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1. Introduction and results

In this paper we treat the classical problem of extending holomorphic map-
pings and sections from closed complex subvarieties of a complex manifold.
Our main results (Theorems 1.1 and 1.4) extend those of Grauert [Gr2] and
Cartan [Car]; results of this type are commonly referred to as the ‘Oka-
Grauert principle’ on Stein manifolds. Our methods are similar to those
developed in the papers of Gromov [Gro], Henkin and Leiterer [HL2] and
the authors [FP1], [FP2]. The main addition here is the interpolation of a
given holomorphic section on a complex subvariety of a Stein manifold. Our
globalization scheme follows very closely the one developed in [FP2].

To state our first result we recall the notion of a (dominating) spray
introduced by M. Gromov ([Gro], Sect. 0.5). Given a holomorphic vector
bundlep: E — Y over a complex manifold”, we denote by, € E, =
p~1(y) the zero element in the fibét, and we observe thd, is aC-linear
subspace of the tangent spa¢e L.

Definition 1. A spray on a complex manifold” is a holomorphic vector
bundlep: E — Y, together with a holomorphic map £ — Y, such that
for eachy € Y, s(0,) = y and the derivativels: 7o, E — T,,Y mapskE,
surjectively ontdl}, Y.

1.1 Theorem. Let X be a Stein manifold antl a complex manifold which
admits a spray. Then for every closed complex subsfigce X and every
continuous mapfy: X — Y whose restriction taX, is holomorphic on
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Xy there exists a holomorphic mafy: X — Y such thatfi|x, = fo|x,.
Moreover,f; can be obtained fronfiy by a homotopy;: X — Y (¢t € [0, 1])
which is fixed onXj.

For maps of Stein manifolds into complex Lie groups or complex ho-
mogeneous spaces this was proved by Grauert ([Gra2], [Gra3]) and Cartan
([Car], Theoeme 1 bis). The validity of Theorem 1.1 (and of Theorem 1.4
below) was asserted by Gromov ([Gro], Sect. 2.9.C, p. 877), but very few
details were provided there. The corresponding results With= () can
be found in [Gro], and complete proofs are given in [FP1] and [FP2]. (For
the general theory of Stein manifolds and Stein spaces we refer to [GUR] or
[GRe].)

The best source of examples of complex manifolds with sprays is the
following. Let V1, ..., V, be C-complete holomorphic vector fields on a
complex manifoldY” which span the tangent spa@gY at each point
y € Y. Denote byHJ the flow of V;. Then the maps: Y x C? — Y,

s(y,t1,...,tg) = 0} o -0 0 (y) fory € Y and(ty,...,t;) € C9,
is a spray or” (see [Gro] and [FPl]) Such sprays exist on complex Lie
groups and homogeneous spaces (take left invariant holomorphic vector
fields spanning the Lie algebra), and on spdces C"\ X whereX'is an
affine algebraic subvariety of codimension at least two (see [FP2]).

Theorem 1.1 reduces the holomorphic extension problemto atopological
one. If the initial mapf, is holomorphic in an open neighborhood &f
in X, the homotopy in Theorem 1.1 can be chosen such that all sections
f: are holomorphic in a neighborhood &f; (independent of) and they
agree withf, to a prescribed finite order along, (see Theorem 1.4). A
local holomorphic extension gfy exists without any condition oX and
Y provided that the subspac§, is Stein (Proposition 1.3). Theorem 1.1
is a special case of Theorem 1.4 below which gives extension results for
sections of holomorphic submersions onto Stein manifolds.

We have already pointed out that Theorem 1.1 applies to maps of Stein
manifolds intoC™\ X’ where X’ is an affine algebraic subvariety of codi-
mension at least two. This does not hold for general analytic subvarieties,
independently of their codimension.

Example 1For eachn > 1 there exists a discrete s&t ¢ C" such that
Theorem 1.1 fails for maps of Stein manifolds irfto = C™\X. (Note
however that Theorem 1.1 does hold wheis a discrete seti™, n > 2,
which is tame in the sense of Rosay and Rudin [RRu], since the complement
of such a set admits a spray.)

We obtain such examples as in the proof of Theorem 1.6 (b) in [FP2].
Let n = 2 for simplicity. By [RRu] there is a discrete sé&t ¢ C? such
that the spac& = C?\X is volume hyperbolic, in the sense that any
entire holomorphic map: C" — Y has complex rank at most one at each
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point. The same is then true for holomorphic mgpsX’ — Y from any

Stein manifoldX whose universal cover is a complex Euclidean space. We
showed in [FP2] that consequently any such map is homotopic to a constant
mapX — point.

The setX = (C*)? = C?\{zw = 0} is a Stein manifold which is
covered byC?2. Choose a complex lined ¢ C? that intersects the set
{zw = 0} c C? in precisely two points, say = (1,0) andq = (0, 1),
and takeXy, = AN (C*)%2 = A\{p, q}; this twice punctured complex line
is a closed complex submanifold &f. We may choose the discrete set
Y C C?% as above such th& N A = {p,q¢}. Let fo: Xg — Y = CA\X
be the inclusion map. By the choice &f there is an open tub& c C?
around/A such that/ N X' = {p, ¢}. Clearly we can extengl, to a smooth
mapf: X — U\{p,q} C Y. However,f, has no holomorphic extension
f: X — Y which is seen as follows. Any such extension would have rank
at most one by the choice a&f. Sincef|x, already has rank one, it would
follow that f(X) = fo(Xo) = Xo. But X is a twice punctured complex
line and thus a hyperbolic space whiteis covered byC?; hencef (and
thereforef,,) would be constant, a contradiction. 'y

When the manifold” is Stein, the condition in Theorem 1.1 is almost
necessary:

1.2 Proposition. (Gromov [Gro], 3.2.A.) etY be a Stein manifold. Assume
that for any Stein manifold’, any closed complex submanifdlg ¢ X and
any continuous magy,: X — Y which is holomorphic in a neighborhood
of X, there exists a holomorphic map X — Y which agrees withf; to
the second order alongy. ThenY admits a spray.

Our proof in Sect. 6 is slightly different from Gromov’s proof.

We now turn our attention to the extension problem for sections of holo-
morphic submersions. Lét: Z — X be a holomorphic submersion of a
complex manifoldZ onto a complex manifold’. This means that that for
each pointz € Z the derivatived,h mapsT.Z surjectively ontoT, X,

r = h(z).LetZ, = h~!(x) forz € X.We denote by T(Z) the kernel of
dh and call it thevertical tangent bundléwith respect ta:). ClearlyV'T'(Z)
is holomorphic subbundle &f Z whose fiber at € Z equals

VT(Z) ={v € T.Z:d.h(v) = 0} = T, Zy).

A submersiom: Z — X is locally trivial if each pointz € X has an
open neighborhoo@ C X such thath—!(U) is equivalent to a product
U x Y by a fiber preserving biholomorphic mdph~1(U) — U x Y;in
such case the submersion is@domorphic fiber bundlever each connected
component ofX .

A sectionof h: Z — X over a subseV/ C X is a continuous map
f:U — Z such thath(f(z)) = z forallz € U. If U is an open subset of
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X andXj is an analytic subset of , we say that a sectigfiis holomorphic
on Xy U U if f|y is holomorphic inU and f|x, is holomorphic onXj (in
the induced complex structure o).

We first give a local extension theorem for sections of submersions.

1.3 Proposition. Leth: Z — X be a holomorphic submersion of a complex
manifoldZ onto a complex manifold . Given a closed Stein subspaxg of

X (possibly with singularities) and a holomorphic sectifn Xy — Z|x,
of h over X, there are an open sét C X containingX, and a holomorphic
sectionf: U — Z|y with f|x, = fo. If fo extends to a continuous section
fo: X — Z, there is a homotopy;: X — Z (¢ € [0, 1]) which is fixed on
X such that the sectiofi; is holomorphic in an open set containit,.

