Math. Z. 223, 123 - 153 (1996)
Mathematische
Zeitschrift

© Springer-Verlag 1996

Actions of (R,+) and (C,+) on complex manifolds

Franc Forstneric

Department of Mathematics, University of Wisconsin, Madison, WI 53706, USA

Received 8 March 1994; in final form 7 December 1994

0 Introduction

In this paper we study actions of the groups (R,+) and (C,+) on C" and on
other complex manifolds by holomorphic automorphisms. We denote by AutM
be the group of all holomorphic automorphisms of a complex manifold M. For
M = C" we denote by Aut,C" the group of all holomorphic automorphisms
with Jacobian one. Recall that an action of (R,+) on M is a smooth mapping
¢ : R x M — M such that for each fixed t € R, ¢, = ¢(¢, - ) € AutM, and
@540 = ¢s0¢, for all 5,7 € R. An action of (C,+) on M is a holomorphic map
¢ : CxM — M with the same properties. We shall occasionally delete the +
sign when the group operation is clear. There is a one-to-one correspondence
between actions of R (resp. C) on M and holomorphic vector fields ¥ on M
which are complete in real (resp. complex) time (Sect. 1). The vector field ¥V
arises as the infinitesimal generator of ¢, and ¢ is obtained by integrating V.
For this reason actions are also called flows.

Although the theory of continuous dynamical systems is one of the most
established and developed parts of mathematics, very little seems to be known
about basic global questions on holomorphic continuous dynamical systems. By
continuous systems we mean flows of holomorphic vector fields, as opposed
to iterations of holomorphic mappings which have attracted most attention in
recent years.

Here is the outline of the paper. In Sects. 1-3 we collect some basic prop-
erties of actions and of the associated R-complete holomorphic vector fields. In
Sect. 1 we define the complex orbits of a holomorphic vector field on a com-
plex manifold M (Definition 3). In Sect.2 and 3 we show that for R-complete
fields (i.e., for actions of R) the nontrivial complex orbits are of six possible
types (Propositions 2.1 and 3.1).

Assuming that the manifold M is Stein, we show that the fundamental
domain M C C x M of an R-complete holomorphic vector field on M is itself
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Stein (Proposition 2.1). If M is such that every negative plurisubharmonic
function on M is constant, then every R-complete holomorphic vector field on
M is also C-complete (Corollary 2.2). This holds in particular when M = c”
or when M = C"\4 for some complex hypersurface 4 C C". Equivalently,
every action of R by holomorphic automorphisms on such a manifold extends
to an action of C. The relevant observation that this follows immediately from
Proposition 2.1 was made by Manuel Flores.

In Sect. 3 we show that, if the manifold M is Stein, there exists a generic
orbit type of an R-action by AutM (Theorem 3.3). For actions of (C,+) on
Stein manifolds the existence of a generic orbit type was proved by M. Suzuki
[32]. (For analogous results see Richardson [27] and the references therein.) If
the generic orbit is either C or C*, then the action extends to an action of C
on M.

In Sect.4 we show that for R-complete holomorphic vector fields on Stein
manifolds, the complex orbits of certain types have at most one limit point
(Theorem 4.1). The closure of such an orbit is a pure one dimensional complex
subvariety. This extends a result of Suzuki [32,33].

In Sect. 5—-7 we obtain new results on symplectic holomorphic automor-
phisms and symplectic actions on C?". In Sect. 5 we show that the group
S C Aut C?" generated by symplectic shears is dense in the symplectic holo-

morphic automorphism group Aut spC2". This is analogous to results of An-

dersén [3] and Andersén and Lempert [4] for the groups Aut;C" and Aut C.
In Sect. 6 (Theorem 6.1) we prove that every action of C on C? by sym-

plectic holomorphic automorphisms is conjugate to one of the following:

di(z,w) = (zw +tf(2)),
Uz, w) = (ze* ), we= 41y |

where ¢t € C and f resp. A is an entire function of one variable. There are
some further equivalencies, described in Propositions 6.2 and 6.3. Our result
relies on the classification of entire functions of type C or C* on C?, due to
Nishino [25] and Saito [29]. (See also Suzuki [33].) In this connection we
recall that several other types of flows on C? have been classified; we refer
the reader to the papers [2],[7],[32],[33],[36].

In Sect. 7 we find obstructions to completeness of certain holomorphic
Hamiltonian (i.e., divergence zero) vector fields on C%. We show in particular
that a Hamiltonian vector field of classical mechanics, X = (w, f(z)), with
f an entire function of one variable, is complete on C? only if f is linear
(Proposition 7.3). This implies that for every nonlinear entire function f on
C, the second order conservative ordinary differential equation

i=f(z), 20)=z, #0)=2

cannot be solved for all ¢ € R and all initial data (zo,Z9) € C* (Corollary 7.4).
This is in sharp contrast with the situation on R? where the equation is of-
ten solvable for all ¢ and all initial data. We also give a criterium for non-
completeness of polynomials Hamiltonian fields on C? (Proposition 7.2). The



Actions of (R,+) and (C,+) on complex manifolds 125

obstructions are essentially of topological nature. The proofs rely on Proposi-
tion 3.1 and on elementary Morse theory.

In Sect. 8 we give a simpler proof (in the special case of C") of a result
of Suzuki [33] to the effect that for every action ¢ of R or C on C”" by
polynomial automorphisms (quasi-algebraic action) there is a proper polynomial
embedding F : C" — C” for some m > n and a linear action ¥ on C” such
that Y(¢,F(z)) = F(¢(t,z)) for all z € C" and all ¢.

In Sect. 9 we show that complements Q = C"\4 of ‘tame’ analytic subva-
rieties 4 C C" of codimension at least two are homogeneous, in the sense that
the group of F € Aut;C" which fix 4 pointwise acts transitively on Q. This
extends a result of Winkelman [34] for algebraic varieties. Stronger results for
discrete sets in C" were proved by Rosay and Rudin [28].

After the completion of this manuscript we received preprints from Fornaess
and Sibony [13] and Fornzss and Grellier [14] with results on the global
behavior of flows generated by (noncomplete) holomorphic Hamiltonian vector
fields.

Several questions which were raised in the original version of this manu-
script have been solved by the time of this revision. First, the question whether
all holomorphic vector fields on C" which are complete in real time are also
complete in complex time has been resolved in the positive (Corollary 2.2).
Secondly, Buzzard and Fornass have constructed holomorphic vector fields on
C? which cannot be approximated by complete ones, uniformly on compacts
in C2. In fact, the set of non approximable fields is dense in the set of all
holomorphic vector fields in C" [37],[38].

1 Vector fields, flows, and foliations

In this section we recall some general results on holomorphic vector fields,
their phase flows and the resulting foliations.

Let ¥ be a smooth vector field on an n-dimensional manifold M. According
to the local existence and regularity theory for systems of ordinary differential
equations (see for instance [1], [6], or [20]), every point P € M has an open
neighborhood U C M of p and an ¢ > 0 such that the equation

X=VE),  x(0)=x° (1.1)

has a unique solution x(t) for every x € U and every |t| < & Denote by
¢(t,x°) = ¢,(x°) the solution of (1.1) at time ¢. This map is called the (local)
flow of V. Each time forward map ¢, is a diffeomorphism on the open subset
of M where it is defined, and we have ¢, o ¢, = ¢,,, where both sides are
defined.

From now on M is going to be a complex manifold. Let TM ® C =
TOM @ TODM be the usual splitting of the complexified tangent bundle to
M. Denote by J : TM — TM the almost complex structure operator induced
by the complex structure on M. Then we have an isomorphism TM ~ TV M
given by V i V=(V = iJV)/2, s0 V =2RV and JV = 2R (iV). We will
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say that a (real) vector field ¥ on M is holomorphic if the corresponding
(1,0)-field ¥ is holomorphic (i.e., if ¥ is a holomorphic section of the bundle
TOYM). If ¥ is holomorphic, we can consider the holomorphic differential
equation associated to (1.1):

=PE), x(0)=x". (12)

Here x denotes the complex derivative of x with respect to a complex variable
{ € C. Again this equation has a unique local holomorphic solution { ~
¢ (£, x%), depending holomorphically on x°. The equation (1.2) is equivalent to
the system of equations

oxfor=V(x), Oxfas=JV(x), (=t+is, x(0)=x".

Definition 1. A vector field V on M is R-complete if the equation (1.1) has
a solution x(t) € M for all initial data x° € M and all t € R. If M is a
complex manifold and V is holomorphic, then V is C-complete if (1.2) has a
solution x({) € M for all xX € M and all { € C.

In the sequel we shall frequently identify the real vector field V' with the
field ¥, and we shall not distinguish between (1.1) and (1.2). This should not
cause any confusion.

If a holomorphic vector field ¥ is R-complete (resp. C-complete), its flow
¢, is an action of (R, +) (resp. (C,+)) on M by holomorphic automorphisms.
Conversely, one associates to every action ¢ : R x M — M by holomorphic
automorphisms of M the vector field

d
V¢(x) = ‘_J;d)(t’x)It:O )

called the infinitesimal generator of ¢. The field ¥} is holomorphic and R-
complete on M, with the flow ¢. Thus there is one to one correspondence
between R-complete (resp. C-complete) holomorphic vector fields on M and
actions of (R,+) (resp. (C,+)) on M by holomorphic automorphisms.

Definition 2. Two actions d),d; :RXM — M are equivalent if there exists
an F € AutM such that F(¢(t,x)) = ¢(4,F(x)) for all t € R. Holomorphic
vector fields V,V on M are equivalent if DF "+ V = VoF for some F € AutM.

