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1. Introduction and results

In this paper we treat the classical problem of extending holomorphic map-
pings and sections from closed complex subvarieties of a complex manifold.
Our main results (Theorems 1.1 and 1.4) extend those of Grauert [Gr2] and
Cartan [Car]; results of this type are commonly referred to as the ‘Oka-
Grauert principle’ on Stein manifolds. Our methods are similar to those
developed in the papers of Gromov [Gro], Henkin and Leiterer [HL2] and
the authors [FP1], [FP2]. The main addition here is the interpolation of a
given holomorphic section on a complex subvariety of a Stein manifold. Our
globalization scheme follows very closely the one developed in [FP2].

To state our first result we recall the notion of a (dominating) spray
introduced by M. Gromov ([Gro], Sect. 0.5). Given a holomorphic vector
bundlep:E → Y over a complex manifoldY , we denote by0y ∈ Ey =
p−1(y) the zero element in the fiberEy and we observe thatEy is aC-linear
subspace of the tangent spaceT0yE.

Definition 1. A spray on a complex manifoldY is a holomorphic vector
bundlep:E → Y , together with a holomorphic maps:E → Y , such that
for eachy ∈ Y , s(0y) = y and the derivativeds:T0yE → TyY mapsEy

surjectively ontoTyY .

1.1 Theorem. LetX be a Stein manifold andY a complex manifold which
admits a spray. Then for every closed complex subspaceX0 ⊂ X and every
continuous mapf0:X → Y whose restriction toX0 is holomorphic on
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X0 there exists a holomorphic mapf1:X → Y such thatf1|X0 = f0|X0 .
Moreover,f1 can be obtained fromf0 by a homotopyft:X → Y (t ∈ [0, 1])
which is fixed onX0.

For maps of Stein manifolds into complex Lie groups or complex ho-
mogeneous spaces this was proved by Grauert ([Gra2], [Gra3]) and Cartan
([Car], Th́eor̀eme 1 bis). The validity of Theorem 1.1 (and of Theorem 1.4
below) was asserted by Gromov ([Gro], Sect. 2.9.C, p. 877), but very few
details were provided there. The corresponding results withX0 = ∅ can
be found in [Gro], and complete proofs are given in [FP1] and [FP2]. (For
the general theory of Stein manifolds and Stein spaces we refer to [GuR] or
[GRe].)

The best source of examples of complex manifolds with sprays is the
following. Let V1, . . . , Vq be C-complete holomorphic vector fields on a
complex manifoldY which span the tangent spaceTyY at each point
y ∈ Y . Denote byθjt the flow of Vj . Then the maps:Y × Cq → Y ,
s(y, t1, . . . , tq) = θ1

t1 ◦ · · · ◦ θqtq(y) for y ∈ Y and (t1, . . . , tq) ∈ Cq,
is a spray onY (see [Gro] and [FP1]). Such sprays exist on complex Lie
groups and homogeneous spaces (take left invariant holomorphic vector
fields spanning the Lie algebra), and on spacesY = Cn\Σ whereΣ is an
affine algebraic subvariety of codimension at least two (see [FP2]).

Theorem 1.1 reduces the holomorphic extension problem to a topological
one. If the initial mapf0 is holomorphic in an open neighborhood ofX0
in X, the homotopy in Theorem 1.1 can be chosen such that all sections
ft are holomorphic in a neighborhood ofX0 (independent oft) and they
agree withf0 to a prescribed finite order alongX0 (see Theorem 1.4). A
local holomorphic extension off0 exists without any condition onX and
Y provided that the subspaceX0 is Stein (Proposition 1.3). Theorem 1.1
is a special case of Theorem 1.4 below which gives extension results for
sections of holomorphic submersions onto Stein manifolds.

We have already pointed out that Theorem 1.1 applies to maps of Stein
manifolds intoCn\Σ whereΣ is an affine algebraic subvariety of codi-
mension at least two. This does not hold for general analytic subvarieties,
independently of their codimension.

Example 1.For eachn ≥ 1 there exists a discrete setΣ ⊂ Cn such that
Theorem 1.1 fails for maps of Stein manifolds intoY = Cn\Σ. (Note
however that Theorem 1.1 does hold whenΣ is a discrete set inCn, n ≥ 2,
which is tame in the sense of Rosay and Rudin [RRu], since the complement
of such a set admits a spray.)

We obtain such examples as in the proof of Theorem 1.6 (b) in [FP2].
Let n = 2 for simplicity. By [RRu] there is a discrete setΣ ⊂ C2 such
that the spaceY = C2\Σ is volume hyperbolic, in the sense that any
entire holomorphic mapg:Cn → Y has complex rank at most one at each
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point. The same is then true for holomorphic mapsf :X → Y from any
Stein manifoldX whose universal cover is a complex Euclidean space. We
showed in [FP2] that consequently any such map is homotopic to a constant
mapX → point.

The setX = (C∗)2 = C2\{zw = 0} is a Stein manifold which is
covered byC2. Choose a complex lineΛ ⊂ C2 that intersects the set
{zw = 0} ⊂ C2 in precisely two points, sayp = (1, 0) andq = (0, 1),
and takeX0 = Λ ∩ (C∗)2 = Λ\{p, q}; this twice punctured complex line
is a closed complex submanifold ofX. We may choose the discrete set
Σ ⊂ C2 as above such thatΣ ∩ Λ = {p, q}. Let f0:X0 ↪→ Y = C2\Σ
be the inclusion map. By the choice ofΣ there is an open tubeU ⊂ C2

aroundΛ such thatU ∩Σ = {p, q}. Clearly we can extendf0 to a smooth
map f̃ :X → U\{p, q} ⊂ Y . However,f0 has no holomorphic extension
f :X → Y which is seen as follows. Any such extension would have rank
at most one by the choice ofΣ. Sincef0|X0 already has rank one, it would
follow that f(X) = f0(X0) = X0. ButX0 is a twice punctured complex
line and thus a hyperbolic space whileX is covered byC2; hencef (and
thereforef0) would be constant, a contradiction. ♠

When the manifoldY is Stein, the condition in Theorem 1.1 is almost
necessary:

1.2 Proposition. (Gromov [Gro], 3.2.A.)LetY be aSteinmanifold. Assume
that for anySteinmanifoldX, any closed complex submanifoldX0 ⊂ X and
any continuous mapf0:X → Y which is holomorphic in a neighborhood
ofX0 there exists a holomorphic mapf :X → Y which agrees withf0 to
the second order alongX0. ThenY admits a spray.

Our proof in Sect. 6 is slightly different from Gromov’s proof.
We now turn our attention to the extension problem for sections of holo-

morphic submersions. Leth:Z → X be a holomorphic submersion of a
complex manifoldZ onto a complex manifoldX. This means that that for
each pointz ∈ Z the derivativedzh mapsTzZ surjectively ontoTxX,
x = h(z). LetZx = h−1(x) for x ∈ X. We denote byV T (Z) the kernel of
dh and call it thevertical tangent bundle(with respect toh). ClearlyV T (Z)
is holomorphic subbundle ofTZ whose fiber atz ∈ Z equals

V Tz(Z) = {v ∈ TzZ: dzh(v) = 0} = TzZh(z).

A submersionh:Z → X is locally trivial if each pointx ∈ X has an
open neighborhoodU ⊂ X such thath−1(U) is equivalent to a product
U × Y by a fiber preserving biholomorphic mapΦ:h−1(U) → U × Y ; in
such case the submersion is aholomorphic fiber bundleover each connected
component ofX.

A sectionof h:Z → X over a subsetU ⊂ X is a continuous map
f :U → Z such thath(f(x)) = x for all x ∈ U . If U is an open subset of
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X andX0 is an analytic subset ofX, we say that a sectionf is holomorphic
onX0 ∪ U if f |U is holomorphic inU andf |X0 is holomorphic onX0 (in
the induced complex structure onX0).

We first give a local extension theorem for sections of submersions.

1.3 Proposition. Leth:Z → X be a holomorphic submersion of a complex
manifoldZ onto a complexmanifoldX. Givena closedStein subspaceX0 of
X (possibly with singularities) and a holomorphic sectionf0:X0 → Z|X0

ofhoverX0, thereareanopensetU ⊂ X containingX0 andaholomorphic
sectionf :U → Z|U with f |X0 = f0. If f0 extends to a continuous section
f0:X → Z, there is a homotopyft:X → Z (t ∈ [0, 1]) which is fixed on
X0 such that the sectionf1 is holomorphic in an open set containingX0.

Our proof of Proposition 1.3 in Sect. 6 applies also in the case when
X0 is a Stein subspace of a complex spaceX, possibly with singularities.
The extension problem for mapsf :X0 → Y can be reduced to that of
sections of the trivial submersionZ = X × Y → X, and hence Propo-
sition 1.3 implies the existence of local holomorphic extensions in Theo-
rem 1.1. Proposition 1.3 remains valid for families of holomorphic sections
depending continuously on a parameter in a compact Hausdorff spaceP
(compare Definition 3 below).

We now consider the global extension problem for sections of submer-
sions. Ifp:E → Z is a holomorphic vector bundle andz ∈ Z, we write
Ez = p−1(z) ⊂ E and denote by0z ∈ Ez the zero element ofEz.

