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ABSTRACT. Let n > I and let C n denote the complex n-dimensional Euclidean space. We prove several 

jet-interpolation results for nowhere degenerate entire mappings F : C n --+ C n and for  holomorphic auto- 

morphisms of  C n on discrete subsets o f  C n. We also prove an interpolation theorem for  proper holomorphic 

embeddings of  Stein manifolds into C n. For each closed complex submanifold (or subvariety ) M C C n of  com- 

plex dimension m < n we construct a domain f2 C C n containing M and a biholomorphic map F : f2 --+ C n 

onto C n with J F =-- i such that F (M) intersects the image of  any nondegenerate entire map G : C n-m --+ C n 

at infinitely many points. I f  m = n - 1, we construct F as above such that C n \ F (M)  is hyperbolic. In 

particular, for  each m >_ l we construet proper holomorphic embeddings F : C m ~ C m+l  such that the 

complement C m+l \ F(C m) is hyperbolic. 

1. Introduction 

Let C n denote the complex Euclidean space of  dimension n. We shall always assume n > 1. 
In this paper we obtain several interpolation results of  Mittag-Leffler type for nowhere degenerate 
entire maps C n --+ C n, for injective entire maps on C n, for automorphisms of  C n, and for proper 
holomorphic embeddings of  Stein manifolds into C n. 

A holomorphic mapping F :  U ~ C n, defined in an open set U C C n, is n o n d e g e n e r a t e  at a 
point z 6 U if its complex Jacobian J F ( z )  = det F t ( z )  at z is not zero. If  this holds for all z 6 U, 
we say that F is n o w h e r e  d e g e n e r a t e  on U. We also say that F is n o n d e g e n e r a t e  on U if its Jacobian 
J F  is not identically zero on any connected component of  U. F is v o l u m e  p r e s e r v i n g  if J F  --- 1. An 
entire map F :  C n --+ C n is a holomorphic automorphism of C n if it is one-to-one and onto C n; such 
F has a holomorphic inverse. We denote by Aut C n the group of  all holomorphic automorphisms of  
C n, and by Auq  C n the group of  automorphisms F ~ Aut C n with Jacobian one. We denote by B 
the open unit ball in C n. 

In Section 2 we construct holomorphic automorphisms of  C n which have prescribed jets of  
finite order at a finite set of  points and are close to the identity on a given polynomially convex set 
(Proposition 2.1). This is the basic step in the proof of  results in Sections 3, 4, and 6. For interpolation 
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of "volume preserving" jets at one point of C n by volume preserving automorphisms (and without 
any additional conditions on a polynomially convex set) this result was proved by Anderstn and 
Lempert [2, Proposition 6.3]. Buzzard proved the corresponding result for interpolation of one-jet 
(derivative) of the map at a finite set of points [3, Lemmas 2.3 and 2.4]. 

In Section 3 we construct nowhere degenerate entire maps C n --+ C n with prescribed Taylor 
expansion of any finite order (with nondegenerate linear part) at any discrete set of points in C n. We 
prove the analogous theorem for volume preserving maps. This extends Theorem 1.1 of Rosay and 
Rudin [17]. 

In Section 4 we consider the same problem for injective entire maps C n --+ C n and for holomor- 
phic automorphisms of C n. If {aj }, {bj } c C n are discrete sequences (without repetition) which 
are tame in the sense of Rosay and Rudin [17], there exists an automorphism F 6 Aut C n such that 
F ( a j )  = bj and F has a prescribed Taylor expansion of finite order m at aj  for each j = 1, 2, 3 . . . .  
(Corollary 4.2). If  {aj } is an arbitrary discrete set in C n and bj = (j, 0 . . . . .  0) ( j  = 1, 2, 3 . . . .  ), this 
holds for an injective holomorphic map (Corollary 4.4), but in general not for any automorphisms 
of C n (see [17]). 

In Section 5 we prove a result on convergence of sequences of compositions 

~ m ~-  tIIm o ~II m _  1 o . . .  o ~II1 , 

where q/ j  is an automorphism of C n which is close to the identity on a given compact set Kj  for 
each j = 1, 2, 3 . . . . .  and the sets K j  exhaust a domain D C C n as j ~ cx~. We show that, under 
rather weak conditions on Kj  and qJj, there is a domain f2 C C n such that dP m converges on f2 (as 
m --+ ~ )  to a biholomorphic map from f2 onto D (Proposition 5.1). Results of this kind (when 
D = C n) are implicitly contained in the recent papers [4, 14], and possibly in others. 

Combining Proposition 5.1 and the main result of the paper [12] by Globevnik et al., we prove 
(Corollary 5.4) that every discrete set in a connected pseudoconvex Runge domain D C C n (n > 1) 
is contained in one leaf o f  a nonsingular holomorphic foliation of  D by simply connected curves 
(i.e., each leaf o f  the foliation is biholomorphic to either C or to the disc {( E C: I~1 < 1}). 

In Section 6 we prove an interpolation theorem for embeddings of Stein manifolds and Stein 
spaces into C n. If  M C C n is a closed complex submanifold (or subvariety) of C n, and if { p j  } C C n 
is a discrete set in C n, there exists a Runge domain f2 C C n containing M and a biholomorphic map 
F: f2 --+ C n onto C n, with J F ( z )  = 1 for each z 6 f2, such that p j  E RegF(M) for each j and 
F ( M )  has a prescribed jet of any finite order at each point p j  (Theorem 6.1). In particular, we can 
prescribe the tangent space Tpj F ( M )  at each pj .  This extends the result in [11]. 

Further, we construct maps F as above such that if d = n - dim M, every entire map G: C d --+ 
C n o f  rank d intersects the image F ( M )  at infinitely manypoints. When d = 1, F can be chosen 
such that C n \ F ( M )  is Kobayashi hyperbolic. By rank of G we mean its generic (maximal) rank. 

The following special case is of particular interest (see Corollary 6.3): for  each pair o f  integers 
m, d > 1 there exists a proper holomorphic embedding F: C m ~-+ C n, with n = m + d, such 
that every holomorphic map G: C d --+ C n o f  rank d intersects F(C m) infinitely many times," and 
there exist embeddings F: C m ~-+ C m+l for  every m > 1 such that the complement c m + I \ F ( C  m) 
is Kobayashi hyperbolic. This extends the result of Buzzard and Forn~ess [4] for one-dimensional 
complex curves in C 2. 

Here is an interesting consequence of Corollary 6.3 (see Corollary 6.4 and the remark following 
it). We identify C m with C m × {0} C C m+l. For each pair o f  integers (m, n) such that 1 < m < 
n < 2m + 1, there exists a proper holomorphic embedding F: C m ~ C n which does not extend to 
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an injective holomorphic map o f C  m+l into C n. On the other hand, when n > 2m + 1, it is easily 
seen that every proper holomorphic embedding F: C m ~ C n extends to an injective holomorphic 
immersion/~: C m+l ~ C n. 

For the reader who is mainly interested in results on holomorphic embeddings in Section 6, 
we wish to point out that the only results from the rest of the paper which are used there are 
Propositions 2.1 and 5.1. In fact, all the tools needed in the proof of Theorem 6.1, except for the 
precise jet-interpolation result at points of the given discrete set, have been developed in the earlier 
papers [2, 11], and [13]. 

For a survey of some recent results on Aut C n we refer the reader to [10]. 

2. Jet interpolation by automorphisms on a finite set 

We denote by Z the set of all integers, by Z+ the set of nonnegative integers, and by N = 
{1, 2, 3 . . . .  } the set of natural numbers. 

By degree of a holomorphic polynomial map P = (P1 . . . . .  Pn): C n -+ C n we mean the 
maximal degree of the components Pj.  We say that P is homogeneous of degree k if each component 
Pj is such. 

Recall that a compact subset K C C n is polynomially convex if for each point p ~ C n \ K  there 
exists a holomorphic polynomial f :  C n ~ C such that I f (P)l  > sup{If(z)l: z e K}. 

Proposition 2.1. Let  n > 1. Assume  that 

(a) K C C n is a compact polynomial ly  convex set, 

(b) {aj}j= 1 C K i s a f i n i t e s u b s e t o f K ,  

(c) p and q are arbitrary points in Cn \  K (not necessarily distincO, 

(d) N is a nonnegative integer, and 

(e) P : C  n - ,  C n i s a h o l o m o r p h i c p o l y n o m i a l m a p o f d e g r e e a t m o s t m  > 1 with P(O) = 0  

and J P (0) ~ O. 

Then for each E > 0 there exists an automorphism F ~ Aut C n satisfying 

(J) F ( p )  = q and F(z )  = q + P( z  - p)  + O(Iz - pl m+l) as z ~ p,  

(ii) F ( z )  = z + O(Iz - aj l  N) as z ~ aj  for  each j = 1,2  . . . . .  s, and 

(iii) IF(z) - z l  + IF - l ( z )  --zl  < e f o r e a c h z  ~ K.  

If, in addition, the polynomial map P satisfies 

(e') J P ( z )  = 1 + O(Izl m) as z ~ O, 

we may  choose F to be a polynomial automorphism with Jacobian one. 

Corollary 2.2. Let  n > 1. Given finite subsets {aj}s_l and {bj}~_ 1 o f  C n (without repetition), 

and for  each j = 1 . . . . .  s a polynomial P j : C n -~  C n o[degree at m o s t m  j >_ 1 satisfying P j (0) = 0 

and J Pj(O) ~ O, there exists an automorphism F ~ AutC n such that for each j = 1, 2 . . . . .  s we 

have F(aj)  = bj and 

F(z) = bj + (z aj) + O (Iz mj+') - - , z - ~  a j .  (2.1) 
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I f  in addition JP j ( z )  = 1 + O(IzlmJ) as z ~ 0 for j = 1,2 . . . . .  s, we may choose F to be a 
polynomial automorphism with Jacobian one. 

In the case of a single point and P satisfying the last condition in Corollary 2.2, this result was 
proved by Anders6n and Lempert [2, Proposition 6.3]. 