Recall that the actions ¢, @ are equivalent if and only if their infinitesimal
generators are equivalent.

We now define the complex orbit of a holomorphic vector field V. Fix
x€M and let ¢* =¢( - ,x) be the local holomorphic solution of (1.1) satisfying
the initial condition ¢*(0) = x. By analytic continuation we can extend this
solution to a maximal connected Riemann domain R, spread over C. More
precisely, there exists a maximal connected open Riemann surface R, and a
holomorphic immersion n, : R, — C such that the local solution of (1.1)
continues to a holomorphic mapping ¢* : R, — X satisfying ¢*(0) = x and
qu"(C)% = V(¢*(z)). Here, 0/0( is the pullback by =, of the coordinate
vector field on C. In general R, is not single sheeted over C.
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Definition 3. (Notation as above.) The set C, = ¢*(R;) C M is called the
complex orbit of the vector field V (and of the associated local flow ¢)
through the point x € M.

1.1 Proposition. Let V be a holomorphic vector field on M with the zero
set X. Then for each x € M\X the map ¢* : R, — C, is a holomorphic
covering projection. The orbit C, is a smooth, embedded, one dimensional
complex manifold (a Riemann surface) in M.

Proof. If V. %0, the orbit C, does not contain any zeros of ¥, and therefore
¢* : R, — C, is a holomorphic immersion onto C,. The last assertion of the
theorem is clear from the local theory of differential equations.

It remains to show that ¢* is a covering map. Choose a disc U = U(0,¢)
C R, centered at the origin that is mapped by ¢* biholomorphically onto a
neighborhood U, of x in C,. If @ € R, is any point such that ¢*(a) = y
belongs to U,, there is a point @’ € U such that ¢*(a’) = y. Then
the map { — ¢*({ +d —a) € M is a local solution of the equation
(1.1) on the disc U(a — a’;¢) C C. Since it agrees with ¢* at the point
{ = a, the two solutions agree, hence the disc U(a’ — a;¢) is contained
in R, and is mapped by ¢* biholomorphically onto U,. Thus (¢*)~!(Uy)
is a disjoint union of discs in R, (although their projections to C need not
be disjoint!), and each of them is mapped by ¢* biholomorphically onto
U;. The same argument holds at every point of C,, and Proposition 1.1
is proved. O

Example. There exist holomorphic vector fields ¥(z) on C” for n > 1 such that
every solution z(¢) of the equation (1.1) goes to infinity in finite time (positive
or negative), starting at any point in C". Here is one way to get such fields
for n = 2. I thank W. Rudin for having pointed this out to me.

Let F be a polynomial automorphism of C? with an attracting fixed point
a. Let D(a) be the basin of attraction of a:

D(a)={z € C*: Jlim F®(z) = a}.

Here, F(®) is the k-th iterate of F. If D(a) is not all of C? then D(a) is a Fatou—
Bieberbach domain [9], [28]. Bedford and Smillie proved in [8] that in this case
D(a) intersects every algebraic curve 4 C C? in a nonempty bounded set. In
particular, the intersection AND(a) with every affine complex line is a bounded
domain in A, and Runge’s approximation theorem implies that each connected
component of AN D(a) is biholomorphic to the disc. If y : C* — D(a) is the
Fatou-Bieberbach map and if W is any nonzero constant vector field on C2,
then the pull-back vector field ¥ = y,~'W satisfies the indicated property. The
complex orbits of ¥ are (biholomorphically equivalent to) discs which form
a nonsingular holomorphic foliation of C%. A specific example is provided by
Hénon maps

F(x,y) = (y, p(y) —cx),
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where p is a polynomial and ¢ € C,. The point (0,0) is an attracting fixed point
of F if p(0)=0, p'(0) =0, and 0 < |c| < 1. The fact that the intersections
of its basin of attraction with complex lines are nonempty bounded sets was
observed by Rosay and Rudin [28] in the case p(y) = y*. The dynamical
properties of Hénon maps has been studied extensively in recent years; see for
instance [8,12,19] and the references therein. O

We conclude this section by recalling that every holomorphic vector field
V on a complex manifold M of dimension n = 2 determines a holomorphic
foliation #(V) of M\o, where ¢ is an analytic subset of codimension at least
two in M. To obtain #(V') we begin with the foliation #(V) of M\ZX, where
2 = {V = 0}, whose leaves are the complex orbits of V. It is possible to extend
HFo(V) to a neighborhood of each point p € X such that in a neighborhood
of p we have V = f¥’ for some holomorphic function f and a holomorphic
vector field V' satisfying ¥/(p)=0. The leaves of #(V) near p are the local
orbits of ¥/ (which coincide with the orbits of ¥ outside X). The exceptional
set o consists of all points at which there is no such factorization; these are
called singular points of V. It is not hard to see that ¢ is contained in the union
of the singular locus of X and the irreducible components of X~ of dimension
at most dimM — 2.

2 Complex orbits of (R, +) actions

Let ¢ : RxM — M be an action of (R, +) on a complex manifold M, with the
infinitesimal generator V. Let X be the zero set of V. Denote by ¢* : R, — C,
the complex orbit of ¢ through a point x € M (Def. 3).

2.1 Proposition. If ¢ is an action of (R,+) on a complex manifold M by
holomorphic automorphisms, then for each x € M the Riemann surface R, is
a strip in C of the form

Ri={{=t+iseC: —bx) <s < a(x)}, a(x) >0, b(x)>0.

For each x € M\X the map ¢* : R, — C, is the universal covering projection,
and Cx is isomorphic to the quotient R,/Gy, where G, is a discrete subgroup
of R or C (the group of deck transformations). The functions a and b are
lower semicontinuous on M. If the manifold M is Stein then the functions —a
and —b are plurisubharmonic on M (or identically —o00), and the fundamental
domain

M={{(x):xeEM{ER}CCXM (2.1)

is a Stein manifold. The action ¢ extends to an action of (C,+) on M if
and only if M = C x M.

Proof. We consider the infinitesimal generator ¥ of ¢ as a real vector field
on M, and set W = (V — iJV)/2. The flow ¢, of V is by hypothesis defined
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for all £ € R. Let Y (s € R) be the local flow of the real vector field J¥ on
M. Since the field W is holomorphic, we have

iV,JV=[W+W,W-W]=2[W,W]=0,

and therefore the flows ¢, and v of ¥ resp. JV commute.
We fix an x € M and denote by I(x) = (—b(x), a(x)) C R the maximal
interval on which the flow y4(x) of JV is defined. We claim that the map

C=t+is— ¢ oys(x)

is a solution ¢*({) of the Eq. (1.2) for { in the strip R, = R @ il(x). Clearly
its ¢-derivative equals ¥ since ¢, is the flow of V. If ¢ and s are small, we
have ¢, o Y(x) = s o ¢,(x), and thus its s-derivative equals JV there. Since
the map is real-analytic on R,, the same holds on all of R, and the claim is
established. In particular it follows that the flow Us(p:(x)) is defined for all
t+is €R,.

We claim that R, is the maximal domain of ¢*. If not, the map ¢* : R, —
M extends holomorphically to a neighborhood of some point {y = ¢y + isg in
the boundary of R,. Thus, if we set y = ¢4 (x) € M, the maximal interval
I(y) on which the flow y4(») is defined is strictly larger than I(x). We can
now extend the map ¢* to the larger strip R, =R ®il(y) by setting

Pt +is) = ¢t—10 oy o ¢t0(x) .

This definition agrees with the previously defined ¢* for { = ¢+ is € R, since
the flows ¢, and y; commute there. Thus we have an extension of ¢* to the
larger strip R,. Therefore the interval /(x) is not maximal for the flow Us(x),
a contradiction.

Since R, is simply connected, ¢*:R, — C, is the universal covering of C,
(Proposition 1.1). Therefore C, ~ R,/G,, where G, C AutR, is the group of
deck transformations.

The set M (2.1) is an open domain in C x M by general properties of
flows, hence the functions a and b are lower semicontinuous on M. Suppose
now that the manifold M is Stein. We will prove that the functions —a and
—b are plurisubharmonic on M. If —a fails to be plurisubharmonic at a point
Xo € M, there exist a closed embedded analytic disc D ¢ M containing xg
and a smooth function u: D — C, harmonic in the interior of D, such that
0 = u(x) < a(x) for all x € bD but u(xy) > a(xp). Let v be a harmonic
conjugate of u on D and set & = i(u + iv) = —v + iu.

Consider the family of analytic discs Dy = {(sh(x),x):x € D}cCxM
for 0 <s < 1. When s is small, D; is entirely contained in M. By construction
the union of boundaries Uo<s<1bDs is compactly contained in M, but the
disc D) is not contained in M. Let s; be the smallest value of s € (0,1) for
which D; N bM is not empty, and choose a point ({;,x;) € D, N bM. Then
{1 = s1h(x1). Since the domain M is translation invariant with respect to the
real part of the first variable, we can change v = R A if necessary so that
v(z1) =0 and {; = isju(x;).
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Since M is Stein, it admits a holomorphic embedding F : M —CV into some
Euclidean space [21]. Set G=Fo¢:M—C", where ¢p:M — M is the flow of
V. By the Kontinuitétssatz the map G admits analytic continuation along the
family of discs Dy for 0 < s < 1. This extends the flow s — ¢ (isu(x;),x;) to
all values 0 <s <1 in contradiction to the maximality of the domain M. This
proves that —a is plurisubharmonic on M; the analogous proof applies to —b.
Thus M is a pseudoconvex domain in the Stein manifold C x M and therefore
it is itself a Stein manifold. Proposition 2.1 is proved. [

The following consequence of Proposition 2.1 was observed by Manuel
Flores.