Definition 2. (Gromov [Gro], Sect. 1.1.B.)Let h:Z → X be a holomor-
phic submersion andU ⊂ X an open subset. Aspray onZ|U = h−1(U)
associated toh (a fiber-dominating spray in Gromov’s terminology) is a
triple (E, p, s), wherep:E → Z|U is a holomorphic vector bundle and
s:E → Z|U is a holomorphic map satisfying for eachz ∈ Z|U
(i) s(Ez) ⊂ Zh(z) (equivalently,h ◦ p = h ◦ s),
(ii) s(0z) = z, and
(iii) the restriction of the derivativeds:T0zE → V Tz(Z) to the subspace

Ez ⊂ T0zE mapsEz surjectively ontoV Tz(Z).

Thus a spray on a complex manifoldY in the sense of Definition 1
coincides with a fiber-spray associated to the trivial submersion ofY to
a point. We give examples of submersions with sprays after Corollary 1.5
below.

We will have to consider parametrized families of sections and we now
introduce the relevant notions; the reader may observe a close similarity
with the objects that were considered by Grauert [Gr2] and Cartan [Car].

Definition 3. LetP be nonempty compact Hausdorff spaces andP0 ⊂ P
a closed subset (possibly empty) which is a strong deformation retraction
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of an open neighborhoodU ⊃ P0 in P . (In our constructionsP will be a
polyhedron andP0 ⊂ P a subpolyhedron.)

(a) AP -sectionof asubmersionh:Z → X is a continuousmapf :X×P →
Z such thatfp = f(· , p):X → Z is a section ofh for each fixedp ∈ P .
A P -sectionf is holomorphic onX (resp. on a subsetX0 ⊂ X) if fp
is holomorphic onX (resp. onX0) for each fixedp ∈ P .

(b) A homotopy ofP -sections is aP × [0, 1]-section, i.e., a continuous map
H:X×P × [0, 1] → Z such thatHt = H(· , · , t):X×P → Z is aP -
section for eacht ∈ [0, 1]. ThehomotopyH is holomorphic if the section
Hp,t = H(· , p, t):X → Z is holomorphic for each(p, t) ∈ P × [0, 1].

(c) A (P, P0)-section ofh is a P -sectionf :X × P → Z such that the
sectionfp = f(· , p):X → Z is holomorphic onX for eachp ∈ P0.

The following is the main result in this paper.

1.4 Theorem. Leth:Z → X be a holomorphic submersion of a complex
manifoldZ onto a Stein manifoldX. LetX0 ⊂ X be a closed complex
subvariety ofX, K ⊂⊂ X a compactH(X)-convex subset andU ⊂ X
an open set containingK. Assume that for each pointx ∈ X\K there
is an open neighborhoodUx ⊂ X such thath:h−1(Ux) → Ux admits
a spray (Definition 2). LetP be a compact Hausdorff space. For anyP -
sectionf0:X × P → Z of h which is holomorphic onX0 ∪ U there are
an open setU ′ ⊂ X, withK ⊂ U ′ ⊂ U , and a homotopy ofP -sections
F :X × P × [0, 1] → Z such that, writingft = F (· , · , t):X × P → Z for
t ∈ [0, 1], we have

(i) f0 is the given initialP -section,
(ii) the P -sectionf1 is holomorphic onX,
(iii) For eacht ∈ [0, 1] theP -sectionft is holomorphic onX0∪U ′,ft|X0 =

f0|X0 , andft approximatesf0 uniformly onK.

Moreover, iff0 is a (P, P0)-section, we can we can choose the homotopyF
as above such that it is fixed onP0, i.e., the sectionfp,t is independent of
t ∈ [0, 1] whenp ∈ P0.
If the initial P -sectionf0 is holomorphic in an open setV ⊃ X0 ∪

K, then for any integerk ∈ Z+ we can chooseF as above which is in
addition holomorphic in a neighborhood ofX0 ∪K and such that for each
(p, t) ∈ P × [0, 1], the sectionfp,tmatchesfp,0 to orderk alongX0. (In this
case it suffices to assume that the submersionh admits a spray in a small
neighborhood of each pointx ∈ X\(X0 ∪K), but we do not need a spray
over points inX0.)

It is possible to extend Theorem 1.4 tosubmersionswith stratified sprays
over Stein spaces(Sect. 7). A special case of Theorem 1.4 was proved in
[FP2] (Theorems 1.7 and 1.9), but the proof given there does not carry over
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to the present situation. Theorem 1.4 implies the following (see the proof of
Corollary 1.5 in [FP1]):

1.5 Corollary. Let h:Z → X be a holomorphic submersion,X0 ⊂ X
a closed complex subvariety andf0:X0 → Z a holomorphic section of
h overX0. Denote byH(X,Z;X0, f0) (resp.C(X,Z;X0, f0) the set of
global holomorphic (resp. continuous) sections ofh:Z → X whose re-
striction toX0 equalsf0. (Both spaces are endowed with the compact-
open topology.) Then the inclusionH(X,Z;X0, f0) ↪→ C(X,Z;X0, f0)
is a weak homotopy equivalence, i.e., it induces an isomorphism of all
homotopy groups of the two spaces. The same is true for the inclusion
H(X,Z) ↪→ C(X,Z) ∩ H(X0, Z) of the space of holomorphic sections
into the space of continuous sections whose restrictions toX0 are holomor-
phic.

Example 2.Fix an integerq ≥ 2 and set

Γ = {(z′, zq) ∈ Cq: |zq| ≤ 1 + |z′|}.
Let h:V → X be a holomorphic fiber bundle with fiberCq and structure
groupAutCq. LetΣ ⊂ V be a closed complex subvariety inV satisfying:

(a) Σx = Σ ∩ h−1(x) is of complex dimension at mostq − 2 for each
x ∈ X, and

(b) each pointx ∈ X has an open neighborhoodU ⊂ X and a fiber
preserving biholomorphic mapΦ:U ′ = h−1(U) → U × Cq such that
Φ(U ′ ∩Σ) ⊂ U × Γ .

Then the submersionh:Z = V \Σ → X admits a spray over each setU as
in (b) ([FP2], Lemma 7.1) and hence Theorem 1.4 applies. (For holomorphic
vector bundlesV → X this was proved in [FP2], Theorem 1.7.) The total
spaceV of such a fiber bundle need not be Stein even whenX = C and
q = 2 [Dem]. ♠
Problem. For which compact setsK ⊂ Cn does the homotopy princi-
ple hold for maps of Stein manifolds intoCn\K, in the sense that each
continuous mapf0:X → Cn\K is homotopic to a holomorphic map
f1:X → Cn\K ?

At this point the only known examples are the finite sets. Using ana-
lytic continuation it is easily seen that, unlessK is finite, there is no spray
on Y = Cn\K defined on a trivial bundle overY (but we don’t know
whether a spray may exist on a more general holomorphic vector bundles
overY ). For instance, does the above h-principle hold whenK is a closed
ball in Cn ? If so, this would give many holomorphic mapsf :X → Cn

with infx∈X |f(x)| > 0, and such estimates are useful in the embedding-
interpolation problems as is clear from [Pre]. A good test case might be the
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holomorphic map

SL(2,C) → C2\{0},
(
α β
γ δ

)
→ (α, β) (αd− βγ = 1).

This map is homotopic to a smooth map into the complement ofB = {z ∈
Cn: |z| ≤ 1}, but it is not clear whether it is homotopic to a holomorphic
map toCn\B. ♠

We prove Propositions 1.2, 1.3 and Theorem 1.4 in Sect. 6 below. In the
proof of Theorem 1.4 we need the tools developed in Sects. 2–5. Theorem
1.1 is a special case of Theorem 1.4 and will not be treated separately
because we do not know any substantially simpler proof for this special
case. In Sect. 7 we discuss an extension of Theorem 1.4 tosubmersions with
stratified sprays over Stein spaces.

The basic analytic constructions in the proof of Theorem 1.4 are similar
to those in [Gra2], [Car], [Gro], [HL2], [FP1] and [FP2]. We first show
how to patch holomorphic sectionsa resp.b, defined on setsA ⊂ X resp.
B ⊂ X and extending a given holomorphic sectionf0:X0 → Z on a
subvarietyX0 ⊂ X, into a single holomorphic section overã onA ∪ B
such that̃a|A approximatesa and ã = f0 on (A ∪ B) ∩ X0. This can be
done ifa andb are sufficiently close onA∩B and if the setsA andB satisfy
certain conditions (Sect. 5). In the globalization scheme the basic analytic
constructions are needed for parametrized families of sections, and for this
reason we do everything by smooth Banach space operators. We globalize
the construction using the scheme outlined in [Gro] and developed in [FP2].
We also need certain special coverings of the base Stein manifold constructed
by Henkin and Leiterer in [HL2].

2. Oka-Weil theorems for submersions with sprays

In this section we prove a homotopy version of the Oka-Weil approximation
theorem for sections of submersions with sprays over Stein manifolds, with
interpolation on a complex subvarietyX0 of X. This is similar to results
in [Gr1], [Gro] and [FP1]. We first consider the case without parameters;
Theorem 2.1 coincides with Theorem 4.1 in [FP1] whenX0 = ∅.