Proof of Corollary 2.2. 
Fj ~ Aut C n satisfying 

Fj(z )  = 

Fj(Z) = 

Fj(Z) = 

By Proposition 2.1 there is for each j ~ {1, 2 . . . . .  s} an automorphism 

bj + Pj (z - a j )  + O ( l z - a j l m j + l )  , z ~ aj , 

z q - O ( l z - - b k [  mk+l) Z----~bk, l < k < j - 1  

Zq-O(lZ--ak[  mk+l) Z---+ak, j + l  < k < s  

The composition F = Fs o Fs_ 1 o • '' 0 Fl then satisfies Corollary 2.2. 

The following was proved by Buzzard [3]. 

[] 

C o r o l l a r y  2.3. Letn  > 1. Given finite sets {aj}, {b j} C C n as in Corollary2.2, and linear maps 
A j  E GL(n, C), there exists F ~ Aut C n satisfying 

F ( a j ) = b j ,  F r ( a j ) = A j ,  j = l , 2  . . . . .  s .  

I f  det Aj = 1 for each j ,  the above holds for a polynomiM automorphism o f  C n with Jacobian one. 

Before proving Proposition 2.1 we introduce the following terminology. 

Definition2.4. (i) AnA- je to fo rde rm _> 1 (at0 6 cn ) i s  aholomorphicpolynomial  P:  C n ~ C n 
of degree _< m with P(0)  = 0 and JP(O) = det U(0 )  # 0. 

(ii) An Al-jet of order m >_ 1 is an A-jet P such that JP(z )  = 1 + O(Izl m) as z --+ 0. 

If F: U C C" ~ C" is a holomorphic map, a 6 U, and m > 1 an integer, we write 

F(z) = r ( a )  + Fm,a(Z - a) + 0 (Iz - al m+l)  (2.2) I 

Thus, Fm,a is the Taylor polynomial of F of order m at a without the constant term. If F is 
nondegenerate at a, Fm,a is an A-jet which we call the A-jet o f F  of  order m at a. If JF( z )  = 1 for 
all z 6 U, then Fm,a is an Al-jet for each a 6 U. 

Conversely, given an A 1-jet P of order m, Anders6n and Lempert proved [2, Proposition 6.3] 
that there is an F 6 Autl C n such that F(z) = P(z) + O(Izl re+l) as z ~ 0, i.e., P = Fm,O. 

The following lemma is evident by composing the power series. 

Lemma 2.5. I f  F and G are holomorphic maps defined on open subsets o f  C n, with values in C n, 
then for each integer m > 1 we have 

F)m,a(Z) = Gm,F(a) o Fm,a(Z) q- 0 ([zl m+l)  , z -+ 0 (2.3) (G 0 

at each point a where the composition G o F is defined. 
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This generalizes to composition of several maps, and we also have 

( F  - 1 )  oFma(Z) =Z-'I- 0 ([Z[ rn+l) Z---+ O. 
m, F(a) ' 
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(2.4) 

In the proof of Proposition 2.1 we shall use special automorphisms of C n , shears and generalized 
shears. These have been used extensively in the literature. Let 1) ~ C n be a vector of length one, let 
)~: C n --+ C be a C-linear form satisfying )~(1)) = 0, and let f :  C --+ C be a holomorphic function of 

n one variable. Set {z, 1)} = }--~j=l z j  j .  The family of maps Ft: C n -+ C n (t ~ C), 

Ft(z) = z + tf()~(z))1), z ~ C n , (2.5) 

is a complex one-parameter subgroup of Autl C n with infinitesimal generator 

0 
V (Z) = -57 Ft (z)It=0 = f ()~(z))1) . (2.6) 

Each automorphism of type (2.5) (for a fixed t) is called a shear. We have JFt  --- 1 for each t and 
div V = ~ = 1  aVj /Oz j  = 0 (see [2] or the Appendix in [8]). 

Observe that the shears Ft (2.5) are polynomial iff f is a polynomial, and every shear on C n 
can be approximated by polynomial shears, uniformly on compacts in C n. 

Similarly, the family of maps 

Gt(z)  = z + (e tf(z(z)) - 1) (z, 1))o, z E C n (2.7) 

for t 6 C is a complex one-parameter subgroup of Aut C n with infinitesimal generator 

0 
W(Z) = ~Gt(z)l t=O = f ()v(Z))(Z, 1))1). (2.8) 

Every automorphism (2.7) is called a generalized shear [17] or an overshear [2]. In contrast to shears, 
generalized shears are never polynomial except when f is a constant, We have div W = f O . ( z ) )  

and J G t ( z )  = exp(t f (~.z))  (see [2] or [8]). 

Conversely, every holomorphic vector field of the form (2.6) [resp. (2.8)] on C n is complete, 
with the flow (2.5) [resp. (2.7)]. (Recall that the flow of a vector field V is the local solution Ft (z) of 
(O/at) Ft (z) lt=0 = V (z), satisfying Fo(z) = z for all z. V is complete on C n if its flow Ft (z) exists 
for all t 6 R and z ~ C n.) 

We will need the following decomposition result which is due to Anders6n [1] and Anders6n 
and Lempert [2]. We denote by (cn) * the dual space of C n. 

Lemma2.6.  For each integer k > 1 there exist f initely many linear forms )v l , )~ 2 . . . . .  )~r ~ (cn) * 
and vectors 1)1, 1) 2 . . . . .  Vr E C n, with )~i(1)i) • 0 and 11)i1 = 1 for all i, such that every polynomial  
map V: C n ~ C n (which we think o f  as a vector field on C n) that is homogeneous o f  degree k is a 

finite sum 
V (z) : Z Ci (~i (z)) k 1)i -]- di ()vi (z))k-1 (Z, 1)i) 1)i (2.9) 

i 

for some ci , 4" ~ C (the)v i S and 1)i s may  appear with repe t i t ion) . / fd iv  V = 0, then (2.9) holds with 

di = 0 for  all i. Moreover, we can choose the )~is from any nonempty  open subset o f  (cn) *. 

Everything except the last statement is contained in [1] and [2, Proposition 3.9]. (See also the 
Appendix to [8].) To justify the last statement, we recall the main idea of the proof. By Lemma 5.7 
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in [1] we can choose for each k0 ~ N finitely many forms ~'i E ( c n )  *, 1 < i < r, such that every ho- 
mogeneous polynomial P: C n --+ C of degree k < k0 has a decomposition P (z) = Y~f= 1 ci O~i (z))k 
for some ci 6 C. From the proof given there it is clear that if we denote by r the number of  all 
multi-indices ot = (O/l ,  . . . ,  0/n) E ( Z + )  n with total weight Io~1 = O t l  + ' ' "  +Otn = k, the above holds 
for any set of  r forms in "general position;" in particular, we can choose the ~.i S from any nonempty 
subset of  (cn)  *. 

Applying this to div V (which is a homogeneous polynomial of  degree k - 1) we get div V (z) = 
y~4di(~.i(z)) k-1. Choose vectors 1) i E C n with Ivil = 1 and ~.i(Vi) = 0 for each i, and set 

Vi(z ) = di(~. i (z ) )k- l (z ,  13i)V i. Then divE. = di()~i(z)) k - l ,  so the field V = V - Z i  ~/~ has 

divergence zero. We then proceed as in [1] (see especially the remark on p. 232) to decompose 
into a finite sum f ' ( z )  = Z i  ci ()~i (z))kl)i of divergence zero fields of  type (2.6). [We may have to 
add more vectors vi in the process, and this is why we must allow repetitions in (2.9).] For further 
details, we refer the reader to [1]. 

Lemma 2.6 can be applied to each homogeneous part of  a polynomial vector field on C n to 

decompose it into a finite sum of  fields (2.6) and (2.8) whose flows consist of  (generalized) shears. 
The following is an immediate consequence; see [13, Lemma 1.4]. 

L e m m a  2.7. Let  V be an entire vector field on C n (n > 1), let K C C n be a compact set, and 
let t > O. I f  the t low Fr(z)  o f V  exists for allO < r < t and for all points z ~ K,  then FtIK is a 
uniform limit on K o f  compositions o f  shears and generalized shears. I f  div V = 0, then Ft IK is a 
limit o f  compositions o f  (polynomial) shears. 

Proof of Proposition 2.1. Set K0 = K. Choose compact polynomially convex sets K1 C K2 C 
K3 C Cn\{p,  q} and a number E0 > 0 such that 

Ko c K1, dist (K j ,  C n \ K j + l )  > EO, j = O, 1, 2 .  

Observe that condition (iii) in Proposition 2.1 will be satisfied if e < e0 and 

IF(z)  - zl < ~/2, z ~ K1 • (2.10) 

Namely, if(2.10) holds, Roucht ' s  theorem [6, p. 110] implies F(K1)  D K,  and hence F -1 (z) c K1 
for each z ~ K.  Setting w = F - I ( z )  ~ K1 we have I F - i ( z )  - z l  = Iw - F(w) l  < E/2 by (2.10), 
and hence (iii) in Proposition 2.1 holds. Thus, it suffices to find an F ~ Aut C n satisfying (i), (ii), 
and (2.10). 

F will be constructed as a composition of  four automorphisms: 

F = H -1 o S o G o H ~ A u t C  n . (2.11) 

Each of the automorphisms G, H, H -1 , and S will move points in Ke for at most e/8,  where ~ < e0 
is as above. Clearly this will imply (2.10). 

The purpose of H is to move points p (resp. q) away from K to suitably chosen points pl (resp. 
ql) such that there is an affine complex hyperplane E C C n which contains pt and q~ but does not 
intersect K3. This step is not needed when K is convex (see [17, Section 1]). 

The automorphism G is a shear which moves pt to qt within E,  and it matches the identity to 
order N at each point bj = H ( a j ) ,  j = 1, 2 . . . . .  s. 

The main step of  the proof is construction of an automorphism S which fixes points q~ and bj 
for 1 < j < s, it matches the identity to order N at each b j ,  and its A-jet Sin,q, at q~ is chosen such 
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that F (2.11) satisfies Fm,p = P .  T h e  construction of  S is essentially that given (in the volume 
preserving case) by Anders6n and Lempert in [2, Proposition 6.3], with necessary modifications to 
meet the additional requirements. 

We now fill in the details of  this scheme. 