2.2 Corollary. If M is a Stein manifold such that every plurisubharmonic
function on M which is bounded from above is constant, then every action of
(R, +) by holomorphic automorphisms on M extends to an action of (C,+).
This holds in particular when M = C" or when M = C"\A for some complex
hypersurface A C C".

Equivalently, every holomorphic vector field on such a manifold M which
is R-complete is also C-complete. In particular, every R-complete holomorphic
vector field on C" is C-complete. The same holds on Ckx (C*y" for k,m = 0.

Proof. The functions —a and —b from Proposition 2.1 are negative plurisub-
harmonic on M (or —oo), hence constant by our assumption on M. Thus the
flow of the field JV exists for time |¢| < min(a,b) when starting at any point
x € M. The group property of the flow then implies that the flow of JV exists
for all times ¢, i.e., the field JV is R-complete. Thus a = b = oo and the field
V is C-complete.

It is well known that there are no nonconstant negative plurisubharmonic
functions on C" [35, p. 338]. The same holds for C*\4, where 4 is an ana-
lytic hypersurface in C”, since a bounded plurisubharmonic function extends
across 4. O

2.3 Corollary. If ¢ is an action of (R,+) by holomorphic automorphisms on
a Stein manifold M such that R, = C for all points x in a non-pluripolar set
in M, then ¢ extends to an action of (C,+) on M.

3 Types of orbits of an (R,+) action

Let ¢:R x M — M be an action of (R,+) on a complex manifold M with
the fixed point set ¥ C M. We extend ¢ to the maximal domain M C C x M
(2.1) defined in Sect. 2.

3.1 Proposition. For each x € M\Z the complex orbit Cx of ¢ containing x
is biholomorphic to one of the following Riemann surfaces:

(a) the complex line C,;
(b) the punctured line C* = C\{0};
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(c) a torus;

(d) the disc U ={z € C:|z] < 1};

(e) the punctured disc U* = U\{0};

(f) an annulus A(r) ={z € C:1 < |z] < r}.

Actions of (C,+) on M only have orbits of types (a)—(c).

Remark. 1f M is Stein then ¢ has no toral orbits. If M is a hyperbolic manifold
then ¢ has only orbits of types (d)—(e), and there are no actions of C on M.

Proof. Recall that C, ~ R,/G,, where R, is a strip in C (Proposition 2.1) and
G; is a discrete group of automorphisms of R, (the deck group). Fix a g € G,.
We claim that g({ +¢t) = g({)+¢ for all { € R, and ¢ € R, and therefore
9({) = { +a for some a € C. To see this, recall that by definition of ¢* we
have D¢*({)(0/80) = V(¢*({)). Therefore ¢* maps the flow (1,{) — { + ¢ of
the field 6/0 on the strip R, to the flow ¢ of the field Vi ({+1) = d(¢*(0))
for each { € R, and ¢ € R. Since g € G, satisfies ¢ o0 g = ¢*, we obtain

(9O +1) = dr 0 ¢*(9(0)) = dr 0 () = $* L+ 1) = $*(g({ +1)).

Since ¢* is a covering projection, it follows that g({ +t) = g({ )+t as claimed.

This shows that G, is a discrete subgroup of (C,+) which is necessarily
contained in R if R, #C. If R, = C, G, has either zero, one, or two generators.
The orbit Cy = C/G, is then isomorphic to, respectively, C,C*, or a torus. If
R, #C then G, is a discrete subgroup of R, hence it has either zero or one
generator. In the first case C, is isomorphic to the disc; in the second case it
is isomorphic either to an annulus or to the punctured disc U*, depending on
whether both numbers a(x),b(x) determining the strip R, are finite or one of
them is infinite. This proves Proposition 3.1. [

The proof given above actually gives more. Let ¥ be a holomorphic vector
field on a complex manifold M, and let ¢, be its local flow.

Definition 4. 4 complex orbit C of V is R-complete (resp. C-complete) if
¢u(x) exists for all x € C and all t € R (resp. for all t € C).

Observe that a holomorphic vector field ¥ is R-complete (resp. C-complete)
if every complex orbit of ¥ is R-complete (resp. C-complete).

3.2 Proposition. Every nontrivial, R-complete complex orbit is isomorphic to
one of the surfaces in Proposition 3.1.

In other words, if C C M is a complex orbit of ¥ which is not isomorphic
to any of the surfaces in Proposition 3.1, then there exists a point x € C and
a finite 7y € R such that ¢,(x) leaves every compact set of M as ¢ approaches
to. The proof of Proposition 3.2 is exactly the same as that of Proposition 3.1.

Richardson [27] proved that for every holomorphic action of a reductive
complex Lie group G on a connected Stein manifold M there exists a con-
nected, dense open subset My of M such that the orbits C, are isomorphic to
each other for all x € M;. We now prove a similar result for the complex
orbits of an action of R on a connected Stein manifold M.
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3.3 Theorem. If ¢ is an action of (R,+) by holomorphic automorphisms on a
connected Stein manifold M, there exists a ¢-invariant pluripolar set E C M
(E containing the fixed point set X of ¢) such that every complex orbit C,
for x € M\E is of the same type (a), (b), or (d)—(e). If the generic orbit
is U* or an annulus, then ¢ has a period A > 0, and it factors through an
action of the circle group (S,+) on M. ¢ extends to an action of (C,+) on
M if and only if the generic complex orbit is either C or C*; this is always
the case when M = C",

Remark. For actions of (C,+) on Stein spaces the existence of a generic orbit
type (C or C*) was proved by Suzuki [32, Proposition 2]. His proof shows
that when the generic orbit type is C* then C, is isomorphic to C* for every
x outside a closed analytic subset A C M. (4 is the union of zero and polar
sets of a meromorphic function A2 on M such that A(x) is a generator of the
isotropy group Gy.)

Proof. We shall only consider actions of (R, +) which do not extend to actions
of (C,+), since in the later case the result has been proved in [32]. We define
pluripolar sets Ey,E; C M as follows. If a(x) is not identically equal to +oo
on M, we set Ey = {x € M :a(x) = +oo}; otherwise we set Ey = (). (Recall
that —a and —b are plurisubharmonic.) Similarly, if b(x) is not identically
+o00, we set E; = {x:b(x) = 400}, and we set E; = () otherwise. By the
hypothesis on ¢ at least one of these two sets is nonempty, and R, = C for all
x € M\(EyUE)). Set

G = {({,x) € M:¢p({,x) = x},
G, = {C (S Rx:qb({,x) :x} .

G is a closed, proper analytic subvariety of M, and G, is a discrete subset of R,
(the isotropy subgroup at x). We can write G = G°UG’, where G° = {0} x M
and G’ is the union of the remaining irreducible components of G. Denote by
n:Cx M — M the projection n({,x) = x. Let E;, C M be the projection in
M of the union of all irreducible components of G of dimension less than n.
Then E, is contained in at most a countable union of analytic sets in M of
dimension < n [10] and hence it is pluripolar.

Set E = EyUE; UE,; this set is also pluripolar. If dim G’ < n, G, is trivial
for all x € M\E,, and hence the orbit C, is isomorphic to the disc for each
x € M\E.

Consider now the case dim G’ = n. Choose a regular n-dimensional point
go = (A0,%0) € G’ which is a regular point of 7|g. Such points exist on each
irreducible n-dimensional component of G’ since the fibers G, of G are discrete.
We claim that G’ contains the set {4o} X M as an irreducible component. To
prove this we observe that locally near go, G is the graph of a holomorphic
function A(x) defined near xo € M. Since G, C R for most x € M, 4 is real
valued and thus constant, A(x) = 1y € R. Hence G’ contains {49} X M as
claimed.
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We repeat the same proof for every n-dimensional irreducible component of
G. The conclusion is that the n-dimensional part of G equals AgZ x M, where
Ao > 0 is the smallest period of the action ¢. Since d(Ao,x) =x forall x € M, ¢
factors through an action of the circle group on M. We have G, = AZ for all
x € M\E;. For each x € M\E the orbit C, = R,/G; is of the same type (e) or
(f) (Proposition 3.1). If both E, and E, are nonempty, these orbits are annuli.
If one of the sets Ej resp. £ is empty, the generic orbit is U*. If both E, and
E, are empty, ¢ extends to an action of C on M. This completes the proof of
Theorem 3.3. 0O

We conclude this section by a list of examples, showing that all types
of orbits listed in Proposition 3.1, except type (c), arise as generic orbits of
(R, +)-actions on Stein manifolds.

Example 1. The following list of actions of C on C? is taken out of
Suzuki [33]:

to(x,y)=(xy+tf(x))
to(x, ) = (x,e"(y — b(x)) + b(x))

to(x,y) = (xe", ye"), nmeZ,, iecC*

ni(z)t —mA(z)t )

to(x,y) = (xe ye mn€Zy, z=x"y"

to(x,y)=(xe",e"™(y+1x")), neZ, icC*.

Denote by Cix,) the complex orbit through (x, y) € C2. For the first action we
have C(.y) = {x} x C if f(x)=+0; hence the generic orbit type is C unless f is
identically zero. In the second action the functions A and Ab are holomorphic
on C (hence b is meromorphic). If x is not a pole of b, then (x,b(x)) is a fixed
point of the action, and Cy,) ~ C* for y=+b(x). Hence the generic orbit type
is C*. The third action factors through an action of C* on C2 (since it has a
period # € C* independent of (x, y)), and every orbit C, ) except C(op) is of
type C*. The fourth action also has a nontrivial period #o(x, y) which depends
on (x,y), and the generic orbit is C*. For the last action we have Cayy ~C

for x40, and its limit set is w(Cy)) = {0} x C. (See Sect.4 for the definition
of the limit set.)