2.1 Theorem. Leth:Z → X be a holomorphic submersion of a complex
manifoldZ onto a Stein manifoldX, let X0 ⊂ X be a closed complex
subvariety ofX, and letK be a compactH(X)-convex subset. Assume
thatU ⊃ K is an open set andft:U → Z (t ∈ [0, 1]) is a homotopy of
holomorphic sections ofh overU such thatf0 extends to a holomorphic
section overX and the homotopy is fixed overX0, i.e.,ft(x) = f0(x) for all
x ∈ X0 andt ∈ [0, 1]. Letd be a metric onZ compatible with the manifold
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topology. If the submersionh admits a spray (Definition 2) then for each
ε > 0 there exists a continuous family of holomorphic sectionsf̃t:X → Z
(t ∈ [0, 1]) such that

(a) f̃0 = f0,
(b) f̃t|X0 = f0|X0 for eacht ∈ [0, 1], and
(c) d(f̃t(x), ft(x)) < ε for eachx ∈ K andt ∈ [0, 1].

Proof. Write X̃ = f0(X) ⊂ Z andX̃0 = f0(X0) ⊂ X̃. The restriction of
the spray maps:E → Z to the holomorphic vector bundlẽE = E|

X̃
→ X̃

is a submersion from an open neighborhood of the zero section inẼ onto
an open neighborhood of̃X in Z. Hence there is at1 > 0 such that, after
shrinkingU slightly aroundK, we can pull back the holomorphic sections
ft:U → Z for 0 ≤ t ≤ t1 to a continuous family of holomorphic sections
ξt: f0(U) → Ẽ such thatξ0 is the zero section, and such thatξt vanishes on
f0(U ∩X0) for eacht ∈ [0, t1].

We may assume thatU is compact. By the Oka-Cartan theory there exist
finitely many holomorphic functionsg1, . . . , gk:X → C which vanish on
X0 and which generate the ideal ofX0 at each pointx ∈ U . Sinceξt ◦ f0
vanishes onX0 ∩ U , we have

ξt(f0(x)) =
k∑

j=1

gj(x) ξ
j
t (f0(x)) (x ∈ U)

for some holomorphic sectionsξjt : f0(U) → Ẽ depending continuously
on t ∈ [0, t1]. We now apply the Oka-Weil theorem [Hör, Theorem 5.6.2]
to approximate the familyξjt , uniformly onf0(K), by a family of global
holomorphic sections̃ξjt : X̃ → Ẽ, and we set̃ξt(z) =

∑k
j=1 gj(h(z))ξ̃

j
t (z).

The sections

f̃t(x) = s(ξ̃t(f0(x))) ∈ Z (x ∈ X, t ∈ [0, t1])

then satisfy Theorem 2.1 fort ∈ [0, t1].
Using f̃t1 as the new initial global section and repeating the above con-

struction, we obtain at2 > t1 and a family of approximating sections
f̃t:X → Z for t ∈ [t1, t2]. We can see as in Theorem 4.1 in [FP1] that
the proof can be completed in a finite number of steps, their number de-
pending only on the initial familyft. ♠

We now state the analogous approximation result for families of sections.
If (P, P0) is a pair of compact Hausdorff spaces as in Definition 3 (Sect. 1),
we set

P̃ = P × [0, 1], P̃0 = (P × {0}) ∪ (P0 × [0, 1]). (2.1)
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For eachP̃ -sectionf :X × P × [0, 1] → Z (Definition 3) we writeft =
f(· , · , t):X × P → Z andfp,t = f(· , p, t):X → Z.

2.2 Theorem.Leth:Z → X,X0 andK be as in Theorem 2.1, and letU, V
be open subsets ofX withK ⊂ U ⊂ V ⊂⊂ X. Assume thatf :U × P̃ → Z
is a holomorphicP̃ -section (Definition 3) such that

(i) fp,t extends to a global holomorphic section onX for all (p, t) ∈ P̃0
(2.1), and

(ii) fp,t(x) = fp,0(x) for all x ∈ X0 and(p, t) ∈ P̃ .

Let d be a metric onZ compatible with the manifold topology. If the sub-
mersionh:Z → X admits a globally defined spray (Definition 2), then for
eachε > 0 there exist a neighborhoodU ′ ⊃ K ofK and a holomorphic
P̃ × [0, 1] = P × [0, 1]2-sectiong:U ′ ×P × [0, 1]2 → Z such that, writing
gu = g(· , · , · , u) andgup,t = g(· , p, t, u):U ′ → Z, we have

(a) g0 = f ,
(b) g1 extends to a holomorphic̃P -sectionf̃ :V × P̃ → Z overV ,
(c) gup,t is independent ofu ∈ [0, 1] when(p, t) ∈ P̃0,
(d) gup,t(x) = fp,0(x) for all x ∈ X0 and(p, t, u) ∈ P × [0, 1]2, and
(e) d(gup.t(x), fp,0(x)) < ε for all x ∈ K and(p, t, u) ∈ P × [0, 1]2.

Theorem 2.2 is proved by following the proof of Theorem 4.2 in [FP1]
with the obvious modifications, indicated in the proof of Theorem 2.1 above,
to insure that we keep everything fixed on the subvarietyX0. We omit the
obvious details.

3. Splitting of holomorphic functions on Cartan pairs

The main results in this section are Lemmas 3.2 and 3.3 which are needed
in Sect. 4. We shall use the following notation.H(X) denotes the Fréchet
algebra of holomorphic functions on a complex manifoldX, equipped with
the topology of uniform convergence on compact sets. Any closed complex
subvarietyX0 ⊂ X carries an induced structure of a reduced complex
space, and the spaceH(X0) of all holomorphic functions onX0 is also a
Fréchet space (see [GuR, p.158, Theorem 5] or [Hör], Corollary 7.2.6). IfY
is another complex manifold,H(X,Y ) denotes the space of holomorphic
mapsX → Y .

If D is a domain in a complex manifoldX andX0 is a closed complex
subvariety ofX, we denote byH∞

X0
(D) the Banach algebra of bounded

holomorphic functions inD which vanish onX0 ∩ D. If X0 ∩ D = ∅
we haveH∞

X0
(D) = H∞(D). By H∞(X0 ∩ D) we denote the space of

bounded holomorphic functions on the subvarietyX0 ∩D.
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3.1 Lemma. LetX be a Stein manifold,X0 ⊂ X a closed complex sub-
variety andD ⊂ X a pseudoconvex domain inX. Then for any rela-
tively compact subdomainΩ ⊂⊂ D there exists a bounded linear extension
operatorS:H∞(X0 ∩ D) → H∞(Ω) such that(Sf)(x) = x for each
f ∈ H∞(X0 ∩D) andx ∈ X0 ∩Ω.

Remark. If D ⊂⊂ X is strongly pseudoconvex and ifX0 has no singu-
larities onX0 ∩ bD and intersectsbD transversely, Henkin ([Hen], [HL1])
constructed a bounded extension operatorS:H∞(X0 ∩D) → H∞(D) (no
shrinking of the domain!); for recent related results see [AAC] and the ref-
erences therein. No such extension exists in general ifX0 has singularities
alongX0 ∩ bD.

Proof.We owe the idea of this proof to Bo Berndtsson (private communica-
tion). SinceD is pseudoconvex inX, the restriction operatorR:H(D) →
H(X0 ∩D) is surjective [GuR, p.245, Theorem 18]. Since both spaces are
Fréchet (and hence complete), the open mapping theorem applies. Choose
a domainΩ1 ⊂ X such thatΩ ⊂⊂ Ω1 ⊂⊂ D. By the open mapping the-
orem the image byR of the set{f ∈ H(D): ||f ||L∞(Ω1) < 1} contains a
neighborhood of the origin inH(X0 ∩D). This means that there are a rela-
tively compact subsetY ⊂⊂ X0 ∩D and a constantM < ∞ such that any
h ∈ H(X0 ∩D) extends to a functionh′ ∈ H(D) satisfying the estimate

||h′||L∞(Ω1) ≤ M ||h||L∞(Y ).

We may assume thatΩ1 ∩ X0 ⊂ Y . The restrictionh′|Ω1 is bounded and
hence belongs to the Bergman spaceH = L2(Ω1) ∩ H(Ω1), where theL2-
norm is measured with respect to some smooth hermitian metric onX.H is a
Hilbert space containing the closed subspaceH0 = {f ∈ H: f |X0 = 0}. Let
H1 be the orthogonal complement toH0 in H. Projectingh′ orthogonally
into H1 we get a functioñh ∈ H1 which extendsh and which has the
minimal L2(Ω1) norm among allL2-holomorphic extensions ofh to Ω1.
Clearly suchh̃ is unique andS:h → h̃ gives a bounded linear operator
S:H∞(X0 ∩D) → L2(Ω1). Furthermore, restricting̃h to the subdomain
Ω ⊂⊂ Ω1 and applying the Cauchy estimates, we get a bounded linear
extension operatorS:H∞(X0 ∩D) → H∞(Ω). ♠

The following lemma is crucial for the results in Sects. 4 and 5. IfX0 ∩
Ω = ∅, Lemma 3.2 coincides with Lemma 2.4 in [FP1].

3.2 Lemma. LetX be a Stein manifold,X0 be a closed complex subvariety
ofX andA,B ⊂⊂ X relatively compact domains satisfying the following:

(i) Ω = A ∪B is a smooth strongly pseudoconvex domain inX,
(ii) A\B ∩B\A = ∅, and
(iii) X0 ∩ C ⊂ Ω, whereC = A ∩B.
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Then there exist bounded linear operatorsA:H∞
X0

(C) → H∞
X0

(A),
B:H∞

X0
(C) → H∞

X0
(B), such thatc = A(c) − B(c) on C for eachc ∈

H∞
X0

(C).