Step 2.8. Choose points P0, q0 6 C n such that there exists an affine complex hyperplane in C n 
which contains P0 and q0 and which does not intersect the set K3. (If p = q we choose P0 = q0.) 
Let rl > 0 be sufficiently small so that the same property holds for any pair of  points pt, q~ 6 C n 

with IP' - P0I < ~ and Iq' - q0l < 7. We shall find an H 6 Autl C n (a finite composition of  shears) 
such that 

(i) IH(p)  - P0l < E, IH(q) - q0l < e, and 

(ii) IH(z) - z l  + I H - l ( z )  - z l  < E/8 for allz ~ K2. 

It suffices to consider the case when the straight line segments E0 = PPo and E1 = qqo are 
disjoint and they do not intersect K3. (If p = q, we only consider one segment.) The general case 
is then obtained by taking a finite composition of  automorphisms obtained in special cases. 

Let V be the vector field given by V ( z )  = 0 for z near K3, V ( z )  = Po - P for z near the segment 
Eo, and V ( z )  = qo - q for z near the segment El .  Since the set L = K3 U E0 U E1 is polynomially 
convex [19], we can approximate V by polynomial holomorphic vector fields W on C n, uniformly 
in a neighborhood of L. Moreover, since V is a locally constant field and hence div V = 0, we claim 
that the approximating fields W can be chosen to have divergence zero. To see this we set 

= d z l  A d z z  A " . . A dZn , 

and we associate to V the holomorphic (n - 1)-form 09 = VJ f2 (the contraction of  ~2 with V). 
Clearly this correspondence between holomorphic vector fields and holomorphic (n - 1)-forms on 
C n is an isomorphism. Then 09 = 0 near K3 and d c o =  (div V)f2 = 0 near L. Since the sets E0 and 
El have small convex neighborhoods, it follows that 09 = dot for some holomorphic (n - 2)-form ot 
in a neighborhood of  L such that ot = 0 near K3. 

We approximate ot near L by a globally defined holomorphic (n - 2)-form fi with polynomial 
coefficients. Then d& = d~ is a closed holomorphic (n - 1)-form on C n which approximates w near 
L. The polynomial vector field W defined by ff~ = WJ ~2 has divergence zero and it approximates V 
near L. 

The time-one map of  W, which exists for each point z in a neighborhood of  L, takes p approx- 
imately to P0, q approximately to q0, and it moves every point in a neighborhood of  K2 by as little 
as desired. By Lemma 2.7 this time-one map can be approximated by finite compositions of  shears, 
uniformly in a neighborhood of L. This gives the desired automorphism H. 

S tep  2.9. Let H be as in Step 2.8, with ~ > 0 chosen sufficiently small such that the points 
p t  = H ( p )  and qt = H ( q )  are contained in an affine complex hyperplane E C C n \ K 3  • Set 
b j  = H ( a j )  for j = 1 . . . . .  s. We shall find a polynomial shear G satisfying 

(i) G(p' )  = q', 

(ii) IG(z) - zl < E/8 for all z 6 K2, and 

(iii) G ( z )  = z q- O( I z  - b j  I N+l) as z --+ b j  for j = 1 . . . . .  s. 

If  p = q (hence pt = q~), this is satisfied by the identity map and we go on to Step 2.10. 
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TO obtain G, we first choose a linear form L: C n --~ C such that L(q' - p~) = 0 and ~.(p') 
)~(K2). It suffices to choose L such that ker)~ is parallel to E.  Choose a polynomial f :  C ~ C such 
that fO~(p~)) = 1, f vanishes to order N at points ~.(bj) for j = 1 . . . . .  s, and I f ( ~ ) ( q  t -  pt)l < E/8 
for each ~ • )~(K2). This is possible since the set ~.(K2) C C is polynomially convex. Then the 
shear 

G ( z ) = z +  f ( ) ~ ( z ) ) ( q ' - p t ) ,  z • C  n 

satisfies the required properties. 

S t e p  2.10.  We shall construct an S • Aut C n, a finite composition of shears and generalized 
shears, such that 

(i) S(q') = q', 

(ii) S ( z ) = z + O ( l z - b j ]  N+l) asz  ~ b j f o r j  = l . . . . .  s, 

(iii) IS(z) - zl < E/8 for all z • K2, and 

(iv) the A-jet Sm,q, of S at q '  is determined by 

P o ( H - I )  o ( G - I )  ( z ) +  0 ( [ z I m + I ) ,  Z - - > O .  Sm,q'(Z) nm,q O \ /  m,p t \ /rn,q ~ \ /  

The automorphism F (2.11) then clearly satisfies conditions (ii) and (iii) in Proposition 2.1; 
condition (i) follows by Lemma 2.5 and the choice of  Sm,q'. 

We shall seek S as a composition S = S m  o Sin- 1 o . . .  o $1, where each Sk • Aut C n is a finite 
composition of  (generalized) shears, and the Sks will be determined by induction on k. 

By a translation of coordinates we may assume that qr = 0. Fix a number 0 > 0 to be 
determined later. For every k = 1, 2 . . . . .  m we require Sk to satisfy 

Sk(0) = 0 ,  

Sk(Z) = z + O z - bj , z ---> bj, j = l  . . . . .  s ,  

ISk(z) - zt < rl, z • K3 .  (2.12) 

Let Q = Sm,q' be the A-jet determined by condition (iv) above. Write Q(z) = Ql(z)  + O(Izl 2) as 
z ~ 0, so Q1 is the linear part of  Q. For k = 1 we shall find an automorphism S1 satisfying (2.12) 
and such that Sl(z)  = Ql(z)  + O(Izl 2) as z ~ 0.  Then 

Q o s l l ( z ) = z + Q 2 ( z ) + O ( l z [  3) z--->o 

where Q2: C n --~ C n is homogeneous of degree 2. Next we shall find $2 • Aut C n, satisfying (2.12) 
and 

S2(z) = z + a2(z )  + O ([z[ 3) z ~ 0 

Then 
a o a l l  o S21(z) = z  --[- a3(z) -[- o ([z[ 4) z --~ 0 

where Q3 is homogeneous of degree 3. Continuing this way we obtain after m steps a desired 
automorphism S = Sm o Sin-1 o . . .  o $1 satisfying conditions (i)-(iv) above. 

Construction of  S1. Let el,  e2 . . . . .  en be any complex basis of  C n, with the dual basis )~1 . . . . .  ~,n 
of  (cn)  *, so that z = ~ = 1  )~j(z)ej for all z • C n. Then the group SL(n ,  C) is generated by linear 
shears 

z ~ z --}- Ol)~j(Z) ek, 1 < j ~ k < n, ot • C .  (2.13) 
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(See [16, p. 357].) ByStep2 .8  we can choose ourbasis {ej} suchthat0 ¢ Lj(K3) f o r j  = 1, 2 . . . . .  n. 
In order to satisfy (2.12) we interpolate every shear (2.13) at the origin by a polynomial shear of  the 
form 

z ~ z + f O~j(z)) ek,  

where f is a polynomial on C with f ( ( )  = or( + O(lffl 2) as ( ---> 0, f vanishes to order N at all 
points )~j (bl) for I = 1, 2 . . . . .  s, and I f [  is small on the set ~.j (K3) C C\{0}. A suitable composition 
of such shears will give a desired S1 in the case when $I1 (0) = Q1 6 SL(n,  C). 

In the general case when Q 1 6 GL (n, C) we assume that [e21 = 1, and we let So be a generalized 
shear of  the form (2.7): 

So(z) = z + (e f()'l(z), - 1) (z, e2)e2 , 

where f :  C ---> C is a polynomial which vanishes to order N at all points )q (bl) (l = 1, 2 . . . . .  s), 
I f[  is small on ~.l(K3), and e f(°) = JQ(O). Since JSo(O) = e f(O) (see the Appendix in [8]), we 
have JSo(O) = JQ(O). The map Q o So 1 has Jacobian one at the origin and hence we are back in 

the previous case. If  we choose $1 as in the special case above such that $1 satisfies (2.12) and its 
derivative at 0 6 C n matches that of  Q o So 1, then S1 = S1 o So satisfies all required conditions. 

The inductive step. Suppose that k > 2 and we have constructed automorphisms S1 . . . . .  Sk-1, 
satisfying (2.12), and such that 

Q o s l l o . . . o S ~ ) _ l ( Z ) = z + V ( z ) + O ( I z l k + l ) ,  z--->O (2.14) 

for some homogeneous polynomial map V: C n ---> C n of degree k. We will now construct the next 
automorphism Sk of C n, satisfying (2.12), such that 

sk(z) = z  + v ( z ) +  o z 0 (2.15) 

From (2.14) and (2.15) it will follow that 

a oSll o...oSkl(z)=z-t- O (tzI k-I-l) z---+ 0 

This will finish the inductive step in the construction of S. 

To construct Sk we apply Lemma 2.6 to decompose V in a finite sum 

V(z)  = E cj ()~j(z)) k vj + dj (),j(z)) k-1 (z, vj} vj (2.16) 

J 

for some constants c j, dj E C, where the linear forms ),j are chosen so that 0 ~ ~.j(K3) for all j .  
This is possible since by Step 2.9 there is a complex hyperplane E C On\K3 containing the point 
q1 = 0; it suffices to choose ),j such that ker ~.j is SUfficiently close to E for each j .  If  div V = 0, 
(2.16) holds with dj = 0 for all j .  

For each j we choose holomorphic polynomials f j ,  g j: C ---> C which are close to 0 on ).j (K3), 
which vanish to order N at points )~j (bl) for I = 1, 2 . . . . .  s, and which satisfy 

= c , : +  o = . , :  1+ o 0 

We then set 

• :(z) = z + f j  (zj(z)) vj 
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( ))k (I k+l) = Z + C j  ~,j(Z V j J r  0 zl , Z ~ O ,  

• = z + 1)/z, 

= z + + O (Izt +l), 0 

These are the time-one maps of vector fields f j ()~j z) vj (resp. gj (~.j (z)) (z, v j) v j )  which appear 
in (2.16). Take Sk to be the composition of all maps qbj and ~ j  (in any order). Note that the Taylor 
expansion of each of these maps begins with z+homogeneous terms of order k. It is immediate that, 
when composing such maps, their homogeneous parts of degree k add up, and we get 

z- o , 

This finishes the inductive step and concludes the construction of S. 