Our proof of Proposition 1.3 in Sect. 6 applies also in the case when
X is a Stein subspace of a complex spacepossibly with singularities.
The extension problem for maps X — Y can be reduced to that of
sections of the trivial submersiai = X x Y — X, and hence Propo-
sition 1.3 implies the existence of local holomorphic extensions in Theo-
rem 1.1. Proposition 1.3 remains valid for families of holomorphic sections
depending continuously on a parameter in a compact Hausdorff gpace
(compare Definition 3 below).

We now consider the global extension problem for sections of submer-
sions. Ifp: E — Z is a holomorphic vector bundle ande Z, we write
E, =p~!(z) C E and denote by, € E, the zero element of,.

Definition 2. (Gromov [Gro], Sect.1.1.Bleth: Z — X be a holomor-
phic submersion an C X an open subset. Spray on Z|y = h~1(U)
associated ta: (a fiber-dominating spray in Gromov’s terminology) is a
triple (E,p, s), wherep: E — Z|y is a holomorphic vector bundle and
s: E'— Z|y is a holomorphic map satisfying for eaehe Z|¢s

(i) s(E.) C Zy) (equivalentlyh o p = h o s),

(i) s(0,) =z, and

(iii) the restriction of the derivativels: Ty, E — V'T,(Z) to the subspace
E, C Ty, E mapskE, surjectively ontd/T.(Z).

Thus a spray on a complex manifold in the sense of Definition 1
coincides with a fiber-spray associated to the trivial submersiori td
a point. We give examples of submersions with sprays after Corollary 1.5
below.

We will have to consider parametrized families of sections and we now
introduce the relevant notions; the reader may observe a close similarity
with the objects that were considered by Grauert [Gr2] and Cartan [Car].

Definition 3. Let P be nonempty compact Hausdorff spaces &yd- P
a closed subset (possibly empty) which is a strong deformation retraction
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of an open neighborhootl > P, in P. (In our constructions” will be a
polyhedron and?, C P a subpolyhedron.)

(a) AP-sectionofasubmersion Z — X isacontinuous magp: X x P —
Z suchthatf, = f(-,p): X — Zis a section of, for each fixegh € P.
A P-sectionf is holomorphic onX (resp. on a subseX, C X) if f,
is holomorphic onX (resp. onXy) for each fixedh € P.

(b) A homotopy oP-sectionsis & x [0, 1]-section, i.e., a continuous map
H:X xPx|0,1] - Zsuchthatd; = H(-,-,t): X x P — ZisaP-
section foreach € [0, 1]. The homotopy/ is holomorphic if the section
H,;=H(-,p,t): X — Zis holomorphic for eacfip,t) € P x [0,1].

(c) A (P, Py)-section ofh is a P-sectionf: X x P — Z such that the
sectionf, = f(-,p): X — Z is holomorphic onX for eachp € F.

The following is the main result in this paper.

1.4 Theorem. Leth: Z — X be a holomorphic submersion of a complex
manifold Z onto a Stein manifoldX. Let Xy C X be a closed complex
subvariety ofX, K cC X a compactH(X)-convex subset and C X

an open set containing. Assume that for each point € X\ K there

is an open neighborhoot, C X such thath: h~1(U,) — U, admits

a spray (Definition 2). Lef? be a compact Hausdorff space. For aiy
sectionfy: X x P — Z of h which is holomorphic onXy U U there are
an open setV’ C X, with K ¢ U’ C U, and a homotopy oP-sections
F: X x P x[0,1] — Z such that, writingf; = F'(-,-,t): X x P — Z for

t € [0, 1], we have

(i)  fois the given initialP-section,

(i) the P-sectionf; is holomorphic onX,

(iii) Foreacht € [0, 1] the P-sectionf; is holomorphic onXoUU’, fi|x, =
folx,,» and f; approximatesfy uniformly onk'.

Moreover, iffy is a (P, Py)-section, we can we can choose the homotBpy
as above such that it is fixed dy, i.e., the sectiory,, ; is independent of
t € [0,1] whenp € P.

If the initial P-section f is holomorphic in an open sét > X, U
K, then for any integek € Z, we can choosé’ as above which is in
addition holomorphic in a neighborhood &fy U K and such that for each
(p,t) € P x|0,1], the sectiory,, ; matchesf, o to orderk along Xj. (In this
case it suffices to assume that the submerasiadmits a spray in a small
neighborhood of each point € X\ (X, U K), but we do not need a spray
over points inXy.)

Itis possible to extend Theorem 1.4sibmersions with stratified sprays
over Stein spaceiSect. 7). A special case of Theorem 1.4 was proved in
[FP2] (Theorems 1.7 and 1.9), but the proof given there does not carry over
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to the present situation. Theorem 1.4 implies the following (see the proof of
Corollary 1.5 in [FP1]):

1.5 Corollary. Leth: Z — X be a holomorphic submersioX, C X

a closed complex subvariety arfd: Xo — Z a holomorphic section of

h over Xy. Denote byH (X, Z; Xy, fo) (resp.C(X, Z; Xy, fo) the set of
global holomorphic (resp. continuous) sectionshoZ — X whose re-
striction to X equals fy. (Both spaces are endowed with the compact-
open topology.) Then the inclusidd(X, Z; Xy, fo) — C(X, Z; Xo, fo)

is a weak homotopy equivalence, i.e., it induces an isomorphism of all
homotopy groups of the two spaces. The same is true for the inclusion
H(X,Z) — C(X,Z) N H(Xo, Z) of the space of holomorphic sections
into the space of continuous sections whose restrictiod&tare holomor-
phic.

Example 2.Fix an integery > 2 and set
I'={(7,2) € C% |z <1417}

Let h: V — X be a holomorphic fiber bundle with fib€2? and structure
groupAutCi. Let ) C V be a closed complex subvarietylifisatisfying:

(@ X, = YN h~ () is of complex dimension at mogt— 2 for each
x € X,and

(b) each pointz € X has an open neighborhodd c X and a fiber
preserving biholomorphic map: U’ = h=1(U) — U x C? such that
U NY)cUxT.

Then the submersiol: Z = V'\ XY — X admits a spray over each $étas

in (b) ([FP2], Lemma 7.1) and hence Theorem 1.4 applies. (For holomorphic
vector bundled” — X this was proved in [FP2], Theorem 1.7.) The total
spaceV of such a fiber bundle need not be Stein even wier- C and

q = 2 [Dem]. [

Problem. For which compact set& C C™ does the homotopy princi-
ple hold for maps of Stein manifolds in®®"\ K, in the sense that each
continuous mapfy: X — C"™\K is homotopic to a holomorphic map
f1: X - C"\K?

At this point the only known examples are the finite sets. Using ana-
Iytic continuation it is easily seen that, unlesis finite, there is no spray
onY = C"\K defined on a trivial bundle over” (but we don't know
whether a spray may exist on a more general holomorphic vector bundles
overY’). For instance, does the above h-principle hold whers a closed
ball in C™ ? If so, this would give many holomorphic majpsX — C"
with inf e x | f(x)| > 0, and such estimates are useful in the embedding-
interpolation problems as is clear from [Pre]. A good test case might be the
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holomorphic map
SL(2,C) = CA\{0}, (3 ?) S (@8)  (ad—py=1).

This map is homotopic to a smooth map into the complemet of {z €
C™:|z| < 1}, but it is not clear whether it is homotopic to a holomorphic
map toC"\ B. 'Y

We prove Propositions 1.2, 1.3 and Theorem 1.4 in Sect. 6 below. In the
proof of Theorem 1.4 we need the tools developed in Sects. 2-5. Theorem
1.1 is a special case of Theorem 1.4 and will not be treated separately
because we do not know any substantially simpler proof for this special
case. In Sect. 7 we discuss an extension of Theorem $ubtmersions with
stratified sprays over Stein spaces

The basic analytic constructions in the proof of Theorem 1.4 are similar
to those in [Gra2], [Car], [Gro], [HL2], [FP1] and [FP2]. We first show
how to patch holomorphic sectionsresp.b, defined on setgl C X resp.

B C X and extending a given holomorphic sectifin Xo — Z on a
subvarietyX, C X, into a single holomorphic section ovéron A U B

such thata| 4 approximates: anda = fp on (A U B) N Xy. This can be

done ifa andb are sufficiently close od N B and if the setsl and B satisfy
certain conditions (Sect.5). In the globalization scheme the basic analytic
constructions are needed for parametrized families of sections, and for this
reason we do everything by smooth Banach space operators. We globalize
the construction using the scheme outlined in [Gro] and developed in [FP2].
We also need certain special coverings of the base Stein manifold constructed
by Henkin and Leiterer in [HL2].