Proof. Condition (iii) implies thatX0 ∩ bΩ∩C = ∅. Hence we can enlarge
Ω slightly aroundX0 ∩ bΩ to get a strongly pseudoconvex domainΩ′ ⊃ Ω
in X satisfyingΩ′ ∩ bC = Ω ∩ bC andX0 ∩Ω ⊂ X0 ∩Ω′. We can write
Ω′ = A′∪B′ whereA′∩B′ = C,A′ ⊃ A,B′ ⊃ B, and the setsA′,B′ also
satisfy the separation property (ii). Choose a smooth functionχ:X → [0, 1]
such thatχ = 0 in an open neighborhood ofA′\B′ andχ = 1 in an open
neighborhood ofB′\A′. For anyc ∈ H∞(C) the functionχc extends to a
bounded smooth function onA′ which equals zero outside ofC, and likewise
(χ − 1)c extends to a bounded smooth function onB′ which equals zero
outside ofC. The difference of these two functions equalsc onC, but the
functions are not holomorphic.

SinceΩ′ is a relatively compact strongly pseudoconvex domain in a Stein
manifold, there exists a linear solution operatorT for the∂-equation inΩ′
which is bounded in the sup-norm, i.e., for any bounded∂-closed(0, 1)-
form g onΩ′ we have∂(Tg) = g and||Tg||∞ ≤ const||g||∞ ([HL1], p.
82). Sincesupp (∂χ) ∩ Ω′ ⊂ C, the bounded(0, 1)-form g = ∂(χc) =
∂((χ− 1)c) = c∂χ onC extends to a bounded(0, 1)-form onΩ′ which is
zero outside ofC. Set

a′ = (χc− T (g)) |A′ , b′ = ((χ− 1)c− T (g)) |B′ .

It is immediate thata′ ∈ H∞(A′), b′ ∈ H∞(B′) and(a′ − b′)|C = c. This
solves the problem ifX0 ∩Ω = ∅.

Suppose now thatc ∈ H∞
X0

(C). The functionsa′ andb′ need not van-
ish onX0. However, since(a′ − b′)|X0∩C = c|X0∩C = 0, a′ andb′ de-
fine a functionh ∈ H∞(X0 ∩ Ω′). There exists a pseudoconvex domain
D ⊂⊂ X containingΩ′ such thatΩ ⊂ D andX0 ∩ D = X0 ∩ Ω′. Let
S:H∞(X0 ∩ D) → H∞(Ω) be a bounded linear extension operator pro-
vided by Lemma 3.1. The pair of functions

a = (a′ − Sh)|A ∈ H∞
X0

(A), b = (b′ − Sh)|B ∈ H∞
X0

(B)

then satisfies Lemma 3.2, and every step in the construction was performed
by a bounded linear operator between suitable function spaces. ♠
Remark.Lemma 3.2 also holds in spaces of bounded holomorphic functions
on A,B,C which vanish to a fixed orderk ∈ Z+ along the subvariety
X0; this could be used to give an alternative proof of the last statement in
Theorem 1.4 avoiding Lemma 3.3. Here is an outline of proof. LetO = OX

denote the sheaf of germs of holomorphic functions onX, and letJk ⊂ O
be the sub-sheaf of ideals consisting of germs that vanish to orderk along
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X0. We then have a short exact sequence of coherent analytic sheaves on
X:

0 → Jk ↪→ O → K → 0,

where the quotient sheafK = O/Jk is trivial onX\X0. Cartan’s Theorem
B implies that, over any Stein subsetD ⊂ X, we can lift any holomorphic
section ofK to a holomorphic section ofO. If c ∈ H∞(C) is a section
of Jk overC, we getc = a′ − b′ with a′ ∈ H∞(A′) andb′ ∈ H∞(B′).
The pair(a′, b′) defines a holomorphic sectionh of K overΩ′ = A′ ∪ B′
which we can lift to a sectioñh of O overΩ′. Then the sectionsa = a′ − h̃,
b = b′ − h̃ solve the problem on(A,B), provided thath → h̃ is given by a
bounded extension operator as in Lemma 3.1. This can be done exactly as
before since the space of sections of the sheafJk (and hence ofK) overΩ′
is a Fŕechet space in the topology of uniform convergence on compact sets
([GuR], Chapter 8). ♠

The next lemma is analogous to Lemma 3.2, except that the setA ⊂ X is
not relatively compact. Choose a hermitian metric onX and denote bydl the
associated volume element. For any domainΩ ⊂ X and plurisubharmonic
functionρ:Ω → R let

H2
ρ (Ω) =

{
f ∈ H(Ω): ||f ||2L2

ρ(Ω) =
∫
Ω

|f |2e−ρdλ < ∞
}

denote the Bergman space onΩwith weighte−ρ. For any subdomainD ⊂ Ω
we define

H2,∞
ρ (Ω,D) = {f ∈ H(Ω): ||f ||ρ,∞ = ||f ||L2

ρ(Ω) + ||f ||L∞(D) < +∞}.

Clearly this is a Banach space with the norm||· ||ρ,∞.

3.3 Lemma. LetX be a Stein manifold andA,B ⊂ X open sets such
thatB is compact. LetC = A ∩ B. Assume thatΩ = A ∪ B is a smooth
strongly pseudoconvex domain inX andA\B ∩ B\A = ∅. For any open
subsetD ⊂⊂ Ω there are a smooth plurisubharmonic functionρ:Ω → R
and bounded linear operators

A:H∞(C) → H2,∞
ρ (A,A ∩D), B:H∞(C) → H∞(B)

satisfyingc = A(c) − B(c) onC for eachc ∈ H∞(C).

Proof. Since we may enlargeD ⊂ Ω without affecting the statement of
Lemma 3.3, we may assume thatD = D′ ∩Ω for some domainD′ ⊂⊂ X
satisfyingB ⊂ D′. Choose domainsD′

0, D
′
1 ⊂⊂ X such thatD′ ⊂⊂ D′

0 ⊂
⊂ D′

1 and setDj = Ω ∩ D′
j ⊂ Ω for j = 0, 1. We may assume thatD1

is strongly pseudoconvex. LetT be a linear, sup-norm bounded solution
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operator for the∂-equation inD1 ([HL1], p. 82). Choose a cut-off function
χ:X → [0, 1] as in the proof of Lemma 3.2 and take

a′ =
(
χc− T (c∂χ)

) |A∩D1 ∈ H∞(A ∩D1),
b′ =

(
(χ− 1)c− T (c∂χ)

) |B ∈ H∞(B).

We have(a′ − b′)|C = c, but a′ is only defined onA ∩ D1. To cor-
rect this we shall solve another∂-equation as follows. SinceΩ is smooth
strongly pseudoconvex, we can enlarge it slightly withinD′

0 to obtain a
smooth strongly pseudoconvex domainΩ′ ⊂ X satisfyingΩ ∪ D ⊂ Ω′
andΩ\D′

0 = Ω′\D′
0. Choose a smooth cut-off functionτ :X → [0, 1]

such thatτ = 1 in a neighborhood ofD
′
0 and supp τ ⊂⊂ D′

1. Hence
supp (∂χ) ∩ Ω′ ⊂ D1\D0. The∂-closed(0, 1)-form g = ∂(τa′) = a′∂τ ,
defined initially onD1\D0, extends to a bounded form onΩ′ which is zero
outsideD1\D0. By Hörmander [Ḧor] there is a smooth plurisubharmonic
function ρ:Ω′ → [0,+∞) such that the equation∂u = g has a smooth
solutionu in Ω′ satisfying||u||L2

ρ(Ω′) ≤ const||g||∞ ≤ const||c||L∞(C).

Moreover, if we takeu to be the (unique) solution with minimalL2
ρ(Ω

′)
norm, the compositionc → g → u defines a bounded linear operator
H∞(C) → L2

ρ(Ω
′). By a well known estimate on the interior regularity of

the∂-operator we have for any compact subsetK ⊂ Ω′

||u||L∞(K) ≤ const(||u||L2
ρ(Ω′) + ||∂u||L∞(Ω′)).

Applying this estimate on the compact subsetsB,D ⊂ Ω′ we see that

a = (τa′ − u)|A ∈ H2,∞
ρ (A,A ∩D), b = (b′ − u)|B ∈ H∞(B).

Clearly (a − b)|C = c, and the mapsc → a, c → b for c ∈ H∞(C) are
bounded linear operators into the respective Banach spaces. ♠

4. Attaching lemma: the model case

In this section we apply Lemmas 3.2 and 3.3 to construct holomorphic sec-
tions of certain model fibrations. An iteration scheme to solve this problem
was proposed in [Gro]; we shall apply the implicit function theorem in suit-
able function spaces.

Recall that a pair of open subsetU ⊂ V in a complex manifoldX is a
Runge pair, or U is Runge inV , if every holomorphic function inU can
be approximated, uniformly on compacts inU , by functions holomorphic
in V . We use the notation introduced in Sect. 3 above, and we identify the
subvarietyX0 ⊂ X with X0 × {0} ⊂ X × Cn.