Since each of the m automorphism Sk moves points of K3 by less than 0, we can achieve (by 
choosing O > 0 sufficiently small) that their composition S moves points of K2 by less than E/8 as 
required by (iii). This completes the proof of Proposition 2.1 under assumption (e). 

Suppose now that (e') holds. Recall that H and G are finite compositions of polynomial shears. 
Since the A-jet Q = Sm,q' is conjugate to the Al-jet P by a volume preserving automorphism, it is 
itself an A 1-jet of order m. Thus, J Q (0) = 1 and hence S1 constructed above is volume preserving. 
Assuming inductively that map Sl is volume preserving for 1 < l < k - 1, it follows from chain rule 
that the Jacobian of the map in (2.14) agrees with 1 to order m at the origin. This implies 

l + O ( I z l  m ) = d e t ( I + V ' ( z ) + O ( I z l k ) ) = l + d i v V ( z ) + O ( l z l  ~),  z - - + 0 .  

Since div V is homogeneous of degree k - 1, we get div V = 0. Consequently, in the decomposi- 
tion (2.16) of V, we only need vector fields of the first type whose time-one maps ~ j  are shears. 
This shows that each Sk for k = 1, 2 . . . . .  m is a finite composition of shears, and hence, the same 
is true for the maps S and F. This completes the proof of Proposition 2.1. [] 

3. Jet interpolation by nowhere degenerate holomorphic maps o n  C n 

To motivate the discussion we recall the following classical interpolation theorem for entire 
functions: Given a discrete set {a j} C C n and for  each j a holomorphic polynomial Pj of  degree at 
most m j, there exists an entire function F: C n -+ C satisfying 

F(Z) Pj (z - aj)  + 0 (I z - a j l  mj+l) : , Z - - + a j ,  j = 1,2,3 .... 

(See [15, Corollary 1.5.4] for n = 1.) In particular, one can prescribe values of an entire function at 
any discrete set of points. 

This result extends to holomorphic mappings F: C n --+ C n by applying it to each component 
Fj of F. However, the problem becomes much harder if we require in addition that J F ( z )  ~ 0 for 
all z ~ C n. The following interpolation theorem is due to Rosay and Rudin. 

Theorem (Rosay and Rudin [17, Theorem 1.1]). Let  n > 1. Given a discrete sequence 
{aj} C C n (without repetition) and an arbitrary sequence {bj} C C n, there is a holomorphic map 
F: C" ~ C" such that F (a j )  = bj foreach j and J F ( z )  = 1 foreach z c C n. 

Our main result in this section is the following. 
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T h e o r e m  3.1. Let  n > 1. Assume  that {aj } is a discrete sequence in C n (without repetition), 
that {bj } is an arbitrary sequence in C n, and that Pj: C n ~ C n is a holomorphic polynomial map 
o f  degree at m o s t m j  > 1 with Pj(O) = 0 and J Pj(O) ~ O. Then there exists a nowhere degenerate 
holomorphic mapping F: C n ~ C n such that for every j = 1, 2, 3 . . . .  we have F (a j )  = bj and 

F(Z) bj + Pj (z - a j )  + O (lz  ajl  m '+l )  = -- , Z - - + a j  . (3.1) 

I f  in addition the polynomials Pj satisfy 

J e j ( Z ) = l + O ( l z l m J ) ,  Z ~ 0 ,  j = 1, 2, 3 . . . . .  (3.2) 

there is an F as above satisfying J F = 1. 

C o r o l l a r y  3.2. Let  n > 1. Assume  that {aj } is a discrete sequence in C n (without repetition), 
that {bj } is an arbitrary sequence in C n, and that A j  E GL  (n, C) for each j ~ N. Then there exists 
a nowhere degenerate holomorphic map F: C n ~ C n satisfying 

F ( a j ) = b j ,  F ' ( a j ) = A j ,  j = 1 ,2 ,3  . . . .  

I fdet  A j  = 1 for each j ,  there is an F as above such that J F(z)  = 1 for all z E C n. 

It is easy to see that condition (3.2) on Pj is necessary for the existence of  F with Jacobian one 

satisfying (3.1). 

P r o o f  o f  T h e o r e m  3.1. We follow the scheme of  the proof of  [ 17, Theorem 1.1 ], replacing in [ 17, 
Corollary 1.3] by our Proposition 2.1. We first choose the origin of  C n so that 0 < lall < la21 < 
la31 < . . .  and then choose coordinate axes so that the hyperplane {Zl = 0} contains none of  the 
points bj.  Denote by zrj: C n ~ C the j th  coordinate projection. Let E: C n ~ C* x C n-I  be the 
entire map 

E ( Z l ,  Z2  . . . . .  Zn) = (e  z l ,  z 2 e  - z l ,  z3 . . . . .  Zn) • 

Clearly E is a holomorphic covering projection onto C* x C n-1 with J E  - 1. In particular, every 
z ~ C n with zrl (z) # 0 belongs to the range of  E, and one can find points w ~ C n such that 
E(w)  = z and I~rl(w)l is as large as desired. 

We will find F as a composition F = E o G, where E is as above and 

G = lim Gk, 
k----~ ~ 

G k  = ~1  o ql 2 o . . .  o ql k 

is a limit of  certain sequences of  compositions of  (generalized) shears on C n. Since J E  =- 1, we 
have J F ( z )  = J G ( z )  for all z 6 C n. The automorphisms Gk will be constructed inductively by 
choosing at each step a suitable automorphism ~k ~ Aut C n and setting Gk = Gk-  l o qJk. In the 
case when all Pjs  are Al-jets, all maps qJk and Gk will be compositions of  shears (with Jacobian 
one). 

We begin by setting Go(z) = z. Suppose that k > 1 and Gk-1 ~ A u t C  n has been chosen in 
such a way that the map Fk-1 = E o Gk-1 satisfies (3.1) for j = 1, 2 . . . . .  k - 1. Moreover, if all 
Pjs  are Al-jets, we may assume in addition that J G k - i  -- 1 and hence JFk-1  -- 1. 

Choose vk ~ C n such that E(vk)  -=- bk and IZrl(Vk)l is so large that Vk lies outside the compact 
set Gk-1 (rkB), where rk = lakl and B C C n is the unit ball centered at 0. Thus, there is a (unique) 
qk ~ C n such that Gk- l (qk )  = Vk and Iqkl > r~. Then Fk- l (qk)  = bk. 
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Since the map Fk- l  = E o Gk-1 is locally invertible, Lemma 2.5 provides a unique A-jet/Sk 
of  degree mk such that 

(Fk--l)mk,qk ° ek(Z) = ek(Z) -b 0 (]Z[ mk+l) , Z - +  0 ,  

where Pk is as in Theorem 3.1. If  Pk is an Al-jet  and JFk-1 -- 1, then/Sk is also an Al-jet. Choose 
a ~k, 0 < ~k < rk - rk-1, such that 

[Gk-l(Z) - Gk- l (w) l  < 2 -k (3.3) 

for all z, w ~ rkB with Iz -- wl < 8k. Proposition 2.1 gives us a ~Pk e Aut C ~, a finite composition 
of  (generalized) shears, such that 

qJk(z) z+O([z ajl mj+l) : -- , Z---~aj, l < _ j < _ k - 1 ,  

qJk(Z) = q~ + ['k ( Z -  a k ) +  0 (Iz --akl  ink+') z --~ ak 

IqJk(z) - z] < ~k, z ~ r k - l B  • (3.4) 

Set Gk = Gk-1 o q~k and Fk = E o Gk. Then Fk satisfies (3.1) for j = 1, 2 . . . . .  k. Moreover, (3.3) 
and the last line in (3.4) imply 

IGk(z) - Gk- l ( z ) l  < 2 -k, Izl _< rg-1 • 

It follows that G = l i m k ~  Gk exists uniformly on compacts in C n. By construction we have 
J G ( a j )  ~= 0 for each j = 1, 2, 3 . . . . .  Hence, J G ( z )  ~ 0 for all z e C ~ and G is one-to-one. The 
map F = E o G: C n ----> C n then satisfies Theorem 3.1. [ ]  

C n . 

4. Jet interpolation by injective maps and automorphisms 

The main result in this section is the following jet-interpolation theorem for automorphisms of  

Theorem 4.1. Assume  that n > 1, m > 1, and that for each j = 1, 2, 3 . . . . .  Pj: C n ----> C n 
is a holomorphic polynomial map o f  degree at most  m with Pj(O) = 0 and J Pj(O) ~= O. Let  
el = (1, 0 . . . . .  0) ~ C n. Then there exists an F ~ A u t C  n, a finite composition ofshears  and 
generalized shears, such that for each j ~ N we have F ( j e l )  = j e l  and 

F(z )  = Jel  q- Pj (z - Jel)  q- 0 ( I z -  j e l lm+l )  , Z ---~ j e l  . (4.1) 

I f  in addition the polynomial maps Pj satisfy 

J e j ( z ) = l + O ( l z l m ) ,  z - - ~ 0 ,  j = 1 , 2 , 3  . . . . .  (4.2) 

then (4.1) holds for an F ~ AUtl C ~ which is a finite composition o f  shears. Moreover, i f  R > 0 
and Pj (z) = z for j < R, we can choose F such that 

IF(z) - zl + F - l ( z )  - z < 6, Izl < R .  (4.3) 

Remark. In a subsequent paper with Buzzard [5] we proved that Theorem 4.1 remains valid even 
if the degrees mj  = deg Pj form an unbounded sequence, i.e., (4.1) and (4.2) hold with m replaced 
by mj  for each j = 1, 2, 3 . . . . .  
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We now consider the jet-interpolation problem for more general discrete sequences in C n. In 
doing so we must remember that, in general, one cannot map an infinite discrete set in C n onto 
another discrete set by an automorphism of C n [17]. In fact, the infinite discrete sets in C n form 
uncountably many different equivalence classes under this relation [17, Section 5]. Rosay and Rudin 
introduced the following notion: 

Definition. A discrete infinite sequence {aj } C C n (without repetition) is tame if there exists a 
holomorphic automorphism * 6 Aut C n such that 

(a j )  = j e l  = (j ,  0 . . . . .  0), j = 1, 2, 3 . . . .  

The sequence {a j} is very tame if the above holds for a qb 6 AUtl C n. 

