where f is an entire function on C;


