4.1Proposition.LetX be aSteinmanifold,X0 a closed complex subvariety
ofX andA,B ⊂⊂ X relatively compact open subsets as in Lemma 3.2. Let
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B̃ ⊃ B andC̃ ⊃ C be open sets such that̃C ⊂ B̃ andC̃ is Runge inB̃. Let
U ⊂ Cn be an open neighborhood of the origin andψ0: C̃ × U → Cn a
bounded holomorphic map such that for eachx ∈ C̃ we haveψ0(x, 0) = 0
andψ0(x, · ):U → Cn is injective. Then there exist an open neighborhood
W of ψ0 in the Banach spaceH∞

X0
(C̃ × U)n and smooth Banach space

operatorsA′:W → H∞
X0

(A)n, B′:W → H∞
X0

(B)n, withA′(ψ0) = 0 and
B′(ψ0) = 0, such that for eachψ ∈ W the bounded holomorphic maps
α = A′(ψ):A → Cn and β = B′(ψ):B → Cn satisfyα|A∩X0 = 0,
β|B∩X0 = 0 and

ψ(x, α(x)) = β(x) (x ∈ C = A ∩B). (4.1)

Moreover, ifψ ∈ W satisfiesψ(x, 0) = 0 for x ∈ C̃, thenA′(ψ) = 0 and
B′(ψ) = 0.

Remark.We can view a pair of maps satisfying (4.1) as a section of the
fibration overA ∪ B ⊂ X obtained by identifying the point(x, z) ∈ C ×
U ⊂ A × Cn with the point(x, ψ(x, z)) ∈ C × Cn. For applications to
parametrized families it is convenient to have solutions given by operators,
although this could be avoided by a suitable analogue of Satz 8 in [Gr1].

Proof.We apply the proof of Proposition 5.2 in [FP1], replacing Lemma 2.4
in [FP1] by Lemma 3.2 above. We recall the main idea and refer to [FP1] for
the details. Assume firstψ0(x, z) = z (x ∈ C̃, z ∈ U). LetA:H∞

X0
(C)n →

H∞
X0

(A)n andB:H∞
X0

(C)n → H∞
X0

(B)n be the linear operators obtained
by applying Lemma 3.2 componentwise; hencec = Ac − Bc for all c ∈
H∞

X0
(C)n. Consider the operator

Φ:H∞
X0

(C̃ × U)n ×H∞
X0

(C)n → H∞
X0

(C)n,
Φ(ψ, c)(x) = ψ(x,Ac(x)) − Bc(x) (x ∈ C).

This is a smooth Banach space operator in a neighborhood of the point
(ψ0, 0), satisfyingΦ(ψ0, c) = Ac − Bc = c. By the implicit function
theorem the equationΦ(ψ, c) = 0 has locally near(ψ0, 0) a unique solution
c = C(ψ)given by a smooth operatorC. The operatorsA′ = A◦C,B′ = B◦C
then satisfy Proposition 4.1. The general case is reduced to this one by
approximatingψ0 by a holomorphic map oñB × U (see [FP1]). ♠

Applying Lemma 3.3 instead of Lemma 3.2 in the proof of Proposi-
tion 4.1 we get the following result.

4.2 Proposition. LetX be a Stein manifold and letA,B ⊂ X andD ⊂
Ω = A ∪ B be open subsets as in Lemma 3.3. LetB̃ ⊃ B andC̃ ⊃ C be
open sets such that̃C ⊂ B̃ andC̃ is Runge inB̃. LetU ⊂ Cn be an open
neighborhood of the origin andψ0: C̃ × U → Cn a bounded holomorphic
map such that for eachx ∈ C̃, ψ0(x, 0) = 0 andψ0(x, · ):U → Cn is
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injective. Then there exist an open neighborhoodW ⊂ H∞(C̃×U)n ofψ0

and smoothBanach spaceoperatorsA′:W → H2,∞
ρ (A,A∩D)n,B′:W →

H∞(B)n, withA′(ψ0) = 0 andB′(ψ0) = 0, such that for eachψ ∈ W
the holomorphic mapsα = A′(ψ):A → Cn andβ = B′(ψ):B → Cn

satisfy (4.1). Moreover, ifψ ∈ W satisfiesψ(x, 0) = 0 for all x ∈ C̃, then
A′(ψ) = 0 andB′(ψ) = 0.

5. Attaching lemma for holomorphic sections of submersions

In this sections we use the results of Sect. 4 in order patch together holo-
morphic sections of a submersionZ → X over a Cartan pair(A,B) in X,
provided that the two sections are sufficiently close on the intersectionA∩B.
Theorem 5.1 below is similar to results in Sect. 1.6 of [Gro] and to Theo-
rems 5.1 and 5.5 in [FP1]; the additional point here is the interpolation on a
subvarietyX0 ⊂ X. Theorem 5.2 is new and depends on Proposition 4.2.

We recall from [FP2] the definition of a Cartan pair. (Note that our earlier
definition in [FP1] did not include the Runge property (iii).)

Definition 4. An ordered pair of compact sets(A,B) in a complexmanifold
X is said to be aCartan pair if

(i) each of the setA,B, andA ∪B has a basis of Stein neighborhoods,
(ii) A\B ∩B\A = ∅ (separation condition), and
(iii) the setC = A ∩B is Runge inB. (C may be empty.)

If in additionX0 is a closed complex subvariety ofX such thatX0 ∩ C ⊂
Int(A ∪B), we shall say that the Cartan pair(A,B) isX0-regular.

We proved in [FP1] that for each Cartan pair(A,B) inX there exist bases
of decreasing open neighborhoodsAj ⊃ A, Bj ⊃ B (j ∈ Z+) such that
each pair(Aj , Bj) satisfies the hypothesis (i) and (ii) of Lemma 3.2 andCj

is Runge inBj . The same proof shows that, if(A,B) isX0-regular, we also
get property (iii) in Lemma 3.2 for each(Aj , Bj). Hence Proposition 4.1 can
be applied on a suitable bases of neighborhoods of anyX0-regular Cartan
pair(A,B) inX. This allows us to glue sections of submersionsh:Z → X
over(A,B) whenZ admits a spray over a neighborhood ofB.

The presence of parameters and the need to do everything by homotopies
complicates the statement, so let us first explain the result in the basic case.
Let (A,B) be anX0-regular Cartan pair inX. We are given holomorphic
sectionsa: Ã → Z resp.b: B̃ → Z over open sets̃A ⊃ A resp.B̃ ⊃ B

such thata andb agree onX0 ∩ C̃, whereC̃ = Ã ∩ B̃. If Z admits a spray
over B̃ and if b̃ is sufficiently close tõa on C̃, we can move each of the
two sections a little (by holomorphic homotopies of sections onÃ resp.B̃)
such that the final pair of sections coincides onÃ ∩ B̃ and hence gives a
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holomorphic section over̃A ∪ B̃. (We must shrink the neighborhoods ofA
andB in the process.) Moreover, we can perform the procedure so that the
homotopy is fixed onX0 where the initial sections already agree. The same
can be done forP -sections so that the homotopies are fixed for those values
of the parameter for which the two initial sections already coincide overC̃.

Having said this, we state the result in precise terms.

5.1 Theorem. Let h:Z → X be a holomorphic submersion onto a Stein
manifoldX, letX0 be a closed complex subvariety ofX, and let(A,B) be
aX0-regular Cartan pair inX (Definition 4). Suppose that̃B is an open
neighborhood ofB in X such that the restrictionZ|

B̃
= h−1(B̃) admits a

spray overB̃ (Definition 2). Let(P, P0) be as in Definition 3. Let̃A ⊃ A

be an open neighborhood ofA in X and a: Ã × P → Z a holomorphic
P -section overÃ (Definition 3). Fix a metricd onZ compatible with the
manifold topology. Then for eachε > 0 there is aδ > 0 satisfying the
following property. Ifb: B̃ × P → Z is a holomorphicP -section overB̃
satisfying

d(ap(x), bp(x)) < δ (x ∈ C̃ = Ã ∩ B̃, p ∈ P ),
ap(x) = bp(x) (x ∈ C̃, p ∈ P0) or (x ∈ X0 ∩ C̃, p ∈ P ),

then there exist smaller neighborhoodsA′ ⊃ A, B′ ⊃ B and homotopies
of holomorphicP -sectionsat:A′ × P → Z, bt:B′ × P → Z (t ∈ [0, 1])
such that

(a) atp = ap andbtp = bp for (p, t) ∈ P̃0 = (P × {0}) ∪ (P0 × [0, 1]),
(b) atp(x) = ap(x) andbtp(x) = bp(x) for x ∈ X0 and(p, t) ∈ P × [0, 1],
(c) a1

p(x) = b1p(x) for x ∈ C ′ = A′ ∩B′ andp ∈ P , and
(d) for each(p, t) ∈ P × [0, 1] we have

d(atp(x), ap(x)) < ε (x ∈ A′), d(btp(x), bp(x)) < ε (x ∈ C ′).

Remark.Property (c) implies thata1 andb1 together define a holomorphic
P -sectionã: (A′ ∪ B′) × P → Z overA′ ∪ B′. Forp ∈ P0 the sectioñap
agrees withap andbp according to (a), and the homotopy is fixed onX0
according to (b).