Rosay and Rudin [17] found several geometric conditions which imply that a given sequence 
is tame (resp. very tame). They showed that members of every tame sequence are permutable by 
automorphisms of C n, and hence one can speak about tameness of infinite discrete sets. On the 
other hand, there exist discrete sets E C C n such that the only nondegenerate holomorphic map 
F: C n ~ C n satisfying F ( C n \ E )  C C n \ E  is the identity map [17, Theorem 5.1]. 

From the definition of (very) tame sequences and Theorem 4.1 we get the following corollaries. 

Corollary 4.2. Assume  thatn > 1 andm > 1, that {a j} and {bj} are tame discrete sequences in 
C n (withoutrepetition), and that for each j = 1, 2, 3 . . . . .  Pj: C ~ ~ C n is a holomorphicpolynomial 
map o f  degree at most  m with Pj(O) = 0 and J Pj(O) # O. Then there exists an F ~ AutC n such 
thatforeach j ~ N, F (a j )  = bj and 

F(z)  bj + Pj (z a j )  + O ( lz  aj[ re+l) = -- -- , Z - -+aj  . 

I f  the sequences {aj}, {bj} are very tame and all polynomials Pj satisfy (4.2), we can choose 
F ~ AUtl C n. 

Corollary 4.3. Assume that n > 1, that {a j } and { b j } are tame discrete sequences in C n (without 
repetition), and that A j ~ G L (n, C) for each j ~ N. Then there exists an F ~ Aut C n satisfying 

F ( a j ) = b j ,  U ( a j ) = A j ,  j = 1 ,2 ,3  . . . .  

I f  the sequences {aj }, {bj } are very tame and det A j  = 1 for each j ,  the above is satisfied by  an 
F ~ AUtl C n. 

Rosay and Rudin proved in [ 17, Theorem 3.7] that for every infinite discrete sequence {aj } C C n 
(not necessarily tame), there is an injective holomorphic map F: C n ~ C n with J F  - 1, satisfying 
F(a j )  = j e l  for j = 1, 2, 3 . . . . .  Together with Theorem 4.1 we get the following: 

Corollary 4.4. Let  n > 1 and m > 1. Assume  that {aj ] is a discrete sequence in C n (without 
repetition), and for each j ~ N, Pj is a holomorphic polynomial o f  degree at most  m with Pj (0) = 0 
and J Pj(O) # O. Then there exists an injective holomorphic map F: C n -~ C n such that for each 
j = 1, 2, 3 . . . . .  F (a j )  = j e l  = (j ,  0 . . . . .  O) and 

F(z)  j e l  + P ( z - a j )  + O ( [ z - a j [  re+l) = , Z - -+aj  • 

Proof of Theorem 4.1. The proof is similar to Step 2.10 in the proof of Proposition 2.1, except 
that we now perform the same operation simultaneously at all points j e l  ~ C n ( j  = 1, 2, 3 . . . .  ) at 
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every step of the process. We will find F as a finite composition 

F = G m  o G m - 1  o . . . o G 1  o G 0 ,  

where each Gk will be a finite composition of shears and generalized shears which will be constructed 
inductively. The number of  composition factors in each Gk will depend only on n and k. Hence, to 
satisfy (4.3), it suffices to choose a slightly larger number R ~ > R and ensure that each composition 
factor is sufficiently close to the identity on the ball R'B.  We choose R'  such that j > R implies 
j > R'  for every integer j .  

We begin the construction by setting 

Go(z) = (z l ,  ef(Zl)z2, z3 . . . . .  Zn) , 

where f :  C ~ C is an entire function satisfying 

e f ( j )  = JPj(O),  j = 1, 2, 3 . . . . .  

and such that I f ( ( ) l  is small for I(I -< R/. Then Go(je l )  = je l  and J G o ( j e l )  = JPj(O) for all j ,  

and Go is close to the identity on R'B.  Replacing F by F o G o  1 we reduce our problem to the case 
when J Pj (0) = 1 for all j .  

Next we find an automorphism GI which fixes all points j e l  ( j  E N) and satisfies 

G '  1 ( j e l )  = P~(0) ~ SL(n,  C), j = 1, 2, 3 . . . . .  

Choose a basis )~l . . . . .  ~ 'n of the dual space (cn)  * such that for each i, )~i(el) = 1 and kerXi is 
almost orthogonal to the first coordinate axis so that Xi( je l )  = j q~ Xi(R~B) whenever j > R. 
Let vi . . . . .  Vn be the dual basis of  C n satisfying ~.i(vk) = 8i,~. Recall [16, p. 357] that the group 
SL(n ,  C) is generated by linear shears 

Z ~ Z -[- Ol)~i(Z)Vk, i ~ k, o t e  C .  (4.4) 

Fix i ~ k, 1 < i, k < n. Suppose that we are given for each j = 1, 2, 3 . . . .  a constant Otj E C, 

with 0tj = 0 for 1 < j < R. By the choice of  ~-i we can find an entire function f on C satisfying 
f ( j )  = 0 and f t ( j )  = otj for each j ,  and such that I f ( ( ) l  is small for ( s Xi(RtB) .  The shear 
automorphism 

z w-~ z q- f ()~i (Z)) Vk, Z C C n 

then fixes all points j e l ,  its derivative at j e l  is the linear shear (4.4) with ot = or j ,  and it is close to 
the identity on R'B.  Since Pj(0)  ~ SL(n ,  C) is a finite composition of linear shears (4.4) for each 
j ,  with the number of  factors depending only on n, a finite composition of such shears gives G 1. 

Suppose inductively that 1 < k < m and that we have already constructed automorphisms 
Go, G1 . . . . .  Gk-1 whose composition Fk-1 = Gk-1 o . . .  o G1 o Go fixes all points j e l ,  it is close 
to the identity near RB,  and it satisfies for each j = 1, 2, 3 . . . .  

: z +  o P j  o k -1  k, jel  (4.5) 

where Vj: C n ~ C n is a homogeneous polynomial map of degree k for each j e N. (In (4.5) we 
are using the A-jet notation introduced in Section 2.) If  we find G~, a composition of finitely many 
(generalized) shears, which is close to the identity near RB,  which fixes all points j e l  ( j  c N) and 
satisfies for each j = 1, 2, 3 . . . .  

Gk(Z) : Z 4- Vj (Z -- j e l )  -+- 0 (Iz -- j e l l k+l )  , Z --+ j e l  , (4.6) 
\ / 
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then the map Fk = Gk o Fk_ 1 satisfies the same requirements, with k - 1 replaced by k. After m 
steps we thus obtain the desired automorphism F = Fm. 

The construction of Gk is similar to the construction of Sk in Section 2 above. We begin by 
choosing finitely many linear forms ~-i E ( a n )  * and vectors vi ~ ker ~-i of length one (1 < i < r), 
possibly with repetition, such that for each i we have ~-i ( e l )  = 1, j ~ )~i (RtB)  for j > R (this holds 
if ker ~-i is nearly orthogonal to the first coordinate axis), and such that Lemma 2.6 holds. Applying 
Lemma 2.6 to Vj for j = 1, 2, 3 . . . .  we get 

F 

Vj(Z) = ~ ci,j ()~i(Z)) k vi + di,j O~i(z)) k-1 (z, 1)i) vi 
i=1 

for some constants Ci , j ,  di,j E C. Note 
Choose entire functions f/, gi: C ~ C (1 < i < r) satisfying 

f i (~ )  : Ci,j(~ -- j )k  ...1_ 0 (l~ -- j l k + l )  , 

gi(~) = di, j(~ - j ) k -1  _.1_ 0 (l~ -- j l k ) ,  

for eachi  = 1 . . . . .  r a n d j  = 1,2,3,  
Section 2 we set 

that Vj = 0 for j < R and hence ci,j : d i , j  : 0 for j < R. 

~ ---~ j 

. . . .  and such that Ifil and Igi[ are small on ~.i(R'B). As in 

dPi (Z) = Z -[- f i  (~'i (Z)) Vi , 

d~i(Z) = Z -[- (e gi(Xi(z)) - 1)(Z,  vi)vi  , 

and we let Gk be the composition of all ~is  and qJis for 1 < i < r. Then Gk satisfies (4.6). This 
completes the proof of Theorem 4.1. [ ]  

5. Convergence of  certain composit ions  of  automorphisms 

The situation described in the next proposition arises naturally in the construction of proper 
holomorphic embeddings in Section 6 below. This construction has appeared in several recent 
papers, most notably in the paper [14] by Globevnik and StensCnes where they constructed proper 
holomorphic embeddings of certain finitely connected planar domains into C 2, and more recently in 
the paper [4] by Buzzard and Fomaess. 

Proposit ion 5.1. Let  D be a connected open set in C n which is exhausted by compact sets 
Ko C K1 C K2 C . . .  C UT_oK j = D such that K j _ l  C IntKj for each j E N. Choose numbers 
Ej (j  = 1, 2, 3 . . . .  ) such that 

0 < Ej < dist (Kj-1, C n \ K j )  (j  c N) ,  ~ E j  < O0. (5.1) 
j= l  

Suppose that for each j = 1, 2, 3 . . . . .  ~P j is a holomorphic automorphism o f  C n satisfying 

I q J j ( z ) - z [  <E j ,  z 6 K j .  (5.2) 

Set ~Pm : qlm o qlm_ 1 o . .  • o ~Ill . Then there is an open set [2 C C n such that l imm.oo qbm : (I) 
exists on f2 (uniformly on compacts), and • is a biholomorphic map o f  f2 onto D. In fact, f2 = 

Um~ ~ (Kin). 
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The following special case deserves to be stated separately. 

Proposition 5.2. L e t  K0 C K1 C K2 C . . .  C U j = 0 K  j = C n be compact sets such that 
K j -1  C IntKj for each j ~ N. Let Ej > O, qdj and dpj be as in Proposition 5.1, satisfying (5.1) 
and (5.2). Let f2 C C n consist o f  allpoints z ~ C n such that the sequence { ~ m (z):m ~ N} C C n is 
bounded. Then limm~c¢ ¢~m = dt~ exists on f2 (uniformly on compacts), and d~ is a biholomorphic 
map off2 onto C n. 