2. Oka-Weil theorems for submersions with sprays

In this section we prove a homotopy version of the Oka-Weil approximation
theorem for sections of submersions with sprays over Stein manifolds, with
interpolation on a complex subvarief, of X. This is similar to results

in [Grl], [Gro] and [FP1]. We first consider the case without parameters;
Theorem 2.1 coincides with Theorem 4.1 in [FP1] whén= 0.

2.1 Theorem. Leth: Z — X be a holomorphic submersion of a complex
manifold Z onto a Stein manifoldX, let X, € X be a closed complex
subvariety ofX, and let K be a compac#{(X)-convex subset. Assume
thatU O K is an open set ang;: U — Z (¢t € [0, 1]) is a homotopy of
holomorphic sections of over U such thatf, extends to a holomorphic
section overX and the homotopy is fixed ov&p, i.e., fi(z) = fo(x) forall

x € Xpandt € [0, 1]. Letd be a metric orZ compatible with the manifold
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topology. If the submersioh admits a spray (Definition 2) then for each
e > 0 there exists a continuous family of holomorphic sectifin — 7
(t € [0, 1]) such that

(@) fo = fo,
(b) filx, = folx, for eacht € [0, 1], and
(©) d(fi(z), fi(z)) < e for eachz € K andt € [0, 1].

Proof. Write X = fo(X)cCcZ and X, = fo(Xo) C X. The restriction of
the spray map: £ — Z to the holomorphic vector bundié = E|; — X

is a submersion from an open neighborhood of the zero sectighdnto
an open neighborhood of in Z. Hence there is & > 0 such that, after
shrinkingU slightly aroundkK, we can pull back the holomorphic sections
fe:U — Zfor 0 <t < t; to a continuous family of holomorphic sections
&: foU) — E such thaty is the zero section, and such tljatanishes on
fo(U N Xy) for eacht € [0, ¢4].

We may assume that is compact. By the Oka-Cartan theory there exist
finitely many holomorphic functiong, ..., g.: X — C which vanish on
X, and which generate the ideal &% at each point: € U. Since¢; o fo
vanishes onXy N U, we have

Zgj 2)&(fo(z)) (wel)

for some holomorphic sectior@":fo(U) —~ E depending continuously
ont € [0,¢]. We now apply the Oka-Weil theorem @ Theorem 5.6.2]
to approximate the famllﬁt, unlformly on f()( ), by a family of global
holomorphic section§: X — E, and we sef;(z) = Z] 195 (h(z ))ft( ).
The sections

fx) =s(&(fo(x)) €2 (z€X, te(0,t])

then satisfy Theorem 2.1 fare [0, 1].

Using f;, as the new initial global section and repeating the above con-
struction, we obtain & > t; and a family of approximating sections
fee X — Z fort € [t1,t2]. We can see as in Theorem 4.1 in [FP1] that
the proof can be completed in a finite number of steps, their number de-
pending only on the initial familyf;. [

We now state the analogous approximation result for families of sections.
If (P, Py) is a pair of compact Hausdorff spaces as in Definition 3 (Sect. 1),
we set

P=Px[0,1, Py=(Px{0})U(Px[0,1]). (2.1)
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For eachP-sectionf: X x P x [0,1] — Z (Definition 3) we writef, =
fl,,t): X xP—Zandf,;: = f(-,p,t): X — Z.

2.2 Theorem.Leth: Z — X, XoandK be asin Theorem 2.1, and gt V/
be open subsets &f with K ¢ U ¢ V cC X.Assumethaf:U x P — Z
is a holomorphicP-section (Definition 3) such that

(i) fp: extends to a global holomorphic section &nfor all (p,t) € Py
(2.1), and B
(i) fpi(z) = fpo(x)forallz € Xoand(p,t) € P.

Letd be a metric onZ compatible with the manifold topology. If the sub-
mersionh: Z — X admits a globally defined spray (Definition 2), then for
eache > 0 there exist a neighborhootl’” > K of K and a holomorphic
P x[0,1] = P x [0, 1]?>-sectiong: U’ x P x [0,1]?> — Z such that, writing
g*=g(-,,-,u)andgy, = g(-,p,t,u):U" — Z, we have

a) ¢ =f,

Eb; g' extends to a hoIomorphiE’-sectionf: 1% xf — Z overV,
(¢) g, isindependentaf € [0, 1] when(p,t) € I,

(d) g¥i(x) = fpo(x) forall z € Xgand(p,t,u) € P x [0,1]?, and
(€) d(gii(x), fro(x)) < eforall z € K and(p,t,u) € P x [0,1]%

Theorem 2.2 is proved by following the proof of Theorem 4.2 in [FP1]
with the obvious modifications, indicated in the proof of Theorem 2.1 above,
to insure that we keep everything fixed on the subvariégy We omit the
obvious details.

3. Splitting of holomorphic functions on Cartan pairs

The main results in this section are Lemmas 3.2 and 3.3 which are needed
in Sect. 4. We shall use the following notatidd(X ) denotes the Fchet
algebra of holomorphic functions on a complex manif&ldequipped with

the topology of uniform convergence on compact sets. Any closed complex
subvariety X, C X carries an induced structure of a reduced complex
space, and the spaé#&( X)) of all holomorphic functions orX|, is also a
Fréechet space (see [GUR, p.158, Theorem 5] @rJHCorollary 7.2.6). IfY’

is another complex manifold{ (X, Y") denotes the space of holomorphic
mapsX — Y.

If D is adomaininacomplex manifold and.Xj is a closed complex
subvariety ofX, we denote byH 5 (D) the Banach algebra of bounded
holomorphic functions inD which vanish onXo N D. If Xo N D = ()
we haveH§ (D) = H>(D). By H*(Xo N D) we denote the space of
bounded holomorphic functions on the subvari&yn D.
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3.1 Lemma. Let X be a Stein manifoldX, c X a closed complex sub-
variety andD C X a pseudoconvex domain iK. Then for any rela-
tively compact subdomaif2 cC D there exists a bounded linear extension
operator S: H*(Xy N D) — H*({2) such that(Sf)(x) = = for each
fe H®(XonD)andz € Xy N £2.

Remark. If D cC X is strongly pseudoconvex and X, has no singu-
larities onXy N bD and intersectsD transversely, Henkin ([Hen], [HL1])
constructed a bounded extension operatdd *° (X, N D) — H*(D) (no
shrinking of the domain!); for recent related results see [AAC] and the ref-
erences therein. No such extension exists in genepg) fias singularities
along Xy NbD.

Proof. We owe the idea of this proof to Bo Berndtsson (private communica-
tion). SinceD is pseudoconvex iX, the restriction operataR: H(D) —

H(Xo N D) is surjective [GUR, p.245, Theorem 18]. Since both spaces are
Fréechet (and hence complete), the open mapping theorem applies. Choose
a domain{?; C X such that? ccC (2 cC D. By the open mapping the-
orem the image byt of the set{ f € H(D):|[f||r=(,) < 1} contains a
neighborhood of the origin it (X, N D). This means that there are a rela-
tively compact subsét’ cC Xy N D and a constamt/ < oo such that any

h € H(Xo N D) extends to a functioh’ € H(D) satisfying the estimate

17 Lo (1) < M[A]| o0 (v)-

We may assume thd®; N X, C Y. The restriction?/|, is bounded and
hence belongs to the Bergman spate= L2(£2;) NH(£2;1), where thel.2-
norm is measured with respect to some smooth hermitian met#ic éhis a
Hilbert space containing the closed subspége= { f € H: f|x, = 0}. Let
H, be the orthogonal complement i, in H. Projectingh’ orthogonally
into H; we get a functiomh € H; which extendsh and which has the
minimal L(£2;) norm among allL-holomorphic extensions df to £2;.
Clearly suchh is unique andS: h — h gives a bounded linear operator
S: H®(Xo N D) — L2(£2,). Furthermore, restricting to the subdomain
2 cC (2 and applying the Cauchy estimates, we get a bounded linear
extension operatd$: H>(Xo N D) — H*>(12). [ )

The following lemma is crucial for the results in Sects. 4 and X ¢
2 = (), Lemma 3.2 coincides with Lemma 2.4 in [FP1].