Proof. It suffices to apply the proof of Theorem 5.5 in [FP1], but replacing
Proposition 5.2 in [FP1] by Proposition 3.2 above. We recall the main idea
since we shall need this in the next theorem. Suppose for simplicity thatP
is a singleton andP0 = ∅. We linearize the problem by first constructing for
some largen ∈ Z+ a pair of holomorphic maps

s1:V ⊂ Ã× Cn → Z, s2: B̃ × Cn → Z, (5.1)
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whereV is an open set containing̃A×{0}, such thats1 ands2 are fiber pre-
serving (i.e., the fiber overx ∈ Ã resp.x ∈ B̃ is mapped intoZx = h−1(x)),
and they are submersions of open neighborhoods of the zero sections in
Ã × Cn resp.B̃ × Cn onto open neighborhoods of the graphsa(Ã) ⊂ Z

resp.b(B̃) ⊂ Z. Moreover we haves1(x, 0) = a(x) ands2(x, 0) = b(x).
The submersions1 is only locally defined and can be obtained from

local flows of vertical holomorphic vector fields onZ (tangent to fibers of
h) neara(A). The second maps2 is globally defined and is obtained by
restricting the spray maps:E → Z|

B̃
to the vector bundleE|

b(B̃) over

the sectionb(B̃) ⊂ Z. The total spaceE|
b(B̃) is not necessarily trivial;

however, we may choosẽB to be Stein, and hence there is a holomorphic
vector bundle epimorphismθ: B̃ × Cn → E|

b(B̃) for any sufficiently large
n. The compositions2 = s ◦ θ satisfies our requirements.

Whenaandbare sufficiently close to each other overC̃, we can construct
a holomorphic transition mapψ: C̃ × U → Cn as in Proposition 4.1 such
that

s1(x, z) = s2(x, ψ(x, z)) (x ∈ C̃, z ∈ U ⊂ Cn). (5.2)

The closeness ofa andb overC̃ implies thatψ is close to a mapψ0 which
preserves zero section:ψ0(x, 0) = 0 for x ∈ C̃. If α:A′ → U ⊂ Cn and
β:B′ → Cn are holomorphic maps on open setsA′ ⊂ Ã resp.B′ ⊂ B̃ as
in Proposition 4.1, satisfyingψ(x, α(x)) = β(x) for x ∈ C ′ = A′ ∩B′, we
set for eacht ∈ [0, 1]

at(x) = s1(x, tα(x)) (x ∈ A′), bt(x) = s2(x, tβ(x)) (x ∈ B′).
(5.3)

Thena0 = a, b0 = b, anda1(x) = b1(x) for x ∈ C ′; hencea1 andb1

together define a holomorphic sectionã:A′ ∪B′ → Z. The homotopiesat

andbt are fixed onX0. The details can be found in [FP1]. ♠
We need a similar result obtained from Proposition 4.2. For simplicity

we state the result without parameters (whenP is a singleton), even though
the result holds in the same generality as Theorem 5.1 above.

5.2 Theorem. Let h:Z → X be a holomorphic submersion onto a Stein
manifoldX and letX0 be a closed complex subvariety ofX. Furthermore
let A ⊂ X, B ⊂ X be closed subsets such thatB is compact whileA
contains a neighborhood ofX0. Assume that

(i) A ∪B is (the closure of) a strongly pseudoconvex domain inX,
(ii) A\B ∩B\A = ∅, and
(iii) the setC = A ∩B is Runge inB andC ∩X0 = ∅.
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Assume thatZ admits a spray over an open setB̃ ⊃ B. Let Ã ⊃ A
be an open set anda: Ã → Z a holomorphic section. Fix a metricd on
Z compatible with the manifold topology. LetD ⊂⊂ X be an arbitrary
relatively compact subset containingB. Choose an integerk ∈ Z+. Then
for eachε > 0 there is aδ > 0 satisfying the following property. Ifb: B̃ → Z
is a holomorphic section satisfyingd(a(x), b(x)) < δ for x ∈ C̃ = Ã ∩ B̃,
there exist open setsA′, B′ ⊂ X satisfyingX0 ∪ (A ∩D) ⊂ A′ ⊂ Ã,B ⊂
B′ ⊂ B̃, and homotopies of holomorphic sectionsat:A′ → Z, bt:B′ → Z
(t ∈ [0, 1]) such that

(a) a0 = a andb0 = b,
(b) a1(x) = b1(x) for x ∈ C ′ = A′ ∩B′,
(c) for eacht ∈ [0, 1], at agrees witha = a0 to order k alongX0 and
satisfies

d(at(x), a(x)) < ε (x ∈ A′ ∩D), d(bt(x), b(x)) < ε (x ∈ C ′).

Proof. The proof is essentially the same as in Theorem 5.1 except for
the construction of the maps1 (5.1). As in Theorem 5.1 we construct a
preliminary fiber-preserving holomorphic submersions̃1:V → Z from an
open setV ⊂ Ã×Cn, with Ã×{0} ⊂ V , onto a neighborhood ofa(Ã) inZ.
By the Oka-Cartan theory there exist finitely many holomorphic functions
hj :X → C (1 ≤ j ≤ m) such thatX0 = {x ∈ X:hj(x) = 0, 1 ≤ j ≤
m} and eachhj vanishes to orderk onX0. Let g: Ã× Cnm → Cn be the
mapg(x, v1, . . . , vm) =

∑m
j=1 hj(x)vj , wherex ∈ Ã andvj ∈ Cn for

eachj. Clearlyg(x, · ) is a linear epimorphism for eachx outsideX0 ∩ Ã

and is degenerate forx ∈ X0 ∩ Ã. Sets1 = s̃1 ◦ (Id, g): Ã × CN → Z,
whereId indicates the identity oñA andN = nm. Thens1 is a submersion
on a neighborhood of(Ã\X0) × {0} in Ã × CN (and is degenerate over
X0 ∩ Ã). We construct a maps2: B̃ × CN → Z (5.1) as before.

SinceC = A∩B does not intersectX0, we may assume that the closure
of C̃ = Ã ∩ B̃ does not intersectX0 either. Hences1 is a submersion over
C̃ which allows us to construct the transition mapψ (5.2) as before. For
any solution(α, β) of the equation (4.1) we get the corresponding pair of
sections

a1(x) = s1(x, α(x)) = s̃1(x, g(x, α(x))), b1(x) = s2(x)

as in (5.3) which agree on a neighborhood ofC. The sectionb1 is defined on
a neighborhoodB′ ⊃ B as before. On the other hand, the domain ofa1(x)
may shrink because we cannot control the sup-norm ofα on all ofA (since
A is unbounded), and hence the sectionα̃(x) = (x, g(x, α(x))) ∈ Ã× Cn

may escape from the domain ofs̃1. However, things are not too bad. We can
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control the sup-norm ofα, and hence of̃α, onA ∩ D for anyD ⊂⊂ X.
By construction the mapx → g(x, α(x)) =

∑
j hj(x)αj(x) vanishes to

orderk onX0; henceX0 is in the domain ofa1 as well. It follows thata1

is holomorphic on a setA′ ⊃ X0 ∪ (A ∩D) and it agrees witha = a0 to
orderk alongX0. The same applies to each section in the homotopyat from
a = a0 to a1, and this insures the validity of property (c). All the rest is the
same as in Theorem 5.1; in particular we get uniform approximation in (d)
from the uniform estimates onA ∩D in Proposition 4.2. ♠

6. Proof of Propositions 1.2, 1.3 and Theorem 1.4

Proof of Proposition 1.2.We embedY as a closed complex submanifold
of some Euclidean spaceCN . By Docquier and Grauert ([GuR], p.257,
Theorem 8) there is a holomorphic retractionπ:U → Y of an open neigh-
borhoodU ⊂ CN onto Y . We identify the holomorphic tangent bundle
X = TY with a subbundle ofTCN |Y and we identifyY with the zero
section ofTY . Denote the points inTY by (y, ξ) and let0y = (y, 0). There
is an open neighborhoodV ⊂ TY of the zero section on which the map
s0(y, ξ) = π(x + ξ) ∈ Y is defined and holomorphic. By modifyings0
outside a neighborhood of the zero section we can extend it to a smooth
maps0:TY → Y . Clearly the derivativeds0:T0y(TY ) → TyY restricts to
the identity map onTyY ⊂ T0y(TY ) for eachy ∈ Y . Hences0 satisfies the
requirements for a spray, except that it is not globally holomorphic onTY .
Observe thatX = TY is a Stein manifold andX0 = Y (the zero section) is
a closed complex submanifold ofX. If s:TY → Y is a holomorphic map
which matchess0 to the second order along the zero section (suchs exists
by the hypothesis in Proposition 1.2), thens is a spray onY . ♠
Proof of Proposition 1.3.The imageZ0 = f0(X0) is a closed Stein subspace
of Z and hence it has an open Stein neighborhood inZ according to [Siu].
The same applies toX0 in X; hence we may assume that bothX and
Z are Stein. For eachg ∈ O(Z) we denote byd′g the restriction of the
differentialdg to the vertical bundleV T (Z). By the Oka-Cartan’s theory
there are functionsg1, . . . , gd ∈ O(Z) such thatgj = 0 onZ0 for eachj
and{d′gj : 1 ≤ j ≤ d} span the vertical contangent spaceV T ∗

z (Z) at each
pointz ∈ Z0. Hence the map

G:Z → X × Cd, G(z) = (h(z), g1(z), . . . , gd(z))

embeds a neighborhood ofZ0 as a closed complex submanifoldW in an open
setV ⊂ X ×Cd, withG(Z0) = X0 ×{0}d. Denoting byp:X ×Cd → X
the projection ontoX, we havep ◦G = h.