Before proving Proposition 5.1, we give an application to the problem considered in the recent 
paper [12] by Forstneric et al. Since the additional ingredient developed here is rather minor in 
comparison with the construction in [12], the following should be considered a joint result with 
Globevnik and Stens0nes. 

Theorem 5.3. For each discrete set E in a connected pseudoconvex Runge domain D C C n 
(n > 1) there exist a pseudoconvex Runge domain g2 C C n, a biholomorphic map F: f2 ~ D onto 
D, and a connected component A o f  g2 M (C × {0} n- l )  such that F(A)  D E. 

If fl is Runge in C n and A is an affine complex line in C n, then every connected component of 
A M f2 is Runge in A and hence conformally a disc or C. Thus, Theorem 5.3 implies the following: 

Corollary 5.4. Every discrete set in a connected pseudoconvex Range domain D C C n (n > 1) 
is contained in one leaf o f  a nonsingular holomorphic foliation of  D by complex discs and lines. 

To see this, take the image by F (from Theorem 5.3) of the foliation of f2 by translates of the 
first coordinate axis. 

We indicate how Theorem 5.3 follows from the construction in [12] and from Proposition 5.1 
above. Given a discrete set E in a connected pseudoconvex Runge domain g2 C C n (n > 1), the 
authors constructed in [12] a sequence of compact, polynomially convex sets K0 C K1 C K2 C 
• .. C UT_oK j = D, and a sequence of holomorphic automorphisms ~I/j E Aut C n satisfying (5.2), 
w h e r e  6j > 0 Can be chosen arbitrarily small in each step, such that the sequence of compositions 
Fm = q/m o d,/m_ 1 o . . .  o q/1 converges to a holomorphic map F on certain simply connected 
domains A C C x {0} n-1 (contained in the first coordinate axis), and such that F: A --+ D is a 
proper holomorphic embedding of A into D whose image F(A)  contains the given discrete set E. 
(In [12] we used the notation A instead of A.) 

If  we choose in each step the number Ej > 0 sufficiently small such that (5.1) holds, Proposi- 
tion 5.1 shows that the sequence Fm converges to a biholomorphic map F from a domain g2 C C n 
onto D, and by construction A is a connected component of f2 f3 (C × {0}n-l). Clearly f2 is pseu- 
doconvex, and it is Runge in C n since D is Runge and F: f2 --+ D is a limit of automorphisms of 
C n. We refer the reader to [12] for further details. 

Proof of Proposition 5.1. Set ~0(z) = z for z ~ C n. Let 

Lm = dpml (Km) (m E N ) ,  ~ = U~m_lLm C C n • 

From (5.1) and (5.2) we get qJm+] (Kin) C IntKm+l (m > 0), and hence, 

qbm+l (Lm) = qJm+l (~m (Lm)) = ~m+l (Kin) C IntKm+l.  

Thus, Lm C IntLm+l for m = 1, 2, 3 . . . . .  and hence f2 is open in C n. By induction we get 

(5.3) 

ffPj (Lm) C Kj ,  j > m .  
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Hence, (5.2) gives for I > m > 1 and z ~ Lm : 

1 

Id0l(z) - (Pm(Z)I < Z I (:I)j(z) -- (I)j-I(Z)[ 
j=m+l 

l 

= I*J 
j=m+l 

l 

< Z 61" (5.4) 
j=m+l 

This shows that l i m t ~  (l)l = (P exists on Lm and it satisfies 

OO 

I ~ ( z ) -  (1)m(Z)[ < Z Ej < dis t(Km, C n \ D ) ,  Z ~ Lm. 
j=m+l 

The last inequality follows from (5.1). Thus, ~(Lm) C D for each m 6 N, and hence ~(f2)  C D. 

We claim that (I) is injective on f2. Fix m 6 N. For z ~ Lm we write ¢~m(Z) = w ~ Km. If  
l > m, then (5.4) implies 

o o  

~ l ° c P m l ( w ) - t o  =IcP/(Z)-CPm(Z)]  < ~ E j .  
j=rn+l 

Letting I --+ ~ we get 

o~  

qbOqbml(to ) - w  <_ Z Ej, W E g m .  (5.5) 
j=m+l 

This shows that for each fixed compact set K C D, • o (I) m 1 is biholomorphic on K for all sufficiently 
large m, and hence (I) is biholomorphic on the subset (I)ml(K) C f2. Since • is a limit of  injective 
holomorphic maps on f2, it follows that • is injective on f2. 

It remains to show that ~(f2)  = D. Fix an integer m >_ 1. Choose l > m such that 

O~ 

Z ~J < dist(Km, C ' \ K m + l ) .  
j=l+l 

Set ~) = (P o opt-l; this is a holomorphic map in a neighborhood of Kl. From (5.5) we get 

(b(w) - w < dist (Km, c n \ g m + l ) ,  to E K 1 . 

Rouchd's theorem [6, p. 110] implies ~(KI) D Km. Since (b(Kl) = ~ ( ~ l ( K l ) )  = ~(LI),  we get 

Km C dp (L1) C 4p(~). 

Since this holds for every m, we conclude that D C ~(f2)  and hence D = q~(g2). 

Our proof shows that f2 (5.3) consists of  all points z ¢ C" for which the sequence 

{(Pm(Z): m 6 N} (5.6) 
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is relatively compact in D. Indeed, if  z ~ g2, then limm~c~ ~m(Z) = ~ (z )  6 D, and hence the 
sequence (5.6) is contained in some compact  subset of  D. Conversely, if (5.6) is relatively compact  
in D, it is contained in the set Ks for all sufficiently large s, so ~s (z) ~ Ks and hence z ~ Ls C f2. 
If  D = C n, f~ contains exactly those points z ~ C n for which (5.6) is a bounded sequence. This 
completes the proof of  Propositions 5.1 and 5.2. [ ]  

6. An interpolation theorem for proper holomorphic embeddings 

We are interested in the following problem: I f  M is a Stein manifold which admits a proper 
holomorphic embedding into C n for  some n > 1, what other properties o f  the embedding can one 
prescribe ? The following is our main result in this section. 

Theorem 6.1. Let  M be a closed complex subvariety o f  C n, with 1 < dim M < n, and set 
d = n - d i m M .  Given a discrete set {p j} C C n and a C-linearsubspace A j  C C n o f  dimension 
d imM for each j = 1, 2, 3 . . . . .  there exist 

(i) a domain ~2 C C n containing M, and 

(ii) abiholomorphicmapping F: f2  --+ C n ontoC n satisfying J F ( z )  = 1 fo reachz  ~ f2, such 
that the image variety M ~ = F ( M )  C C n satisfies 

p j  ~ RegM: ,  TpjM'  = A j ,  j = 1, 2, 3 . . . . .  (6.1) 

and such that any entire map G: C a ~ C n o f  rank d intersects M t at infinitely many  points. I f  
d = 1, there is an F as above such that C n \ M  t is Kobayashi hyperbolic. 

Recall that the rank of G is the maximal (generic) rank of  G: ( ( )  for ( 6 C d. 

The main idea of  this construction was developed in the papers [11, 12], and [4]. The last part 
concerning intersections and hyperbolicity was proved for one-dimensional complex varieties M in 
C 2 by Buzzard and Forn~ess [4]. 

Since the map F:  f2 -~ C n in Theorem 6.1 is biholomorphic onto C n (a Fatou-Bieberbach 
map), f2 is pseudoconvex and the restriction FIM: M ~-~ C n is a proper holomorphic embedding of  
M onto the closed subvariety M ~ = F ( M )  of C n. Moreover, since F will be constructed as a locally 
uniform limit on f2 of  a sequence of automorphisms, the domain ~2 is Runge in C n (see [2]). 

Remark. Our proof of  Theorem 6.1 will show that one can also prescribe any finite order jet of  
F ( M )  = M: at each point pj .  To make this precise, we choose for each j = 1, 2, 3 . . . .  a complex 
subspace L j  C C n so that Aj  ~) L j  : C n. Fix a j and write z = (z:, z"), with z t E Aj  and z" E L j .  
There is a neighborhood Uj C Aj  of 0 and a holomorphic map gj: Uj ~ L j  satisfying gj  (0) : 0 
and Dgj  (0) = 0, such that near the point p j ,  M ~ is given by 

{ p j + ( z ' , g j ( z ' ) ) : z '  r U j } .  (6.2) 

Suppose now that we are given for each j 6 N a jet hj  of a holomorphic map Aj  ~ L j  at 0, of  
order mj  _> 1, such that hj  (0) = 0 and D h j  (0) = 0. We can construct an F as in Theorem 6.1 such 
that F ( M )  is locally near each p j  of the form (6.2), with the m j-jet  of  gj  at 0 equal to the given jet 
hj .  

Corollary 6.2. Let  [PJ}j=I be a discrete subset o f C  n forn  > 1. I ra  Stein manifold M admits 
a proper holomorphic embedding Fo: M ~ C n, then M also admits an embedding F: M ~-~ C n 
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whose image F(M)  contains the set {pj}, and such that every entire map G:C d ----> C n olf fank 
d = n - d i m M  intersects F(M)  at infinitely many points. I f d  = 1, there is an embedding F as 
above such that Cn\ F ( M) is Kobayashi hyperbolic. 

Corollary 6.3. Let m, d > 1 and n = m + d. There exists a proper holomorphic embedding 
F:C  m ~ C n such that every entire map G:C d ~ C n o f  rank d intersects F(C m) at infinitely 
many points. For each n > 1 there exist proper holomorphic embeddings F:  C ~ ~+ C n+l such that 
cn+  1 \ F (C n) is Kobayashi hyperbolic. 

Corollary 6.3 implies the following result. We identify C m with C m × {0} C C m + l  . 

C o r o l l a r y  6.4. For each pair o f  integers (m, n) such that 1 < m < n < 2m + 1, there exists a 
proper holomorphic embedding F: C m ¢---> C n which does not extend to an injective holomorphic 
map o fC  m+l into C n. 

Remark. Observe that, on the other hand, every injective entire map F:  C m ---4. C n for n > 2m + 1 
extends to an injective entire map F:  C m+l ~ C n by taking F(z,  Zm+l) = F(Z) + Zm+lV for a 

~ 

suitably chosen vector v 6 C n; if F is an immersion, we can choose F to be an immersion as well. 
(Choose v c C n which is not be contained in the image of  DF(z)  for any z c C m, and which is not 
a complex multiple of  any vector F(z) - F(z  I) for z, z I 6 C m • Clearly, such v exists if 2m + 1 < n.) 
Hence the codimension assumption in Corollary 6.4 is sharp. 