3.2Lemma. Let X be a Stein manifoldX, be a closed complex subvariety
of X and A, B CC X relatively compact domains satisfying the following:

(i) 2= AU Bisasmooth strongly pseudoconvex domaiXin
(i) AA\BNB\A=0,and
(i) XoNnC C N2, whereC = AN B.
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Then there exist bounded linear operatark HY (C) — HY (A),
B:HY (C) — HS (B), such thate = A(c) — B(c) on C for eachc €
HS (C).

Proof. Condition (iii) implies thatX, N b2 N C = (). Hence we can enlarge
12 slightly aroundX, N b2 to get a strongly pseudoconvex domath> (2
in X satisfying®?’ NnoC = 2NbC andXyN 2 C Xy N 2. We can write
' =AUB whereA'nB'=C,A' > A, B’ > B,andthe setd’, B’ also
satisfy the separation property (ii). Choose a smooth fungtioti — [0, 1]
such thaty = 0 in an open neighborhood of’'\ B’ andx = 1 in an open
neighborhood of3’\ A’. For anyc € H*(C) the functionyc extends to a
bounded smooth function off which equals zero outside 6f, and likewise
(x — 1)c extends to a bounded smooth function Bhwhich equals zero
outside ofC. The difference of these two functions equalsn C, but the
functions are not holomorphic.

Since(?’ is arelatively compact strongly pseudoconvex domain in a Stein
manifold, there exists a linear solution operafofor the 9-equation inf’
which is bounded in the sup-norm, i.e., for any bound@edosed(0, 1)-
form g on £’ we haved(Tg) = g and||Tg||s < const||g||s ([HL1], p.
82). Sincesupp (Jx) N ' C C, the bounded0, 1)-form g = d(xc) =
d((x — 1)c) = cOx onC extends to a boundg@®, 1)-form on 2’ which is
zero outside o€”. Set

d=(xec=T()la, V=((x—1c—T(9))|p-

Itis immediate that' € H>®(A'), 1 € H®(B') and(a’ — V')|c = c. This
solves the problem iy N 2 = 0.

Suppose now that € HS (C). The functions:’ andd’ need not van-
ish on Xy. However, sincda’ — V)| x,nc = ¢|x,nc = 0, ' andd’ de-
fine a functionh € H*> (X, N ). There exists a pseudoconvex domain
D cc X containings?’ such that? ¢ D andXo N D = X, N (2. Let
S: H>*(XoN D) — H*(S2) be a bounded linear extension operator pro-
vided by Lemma 3.1. The pair of functions

a=(a'— Sh)|a € HY,(A), b= (V' — Sh)|p € HY, (B)

then satisfies Lemma 3.2, and every step in the construction was performed
by a bounded linear operator between suitable function spaces. &

Remark.Lemma 3.2 also holds in spaces of bounded holomorphic functions
on A, B, C which vanish to a fixed ordet € Z, along the subvariety
Xo; this could be used to give an alternative proof of the last statement in
Theorem 1.4 avoiding Lemma 3.3. Here is an outline of proof(let Ox
denote the sheaf of germs of holomorphic functionsXgrand let7, ¢ O

be the sub-sheaf of ideals consisting of germs that vanish to érdieng
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Xo. We then have a short exact sequence of coherent analytic sheaves on
X:
02T, —>0—=>K—=0,

where the quotient she&f = O/ J; is trivial on X\ X,,. Cartan’s Theorem

B implies that, over any Stein subsetC X, we can lift any holomorphic
section ofC to a holomorphic section aP. If ¢ € H*>(C) is a section

of Ji overC, we getc = o/ — b with o’ € H*(A') andb’ € H>(B').

The pair(a’, ') defines a holomorphic sectignof C over ' = A’ U B’
which we can lift to a sectioh of O over (2. Then the sections = o' — h,

b = V' — h solve the problem ofA, B), provided that: — h is given by a
bounded extension operator as in Lemma 3.1. This can be done exactly as
before since the space of sections of the stiggfand hence oK) over '

is a Féchet space in the topology of uniform convergence on compact sets
([GuR], Chapter 8). '

The nextlemma s analogous to Lemma 3.2, except that the sefX is
not relatively compact. Choose a hermitian metricoand denote byl the
associated volume element. For any dom@irt X and plurisubharmonic
functionp: 2 — R let

) = {1 € W) Wity = [ 172707 < 0

denote the Bergman space@nvith weighte=”. For any subdomaiby C {2
we define

Hpy>(2,D) = {f € H(2): (| fllpoo = [Ifl122(2) + 1 fl| () < +o00}.

Clearly this is a Banach space with the ndfn|, .

3.3 Lemma. Let X be a Stein manifold andl, B € X open sets such
that B is compact. LeC’ = A N B. Assume thaf2 = A U B is a smooth
strongly pseudoconvex domainXand A\ B N B\ A = (). For any open
subsetD CC (2 there are a smooth plurisubharmonic functipnf? — R
and bounded linear operators

A:H®(C) = Hy™(A,AND),  B:H*(C)— H™(B)
satisfyingc = A(c) — B(c) onC for eachc € H>(C).

Proof. Since we may enlarg® C {2 without affecting the statement of
Lemma 3.3, we may assume that= D’ N {2 for some domairD’ cC X
satisfyingB C D’. Choose domainBy,, D} cC X such thatD’ cc D{, C
C Dj and setD; = 2N D§ C 2 for j = 0,1. We may assume thdd,
is strongly pseudoconvex. L&t be a linear, sup-norm bounded solution
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operator for thé)-equation inD; ([HL1], p. 82). Choose a cut-off function
x: X — [0,1] as in the proof of Lemma 3.2 and take

a = (xc—T(cdx)) lanp, € H>(AN D),
V' = ((x —1)c—T(cdx)) | € H*(B).

We have(a’ — ¥')|c = ¢, butd’ is only defined onA N D;. To cor-
rect this we shall solve anothérequation as follows. Sinc€ is smooth
strongly pseudoconvex, we can enlarge it slightly witi)f to obtain a
smooth strongly pseudoconvex domd# C X satisfyingf2 U D C (2’
and 2\D; = '\ D;. Choose a smooth cut-off function X — [0, 1]
such thatr = 1 in a neighborhood oﬁg andsupprT CC Dj. Hence
supp (0x) N 2’ C D1\ Dy. Thed-closed(0,1)-form g = d(ra’) = a’07,
defined initially onD;\ Dy, extends to a bounded form @ which is zero
outsideD;\ Dy. By Hormander [Hr] there is a smooth plurisubharmonic
function p: 2’ — [0, +00) such that the equatiofu = g has a smooth
solutionw in £’ satisfying||ul|z2(o) < const||gl|o < const||c|[r(c)-

Moreover, if we takeu to be the (unique) solution with minimeﬂ%(!?’)
norm, the compositioer — ¢ — wu defines a bounded linear operator
H>(C) — L%(Q’). By a well known estimate on the interior regularity of

the 9-operator we have for any compact subket (2’
[[ul| Lo (r) < const(][ull Lz +1|0ul| Lo (1))
Applying this estimate on the compact subsBt C 2’ we see that
a:(TCL/*U)|AEH3’OO(A,AﬂD), b= (V' —u)|p € H(B).

Clearly (a — b)|c = ¢, and the maps — a, ¢ — bforc € H*(C) are
bounded linear operators into the respective Banach spaces. [

4. Attaching lemma: the model case

In this section we apply Lemmas 3.2 and 3.3 to construct holomorphic sec-
tions of certain model fibrations. An iteration scheme to solve this problem
was proposed in [Gro]; we shall apply the implicit function theorem in suit-
able function spaces.

Recall that a pair of open subdétC V' in a complex manifoldX is a
Runge pair or U is Runge inV/, if every holomorphic function i/ can
be approximated, uniformly on compactsilin by functions holomorphic
in V. We use the notation introduced in Sect. 3 above, and we identify the
subvarietyX, C X with Xy x {0} € X x C".