Example 2. Let B C C"(n 2 2) be the unit ball. For each n x n matrix 4
satisfying A +4' =0 we have the unitary action of R on B

¢(z) =exp(4dt)z, teR.
If 4 = (id;) is a diagonal matrix, with d ; € R, we have
exp (At)z = (e“1'z),...,e%"z,) .

If the quotients d;/dy are all rational, there is a nontrivial period # > 0, the
orbits are closed in B\{0}, and the generic orbit type is U*. If one of the
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numbers d;/dy in irrational, there is no nontrivial period and the generic orbit
type is U. In this case most complex orbits have large limits sets in B. Every
action on B with a fixed point a € B is conjugate in AutB to an action of this
form. Of course there are no C-actions on B since B is hyperbolic.

Example 3. The domain Q = {w = (w;,w') € C": Iw; > ||’} is the
unbounded realization of the ball (the Siegel upper half space). Consider the

actions of R on Q ,
¢t(w) = (W1 + tw )a

Y(w) = ('wy,e'w').
They have no fixed points in Q. The first one has the only fixed point at oo,
while the second one has fixed points 0 and co. These actions are conjugate to
actions on B which have one resp. two fixed points in bB and no fixed points
in B. The generic orbit type is U in the first case and U™ in the second case.

Example 4. Let D C C" be a bounded circular domain which does not contain
the origin. Then the orbits C, of the action ¢,(z) = e“z(t+ € R) are annuli
whose holomorphic type may depend on the point z € D.

4 Limit sets of complex orbits

Let ¢ be an action of R on a complex manifold M, and let ¢*:R, — C; be the
complex orbit of ¢ passing through x (Def. 3). Pick any increasing sequence
of compacts {K;}?, in R, whose union equals R,. The limit set o(C) CM
of the orbit C, is defined by

o) = N FE-K).
L

Clearly o(Cy) is a closed subset of M invariant under the action of ¢ (hence
it is itself a union of R-orbits of ¢), and C, = C, U w(Cy).
The action is said to be proper if the limit set of every complex orbit C
is empty or discrete; the closure C is then a closed analytic subvariety of M.
Proper actions of C on C? have been classified by Suzuki [33, Theorem 4].
The following result was proved for actions of (C,+) on Stein manifolds
by Suzuki [32, Theorem 1], [33].

4.1 Theorem. Let ¢ be an action of (R,+) by holomorphic automorphisms
on a Stein manifold M, and let C be a nontrivial complex orbit of ¢. If C is
isomorphic to an annulus, then w(C) = 0. If C is isomorphic to the punctured
disc U*, or if C is isomorphic to the punctured plane C* and ¢ extends to
an action of (C,+) on M, then the limit set w(C) consists of at most one
point, and this point is a fixed point of the action.

In each of these cases the closure C is a pure one dimensional analytic
gubvariety of M. If C does not intersect the singular set ¢ of the action, then
C is smooth.
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Proof. The idea is the same as in [32]. Recall from Proposition 2.1 that the
complex orbit C through a point xo € M \Z is the image of a strip R = {¢=
t+is€ C:—b < s < a}, and C is isomorphic to the quotient R/G, where
G is the isotropy group of xo: G = {{ € R: ¢({,x0) = x0}. G is a discrete
subgroup of C which is contained in R if R+ C.

If C is of one of the types as in the theorem, then G is nontrivial. Since M
is Stein, G can not have two generators, hence it has precisely one generator
4 € C. The quotient C = R/G is isomorphic either to C* (when a = b = 00),
to U™ (when one of the numbers a, b is infinite and the other one is finite), or
to an annulus (when both a and b are finite).

Consider first the case when C is isomorphic to C* and ¢ extends to an
action of (C,+) on M. Replacing ¢ by the action (§x) = ¢(AL,x) we may
assume that A = 1. (This is the only place where we need the assumption
that ¢ extends to an action of (C,+).) The set M, = {xeM:¢(1,x) = x}
is a closed analytic subset of M containing C. Therefore ¢(1,x) = x for all
xeC.

Each limit point p € w(C) is the limit of a sequence @({;,x) =x; € C
such that 0 < R{; <1 and |I{;| — oo. Passing to a subsequence we may
assume without loss of generality that §j =3 — +oo. LetL; = {P(t+is;,x0):
t € R} be the R-orbit of xj. These orbits are compact since ¢(1,x) = x
for x € C, and the continuity of ¢ they converge to the compact R-orbit
L = {¢(t, p):t € R} of the limit point p. Hence the union K = Uj»1LUL; is
compact in M.

Choose a holomorphic embedding F: M — C" such that |F| < 1 ona
neighborhood of K in M [21]. Since the mapping { — F(¢({,x0)) is peri-
odic with period one, it can be written as a holomorphic map H(w) of w =
exp(2ni(). The line 3{ = s; corresponds to the circle lw| = e72™i, By con-
struction we have |H| < 1 on each of these circles for J Z Jo. Since s; — o0,
the maximum principle implies that |H| < 1 in a neighborhood of the origin
in C. Therefore H extends holomorphically to the origin, and the sets {H(w):
|w| = e=™i} = F(L;) converge to the point H(0) as j — oo. Since F(L;) also
converge to F(L), it follows that F(L) = H(0), and therefore L = {p}. Thus
p is a fixed point of ¢. The proof also shows that limg;_ 10 ¢(C,x0) = p.

This shows that the limit set of the orbit C ~ C* at each of its two ends is
either empty or else a point p which is a fixed point of ¢. Adding this point
to C compactifies C at this end, and C U {p} ~ C. We can not compactify
C at both ends at the same time since this would yield a compact Riemann
surface (sphere) in the Stein manifold M. This proves the theorem for orbits
of type C*.

Consider now the case C ~ U*. This happens when one of the numbers
a,b is finite and the other infinite; say b < oo and a = co. The isotropy group
G is a discrete subgroup of R with one generator A > 0. The quotient R/G is
biholomorphic to the punctured disc U* via { — w = e2"($=5)/A_ with the end
¢ — o0 corresponding to the origin w = 0. The same proof as above shows
that C is either closed at this end, or else its closure is obtained by adding
to C a fixed point of ¢.
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Next we consider the end of C corresponding to I{ — —b. Since R is the
maximal domain on which ¢( +,x) is defined, it follows by standard arguments
that the sequence ¢((;,xo) goes out of every compact subset of M for any
sequence (;€R converging to a compact subset of bR={t —ib : t€R}. Since
¢(-,xp) is A-periodic, we conclude that C has no limit points in M at this end.

Finally, if C is an annulus, both a and b are finite and the group G is
nontrivial, generated by a 4 > 0. The same argument as in the case C ~ U*
shows that C is closed in M. This proves Theorem 4.1. [

Remark. Suzuki pointed out in [32, Theorem 2] that for actions of (C,+) on a
two dimensional Stein manifold M, with generic orbit of type C*, the closure
in M of every nontrivial orbit is an irreducible, one dimensional analytic subset
of M. The reason is that the orbits of type C only occur for x in a closed
subvariety 4 C M. Since dimM = 2, 4 is an analytic curve, and C; C 4 for
x € A. Hence C, is an analytic subvariety of M according to a theorem of
Remmert and Stein [10].

5 Symplectic holomorphic automorphisms of cr

In this section we consider symplectic holomorphic automorphisms of c*.
We refer the reader to [1] and [5] for motivation and basic results of (real)
symplectic geometry.

Let (z,w) = (z1,...,24, W1,...,W,) be the complex coordinates on C*. We
will also use the notation (z,w) = x = (x1,...,X%24), Where x; = z;, Xpq; = W;
for 1 £j <n. We denote by {e/ : 1 <j <2n} the standard basis of C*. The
alternating bilinear form

n
(U, 0) = D UjDnyj — UnyjUj, UV E c, (5.1)
j=1

is called the standard symplectic form on C?" [23]. The group Sp(n,C), con-
sisting of all linear maps 4 € GL(2n,C) preserving this form, is called the
linear symplectic group. This group is best described by introducing the linear
operator .
Je& = —e"tk, JMtF = 1<k<n.

In the standard basis J has the matrix (_01,, 1; ), where 1" is the n x n identity

matrix. Then
w(u,v) =u'Jv, u,veC”.

Here u' is the transpose of the column .vector u. Thus
Sp(n,C) = {4 € GL(2n,C) : A'JA=J} . (5.2)

Recall [23, p. 373] that Sp(n,C) is generated by the linear symplectic trans-
vections
Ay (x) =x+ do(x,v)y, AeC*, veC™. (5.3)
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The symplectic differential form on C%" corresponding to (5.1) is
n n
o= Y dz; Ndw; = > dx; Adxpy; . (54)
j=1 j=1

We shall use the same letter w for both (5.1) and (5.4) since it will always
be clear from the context which form is meant. The (2,0)-form (5.4) is holo-
morphic, closed, nondegenerate, and

(=1)l2
n!

" =dx; Ndxa A Ndxy, = Q.

The (2n,0)-form Q is called the canonical Sorm (or the holomorphic volume
form) on C*". Notice that w =  on C2.

Definition 5. 4 holomorphic mapping F:Dc C*" — C?" s symplectic holomor-
phic if F*o = o,

A symplectic holomorphic map also satisfies F*Q = €2, which means that
F has Jacobian one; in particular, F is an immersion. Clearly the composition
of symplectic holomorphic maps is again symplectic holomorphic.