Proof of Corollary 6.4. Choose F:  C m ~ C n as in Corollary 6.3, and suppose that F extends 
to an injective map/~:  C m+l ---> C n. Then for each t 5& 0, F ( . ,  t): C m ---> C n is an injective map 
whose image misses F(Cm). If  n < 2m, we have d = n - m < m, and hence this is impossible by 
our choice of  F.  In the remaining case n = 2m + 1 we have d = m + 1. There exists a biholomorphic 
(Fatou-Bieberbach) map • of  C m+l onto a subset of  C m+l \C  m x {0} (see [17]). The composition 
G = F o qb: C m +l  ~ C n is injective and its image avoids F ( C  m) in contradiction with the choice 
of  F.  [~ 

Corollary 6.2 does not give any new results concerning the existence of embeddings of  a given 
Stein manifold into C n; however, once we know that one such embedding exists, it provides embed- 
dings that are more "twisted" than the original one. In this context, we recall the embedding theorem 
of Eliashberg and Gromov [7]: Every Stein manifold of dimension m admits a proper holomorphic 
embedding into CNfor  the minimal integer N > (3m + 1)/2. It is not known whether every open 
Riemann surface admits an embedding into C 2. Recently it became clear that finitely connected 
planar domains admit such embeddings; see the paper [14] by Globevnik and StensCnes. 

We will need the following lemma. 

Lemma 6.5. Let K be a compact polynomially convex subset o f  C n, and let A C C n be a closed 
complex subvariety of  C n. Suppose that Ao is a compact, holomorphically convex subset o f  A such 
that K A A is contained in the (relative) interior of  Ao. Then the set K U Ao is polynomially convex. 

P r o o f .  LetK1 = KUAo. We first show that /~l C KUA.  For every point z ~ Cn\A,  Cartan's [15, 
Theorem A] provides a holomorphic function f on C n satisfying f ( z )  = 1 and f h  = 0. If  also 
z ~ K, there is a holomorphic function g on C n such that g(z) = 1 and Igl < 1 on g .  The function 
F = f g N  for sufficienOy large integer N satisfies F(z) = 1 and IFI < 1 on Kl. Thus, z ¢ / ~ l  and 
our claim is established. 
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Suppose now that/¢1 ~ K1, and choose a point z ~ / f l \ K 1  C A\Ao .  Since A0 is holomor- 
phically convex in A, there is a holomorphic function f on A satisfying [ f (z) l  > sup{lf(w)l :  w 
A0}. By Cartan's [15, Theorem B] we can extend f to a holomorphic function on C n. Since 
U = KI \K1  C A \ A o  is a relative neighborhood of  z i n / f l  whose relative boundary ( i n / f l )  is 
contained in A0, f contradicts Rossi 's  local maximum modulus principle [18]. This proves that K1 
is polynomially convex. [~ 

Proof o f  T h e o r e m  6.1. To make the proof more accessible, we first prove the interpolation 
result (6.1) in Theorem 6.1, following the idea of [11]. We will then explain the modifications in the 
construction which ensure that every map G: C d -+ C n of rank d intersects F ( M )  at infinitely many 
points. This part is similar to the paper [4] by Buzzard and Fom~ess who proved the results for the case 
n = 2 and d = 1. The main idea goes back to the construction by Rosay and Rudin [17, Section 4] 
of  discrete sets in C n which are unavoidable by nondegenerate holomorphic maps G: C n -+ C n. 

Choose the origin of  C n such that 0 < [Pl[ < [P2[ < [P3[ < "" ", and then choose numbers 
0 < rl < r2 < r3 < - . .  such that rj < [p j[ < rj+l for j = 1, 2, 3 . . . . .  Recall that B is the unit 
ball in C n. 

To start the induction we set F0 (z) = z - a ,  where a ~ C n is chosen such that p 1 ¢ M0 = F0 (M). 
Suppose that k > 1 and we have already constructed a volume preserving automorphism Fk-1 of  
C n such that 

(i) the subvariety m k - 1  = F k - I ( M )  C C n contains the points Pl ,  P2 . . . . .  Pk-1 in its regular 
locus of  top dimension dim M, 

(ii) TpjMk-1 = Aj  and the jet of  Mk-1 of  order mj at pj  (see the remark following Theo- 
rem 6.1) matches the prescribed jet of  order mj for 1 _< j _< k - 1, 

(iii) Pk q~ Mk-1.  

We now construct the next automorphism qJk E AUtl C n such that Fk = qJk o Fk_ 1 satisfies the 
requirements (i)-(iii) for 1 < j < k. We also want to ensure the convergence of the sequence Fk on 
M. To this end we first choose a number Pk > k such that 

IFk-~(z)l ~ rk+l, Z ~ M, Izl ~ P~ • (6.3) 

Set 

Kk = Fk-1 (M fq p~B---) U (rk-B) C M k - 1 U  (rk-B) • (6.4) 

Kk is polynomially convex by Lemma 6.5. Now choose a point qk 6 (RegM~_l) \Kk such that 
dimqk Mk-1 = d i m M .  Given a number ek > 0, Proposition 2.1 furnishes an automorphism qJk 
AUtl C n satisfying the following: 

(a) qJk(q~) = P~ and the mk-jet (6.2) of  the subvariety Mk = qJk(M~-l) at Pk matches the 
prescribed mk-jet; in particular, TpkMk = Ak,  

(b) ~k(z)  = z + O(Iz - pj jmj+l)  as z --+ p j  for 1 < j < k - 1; 

(c) IqJ(z) - zl < Ek for all z ~ Kk; and 

(d) Pk+l ¢ Mk. 

Regarding condition (a), the reader should observe that any two local submanifolds (6.2) at pj  
can be mapped one onto the other by a finite composition of shear automorphisms z w-~ z + f (Z(z))v 
(z ~ cn) ,  where X: C n ~ Aj  is a linear projection onto Aj  with kernel L j,  v E L j,  and f is an 
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entire function on Aj .  Since these transformations are volume preserving, we can choose qJk to be 
volume preserving. 

The map Fk = ~P~ o Fk-1 then satisfies conditions (i)-(iii) with k - 1 replaced by k. If  we 
choose in each step the number Ek > 0 So that 

~k < m i n ( r k + l - - r k , 2 - k )  , 

then Proposition 5.1 (applied to the compacts sets rk-B which exhaust C n) ensures that F = 
l i m k ~  Fk exists on a pseudoconvex Runge domain f2 C C n and F :  f2 --~ C n is biholomor- 
phic onto C n. Moreover, since p~ --~ oo as k ~ oo, condition (c) on qJ~ implies that the sequence 
Fk converges on M, so M C ~2. This proves that F satisfies (6.1). Since JFk - 1 for each k, we 
have J F  --- 1 on f2. [ ]  

Proof of t he  las t  part of T h e o r e m  6.1. We now explain the necessary modifications in the 
construction of  qJk in kth step which ensure that F also satisfies the last requirement in Theorem 6.1. 
As mentioned earlier, this part is similar in spirit to [4]. 

For any subset ot = {al, or2 . . . . .  am } C { 1, 2 . . . . .  n } with m = dim M elements, we denote by 
Ca the coordinate plane in C n of  dimension m in coordinate directions zal . . . . .  Zoom. For each such 
or, let a I C { 1 . . . . .  n } be the complementary subset with d = n - m elements, and let rra: C n --~ Ca, 
be the linear projection with ker rr, = Ca. 

We shall describe the induction step. Fix k > 1 and suppose that Fk-1 has already been 
constructed. For every a as above we choose a nonempty open spherical shell 

Sa C (rk+lB) \ (rkB---) 

such thatSa N SI~ = 0 for ot 5~/5, and such that Pk ~ t3a-Sa. In each shell Sa we choose a countable 
dense set {aa,t:l ~ N} such that the projections rr~ (aa,l) ~ Ca, for distinct I are distinct. Let B~,l be 
the largest open ball in Ca, centered at 0, such that 

a~,l + 2B~,1 C Sa\Kk , 

where Kk is given by (6.4). Choose an integer 10 (to be specified later) and set 

lo (aa,l + Ba,1) Dk = UaDk,a Dk,c~ = U I =  1 , • (6.5) 

We denote by A the unit ball in C d. If  g > 0 and if A, B C C n are analytic sets of  dimension 
d (not necessarily closed), we say that B is a g-perturbation of  A if the Hausdorff distance between 
A and B is less than g. Recall that Mk-I  = Fk- I (M) .  

L e m m a  6.6. We can choose an integer Io sufficiently large and a number ~k > 0 sufficiently small 
such that the set Dk (6.5) satisfies the following property: I f  G: A ~ rk+2 B is any holomorphic 
map satisfying 

(i) IG(0)I _ rlc, 

(ii) dist(G(0), Mk-1) > 1/k ,  

(iii) max~ [J(zra o G)(0)I > 1/k,  and 

(iv) G( A ) avoids a gk-perturbation D' k C C n o f  Dk, 
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then G maps the ball (1 - 2 -k )A  C C d into the ballrk+lB C C n. 

In practice we will consider perturbations D t which are graphs of holomorphic mappings over k 

the balls in Dk, in a direction complementary to Ca,  with small uniform norm (see Lemma 6.8 
below). 

The proof  of  Lemma 6.6 is almost the same as in [4, Lemma 2.2]. We shall include it for 
the sake of  completeness. If  Lemma 6.6 does not hold, there is a sequence of holomorphic maps 
G j: A -+ rk+2B ( j  ---- 1, 2, 3 . . . .  ), satisfying conditions (i)-(iii) in the lemma, such that 

G j( A ) N Dk,j ---- 0 (6.6) 

for some d-dimensional analytic set Dk,j C C n which is a 1/j-perturbation of the set Dk (6.5) in 
which we take 10 = j ,  and such that Gj ((1 - 2 -k )A)  ~ rk+l B for all j .  Passing to a subsequence 
we may assume that l i m j ~  Gj = G exists uniformly on compacts in A. Hence, the convergence 

is uniform on (1 - 2 - k ) Z ,  and G satisfies: 

(et) G(O) ~ (rkB)\M~-l, 

(/3) J(Jra o G)(0) ¢ 0 for some or, and 

(y)  G ((1 - 2 - k ) S )  • rk+lB. 