4.1 Proposition. Let X be a Stein manifoldY a closed complex subvariety
of X and A, B cC X relatively compact open subsets as in Lemma 3.2. Let
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B > BandC > C be open sets such thatc B andC is Runge inB. Let

U C C" be an open neighborhood of the origin ag: C x U — C" a
bounded holomorphic map such that for each C' we haveyy(z,0) = 0
andyy(x,-): U — C™is injective. Then there exist an open neighborhood
W of 1 in the Banach spacé{;}%(@ x U)™ and smooth Banach space
operatorsA: W — HY (A)", B W — HY (B)", with A’(¢p) = 0 and
B'(19) = 0, such that for each) € W the bounded holomorphic maps
a=AW):A - C"and = B'(¢): B — C" satisfya|anx, = 0,
BlBnx, = 0 and

Y(z,a(z)) =p(z) (reC=ANB). (4.1)

Moreover, ifi) € W satisfies)(x,0) = 0 for 2 € C, thenA’(¢) = 0 and
B'(¢) =

Remark. We can view a pair of maps satisfying (4.1) as a section of the
fibration overA U B C X obtained by identifying the poirtr, z) € C' x

U C A x C™ with the point(z, ¢ (z,2)) € C x C". For applications to
parametrized families it is convenient to have solutions given by operators,
although this could be avoided by a suitable analogue of Satz 8 in [Gr1].

Proof. We apply the proof of Proposition 5.2 in [FP1], replacing Lemma 2.4
in [FP1] by Lemma 3.2 above. We recall the main idea and refer to [FP1] for
the details. Assume firsty(z, 2) = 2 (v € C, z € U). LetA: HE, (C)" —

HS (A)" andB: HY (C)" — HY (B)" be the linear operators obtained
by applying Lemma 3.2 componentwise; herace Ac — Be for all ¢ €

HS (C)". Consider the operator

@ HZ (C x U™ x HE,(C)" — HE (O)",
DY, c)(z) = Y(z, Ac(x)) — Be(x) (x € C).

This is a smooth Banach space operator in a neighborhood of the point
(100,0), satisfying®(yg,c) = Ac — Be = c. By the implicit function
theorem the equatioh(v), ¢) = 0 has locally neafy, 0) a unique solution

¢ = C(¢) given by a smooth operat6r The operatorgl’ = AoC, B’ = BoC

then satisfy Proposition 4.1. The general case is reduced to this one by
approximatingy)y by a holomorphic map o x U (see [FP1)). [

Applying Lemma 3.3 instead of Lemma 3.2 in the proof of Proposi-
tion 4.1 we get the following result.

4.2 Proposition. Let X be a Stein manifold and let, B ¢ X andD C
{2 = AU B be open subsets as in Lemma 3.3. Beb BandC > C be
open sets such th&t C BandC is s Runge inB. LetU C C™ be an open
neighborhood of the origin andy: C' x U — C" a bounded holomorphic
map such that for each € C, ¢o(z,0) = 0 and¢y(z,-):U — C" is
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injective. Then there exist an open neighborhdBd= H>(C x U)™ of
and smooth Banach space operat@fs\V — Hy (A, AND)", B W —
H>(B)", with A’(¢) = 0 and B'(v)y) = 0, such that for each) € W
the holomorphic mapa = A'(¢): A — C" andf = B'(¢): B — C"
satisfy (4.1). Moreover, if) € W satisfies)(x,0) = 0 forall z € C, then
A'(¢) =0andB'(¢) = 0.

5. Attaching lemma for holomorphic sections of submersions

In this sections we use the results of Sect. 4 in order patch together holo-
morphic sections of a submersigh— X over a Cartan paifA, B) in X,
provided that the two sections are sufficiently close on the intersedtios.
Theorem 5.1 below is similar to results in Sect. 1.6 of [Gro] and to Theo-
rems 5.1 and 5.5 in [FP1]; the additional point here is the interpolation on a
subvarietyX, C X. Theorem 5.2 is new and depends on Proposition 4.2.

We recall from [FP2] the definition of a Cartan pair. (Note that our earlier
definition in [FP1] did not include the Runge property (iii).)

Definition 4. An ordered pair of compact setd, B) in a complex manifold
X is said to be &Cartan pair if

() each of the setl, B, andA U B has a basis of Stein neighborhoods,
(i) A\BN B\A =0 (separation condition), and
(i) the setC' = AN Bis Runge inB. (C' may be empty.)

If in addition X is a closed complex subvariety &f such thatX, N C C
Int(A U B), we shall say that the Cartan pajd, B) is Xo-regular.

We proved in [FP1] that for each Cartan pak, B) in X there existbases
of decreasing open neighborhoads > A, B; D B (j € Z,) such that
each paiA;, B;) satisfies the hypothesis (i) and (ii) of Lemma 3.2 &rjd
is Runge inB;. The same proof shows that(ifl, B) is X,-regular, we also
get property (iii) in Lemma 3.2 for eaqhl;, B;). Hence Proposition 4.1 can
be applied on a suitable bases of neighborhoods of&payegular Cartan
pair (A, B) in X. This allows us to glue sections of submersiong — X
over(A, B) whenZ admits a spray over a neighborhoodmf

The presence of parameters and the need to do everything by homotopies
complicates the statement, so let us first explain the result in the basic case.
Let (A, B) be anXy- regular Cartan pair iX. We are given holomorphlc
sectionsa: A — Z resp.b: B — Z over open ¢ setsl > A resp. B> B
such that: andb agree onX, N C,whereC = AN B. If Z admits a spray
over B and if b is sufficiently close taz on C’, we can move each of the
two sections a little (by holomorphic homotopies of sectionsiaesp.)
such that the final pair of sections coincides4m B and hence gives a
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holomorphic section oved U B. (We must shrink the neighborhoods4f

andB in the process.) Moreover, we can perform the procedure so that the

homotopy is fixed orX, where the initial sections already agree. The same

can be done foP-sections so that the homotopies are fixed for those values

of the parameter for which the two initial sections already coincide 6ver
Having said this, we state the result in precise terms.

5.1 Theorem. Leth: Z — X be a holomorphic submersion onto a Stein
manifold X, let X, be a closed complex subvarietyXf and let(A, B) be

a Xo-regular Cartan pair inX (Definition 4). Suppose tha‘iis an open
neighborhood of3 in X such that the restrictio | 5 = h~!(B) admits a
spray overB (Definition 2). Let(P, Py) be as in Definition 3. Leti O A

be an open neighborhood of in X anda: A x P — Z a holomorphic
P-section overA (Definition 3). Fix a metrial on Z compatible with the
manifold topology. Then for each > 0 there is ad > 0 satisfying the
following property. Ifb: B x P — Z is a holomorphicP-section overB
satisfying

dap(a) by(@)) <& (weC=AnB, peP),
ap(x) = by(x) (xelC,pePy)or(xeXognNC, peP),

then there exist smaller neighborhoods > A, B’ > B and homotopies
of holomorphicP-sectionsa’: A’ x P — Z,b": B' x P — Z (t € [0,1])
such that

(@) al, = a, andbl, = b, for (p,t) € Py = (P x {0}) U (P x [0, 1)),
(b) ay(z) = ay(x) andb(z) = b,(z) for z € Xg and(p,t) € P x [0, 1],
(€) ay(x) = by(z) forz € ¢’ = A'n B’ andp € P, and

(d) for each(p,t) € P x [0,1] we have

d(a(z), ap(z)) <€ (x € A'), d(b(z),bp(z)) <€ (x€C).

Remark. Property (c) implies thai' andb! together define a holomorphic
P-sectiona: (A’ UB’) x P — Z over A’ U B'. Forp € P, the sectiori,
agrees withz,, andb,, according to (a), and the homotopy is fixed &p
according to (b).