We denote the group of symplectic holomorphic automorphisms of C?”* by
Aut,,C*". Recall that Aut,C" is the group of automorphisms with Jacobian
one. We have

Sp(n,C) C AutspCz" C Aut,C*" AutC?, AutspC2 = Aut,C? .

We shall now consider a subgroup S C AutspCz" generated by symplectic
shears. Recall from [28] that a shear on C” is an automorphism of the form

F@)=z+ f(Az), veC",

where 4 : C" — C"(k <n) is a linear map such that Av = 0, and f is an
entire function of k variables. Linear maps of this type are also called ‘transvec-
tions’ [23].

Let v € C*, and let S be an entire function of one variable. The map

Fro(x) =x+ f(o(x,v)p, xeC*, (5.5)

is a symplectic holomorphic automorphism of C?" with the inverse F“(IJ =
F_z,. We will call maps of this form symplectic shears. The derivative of
F =Fy, equals

DF(x)u = u+ f'(w(x,v))o(u,v)v,

and it follows immediately that w(DF (x)u, DF(x)u') = w(u,u’) for all u,u’ €
C*. Thus F*® = w as claimed. Notice that every shear on C? is symplectic.

Here is the main result of this section. Analogous results for the groups
AutC”" and Aut;C"(n = 2) have been obtained in [3] and [4].
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5.1 Theorem. For each n =1 the group o>
tions of symplectic shears (5.5), is dense in AutspCZ" in topology of uniform
convergence on compact sets in C*".

consisting of finite composi-

Notice that & contains the linear symplectic group Sp(n,C) since every
linear symplectic transvection (5.3) belongs to %, and Sp(n,C) is generated
by symplectic transvections. The result analogous to Theorem 5.1 holds also
for smooth symplectic maps on R?", but it is much less interesting there.

Remark 1. Andersén [3] proved that the group %" C Aut;C", consisting of
finite compositions of shears on C”, is dense in Aut;C", but not equal to
Aut,C”". (See also [4].) In particular, if f is a nonconstant entire function of
one variable, the map (z,w) — (ze/@), we=/@")), which belongs to Aut;C? =
Autspcz, is not a finite composition of shears on C2. We expect that the two
groups in Theorem 5.1 are different in every dimension.

Remark 2. Although Theorem 5.1 is stated only for global symplectic maps,
the same technique gives approximation of certain isotopies of symplectic holo-
morphic maps. We refer the reader to the papers [17] and [18] in which we
study invariants of symplectic and volume preserving holomorphic maps.

Proof of Theorem 5.1. The proof follows from the ideas outlined in the proof
of Theorem 1.1 in [15]. We must recall the notion of complex Hamiltonian
vector fields. We state without proof several well known results of symplectic
algebra and geometry; we refer to [1,5,23].

Since the form w (5.4) is nondegenerate, it induces an isomorphism between
the holomorphic tangent and cotangent bundles to c*:

v € T,C*" - wy(v, - ) € T}C™ .

To each holomorphic function H(z,w) (Hamiltonian) on a domain D C C" we
associate the holomorphic Hamiltonian vector field Xy on D by the equation

dH = a)(XH, . ) = iXa) .
Here, dH = 3°7_ H,; dz; + H,, dw;. In coordinates (z,w) we have

n 0 0
Xy = S Hy,— — Hy, —
H jé:l ]aZj /aWj

= (Hw, _HZ) .

Let ¢f be the local flow of Xy. The chain rule implies that 4 H(¢#(x)) =0
for all ¢, hence H is constant on the orbits of ¢’. Classically this is referred
to as the ‘conservation of energy’. Each time map ¢ is symplectic where
it is defined. In particular, if H € O(C?) is an entire function such that the
Hamiltonian field X is complete, then the flow ¢ is a one parameter sub-
group of AutspCZ". Conversely, if ¢ is an action of R or C on C?" such that
¢: € Auty,C*" for each ¢, then the infinitesimal generator X(¢) is a complex

Hamiltonian vector field on C*".
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Each symplectic automorphism F € AutspCz" maps Hamiltonian vector fields
to Hamiltonian fields:

DF « Xyop =Xy oF .

Hence F maps the flow ¢, of the field Xyor to the flow ¢, of Xy:
Fodj(x) = $(F(x)), x=(zw)eC™.
The symplectic map (5.5) is the time one map of the symplectic action
Fi(x)=x+tf(o(x,v))v, teC.

Its infinitesimal generator is the Hamiltonian shear field

Xro(x) = f(o(x,v)). (5.6)
Let 4 be a holomorphic primitive of — f (") = —£(0)). Then

H(x) = h(w(x,v)), x€C™,

is the energy function of the field (5.6).

The following result plays a central role in the proof of Theorem 5.1. This
should be compared with Sect. 5 in [3] and Proposition 3.8 in [4]. (See also
Lemma 1.3 in [15].)

5.2 Proposition. Every polynomial Hamiltonian vector field X on C** is
a finite sum of Hamiltonian shear fields (5.6), with f a polynomial in
one variable.

We will need the following lemma whose proof can be found in [4].

5.3 Lemma. For every holomorphic polynomial p(z) on C" there exist a finite
number of polynomials q,,q,, ... of one variable, and linear forms £1,4,,...
on C" such that

p@) = qi(t12) + qu(£22) + - --
Proof of Proposition 5.2. Let X = (X1,...,X2,) be a polynomial vector field

on C** with the polynomial energy function H(x). Using Lemma 5.3 we
write

m m
H(x)= Y q;(¢x) = Y Hj(x),
j=1 j=1
where g; is a polynomial of one variable and
2n
Gx =Y Xpajx.
k=1

Let a; € C* be the vector with components a; ;. Set v; = —Ja;. Then
j p , j j

oxv)=x - Joy=x-a;={x.
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Hence the function
Hj(x) = q;(¢;x) = gj(o(xv))), x€C,
is the Hamiltonian energy function of the symplectic shear field
Xj(x) = —qj(w(x,v;))v; .
Since H = 27=1 H;, we have X = Z}nanj- This proves Proposition 5.2. O

Proposition 5.2 implies the following approximation result. (Compare with
Lemma 1.4 in [15].)

5.4 Proposition. Let X be a holomorphic Hamiltonian vector field on c,
Let D be an open set in C*" and let ty>0. Assume that the ordinary differen-
tial equation dR/dt=X(R(t)) can be integrated for 0 <t < ty with arbitrary
initial condition R(0)=x € D. Set Fi(x)=R(t). Then F, for 0St=<1ty is a
symplectic biholomorphic map from D into C?* which can be approximated,
uniformly on compact sets in D, by symplectic automorphisms in the group
a

This result is proved in exactly the same way as Lemma 1.4 in [15]. We
recall the main idea. According to Proposition 5.2 it suffices to prove the result
in the case when X is a finite sum of symplectic shear fields X = X+ --+X;.
The flow of each X; belongs to the group 7. The flow of X for time ¢
can be approximated by compositions of flows of fields X; in the following
way. Choose a large integer N and flow for time #/N along each of the fields
X1,X5,..., X (in this order). We repeat the same procedure N times, so we
flow in total for time kz. The resulting map of course belongs to the group
- As N — oo, the process converges to the flow of X for time ¢. A good
reference is [1], pp. 76-78. O

Theorem 5.1 is now obtained as follows. Fix an F € Autspcz"‘ Since
translations on C*" belong to Fp» WE may assume that F(0) = 0. Also, since
DF(0) € Sp(n,C) C ¥, we can replace F by DF(0)~! - F and assume that
DF(0) =1. Set
F(x)/t, if0<t=<1;

X, ift=0.

F,(x):{

This is a smooth isotopy of maps in Autspcz". Let X(¢,x) be the time dependent
vector field on C*" such that

%F,(x) =X(t,F(x), x€C" te[0,1].

Then X, = X(¢ +) is a Hamiltonian vector field on C* for each fixed
t € [0, 1]. Fix a compact set K C C?". Choose a large integer N and partition
the time interval [0, 1] into N subintervals of length 1/N. On each subinter-
val [k/N,(k + 1)/N] we approximate the time dependent field X; by the time
independent Hamiltonian field Xjv. If N is large enough, the approximation
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is as close as we want on K, and the flow of X, on K will be approx-
imated by suitable composition of flows of the fields Xyn. It remains to
apply Proposition 5.4 to the flow of each Hamiltonian field Xin. This proves
Theorem 5.1. O

We conclude this section with an observation concerning completeness
of Hamiltonian vector fields on C*" whose energy functions are analytically
dependent. Recall that, on C", the two notions of completeness (in real resp.
complex time) coincide.

5.5 Lemma. Let H = hoH,, where H and Hy are nonconstant entire Sfunctions
on C*" and h is an entire Sunction of one variable. Then Xy is complete if
and only if Xy, is.

Remark. According to K. Stein [30], every nonconstant entire function H on C”
can be factored as ho Hy, where & is an entire function of one variable and H)
is a primitive entire function on C” which can not be further factored in this
way for a nonlinear 4. Lemma 5.5 shows that it suffices to study completeness
of Hamiltonian vector fields associated to primitive functions.

Proof. The associated Hamiltonian fields satisfy Xy = (W' o Hy)Xy,. Thus the
orbits of Xy on which 4’ o Hy#+0 equal to the corresponding orbits of Xy,
and the remaining orbits of Xy are trivial. If X, is complete then clearly so
is Xp. Explicitly, if ¢° is the flow of Xn,, then the flow ¢ of Xy equals

bi(x) = gg(x), s =Hh(Ho(x)).