From (or) and (y)  it follows that G(A)  intersects the s e t  Sa\Mk-1, and (13) implies that the map 
Ga = zra o G has generic rank d. Thus, there is a point (0 c A such that 

G ((o) ~ Sot\mk-1, J (Ga) ((o) # O. 

Hence, G is transverse to the affine plane G ( ( )  + Ca for all ( E A sufficiently close to (o. Since the 
sequence {aa,l: l = 1, 2, 3 . . . .  } is dense in Sa\Mk-1, we can choose a point aa,l sufficiently close to 
G((0) such that G(A)  intersects the ball B ~ = aa,l + B~,l transversely at a point near G((0).  Since 
d + m = n, such intersections are stable under small deformations of  both G and B t. Hence, for 
sufficiently large j ,  Gj(A) intersects any 1/j-perturbation of the ball B ~. Since B ~ C Dk i f /0 = j 
is chosen sufficiently large, we get a contradiction to (6.6). This proves Lemma 6.6. [ ]  

We now fix 10 = lo(k) and 3k > 0 so that Lemma 6.6 holds, and we denote by Dk,a (resp. 
D~) the sets (6.5) for this 10. We will show that Dk can be approximated by (parts of) the image 
• k(Mk-1) for a suitably chosen automorphism ~ ~ AUtl C n. We will need the following lemma 
(notation as above). 

L e m m a  6.7. The set Ek = Kk U Dk is polynomially convex. 

P r o o f .  Fix ~ = O( 1 such that S~1 is the inner-most of  all shells Sa chosen in step k. We shall first 
prove that the set R = Kk U Dk,al is polynomially convex. 

Since Kk is polynomially convex, the first step in the proof of  Lemma 6.5 shows that the 
polynomial hull of  R is contained in the union of Kk with the affine subspaces E1 = aal ,I + Ca1, 
1 < l < I t ( k ) .  

It suffices to show that R A Et is polynomially convex for each 1. Namely, if  this holds but 
R is not polynomially convex, there is a point p ~ ( R \ R )  N El for some l. The set U = /~ A El 
is a relative neighborhood of p in/~,  with the relative boundary of U (in/~) contained in R A Z1. 
Since R tq E1 is polynomially convex, there is a holomorphic function f satisfying f ( p )  = 1 and 
I f l  < 1 on R N El, and hence I f l  < 1 on bU. This contradicts Rossi 's  local maximum modulus 
theorem [18], thereby establishing our claim. 
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To prove polynomial convexity of  R n El we observe that 

R N E1 = B'  U B n U A0,  

where B'  = B~l,t and B" = E1 n (rkB) are disjoint closed balls in El (the second one may be empty 
or a point), and 

A0 = Y,1 n Fk-i (M n 

is a holomorphically convex subset of  the complex subvariety A = El n Fk-  1 (M). Observe that 
A n B'  = 0, and A n B" is contained in the relative interior of  Ao (with respect to A). Since the 
union B / U B" of two disjoint closed balls in E1 is polynomially convex, Lemma 6.5 implies that 
R N El is polynomially convex for each l. This proves that the set R = Kk U D~,a l is polynomially 
convex. 

Let S~ 2 be the next concentric shell. We claim that the set 

R2 = Kk U Dk,al U Dl,,a2 = R U Dk,a2 

is polynomially convex. To see this, choose a ball r B  C C n which contains the shell Sal but 
does not intersect Sa2. Repeating the same proof as above, with K~ replaced by Kk U rB,  we see 
that Kk U (rB) U D~,a2 is polynomially convex. So it remains to show that if p ~ r B \ R ,  then 
p is not in the hull of  R2. Fix such a p. Since R is polynomially convex, there is a polynomial 
f o n e  n with f ( p )  = 1 and I f l  < 1 o n R .  L e t g  equal f i n a n e i g h b o r h o o d o f K k U r - B  
and g = 0 in a neighborhood of Dk,a2. By Oka-Weil  theorem [15] we can approximate g by a 
polynomial h, uniformly on Kk U (rB) U Dk,c~2. If  the approximation is sufficiently close, then 
[h(p)l > sup{Ih(z)l: z E R2}, thereby establishing our claim. 

Continuing inductively we see after finitely many steps that the set Ek is polynomially convex. 
This proves Lemma 6.7. [ ]  

Let ak > 0 and lo(k) be such that Lemma 6.6 holds. Recall that or' C {1 . . . . .  n} is the 
complement of oc Let B'  ~',l C Ca, be the ball of  radius ak, centered at the origin, and set 

P~,t = ac~,l + B~,l x B~,,t C • (6.7) 

If  Uk D Kk is a small compact, polynomially convex neighborhood of Kk in C n, and if ~k > 0 is 
chosen sufficiently small, then the closures P~,l are pairwise disjoint for all oe and 1 < 1 < lo, none 
of them intersects Uk, and the set 

Ek = Uk U (Uu,1 F~,l)  (6.8) 

(where the union is over all c~ and 1 < l < lo(k)) is polynomially convex. The last assertion follows 
from Lemma 6.7. 

L e m m a  6.8. There exists a ~k ~ Autl C n which satisfies the properties (a)-(d) above and such 
that for each (or, l) (1 < 1 < lo(k)) there is a holomorphic map g~,l: B~,l --+ Ca, = C a, with 
Ilg~,zll~ < ~k/2, such that 

{a~,l + (w, g~,l(w)) : w E Bo~,l} C qJk(Mk-1) n Pc~,l . 

On the left-hand side above we use the splitting of coordinates z = (w, ( )  ~ C n such that 
w e Ca and ( e Ca,. 
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Proof. Proposition 2.1 furnishes a preliminary automorphism Ok ~ AUtl C n satisfying condi- 
tions (a)-(d) in the first part of  the proof of  Theorem 6.1, such that the variety ®k(Mh-1)  = M£ 
satisfies 

aa,I E RegM£, T ' a,~,, Mi = Ca (6.9) 

for all oe and all I with 1 < l < lo(k). We may assume that ®k(Kh) C Uh. 

To explain the second step we fix a pair (o~, I), and we choose coordinates w e C n such that, in 
these coordinates, Ca = {0} d x C m, Ca, = C a x {0} m, and W(aa,t) = 0. We write w = (w',  w") 
accordingly, with w' ~ C d and w" e C m. Consider the linear vector field V(w) = (-).w',/zw"), 
where 3. > 0 and/x > 0 satisfy d). - m/z -- 0. The last condition is equivalent to div V = 0. The 
flow of V, given by 

Ct (w',  w") = (e -xtw', eUtw"), 

is volume preserving; it is contracting on Ca, and expanding on Ca. Hence, (6.9) implies that 
for sufficiently large ~. > 0 and / z  > 0, the time-one map ¢1 of V stretches a suitably chosen 
neighborhood of  the point aad e M~ in M~ to a graph as in Lemma 6.8 (the left-hand side of  the 
display). 

We do this simultaneously on every set Pa,t. Let V be the divergence zero vector field in 
a neighborhood of  the polynomially convex set Eh (6.8) which is defined as above near each set 
ffa,l and which is zero near Uk. We can approximate V, uniformly on /~k, by a divergence zero 
polynomial vector field on C n. The argument is the same as in Step 2.8 in the proof of  Proposition 2.1. 
Lemma 2.7 implies that the time-one map of  V is a (locally uniform) limit of  compositions of  shears. 

This gives an automorphism Ch, a composition of finitely many shears, which is close to 
the identity on Uh, which fixes the points Pl ,  P2 . . . . .  Ph and it matches the identity map to order 
max{mj + 1:1 _< j < k} at these points, and such that ~k = qbk o Oh satisfies Lemma 6.8. [ ]  

Conclusion of the proof of Theorem 6.1. Let Ph,a,t be the set (6.7) defined in step k. At 
each step k we choose qJh such that Lemma 6.8 holds, and we make sure that the total deformation 
of rh+lB at all later steps of  the construction is less than ~h/2. This implies that the intersection 
of the final subvariety F(M) C C n with Ph,a,l contains a 8k-perturbation of the ball aa,l + Bad 
constructed in step k. (In fact we can ensure that F(M) t3 Pk,a,l contains a graph over aa,t + Ba,t as 
in Lemma 6.8.) Let 

D ;  = U a , / ( F ( M )  A Ph,a,l) , 

where the union is over all ot and l, 1 < l < lo(k). 

In order to get a contradiction we suppose that G: C d ---> C n is a holomorphic map of  rank d 
which intersects F(M) in at most finitely many points. We may assume that G has rank d at the 
origin and G(0) ~ F(M). Choose ot and k0 > 2 such that 

(i) [G(0) I < rk0, 

(ii) dist(G(0),  Mk_l) ~ 1/k for all k > k0, 

(iii) IJ(rca o G)(0)t > 1/ko, and 

(iv) G(C d) D' fq k = 0 f o r k  > k0. 

Condition (ii) can be achieved since Mk-1 is close to F(M) on any fixed compact  set for large k, 
and G(0) ~ F ( M ) ;  (iv) follows from the assumption on G since D~ C F(M). 

Recall that A is the unit ball in C d. Fix an R > 1 and choose k = k(R) such that G(RA) is 
contained in rk+2B but not in rk+lB. I f k  _> k0, we apply Lemma 6.6 to the map G ( ( )  = G(R() 
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from A C C d to rk+2B C C n to conclude that G maps the ball in C d of radius (1 - 2 -k )R  into 
rk+lB. If  k - 1 ___ k0, we apply Lemma 6.6 again to conclude that G maps the ball of  radius 
(1 - 2-k)(1 -- 2-~+1)R into rkB. We keep repeating the argument until we reach k0. Since 
c = 1-Ii=2(1 - 2 -1) > 0, we conclude that G maps the ball (cR)A into rk0+l B. Since this is true for 
all R > 1, G is bounded on C d and hence constant, a contradiction. If  d = 1, the same argument 
proves that Cn\F(M) is hyperbolic. This completes the proof of  Theorem 6.1. [ ]  
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