Proof. It suffices to apply the proof of Theorem 5.5 in [FP1], but replacing
Proposition 5.2 in [FP1] by Proposition 3.2 above. We recall the main idea
since we shall need this in the next theorem. Suppose for simplicitythat
is a singleton an@®, = (). We linearize the problem by first constructing for
some largen € Z, a pair of holomorphic maps

s1:VCAXC' = Z,  sp2:BxC'— Z, (5.1)
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whereV is an open set containin@x {0}, such that; ands, are fiber pre-
serving (i.e., the fiber over € Arespx € BismappedintdZ, = h™'(z)),
and they are submersions of open neighborhoods of the zero sections in
A x C" resp.B x C" onto open neighborhoods of the grapifsl) c Z
resp.b(B) C Z. Moreover we have; (z,0) = a(z) andss(z,0) = b(x).

The submersiors; is only locally defined and can be obtained from
local flows of vertical holomorphic vector fields dh(tangent to fibers of
h) neara(A). The second map, is globally defined and is obtained by
restricting the spray mag: £ — Z|5 to the vector bundIeE|b(§) over

the sectionbh(B) C Z. The total space?\b(g) IS not necessarily trivial;

however, we may choosB to be Stein, and hence there is a holomorphic
vector bundle epimorphisit BxC"— E’b(é) for any sufficiently large
n. The compositionsy = s o 6 satisfies our requirements.

Whena andb are sufficiently close to each other ovérwe can construct

a holomorphic transition map: C' x U — C" as in Proposition 4.1 such
that

s1(x, z) = so(x,¥(x, 2)) (zeC,zcUcCh). (5.2)

The closeness af andb overC implies thaty is close to a mapy, which
preserves zero sectiotyy(z,0) = O forz € C. If a: A’ — U c C" and
B: B' — C" are holomorphic maps on open sei'sc A resp.B’ C B as
in Proposition 4.1, satisfying(z, a(x)) = (z) forxz € ¢’ = A'N B’, we
set for eacht € [0, 1]

a'(x) = s1(z, ta(z)) (v € A'), bi(x) = sao(z,t8(z)) (v € B).
(5.3)
Thena® = a, t° = b, andal(x) = b'(x) for z € C’; hencea! andb?
together define a holomorphic secti@nA’ U B’ — Z. The homotopies’
andb’ are fixed onX,. The details can be found in [FP1]. '

We need a similar result obtained from Proposition 4.2. For simplicity
we state the result without parameters (wlieis a singleton), even though
the result holds in the same generality as Theorem 5.1 above.

5.2 Theorem. Leth: Z — X be a holomorphic submersion onto a Stein
manifold X and let X, be a closed complex subvariety¥f Furthermore
let A C X, B C X be closed subsets such thatis compact whiled
contains a neighborhood of,. Assume that

(i) AU Bis (the closure of) a strongly pseudoconvex domaifX jn
(i) A\Bn B\A =0, and
(iii) the setC = AN Bis Runge inB andC N Xy = 0.
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Assume thaZ admits a spray over an open sBtO> B.LetA > A
be an open set and: A — Z a holomorphic section. Fix a metri¢ on
Z compatible with the manifold topology. L&t CcC X be an arbitrary
relatively compact subset containidgy Choose an integet € Z. . Then
for eache > Othereisa > 0 satisfying the following property. i §~—>~Z
is a holomorphic section satisfyintja(x),b(z)) < d forz € C = AN B,
there exist open set$’, B’ C X satisfyingXoU (AND)C A’ C A BC
B’ C B, and homotopies of holomorphic sectiarisA’ — Z, bt: B’ — Z
(t € [0,1]) such that
(@) a’ = aandb® = b,

(b) al(z) =bl(x)forz e C' = A'N B/,
(c) for eacht € [0, 1], a' agrees witha = a° to order k along X, and
satisfies

d(a*(z),a(z)) < e (x € A'ND), db'(z),b(z)) <e (xel).

Proof. The proof is essentially the same as in Theorem 5.1 except for
the construction of the map, (5.1). As in Theorem 5.1 we construct a
preliminary fiber-preserving holomorphic submersignV’ — Z from an
openset’ c AxC",with Ax{0} c V,ontoaneighborhood af A)in Z.
By the Oka-Cartan theory there exist finitely many holomorphic functions
hj:X — C (1 <j <m)suchthatXy = {z € X:hj(z) =0,1<j <
m} and eacth; vanishes to ordek on Xj. Let g: A x C"™ — C" be the
mapg(z,v1,...,vm) = Y71 hj(z)v;, wherez € A andv; € C" for
eachj. Clearlyg(z, - ) is a linear eplmorphlsm for eaohout3|deX0 NA
and is degenerate far € Xy N A. Sets; = 5§10 (Id,g): AxchN 5z,
whereld indicates the |dent|ty od andN = nm. Thens; is a submersion
on a neighborhood of A\ X¢) x {0} in A x CN (and is degenerate over
XoN A) We construct a mag: BxCN 5z (5.1) as before.

SinceC = AN B does notintersect, we may assume that the closure
of C = AN B does not intersecX, either. Hence; is a submersion over
C which allows us to construct the transition map(5.2) as before. For
any solution(a, 3) of the equation (4.1) we get the corresponding pair of
sections

a'(z) = si(z,a(z)) = &1z, g(z, a(x)),  b'(z) = s2(2)

asin (5.3) which agree on a neighborhoodbfThe sectior' is defined on

a neighborhood3’ O B as before. On the other hand, the domaindfr)
may shrink because we cannot control the sup-normart all of A (since
A'is unbounded), and hence the sectidn) = (z, g(z, a(x))) € A x C"
may escape from the domain&f. However, things are not too bad. We can
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control the sup-norm ofy, and hence of, on A N D forany D cC X.

By construction the map — g(z, a(x)) = >, hj(z)a;(z) vanishes to
orderk on Xy; henceXj is in the domain of:' as well. It follows thaia'

is holomorphic on a set’ > X, U (AN D) and it agrees witly = a" to
orderk alongX,. The same applies to each section in the homotdgom

a = a° to a', and this insures the validity of property (c). All the rest is the
same as in Theorem 5.1; in particular we get uniform approximation in (d)
from the uniform estimates oA N D in Proposition 4.2. [

6. Proof of Propositions 1.2, 1.3 and Theorem 1.4

Proof of Proposition 1.2.We embedY” as a closed complex submanifold
of some Euclidean spad@”. By Docquier and Grauert ([GuR], p.257,
Theorem 8) there is a holomorphic retractiorV — Y of an open neigh-
borhoodUU ¢ C ontoY. We identify the holomorphic tangent bundle
X = TY with a subbundle oTCN]y and we identifyY” with the zero
section ofl'Y". Denote the points ii"Y” by (y, £) and let0, = (y,0). There

is an open neighborhood < TY of the zero section on which the map
so(y,&) = m(x 4+ &) € Y is defined and holomorphic. By modifying
outside a neighborhood of the zero section we can extend it to a smooth
mapso: TY — Y. Clearly the derivativelsy: Ty, (1Y) — T,Y restricts to
the identity map oY C Ty, (1Y) for eachy € Y. Hences, satisfies the
requirements for a spray, except that it is not globally holomorphi€Bn
Observe thak = TY is a Stein manifold andy = Y (the zero section) is
a closed complex submanifold &f. If s: TY — Y is a holomorphic map
which matches to the second order along the zero section (suekists
by the hypothesis in Proposition 1.2), theis a spray ort’. [

Proof of Proposition 1.3The imageZ, = fo(Xo) is a closed Stein subspace
of Z and hence it has an open Stein neighborhoad actcording to [Siu].
The same applies t&X, in X; hence we may assume that bothand

Z are Stein. For each € O(Z) we denote byl'g the restriction of the
differential dg to the vertical bundlé’T'(Z). By the Oka-Cartan’s theory
there are functiongy, ..., gs € O(Z) such thaty; = 0 on Z; for eachj
and{d'g;: 1 < j < d} span the vertical contangent space; (Z) at each
pointz € Z,. Hence the map

G:Z - X x C4, G(z) = (h(2),01(2),...,94(%))

embeds aneighborhooddf as a closed complex submanifdéldin an open
setV C X x C?, with G(Zy) = X, x {0}%. Denoting byp: X x C? — X
the projection ontoX, we havep o G = h.