We claim that, after shrinkingV aroundW , we can find a holomorphic
retractionπ:V → W satisfyingp ◦ π = p. Such a retraction is constructed
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as in the Docquier–Grauert theorem ([GuR], p.257, Theorem 8); here is
a brief outline. LetV T (W ) → W be the vertical tangent bundle toW
(with respect top:W → X); observe thatV T (W ) is a subbundle of the
trivial bundleW×Cd. Choose a complementary holomorphic vector bundle
H → W such thatH ⊕ V T (W ) = W × Cd. Denote the points ofH by
(x,w, ξ), with (x,w) ∈ W and ξ ∈ H(x,w) ⊂ Cd. Consider the map
H → X × Cd, (x,w, ξ) → (x,w+ ξ) (the addition takes place in the fiber
{x}×Cd). As in the proof of the Docquier–Grauert theorem we see that this
map takes a neighborhood of the zero section inH biholomorphically onto
a neighborhood ofW in X × Cd; hence it conjugates the base projection
H → W to a desired retractionV → W .

To extend the initial holomorphic section we takef(x) = G−1(π(x, 0)),
where0 denotes the origin inCd. Whenx is sufficiently nearX0, the point
(x, 0) ∈ X × Cd belongs toV (the domain ofπ), and henceπ(x, 0) ∈ W
belongs to the range ofG. Thusf is well-defined and holomorphic in an
open setU ⊃ X0 in X, and we havef(x) ∈ Zx for x ∈ U . Whenx ∈ X0,
we have(x, 0) ∈ W , henceπ(x, 0) = (x, 0) = G(f0(x)) and therefore
f(x) = f0(x).

If f0 extends continuously to a sectionX → Z, we can patch the section
f obtained above withf0 in a small neighborhood ofX0 as follows. As
above we have an embedding of a neighborhood ofZ0 inZ as a submanifold
W ⊂ X × Cd; we patch the two sections in the ambient spaceX × Cd

(where we have linear fibers) by a cut-off function, and finally we project the
result back toW by the holomorphic retraction. The new sectionf1:X → Z
equalsf in a neighborhood ofX0 (so it is holomorphic there), and it equalsf0
outside a larger neighborhood ofX0. The construction also gives a homotopy
of f0 to f1 which is fixed onX0. This proves Proposition 1.3. The proof
carries over verbatim to the case whenX is a complex space. ♠
Proof of Theorem 1.4.We consider two cases: in the first case the initial
continuous sectionf0:X → Z is holomorphic on the subvarietyX0 and
in a neighborhood of aH(X)-convex setK ⊂ X; in the second casef0
is assumed to be holomorphic in an open neighborhood ofX0 ∪K. When
K = ∅, we can reduce the first case to the second one by Proposition 1.3;
however, this reduction does not really simplify the proof, its only apparent
advantage being that we need not assume the existence of a spray onZ over
points inX0 which turns out to be very convenient in applications.

In the first case we can obtain the required homotopyft:X → Z satis-
fying Theorem 1.4 by following the proof of Theorem 1.5 in [FP2] (Sect. 6),
except that we replace the approximation and patching results used there by
the corresponding results with interpolation onX0, given by Theorems 2.2
and 5.1 above. The heart of the proof is an induction scheme (Sect. 6 in
[FP2]) in which the main ingredient is Proposition 5.1 from [FP2].
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However, the second case (whenf0 is holomorphic in a neighborhood of
X0∪K) requires some modifications because we patch pairs of holomorphic
sections on so-called Cartan pairs(A,B) inX where the setA is unbounded
(it containsX0 ∪K). We do this by replacing Theorem 5.1 by Theorem 5.2
above. In this case the globalization process requires small modifications,
and we feel that it would be dishonest to leave this entirely to the reader. So
we shall stir a middle course by indicating the essential steps of the argument
in both cases and referring to [FP2] for the details.

First we must recall from Sect. 3 in [FP2] the notion of holomorphic
(and continuous) complexes and prisms associated to a given open covering
U = {Uj} of the base manifoldX. Given such a coveringU , we denote by
K(U) its nerve (an infinite combinatorial simplicial complex) and byK(U)
its geometric realization (an infinite polytope).

Let h:Z → X be a given submersion. AholomorphicK(U)-complex
with values inZ is a familyf∗ = {ft: t ∈ K(U)} of holomorphic sections
of Z, depending continuously on the parametert ∈ K(U), where the do-
main of the sectionft ∈ f∗ is determined as follows: Ift belongs to the
k-dimensional simplex inK(U) which is determined byk + 1 open sets
Uj0 , Uj1 , . . . , Ujk ∈ U , thenft is a holomorphic section ofZ over the set
∩k
i=0Uji . We also have natural restriction conditions for sections in the fam-

ily f∗ on boundaries of simplices inK(U) (see [FP2]). Thus the vertices of
K(U) correspond to holomorphic sections on the setsUj ∈ U , the edges
correspond to one-parameter homotopies of sections defined on the inter-
sectionsUi ∩ Uj , etc. A global sectionf :X → Z may be considered as
a ‘constant complex’, meaning that any section in the associated complex
f∗ is the restriction off to the appropriate open set inX. A holomorphic
k-prism is a homotopy of holomorphic complexesf∗,s depending on a pa-
rameters ∈ [0, 1]k. Similarly one defines continuous complexes and prisms
with values inZ as collections of continuous sections. We also work with
coveringsA = {Ai} of X consisting of compact sets; aK(A)-complex is
represented byK(U)-complexes for open coveringsU = {Ui} of X with
Ui ⊃ Ai for eachi, and we identify two complexes whose sections agree
near the corresponding sets inA. For details we refer to Sect. 3 in [FP2].

Assume for simplicity thatP is a singleton; the proof in the general case
follows the same pattern. Consider first the case when the restrictionf0|X0

is holomorphic onX0 andf0 is holomorphic over a neighborhoodU ⊃ K
and of a compactH(X)-convex subsetK ⊂ X. To harmonize the notation
with [FP2] we writef0 = a. Our goal is to movea by a homotopy which is
fixed onX0 to a holomorphic sectionf :X → Z.

By Theorem 4.6 in [FP2] (which follows from the results in Sect. 2 of
[HL2]) there exists a sequenceA = (A0, A1, A2, . . .) of compact,H(X)-
convex subsets inX, satisfying
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(i) K ⊂ A0 ⊂ U andX = ∪∞
j=0Aj ,

(ii) for eachn ∈ Z+ the pair of sets(An, An+1), whereAn = A0 ∪A1 ∪
· · ·∪An, is aX0-regular Cartan pair in the sense of Definition 4 above,
and

(iii) the submersionh:Z → X admits a spray over an open neighborhood
of Aj for eachj ≥ 1 (but we don’t need a spray overA0).

As in [FP2] we call any finite sequence satisfying (ii) and (iii) aCartan
string, and the entire collectionA is aCartan coveringof X. The order of
sets in a Cartan string is important becauseAn ∩ An+1 must be Runge in
An+1. In [FP2] there was no subvarietyX0, but the construction in [HL2]
shows that we can easily satisfy theX0-regularity condition in (ii) by a
suitable choice of the setAn at each step.

The setsAj for j ≥ 1 may be chosen arbitrarily small, subordinate
to any open covering ofX. By Proposition 4.7 in [FP2] we can deform
the initial sectiona (which we now consider as a constantK(A)-complex
a∗,0) by a homotopy of continuousK(A)-complexesa∗,s (s ∈ [0, 1]) into a
holomorphicK(A)-complexa∗,1. The only additional requirement here is
that all sections belonging to any of the complexesa∗,s (s ∈ [0, 1]) must
agree with the initial sectiona on the intersection of their domains with the
subvarietyX0. This is easily satisfied by first choosing local holomorphic
extensions ofa|X0 ; the homotopies between them are obtained by taking
their convex linear combinations with respect to a local linear structure on
the fibers ofZ (see [FP2]), and hence all sections will agree witha onX0.

Applying Proposition 5.1 in [FP2] to the holomorphic complexa∗,1
we inductively construct a sequence of holomorphicK(A)-complexesa∗,n
(n = 1, 2, 3, . . .) which converges asn → ∞ to a holomorphic section
a∗,∞ = f :X → Z. The basic tools that we use in Proposition 5.1 from [FP2]
in the present case are Theorems 2.2 and 5.1; these replace Theorems 4.2
and 5.5 from [FP1] that had been used in [FP2]. Here we perform all steps
such that all sections and homotopies are fixed onX0.

The construction in Proposition 5.1 [FP2] is such that the complexa∗,n
obtained after the firstn steps is already constant over the setAn = ∪n

j=0Aj ,
i.e., it determines a holomorphic section in a neighborhood ofAn, and the
convergence of these sections tof is uniform on compacts inX asn → ∞.
The modification process also gives at each step a homotopy (a 1-prism)
between the two adjacent complexesa∗,n anda∗,n+1. This gives in the end
a 1-prism connecting the initial sectiona = a∗,0 and the limit sectionf .