Observe that s = s(x) is constant on each orbit of ¢. Conversely, assume that
Xp is complete. Then Xy, can be integrated for every ¢ € C and every initial
point in the set Q@ = {x € C*" : W' (Ho(x))=0}. Thus the flow ¢° is defined
and holomorphic on C x Q ¢ C x C?". Moreover, ¢° is also defined for every
initial point in the analytic subvariety 4 = CZ”\Q and for all sufficiently small
t € C. It is easily seen that the envelope of holomorphy of the domain on
which ¢° is defined is all of C x C*". Therefore Xy, is complete. I

5.6 Corollary. Suppose that the entire functions H, Hy on C*" satisfy H =
hoHy o F for some nonconstant entire function h of one variable and F €
AutspCz". If one of the Hamiltonian fields Xy, Xn, is complete, then so is
the other one.

6 Classification of actions by symplectic automorphisms C?

The main result of this section, Theorem 6.1, provides a classification of
complete holomorphic Hamiltonian vector fields Xy on C2 and of the cor-
responding symplectic actions (flows) ¢ : C x C* — C2. Equivalently, since
Auts,,C2 = Aut;C? (Sect. 5), Theorem 6.1 provides a classification of (C,+)-
actions on C? by complex volume preserving automorphisms of C2. Notice
that a holomorphic vector field X = (X;,X;) on C? is Hamiltonian if and only
if it is divergence free: div.X = 0X,/0z + dX,/ow = 0.
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There exists a classification of proper (and therefore of symplectic) ac-
tions of C on C? up to conjugation in AutC?, due to Suzuki [33, Theorem 4].
This, however, does not immediately give the classification of symplectic ac-
tions since these are preserved only by symplectic holomorphic automorphisms
F € Aut,C%.

In what follows, H(x) = H(z,w) always denotes a nonconstant entire
function on C? (the Hamiltonian), and Xy = (H,,—H;) is the correspond-
ing Hamiltonian vector field. Let ¥ = {x € C? : Xy(x) = 0}. For each
X0 € CZ\E the maximal complex orbit C,, is the connected component of
{x € C*\Z:H(x) = H(xo)} containing xo. Thus the closure of C, is an irre-
ducible component of the level set H = H(xp). In the language of Nishino [25],
the irreducible components of level sets of H are called ‘surfaces premicres’,
which we shall translate as ‘primary surfaces’.

Assume now that Xz is complete, and let ¢ be the action of C on C?
generated by Xy. Recall that ¢ is either of type C or C*, depending on the
type of its generic orbit (see Theorem 3.3). It follows that every primary surface
of H is isomorphic either to C or to C*, and most of them are of the same
type. We will say that H is of type C or C* depending on the generic type of
its primary surfaces.

6.1 Theorem. Let H be an entire function on C* such that the associated
Hamiltonian vector field Xy = (H,,,—H,) is complete, with the action (flow)
{$:}iec. Then one of the following two cases holds.

Case 1: H is of type C. Then there exists a volume preserving automorphism
F € Aut,C? and an entire function h(z) such that H o F(z,w) = h(z) and

¢IOF=FOQ//1, tEC, (61)
where Y is the action
Yi(z,w) = (z,w — th'(z)), t€C. (6.2)

Case 2: H is of type C*. Then there exists an F € AutC? such that HoF(z,w)
= h(zw) and J F(z,w) = g(zw) are entire functions of the product zw. If we
set M) = H(0)/g(0), then (6.1) holds with

Y(z,w) = (2e"™, we= ™)) teC. (6.3)

Remark. Note that (6.2) is the flow of the Hamiltonian vector field X, =
(0,—H'(z)) with the energy function A(z), and (6.3) is the flow of the
Hamiltonian vector field X, = A(zw)(z, —w) with the energy function A(zw),
where A’({) = A({). Clearly (6.2) is a shear for each ¢. On the other hand,
the map (6.3) for 40 and A not constant can not be expressed as a finite
composition of shears according to [3]. In relation to Case 2 of the theorem,
we do not know whether there exist any automorphisms of C*> whose Jacobian
is a nonconstant function of the product zw.
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Proof of Theorem 6.1. Case 1: H is of type C. According to Nishino [25]
and Suzuki [33] there exist an F € AutC? and an entire function 4 of one
variable such that H o F(z,w) = h(z). Let |, be the conjugate flow defined by
(6.1). Since Y4 remains in the level sets of z,y; and its infinitesimal generator
has one of the following two forms (see [33]):

U(zw) = @w+if(2),  V(zw)=(0,/()),

Uz w) = (z,e"Ow — b(z)) + b(z2)),  V(z,w) = (0, 4(z)(w — b(z2))) , (6.4)
where 4 is an entire function and b is a meromorphic function on C such that
Ab is entire.

We claim that y; can not be of the second type in (6.4). To see this, observe
that for each zy € C which is not a pole of b, the set {(zo,w):w=*b(z9)} is a
complex orbit of y; which contains the fixed point (20, b(29)) in its closure. On
the other hand, most complex orbits of a Hamiltonian vector field (those that
correspond to the regular level sets of the energy function) are closed. Another
way to see this is by a direct calculation, using the relation

DF -V =XyoF . (6.5)
Let F = (F',F?). We differentiate the equation
H(F'(z,w),F*(z,w)) = h(z)
with respect to z and w:
(H. o F)E! + (Hy 0 F)F} = K(z) ;
(H; o F)F,) +(H, o F)F2 =0.
Solving this system for H, o F and H,, o F we obtain

—h'(2)

XH oF :(Hw,-—HZ)OFZ —J—F,—(

ELE?).
On the other hand, writing ¥ = (0, ¥2), we have

DF -V = V2(z,w)(F}),F?).
Thus the condition (6.5) is equivalent to

h'(z)

_ 12
_.—]_—I;(z,—w) =V (Z,W) .

If V is of the second type in (6.4), we choose a point z € C which is not a
pole of b and such that 4’(z)#0. Then ¥?(z,b(z)) = 0 but the left hand side
is nonzero, a contradiction.

Thus V(z,w) = (0, f(z)), and hence J F(z,w) = —h(2)/f(z) = g(z) is a
function of z. Set Fo(z,w) = (z,g(z)w), and let F = F, o F,. Then JF (z,w) =
9(z) = JFy(z,w), hence JF; = 1. We have H o Fy(z,9(z)w) = h(z) and
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therefore H o Fi(z,w) = h(z). The same analysis as above shows that F; maps
the flow

Uiz, w) = (z,w — th'(z))
to the flow ¢, of Xy. This establishes the Case 1.

Case 2: H is of type C*. According to Saito [29] and Nishino [25] (see also
Suzuki [33]) there exists an automorphism F € Aut C? such that HoF = hoQ,
where 4 is an entire function of one variable and Q is a polynomial on C? of
the form

Oz w) = z"('w — P(2))" ,

where m and n are positive integers, ! € Z,, and Pi(z) is a polynomial of
degree at most (/ — 1), Py =0, and P;(0)#0 if / > 0. As before there is a
flow 4 in the level sets of Q such that (6.1) holds. We consider two cases.

Case 2.1: 1 =0, Q(z,w) = z™w". Every flow y; in the level sets of z"w" is
of the form o o
‘I/t(za W) — (zenl(z w )t,we—ml(z w )t) (6.6)

for some entire function A on C [33]. Its infinitesimal generator is
V(z,w) = Az"w")(nz, —mw) .

A calculation similar to the one in Case 1 shows that the condition (6.5) is
equivalent to
H(z™w™)

F — m=1n—1 .
JF(z,w)=z"""w 2w

The left hand side is a nonvanishing entire function on C?, and hence so
is the right hand side. Due to its special form, this is possible only when
m =n =1 and the quotient 4’/ = g is a nonvanishing entire function on C.
Thus J F(z,w) = g(zw), and ¥ is of the form (6.3), with A({) = #'({)/g9({).
This concludes the proof in Case 2.1.

Case 2.2: | > 0. We will show that this case does not give any complete
symplectic flows. Write H = h o Hy, where h is an entire function of one
variable and Hj is primitive entire on C? (that is, Hy can not be further factored
in this way except for a linear #). By Lemma 5.5 it suffices to show that X,
is not complete. To reach a contradiction we assume that Xj;, is complete, with
the flow ¢;.

According to [29] there exists an F € AutC? such that

Hyo F(z,w) = az"(z'w — Pi(2))" + b
for some a € C*, b € C. The mapping
Az, w) = (z,z'w = Pi(2)), (z,w) € c?,

is an automorphism of C* x C, and we have Hyo F o A™!(z,w) = az"w" + b.
The composition G = Fod™ ! : C* xC — C? is biholomorphic onto its image.
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Let Y4 = G~ o ¢, o G be the (local) flow on C* x C which is conjugate to ¢,
by G. Then

HQOGOl//,=H00¢,OG=H()OG,

hence y; remains in the level sets of z"w". Therefore i is of the form (6.6).
Moreover, since the flow

A Vohod=F lop,oF

is holomorphic on all of C?, a simple calculation shows that A must vanish to
order at least = //m > 0 at the origin.

Denote by V the infinitesimal generator of Y (see Case 2.1). The condition
DG -V = Xy, o G is equivalent to

JG(z,w) = az™ 'w" 1 Az"w")

The left hand side is nonvanishing holomorphic on C* x C. Since A vanishes
at the origin, the right hand side has a pole at z = 1, w = 0. This contradiction
shows that X, can not be complete, and Theorem 6.1 is proved. O

The following two propositions classify symplectic actions of types (6.2)
and (6.3).