We claim that, after shrinkin§” aroundi?’, we can find a holomorphic
retractionm: V' — W satisfyingp o m# = p. Such a retraction is constructed



62 F. Forstnef, J. Prezelj

as in the Docquier—Grauert theorem ([GuR], p.257, Theorem 8); here is
a brief outline. LetVT (W) — W be the vertical tangent bundle
(with respect tap: W — X); observe thal/'T' (W) is a subbundle of the
trivial bundleiw x C%. Choose a complementary holomorphic vector bundle
H — W such thatd @ VT'(W) = W x C“. Denote the points off by
(z,w,§), with (z,w) € W and¢ € Hy,,) C C?. Consider the map

H — X x C%, (z,w, &) = (z,w+ &) (the addition takes place in the fiber
{x} x C%). Asiin the proof of the Docquier—Grauert theorem we see that this
map takes a neighborhood of the zero sectioA ihiholomorphically onto

a neighborhood ofV in X x C¢; hence it conjugates the base projection
H — W to a desired retractiol — W.

To extend the initial holomorphic section we taker) = G~ (7 (z,0)),
where0 denotes the origin i€?. Whenz is sufficiently neatXy, the point
(z,0) € X x C? belongs toV (the domain ofr), and hencer(z,0) € W
belongs to the range @F. Thus f is well-defined and holomorphic in an
open selV D Xy in X, and we have (z) € Z, forx € U. Whenx € X,
we have(z,0) € W, hencer(z,0) = (z,0) = G(fo(x)) and therefore
f(@) = folx).

If fo extends continuously to a sectidh— Z, we can patch the section
f obtained above withfy in a small neighborhood ok as follows. As
above we have an embedding of a neighborhodtgyoh Z as a submanifold
W C X x C% we patch the two sections in the ambient spate C?
(where we have linear fibers) by a cut-off function, and finally we project the
result back td¥” by the holomorphic retraction. The new sectjghX — 7
equalsf inaneighborhood oKX, (so itis holomorphicthere), and it equdis
outside a larger neighborhood®f. The construction also gives a homotopy
of fo to f1 which is fixed onXy. This proves Proposition 1.3. The proof
carries over verbatim to the case whEris a complex space. [

Proof of Theorem 1.4We consider two cases: in the first case the initial
continuous sectiorfy: X — Z is holomorphic on the subvariety{y and
in a neighborhood of &(X)-convex set’ C X; in the second cas#,
is assumed to be holomorphic in an open neighborhoodyaf K. When
K = (), we can reduce the first case to the second one by Proposition 1.3;
however, this reduction does not really simplify the proof, its only apparent
advantage being that we need not assume the existence of a sfifayen
points in Xy which turns out to be very convenient in applications.

In the first case we can obtain the required homot@ipyX — Z satis-
fying Theorem 1.4 by following the proof of Theorem 1.5 in [FP2] (Sect. 6),
except that we replace the approximation and patching results used there by
the corresponding results with interpolation &g, given by Theorems 2.2
and 5.1 above. The heart of the proof is an induction scheme (Sect. 6 in
[FP2]) in which the main ingredient is Proposition 5.1 from [FP2].
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However, the second case (whfris holomorphic in a neighborhood of
XoUK) requires some modifications because we patch pairs of holomorphic
sections on so-called Cartan pdirs B) in X where the setl is unbounded
(it containsX U K). We do this by replacing Theorem 5.1 by Theorem 5.2
above. In this case the globalization process requires small modifications,
and we feel that it would be dishonest to leave this entirely to the reader. So
we shall stir a middle course by indicating the essential steps of the argument
in both cases and referring to [FP2] for the details.

First we must recall from Sect. 3 in [FP2] the notion of holomorphic
(and continuous) complexes and prisms associated to a given open covering
U = {U;} of the base manifoldl. Given such a covering, we denote by
K(U) its nerve (an infinite combinatorial simplicial complex) andA&yi/)
its geometric realization (an infinite polytope).

Let h: Z — X be a given submersion. Aolomorphic/C(i/)-complex
with values inZ is a family f. = { fi:t € K(U)} of holomorphic sections
of Z, depending continuously on the parameter K (i), where the do-
main of the sectiory; € f, is determined as follows: If belongs to the
k-dimensional simplex i< (&) which is determined by + 1 open sets
Uj,,Uj,, ..., U;, € U, then f; is a holomorphic section of over the set
N¥_,U;,. We also have natural restriction conditions for sections in the fam-
ily f. on boundaries of simplices i (/) (see [FP2]). Thus the vertices of
K (U) correspond to holomorphic sections on the $éts= U/, the edges
correspond to one-parameter homotopies of sections defined on the inter-
sectionsU; N Uj, etc. A global sectiory: X — Z may be considered as
a ‘constant complex’, meaning that any section in the associated complex
f« is the restriction off to the appropriate open set Xi. A holomorphic
k-prismis a homotopy of holomorphic complexgs, depending on a pa-
rameters € [0, 1]*. Similarly one defines continuous complexes and prisms
with values inZ as collections of continuous sections. We also work with
coverings4 = {A;} of X consisting of compact sets;&.A)-complex is
represented byC(l{)-complexes for open coverings = {U;} of X with
U; D A; for eachi, and we identify two complexes whose sections agree
near the corresponding sets4h For details we refer to Sect. 3 in [FP2].

Assume for simplicity thaP is a singleton; the proof in the general case
follows the same pattern. Consider first the case when the restrition
is holomorphic onX, and fj is holomorphic over a neighborhodd > K
and of a compack (X )-convex subsek’ C X. To harmonize the notation
with [FP2] we write fy = a. Our goal is to move by a homotopy which is
fixed on X, to a holomorphic sectiofi: X — Z.

By Theorem 4.6 in [FP2] (which follows from the results in Sect. 2 of
[HL2]) there exists a sequencé = (Ayp, A, Ao, ...) of compactH (X )-
convex subsets iX, satisfying
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() K CAyCcUandX =Uj2,A4;,

(i) foreachn € Z, the pair of set$ A", A1), whereA™ = Ay U A1 U
---UA,, isaXy-regular Cartan pair in the sense of Definition 4 above,
and

(i) the submersiorh: Z — X admits a spray over an open neighborhood
of A; for eachj > 1 (but we don't need a spray ovelp).

As in [FP2] we call any finite sequence satisfying (ii) and (iiilCartan
string, and the entire collectionl is aCartan coveringof X. The order of
sets in a Cartan string is important becaugen A, ., must be Runge in
An+1. In [FP2] there was no subvariety, but the construction in [HL2]
shows that we can easily satisfy th&-regularity condition in (ii) by a
suitable choice of the set,, at each step.

The setsA; for j > 1 may be chosen arbitrarily small, subordinate
to any open covering oX. By Proposition 4.7 in [FP2] we can deform
the initial sectiorna (which we now consider as a constadt.A)-complex
a.,0) by a homotopy of continuous (A)-complexes. s (s € [0, 1]) into a
holomorphickC(A)-complexa. ;. The only additional requirement here is
that all sections belonging to any of the complexes (s € [0,1]) must
agree with the initial sectiom on the intersection of their domains with the
subvarietyXy. This is easily satisfied by first choosing local holomorphic
extensions ofi| x,; the homotopies between them are obtained by taking
their convex linear combinations with respect to a local linear structure on
the fibers of7Z (see [FP2]), and hence all sections will agree wittn X.

Applying Proposition 5.1 in [FP2] to the holomorphic complex;
we inductively construct a sequence of holomorpi{cd)-complexest. ,,

(n = 1,2,3,...) which converges as — oo to a holomorphic section

a0 = f: X — Z.Thebasictools thatwe use in Proposition 5.1 from [FP2]

in the present case are Theorems 2.2 and 5.1; these replace Theorems 4.2
and 5.5 from [FP1] that had been used in [FP2]. Here we perform all steps
such that all sections and homotopies are fixedkign

The construction in Proposition 5.1 [FP2] is such that the complex
obtained after the first steps is already constant over the4et= U’'_jA;,

i.e., it determines a holomorphic section in a neighborhoodgfand the
convergence of these sectiongfts uniform on compacts iX asn — cc.