Finally, applying the version of Proposition 5.1 in [FP2] for continuous
prisms, we can homotopically deform the above 1-prism froma to f (keep-
ings the end sectionsa andf fixed) to another 1-prism which consists of
sectionsoverX, thereby obtaining a homotopy of sections connectinga
to f and satisfying Theorem 1.4. Complete details of this argument can be
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found in Sect. 5 and 6 of [FP2]. The same proof applies toP -sections. This
proves the first part of Theorem 1.4.

Assume now that the initial sectiona = f0:X → Z is holomorphic
in an open setU0 ⊃ X0 ∪ K. Our goal is to construct a holomorphic
sectionf :X → Z which matchesa to a prescribed orderk alongX0 and
is obtained froma by a homotopyft:X → Z which is holomorphic near
X0 and matchesa to orderk alongX0. We have two possibilities: either
we replace Lemma 3.2 with its analogue for functions that vanish to order
k alongX0 (see the remark following the proof of Lemma 3.2), or we
apply Theorem 5.2 in place of Theorem 5.1 (and we don’t do any gluing
alongX0). The first approach works exactly as before. We now elaborate
the second approach which has the advantage that no spray is needed on
Z over neighborhoods of pointsx ∈ X0. The main step is the following
proposition which is similar to Proposition 8.2 in [FP2].

6.1 Proposition. Assume that the submersionh:Z → X admits a spray
over an open neighborhood of each pointx ∈ X\(X0∪K). Letf0:X → Z
be a continuous section which is holomorphic in an open setU0 ⊃ X0 ∪K.
For each compactH(X)-convex subsetL ⊂ X containingK there are an
open setU ′

0 ⊃ X0 ∪K and a homotopy of continuous sectionsft:X → Z
(t ∈ [0, 1]), with f0 being the given section, such that for eacht ∈ [0, 1], ft
is holomorphic inU ′

0, it agrees withf0 to orderk atX0, ft approximates
f0 uniformly onK, and the sectionf1 is holomorphic in an open setW0 ⊃
X0 ∪ L.

Granted Proposition 6.1, we complete the proof of Theorem 1.4 by ex-
haustingX by a sequence of compact,H(X)-convex subsetsK = L0 ⊂
L1 ⊂ L2 ⊂ . . . and applying Proposition 6.1 inductively. ♠
Proof of Proposition 6.1.Let (A0, A1, . . . , An) be a Cartan string inX for
the pair of setsK ⊂ L, provided by Lemma 8.4 in [FP2], satisfying

(i) K ∪ (X0 ∩ L) ⊂ A0 ⊂ U0;
(ii) for j = 1, 2, . . . , n we haveAj ∩ (X0 ∪ K) = ∅ andAj ⊂ Uk for

somek = k(j) ≥ 1;
(iii) L = ∪0≤j≤nAj .

By (ii) we haveAj ∩ X0 = ∅ for all j ≥ 1 and hence this string is
X0-regular. We now inductively apply Proposition 5.1 in [FP2], making
certain to satisfy the interpolation condition alongX0. In the process we
must patch holomorphic sections on Cartan pairs(Aj , Aj+1), whereAj =
A0 ∪ A2 ∪ . . . ∪ Aj , as well as on some other Cartan pairs which do not
intersectX0. While no change in the procedure is needed for the second
case, the first case must be modified in such a way that the resulting sections
will be holomorphic in a neighborhood ofX0 and will interpolate the initial
section. SetA′

0 = A0 ∪ X0 andA′ = (A′
0, A1, . . . , An). For eachj the
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setAj = ∪j
l=0Al is H(X)-convex, and hence the same is true for(A′)j =

X0 ∪ Aj = A′
0 ∪ A1 ∪ . . . ∪ Aj . ThusA′ satisfies all properties of an

X0-regular Cartan string, except that the initial setA′
0 is unbounded.

By Proposition 4.7 in [FP2] we can associate tof0 the initial holomor-
phic K(A′)-complexf∗,0 such that the section associated toA′

0 equals the
restriction off0 to a suitable open neighborhood ofA′

0 inX. We now modify
this complexf∗,0 by inductively applying Proposition 5.1 in [FP2], except
that we perform the gluing of sections on Cartan pairs((A′)j , Aj+1) by
appealing to Theorem 5.2 instead of Theorem 5.1. The neighborhood ofA′

0
on which the new section (the result of the gluing) is defined may shrink at
each step without any detrimental consequences. Aftern steps we obtain a
holomorphic sectionf1 in an open setW ′

0 ⊃ X0∪Lwhich can be connected
to f0 by a holomorphic homotopyft:W ′

0 → Z (t ∈ [0, 1]).
It remains to extendft toX by modifying it outside a smaller neighbor-

hood ofX0∪L. This is done as usual by takingftχ(x)(x) (x ∈ X, t ∈ [0, 1]),
whereχ:X → [0, 1] is a smooth cut-off function which vanishes outside
W ′

0 and equals one in a smaller open setW0 ⊃ X0 ∪L. This completes the
proof. ♠

7. Submersions with stratified sprays

We can extend Theorem 1.4 to submersions with stratified sprays over Stein
spaces (compare with Sect. 3.1 in Gromov [Gro]), a situation which arises
naturally in global analytic geometry. An important special case was con-
sidered in 1966 by Forster and Ramspott [FR].

LetX andZ be complex spaces, possibly with singularities. A holomor-
phic maph:Z → X is said to be a submersion (of co-rankk) if it is locally
near each pointz0 ∈ Z equivalent (by a fiber preserving biholomorphic
map) to a projectionp:U × V → U , whereU ⊂ X is an open set inX
containingx0 = h(z0) andV is an open set in someCd.

Assume now that the baseX of a submersionh:Z → X is a Stein space
which is stratified by a descending chain of closed complex subspacesX =
Xm ⊃ Xm−1 ⊃ · · · ⊃ X1 ⊃ X0 such that each stratumYk = Xk\Xk−1
(1 ≤ k ≤ m) is regular and the restricted submersionh:Z|Yk

→ Yk admits
a spray over a small neighborhood of any pointx ∈ Yk (Definition 2 in
Sect. 1). Then the following holds:

Any continuous sectionf0:X → Z such thatf0|X0 is holomorphic can be
deformed to a holomorphic sectionf1:X → Z by a homotopyft:X → Z
(t ∈ [0, 1]) that is fixed onX0.

A similar result holds forP -sections whose restriction toX0 is holo-
morphic (see Definition 3 and Theorem 1.4).
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One can prove this by induction over the strataXk as follows. Suppose
that for somek ≥ 1 we have already constructed a continuous section
fk−1:X → Z that is holomorphic overXk−1 and satisfiesfk−1 = f0 on
X0. We first apply Proposition 1.3 (which holds also for complex spaces)
to makefk−1 holomorphic in an open neighborhood ofXk−1 in X and
continuous elsewhere. We then apply Theorem 1.4, with(X,X0) replaced
by the pair(Xk, Xk−1), to deformfk−1 through a homotopy to a continuous
sectionfk:X → Z that is holomorphic overXk and matchesf0 onX0. In
finitely many steps we obtain a holomorphic section overX.

The constructionfk requires a version of Theorem 1.4 in whichX is a
Stein space whose singular locus is contained in the subvarietyX0 where the
initial section is already holomorphic. Such a result can be proved by small
changes in the proof of Proposition 4.2 and Theorem 5.2 as follows. Each
Stein spaceX of dimensionn admits a holomorphic mapg:X → C2n+1

which is a homeomorphism ofX onto a closed Stein subspaceX̃ = g(X) ⊂
C2n+1 and is an injective immersion on the regular part ofX [GuR]. Observe
that the attaching of pairs of holomorphic sections (Proposition 4.2 and
Theorem 5.2) needs to be carried out only on Cartan pairs(A,B) in X for
which the setC = A ∩ B is contained in the regular part ofX. Sinceg is
regular and injective there, we may transfer the data for the patching problem
(the transition mapψ in Proposition 4.2 and Theorem 5.2) to a suitably
chosen open neighborhood ofg(C) in C2n+1. The solution obtained on a
Cartan pair inC2n+1 is then pulled back toX byg. The globalization scheme
in Sect. 6 goes through without changes. We leave out further details.

Remark. It seems that the first examples of ‘submersion with stratified
sprays’ satisfying the h-principle were theEndromisb̈undelof Forster and
Ramspott [FR]. These are submersionsZ → X, whereZ is an open sub-
set inX ×M(s, r) (M(r, s) =the set of complexs × r matrices) and the
restrictionsZ|Yk

→ Yk to certain strataYk = Xk\Xk−1 are holomorphic
fiber bundles with complex Grassman manifolds as fibers. The correspond-
ing h-principle, proved in [FR], had many interesting applications, e.g. to
obtain the minimal number of global generators of a given coherent analytic
sheaf overX.
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68 F. Forstnerǐc, J. Prezelj

References

[AAC] K. Adachi, M. Andersson, H.R. Cho:Lp andHp extensions of holomorphic func-
tions from subvarieties of analytic polyhedra. Pacific J. Math.189(1999), 201–210

[Car] H. Cartan: Espaces fibrés analytiques. Symposium Internat. de topologia algebraica,
Mexico, 97–121 (1958). (Also in Oeuvres, vol. 2, Springer, New York, 1979)
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