6.2 Proposition. The actions

U(zw) = (@w+1tf(2), Y zw)=(w+1(2)

are conjugate by an F € AutC? if and only if there exist numbers a € C*,
b € C such that the quotient f(az + b)/f(z) = ¢(z) is a nonvanishing entire
Jfunction; in this case the automorphism F(z,w) = (az + b,g(z)w) satisfies
F olp, YoF (t € C). These two actions are conjugate by a volume preserving
automorphism if and only if f(z) = af(az + b) for some a € C*, b € C; in
this case they are conjugate by F(z,w) = (az + b,a”'w).

The proof is a simple calculation which we omit. [

6.3 Proposition. The symplectic actions
lp’(z’ W) — (zel(zw)t’ we—l(zw)t )’ I/;,(Z,W) — (Ze):(zw)t,we—}:(zw)t)

are conjugate in Aut C* if and only if E(C ) = Ma() for some a € C*; in this
case the automorphism F(z,w) = (z,aw) satisfies Foy, = Yy, oF(t € C). These
actions are conjugate in Aut;C* if and only if Z(C) = Mx0); if Z(C) = M=0)
then they are conjugate by F(z,w) = (w, —z).

Proof. The infinitesimal generator X of Y is X(z,w) = A(zw)(z,—w), and sim-
ilarly for X. If F = (F,F,) € Aut;C* conjugates { to , then F maps every
level set {zw = c} to another level set of the same function. This means that
the product F,F; is a function of zw, say »(zw). Since F is invertible, r is entire
and one-to-one, hence linear: r({) = a{+b. Moreover, since {z =0} U {w = 0}
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is the only level set of zw with a singularity, it is preserved by F, and therefore
b=0.

The conclusion is that Fy(z,w)Fa(z,w) = azw. Thus the zero divisor of
F1F, is the union of the two coordinate axes. Since F is an automorphism of
C?, each axis is the zero divisor of exactly one of the components of F. Thus
F has one of the following two forms:

i) F(z,w) = (e9z,ae™9w),
ii) F(z,w) = (e9w,ae 9z),

for some entire function g(z,w). We first consider the case (i). We have
JF = a(l +zg, — wg,) ,
and the condition DF - X = X o F is equivalent to the single equation
Hzw)(1 +2g; — wg,) = Mazw).

It follows that zg, —wyg,, is a function of zw. Hence g itself is a function of zw,
since a term z*w' in the Taylor expansion of g gives the term (k — / yz*w! in
the Taylor expansion of zg, — wg,,. It follows that 29, —wgy =0,s0 JF =aqa
and ):(zw) = A(azw) as claimed. The conjugation equation no longer contains
g, and hence we may take g = 1. The corresponding map is F(z,w) = (z,aw).
Similarly one deals with case (ii). O

7 Obstructions to completeness of Hamiltonian fields on C2

In spite of its intrinsic interest, the classification of complete Hamiltonian vector
fields on C? given by Theorem 6.1 is usually not very helpful if we want to
determine whether a given Hamiltonian vector field Xy with the entire energy
function H is complete. To detect non-completeness of X it is much simpler
to look at the level sets of H and show that some of them are not isomorphic
to any of the surfaces listed in Proposition 3.1.

In this section we obtain several results of this type. In particular, since the
fundamental group of every complex orbit of a complete holomorphic vector
field has at most one generator, it suffices to find connected, smooth level
surfaces of H with connectivity at least two. Whenever this happens, the vector
field Xy can not be complete.

Recall that, since we are in C?, Hamiltonian fields are precisely the ones
with divergence zero. We begin with a simple but useful observation about
polynomial Hamiltonian fields.

7.1 Lemma. If X is a polynomial Hamiltonian vector field X on C* and if
C is a nontrivial complex orbit of X which is R-complete (Def. 4), then the
closure C in CP? is an algebraic curve of genus 0, i.e., C is normalized by
the Riemann sphere, and C is also C-complete.
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Proof. Let H be a polynomial on C? such that X = Xp. Fix a point
xo = (20,W0) € CZ\Z, where X is the zero set of Xy, and let C be the
complex orbit of X through xy. Since C is contained in the (affine) algebraic
curve {x € C*:H(x) = H(x)}, the closure C in CP? is a projective algebraic
curve, and C is obtained by removing a finite number of points from C. Such
a curve C is called algebroid.

If C is R-complete, then by Proposition 3.2 C is isomorphic to one of the
surfaces C, C*, U, U*, or an annulus. Only the first two of these surfaces are
algebroid, and hence C is C-complete.

Let n:S — C be the normalization of C by a compact Riemann surface S.
Since the orbit C is contained in the regular part of C, S contains a biholomor-
phic image of C which is either C or C*. The only compact Riemann surface
with this property is the Riemann sphere. If C ~ C, then C = C U {p} for
some point p € CP? in the line at infinity. If C ~ C*, then C = CU {p,q},
where at least one (and perhaps both) of the points p,q is at infinity. If one
of the points, say p, belongs to the finite part C? of CP?, then p is a zero of
Xy (hence a critical point of H) by Theorem 4.1. This proves Lemma 7.1. O

Here is a useful criterium for non-completeness of polynomial Hamiltonian
fields.

7.2 Proposition. Let H(z,w) = Zf:, Hi(z,w) be a polynomial of degree
d = 3, with H' its homogeneous part of degree j. Suppose that (0,0) is
the only common zero of the following four polynomials: H%, H~', 0H oz,
0H®/0w. Then the Hamiltonian vector field Xy = (H,,,—H,) is not complete.
More precisely, if ¢, is the local flow of Xy, then every regular level set of
H contains a point py such that ¢.(po) is not defined for all real t (pg is
flown to infinity in finite time, either positive or negative).

Proof. Let CP? be the projective plane with homogeneous coordinates [zg:z: w].
Let Ly = {zo = 0} be the line at infinity, and identify C*> with CP?\Ly by
the embedding (z,w) — [1:z:w]. Choose a regular value ¢ of H. The affine
algebraic curve Cy = {(z,w) € C?: H(z,w) = c} is smooth in C2, and its
closure C = Cy C CP’ is a projective algebraic curve. Since Xy #0 on Cj,
each connected component of Cj is an orbit of Xp.

In order to prove the proposition we will show that C is a smooth algebraic
curve, possibly disconnected, such that at least one of its connected components
is not isomorphic to the Riemann sphere. Lemma 7.1 then implies that this
connected component contains a point which is flown to infinity in finite time.

We first show C is smooth at every point at infinity (and therefore every-
where). The homogeneous equation for C near a point p = [0:a:b] € CNLy is

G(z0,2,w) = H(z,w) + 20H "' (z,w) + O(z3) = 0 . (7.1)

Since 0 = G(0,a,b) = H%(a,b) and (a,b)#(0,0), one of the numbers
H% (a,b), H(a,b), Hi(a,b) is nonzero by hypothesis. Observe that these
numbers are just the partial derivatives of G with respect to the variables
29,2, w at the point py = (0,a,b).
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If H%~'(a,b)+0, the equation (7.1) has a solution near (0,4, b) of the form
zo = Zo(z,w). We can take either (z,z) or (zo,w) as local affine coordinates
on CP? near p, depending on which of the numbers a,b is nonzero. In each
case we see that C is a graph near p, hence smooth. If H%(a,b)=0, (7.1) has
a local solution of the form z = Z(zg, w). In this case %0 (since H%(a,0) =0
implies H%(z,w) = wh(z,w) and therefore H?(a,0) = 0). Thus we may take
(z0,z) as the local affine coordinates on CP? near p, and we see again that C
is smooth near p. Similarly we deal with the remaining case.

This shows that C is a smooth algebraic curve of degree d in CP?. Let C =
U;f;l C; be its decomposition into connected components. We will show that
when d = 3, at least one of the components C; has Euler number x(C;) =< 0,
and therefore C; is not the Riemann sphere. Thus C;\Ly is an orbit of Xy
which is not R-complete.

In the remainder of the proof we shall no longer need the hypotheses in
the Proposition, and therefore we are free to change coordinates on CP?. We
proceed as in the proof of the classical genus formula [22,p. 219]. Choose a
point p € CP? not on C and a line L not containing p. After a linear change
of coordinates we may take p = [0:0:1] and L = {w = 0}. We may assume
also that the line at infinity (zo = 0) is not tangent to C at any point of their
intersection.

Let 7 : CP*\{p} — L be the linear projection which maps each point
g+ p to the intersection of the line through p and g with L. The restriction
n:C — L is a branched analytic cover of total degree d. Therefore the Euler
characteristics of the two surfaces satisfy

(C)=dy(Ll)—b=2d-b,

where b = quc b(q) is the sum of the local branching order of n|c [11, p.24].
By the choice of coordinates n|c does not branch at any point at infinity. Notice
that 7 restricted to the finite part of _CP2 is just m(z,w) = z. Therefore the local
branching order b(q) at every point ¢ € C equals the local intersection number
at ¢ of C with the curve D = {(z,w) € C": H,(z,w) = 0}. Hence b is the
global intersection number of C and D in CP?, and this equals d(d — 1) by
Bezout’s theorem [10]. Thus

Emjlx(Cj) =x(C)=2d—-dd-1)=d(3 —d).
iz

Ifd 23, x(C) <0, and therefore x(C;) <0 for at least one j. This establishes
the claim and completes the proof of Proposition 7.2. [

To motivate the next result we recall that, if Q(x) = 0 is a nonnegative
smooth real function on R, the Hamiltonian vector field X (x, y) = (y, —Q'(x))
with the energy function H(x, y) = y*/2+ Q(x) is complete on R In contrast
to this we have

7.3 Proposition. If f(z) is an entire function on C with is not affine linear,
then the vector field X (z,w)=(w, f(z)) on C? is not complete. More precisely,
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every regular level set of the function H(z,w) = w?/2 4+ Q(z), where Q'(z) =
— f(2), contains a point which is flown to infinity in finite time.