The modification process also gives at each step a homotopy (a 1-prism)
between the two adjacent complexas, anda, ,+1. This gives in the end

a 1-prism connecting the initial sectian= a. o and the limit sectiory.

Finally, applying the version of Proposition 5.1 in [FP2] for continuous
prisms, we can homotopically deform the above 1-prism fadim f (keep-
ings the end sections and f fixed) to another 1-prism which consists of
sectionsover X, thereby obtaining a homotopy of sections connecting
to f and satisfying Theorem 1.4. Complete details of this argument can be
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found in Sect. 5 and 6 of [FP2]. The same proof applieB+sections. This
proves the first part of Theorem 1.4.

Assume now that the initial sectiaon = fy: X — Z is holomorphic
in an open set/y; O Xy U K. Our goal is to construct a holomorphic
sectionf: X — Z which matches: to a prescribed order along X, and
is obtained from: by a homotopyf;: X — Z which is holomorphic near
Xp and matcheg to orderk along X,. We have two possibilities: either
we replace Lemma 3.2 with its analogue for functions that vanish to order
k along X, (see the remark following the proof of Lemma 3.2), or we
apply Theorem 5.2 in place of Theorem 5.1 (and we don't do any gluing
along Xj). The first approach works exactly as before. We now elaborate
the second approach which has the advantage that no spray is needed on
Z over neighborhoods of points € X,. The main step is the following
proposition which is similar to Proposition 8.2 in [FP2].

6.1 Proposition. Assume that the submersianZ — X admits a spray
over an open neighborhood of each paing X\ (XoUK). Letfy: X — Z
be a continuous section which is holomorphic in an ope/sedb X, U K.
For each compactH (X )-convex subsel C X containingk there are an
open sel/ D X, U K and a homotopy of continuous sectiofissX — Z
(t € [0, 1]), with fy being the given section, such that for each [0, 1], f;
is holomorphic inU7}, it agrees withf, to order k at Xy, f; approximates
fo uniformly onK, and the sectiorf; is holomorphic in an open séty, >
XoU L.

Granted Proposition 6.1, we complete the proof of Theorem 1.4 by ex-
haustingX by a sequence of compagt,( X )-convex subset& = Ly C
L, C Ly C ... and applying Proposition 6.1 inductively. [

Proof of Proposition 6.1Let (Ao, A1, ..., A,) be a Cartan string iiX' for
the pair of setd( C L, provided by Lemma 8.4 in [FP2], satisfying

() KU(XonL)c Ay cC Uyp;

(i) for j =1,2,...,nwe haved; N (XoUK) = @ andA4; C Uy for
somek = k(j) > 1;

(III) L= UOgjgnAj-

By (ii) we have A; N X, = () for all j > 1 and hence this string is
Xo-regular. We now inductively apply Proposition 5.1 in [FP2], making
certain to satisfy the interpolation condition aloxg. In the process we
must patch holomorphic sections on Cartan pait§ A, 1), where4’ =
AgU Ay U ... U A, as well as on some other Cartan pairs which do not
intersectX,. While no change in the procedure is needed for the second
case, the first case must be modified in such a way that the resulting sections
will be holomorphic in a neighborhood &f; and will interpolate the initial
section. Setd; = Ay U Xy and A" = (4, A1,...,A4,). For eachj the
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setA’ = Uj_,A; is H(X)-convex, and hence the same is true(faf)’ =
XoUA = AjU A U...UA;. Thus A’ satisfies all properties of an
Xo-regular Cartan string, except that the initial gigtis unbounded.

By Proposition 4.7 in [FP2] we can associatefgahe initial holomor-
phic I(A")-complexf; o such that the section associated4pequals the
restriction off; to a suitable open neighborhooddif in X. We now modify
this complexf. o by inductively applying Proposition 5.1 in [FP2], except
that we perform the gluing of sections on Cartan p&ird’)’, 4;.1) by
appealing to Theorem 5.2 instead of Theorem 5.1. The neighborhotid of
on which the new section (the result of the gluing) is defined may shrink at
each step without any detrimental consequences. Afsteps we obtain a
holomorphic sectiorf; in an open seil) > XU L which can be connected
to fo by a holomorphic homotopy;: W) — Z (t € [0,1]).

It remains to extendl; to X by modifying it outside a smaller neighbor-
hood ofXoU L. Thisis done as usual by takirfg, ,) () (» € X, t € [0,1]),
whereyx: X — [0, 1] is a smooth cut-off function which vanishes outside
W{ and equals one in a smaller openB&t > X, U L. This completes the
proof. [ )

7. Submersions with stratified sprays

We can extend Theorem 1.4 to submersions with stratified sprays over Stein
spaces (compare with Sect. 3.1 in Gromov [Gro]), a situation which arises
naturally in global analytic geometry. An important special case was con-
sidered in 1966 by Forster and Ramspott [FR].

Let X andZ be complex spaces, possibly with singularities. A holomor-
phic maph: Z — X is said to be a submersion (of co-rakikif it is locally
near each pointy € Z equivalent (by a fiber preserving biholomorphic
map) to a projectiom: U x V. — U, whereU C X is an open set itk
containingzy = h(z) andV is an open set in som@?.

Assume now that the basé of a submersion: Z — X is a Stein space
which is stratified by a descending chain of closed complex subspaees
Xm D Xim—1 D - D X3 D Xj such that each stratuiy, = X\ Xx_1
(1 < k < m)isregular and the restricted submersiotZ |y, — Y admits
a spray over a small neighborhood of any paint Y;, (Definition 2 in
Sect. 1). Then the following holds:

Any continuous sectiofy: X — Z such thatfy| x, is holomorphic can be
deformed to a holomorphic sectigin: X — Z by a homotopy;: X — Z
(t € ]0,1]) that is fixed onX.

A similar result holds forP-sections whose restriction t&; is holo-
morphic (see Definition 3 and Theorem 1.4).
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One can prove this by induction over the straigas follows. Suppose
that for somek > 1 we have already constructed a continuous section
fr—1: X — Z that is holomorphic oveX,_; and satisfie§,_1 = fy on
Xo. We first apply Proposition 1.3 (which holds also for complex spaces)
to make f;,_1 holomorphic in an open neighborhood &f,_; in X and
continuous elsewhere. We then apply Theorem 1.4, WithX|) replaced
by the pain X}, Xj_1), to deformf;_; through a homotopy to a continuous
sectionfy: X — Z that is holomorphic oveX;, and matcheg, on Xj. In
finitely many steps we obtain a holomorphic section aVer

The constructiory;, requires a version of Theorem 1.4 in whighis a
Stein space whose singular locus is contained in the subvéfigishere the
initial section is already holomorphic. Such a result can be proved by small
changes in the proof of Proposition 4.2 and Theorem 5.2 as follows. Each
Stein spaceX of dimensionn admits a holomorphic mag X — C27+!
which is a homeomorphism df onto a closed Stein subspake= g9(X) C
C?"*1 andis aninjective immersion on the regular patXdiGuR]. Observe
that the attaching of pairs of holomorphic sections (Proposition 4.2 and
Theorem 5.2) needs to be carried out only on Cartan pdir®3) in X for
which the set”’ = AN B is contained in the regular part &f. Sinceg is
regular and injective there, we may transfer the data for the patching problem
(the transition mapp in Proposition 4.2 and Theorem 5.2) to a suitably
chosen open neighborhood @fC) in C?"*!. The solution obtained on a
Cartan pairirC?"*! isthen pulled back t& by ¢. The globalization scheme
in Sect. 6 goes through without changes. We leave out further details.

Remark. It seems that the first examples of ‘submersion with stratified
sprays’ satisfying the h-principle were tBdromislindelof Forster and
Ramspott [FR]. These are submersidghs— X, whereZ is an open sub-
setinX x M(s,r) (M(r,s) =the set of complex x r matrices) and the
restrictionsZ|y, — Y}, to certain stratd, = X\ X;_; are holomorphic
fiber bundles with complex Grassman manifolds as fibers. The correspond-
ing h-principle, proved in [FR], had many interesting applications, e.g. to
obtain the minimal number of global generators of a given coherent analytic
sheaf overX.
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