Proof. X is a Hamiltonian field with the energy function H(z,w) = w?/2 +
Q(z), where Q'(z) = — f(z). The critical set of H (which equals the zero set
of X) is £ = {(z,0): Q'(z) = 0}. Let ¢ € C be a regular value of Q such
that the equation Q(z) = c¢ has at least three solutions. Since f is nonlinear,
Q is either a polynomial of degree at least three or an entire function, and
therefore most values of ¢ satisfy these properties. Under these conditions we
will show that the level set L = {(z,w) € C*: H(z,w) = c} is a smooth,
connected, one dimensional complex submanifold of C? (a Riemann surface)
whose fundamental group has at least two generators. Since L is a complex
orbit of the vector field Xy, Proposition 3.1 implies that L contains at least
one point which is flown to infinity in finite time. In particular, Xy is not
complete.

Let i : L — C be the restriction of the first coordinate projection (z, w) — z
to L. Clearly y is nondegenerate at every point (z,w) € L where w0 since
z serves as a local coordinate on L at such points. Near points (a,0) € L we
have Q(a) = ¢ and Q’(a)+0. Hence the equation w2/2+ Q(z) = ¢ has a local
solution near (a,0) of the form z = a + h(w?), where h(0) = 0 but 4’(0) 0.
If we take w as the local coordinate on L near (a,0), the map y is given in
these coordinates by w — a4 h(w?). Thus ¥ has branching order two at every
point (a,0) € L.

Let {a;} C C be all solutions of Q(z) = c; then (a;,0) € L are all
the branch points of y : L — C. Composing y by a suitable translation of
C we may assume that Q(0)=+c and that |a;| are all distinct and ordered:
0 < |aj| < |az| < |az| < ---. The function |¥|*:L — R, is then a Morse
function on L. Each branch point (a;,0) € L of y is a critical point of |y|?
with Morse index one (because the branching order of y equals two). The two
points (0,+wp) € L over 0, with w3 = 2(c — Q(0)), are critical points with
Morse index zero. There are no other critical points of |y/|?.

For each r > 0 we set L(r) = {(z,w) € L : |z| <r} = {|y|* < r?*}. The
fundamental result of Morse theory [24] implies that the topological type of
L(r) for r > 0 changes only when r passes a critical value |a;|. The set L(r)
for |a;| < r < |a;41| is obtained from L(r) for |a;—;| < r < |a;| by attaching
to the latter a handle of type (I x ,1 x {0,1}) (I = [0,1]).

For small » > 0 the set L(r) is the disjoint union of two discs. After
attaching to these two discs the first handle (when r passes |a;|) we get a
connected disc. After attaching the second handle at » = |a;| we get a surface
with fundamental group Z. In general, every time we attach a handle, the
fundamental group of L(r) gains another generator, and we never introduce
any relations between them. Thus 7;(L(r)) is a free group on & — 1 generators,
where k = k(r) is the number of points a; in the disc |z| < 7.

If Q is a polynomial of degree k, it follows that n;(L) is a free group
on k — 1 generators. Thus, if £ = 3, m;(L) has at least two generators and
hence L can not be any of the surfaces listed in Proposition 3.1. The same
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is true if Q is entire since m(L) then has infinite connectivity. This proves
Proposition 7.3. O

7.4 Corollary. If f(z) is an entire function of z which is not affine linear, there
exists a point (z,Zy) € C? such that the second order differential equation

i=f@), 0=z, Z0)=z
can not be integrated for all real t € R.

Proof. By introducing the variable w=2z we change this equation to the Hamil-
tonian system z = w, w = f(z) with the Hamiltonian function H(z,w) =
w?/2 + Q(z), where Q is a holomorphic primitive of —f : Q'(z) = —f(z2).
Thus Corollary 7.4 follows from Proposition 7.3. O

8 Quasi-algebraic actions on C”

An action ¢ : G x C* — C" of a group G on C" is said to be quasi-algebraic
if ¢4 = ¢(g, - ) is a polynomial automorphism of C” for all g € G. The action
¢ is linear if ¢, € GL(n,C) for every g € G. The following Proposition is
due to Suzuki [33] for actions of the group (C,+) on algebraic manifolds. We
give a very simple proof in the case when the manifold is C”".

8.1 Proposition. Let G be a connected, real-analytic Lie group, and let ¢
be a real-analytic, quasi-algebraic action of G on C". Then there exist an
integer m > n, an algebraic embedding F : C" — C", and a linear action
V:Gx C" — C" such that

Y(9,F(2)) =F(¢(9,2)), z€C", geq. (8.1)

Proof. Let
Pg(z) = 3 calg)z”
a€Zl
be the Taylor expansion of ¢, = ¢(g, - ). Since the action is real-analytic, the
coefficients c,(g) are real-analytic functions of g € G. The assumption is that
¢, is polynomial for each g € G. We first show that there is an integer d € Z,
such that the degree of ¢, is at most d for all y € G. For each d € Z, we set

Gi={g€G:cyg)=0 for all |o|] > d}.

Clearly G, is closed in G, and G = |JJ2, Gy. Since G is a manifold and thus
a Baire space, one of the sets G; has nonempty interior. Thus the function ¢,
vanishes on a nonempty open set in G whenever |a| > d. The identity principle
implies that these functions are identically zero on G. Thus ¢, is polynomial
of degree at most d on C” for all g € G.

Let 2 be the complex vector space of polynomials on C" generated by
the components of all maps ¢,,9 € G. Since degP < d for each P € 2, 2
is finite dimensional. Let m = dim #. The group g acts linearly on & by



Actions of (R,+) and (C,+) on complex manifolds 151

(9,P) — P o ¢, For each z € C" we denote by §, € #* the evaluation
at z:9,(P) = P(z). Let § be the dual linear action of G on the dual space
P* ~ C", given by

Y(g,AN(P) = AP oyg), geG, LeP*, PcP.

Finally let F be defined by F(z) = J, € #* ~ C",z € C". It is immediate that
Proposition 8.1 holds.

9 Complements of tame analytic sets

Our last result, Proposition 9.1 below, extends Proposition 1 of Winkelman
[34]. For a closed analytic subvariety 4 C C" we set

o(4) ={lim [a’] : a’ € 4, |a/] - o0} c CP""!.
Jj—00

Clearly w(4) is a closed subset of CP"~!. If 4 has pure dimension p, then A4
is algebraic if and only if w(4) is an analytic (hence an algebraic) subset of
CP"™' of dimension p—1[10]. If 4 has dimension n— 1 and is not algebraic,
then w(4) = CP"!.

Definition 6. An analytic subset A C C" is tame if w(4)+CP""".

Every algebraic subset 4 C C" of codimension at least two is tame, but
there exist tame analytic subset of codimension = 2 which are not algebraic.

9.1 Proposition. If 4 C C" is a tame analytic subset of dimension at most
(n —2), then the group

{F € Aut)C" : F(z) =z for all z € A} .1

acts transitively on the domain C"\A.

Proof. For each v € C; = C"\{0} we denote by 7, : C" — v+ ~ C"! the
orthogonal projection with kernel Cv. We claim that the restriction 7, : 4 — v+
is proper when [v] ¢ w(A4). By a linear change of coordinates on C” it suffices
to consider the case v = e, = (0,...,0,1) and n(z) = 2’ = (z1,...,2,1). If
7|4 is not proper, there exists a sequence {a’} C 4 such that |a/| — co but
a' = n(a’) is bounded. Thus |a}| — oo and therefore [a/] — [e,] as j — oc.
Hence [v] = [e,] € w(A4). This established the claim.

Fix v € C" such that [v] € CP"~"\w(4). The proper mapping theorem [10]
implies that m,(4) = 4, C v! is an analytic subvariety of v' of dimension
p =dimA < n—2. Since v' has dimension n — 1, there exist holomorphic
functions f on v ~ C"™' which vanish on 4, but do not vanish at a given
point not in 4,. The map

Fro(2) = 2+ f(m(2)) (92)
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is an automorphism of C” (a shear) which preserves the set 7, l4,)=4+Cv
pointwise. If z°,z' € C" satisfy m,(z°) = m,(z')+4,, we can choose an f as
above such that Fy,, maps z° to z!.

It is now clear that we can map every z° ¢ 4 to any other z! ¢ 4 by a
composition of maps (9.2). In fact, since CP"_‘\w(A) is open and nonempty,
we can choose n linearly independent vectors v',...,v" € C" such that m,;(z')
¢ A, for 1<j<nandi=0,1. Then we can find a finite sequence of points
w0 =20 w!, ..., w" =z such that n,;(w/~!) = n,;(w/) for 1 £ j < n. (Write
zl -0 = Z;=1 A/ and take w0 =20, w! =20+ Ap!, w2 = w! + Apv?, etc.)
By the first step we can map every w’/ to w/*! by an automorphism (9.2).
Hence we can map z° to z! by a composition of n shears (9.2). O

Remark. If A is algebraic of dimension < n — 2, then A4 is tame. Moreover,

each proper projection m,(4) C vt is also algebraic. Hence the proof given
above shows that the group of polynomial shears (9.2) on C" which restrict to
the identity on 4 acts transitively on C"\A4 (Winkelman [34]). Stronger results
for certain discrete sets in C" are due to Rosay and Rudin [28].
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