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Solving thed- and∂̄-Equations in Thin Tubes
and Applications to Mappings
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1. The Results

Let Cn denote the complexn-dimensional Euclidean space with complex coor-
dinatesz = (z1, . . . , zn). A compactC k-submanifoldM ⊂ Cn (k ≥ 1), with or
without boundary, istotally real if for eachz ∈M the tangent spaceTzM (which
is a real subspace ofTzCn) contains no complex line; equivalently, the complex
subspaceT Cz M = TzM+ iTzM of TzCn has complex dimensionm = dimR M for
eachz ∈M. We denote byTδM = {z ∈Cn: dM(z) < δ} the tube of radiusδ > 0
aroundM; here|z| is the Euclidean norm ofz ∈ Cn anddM(z) = inf {|z − w| :
w ∈M}.

For any open setU ⊂ Cn and integersp, q ∈ Z+ we denote byC lp,q(U) the
space of differential forms of classC l and of bidegree(p, q) onU. For each multi-
indexα ∈ Z2n+ we denote by∂ α the corresponding partial derivative of order|α|
with respect to the underlying real coordinates onCn.

The following is one of the main results of the paper; for additional estimates
see Theorem 3.1.

1.1. Theorem. LetM ⊂ Cn be a closed, totally real,C1-submanifold and let
0 < c < 1. Denote byTδ the tube of radiusδ > 0 aroundM. There is aδ0 > 0
and for each integerl ≥ 0 a constantCl > 0 such that the following hold for all
0 < δ ≤ δ0, p ≥ 0, q ≥ 1, and l ≥ 1. For anyu∈ C lp,q(Tδ) with ∂̄u = 0 there is
a v ∈ C lp,q−1(Tδ) satisfying∂̄v = u in Tcδ and satisfying also the estimates

‖v‖L∞(Tcδ) ≤ C0δ‖u‖L∞(Tδ);
‖∂ αv‖L∞(Tcδ) ≤ Cl(δ‖∂ αu‖L∞(Tδ) + δ1−|α|‖u‖L∞(Tδ)), |α| ≤ l.

(1.1)

If q = 1 and the equation̄∂v = u has a solutionv0 ∈ C l+1
(p,0)(Tδ), then there is a

solutionv ∈ C l+1
(p,0)(Tδ) of ∂̄v = u onTcδ satisfying

‖∂j∂ αv‖L∞(Tcδ) ≤ Cl+1(ω(∂j∂
αv0, δ)+ δ−l‖u‖L∞(Tδ))

for 1≤ j ≤ n and |α| = l.
In the last estimate,ω(f, δ) = sup{|f(x)−f(y)| : |x−y| ≤ δ} is themodulus of
continuityof a function; whenf is a differential form onCn, ω(f, t) is defined as
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the sum of the moduli of continuity of its components (in the standard basis). The
constantsCk appearing in the estimates are independent ofu andδ (they depend
only onM andc).

The solution in Theorem 1.1 is obtained by a family of integral kernels, depend-
ing on δ > 0 and constructed specifically for thin tubes (and hence is given by
a linear solution operator on each tubeTδ). Immediate examples show that the
gain ofδ in the estimate forv is the best possible. Whenu is a (0,1)-form (or a
(p,1)-form), the estimates for the derivatives ofv in (1.1) follow from the sup-
norm estimate by shrinking the tube and applying the interior regularity for the
∂̄-operator (Lemma 3.2). This is not the case in bidegrees(p, q) for q > 1. We
refer to Section 3 for further details.

Another major result of the paper is Theorem 5.1 on solving the equationdv =
u for holomorphic forms in tubesTδ with precise estimates. Theorem 5.1 is ob-
tained by using the solutions of the∂̄-equation (provided by Theorem 3.1) in the
proof of Serre’s theorem to the effect that, on pseudoconvex domains, the de Rham
cohomology groups are given by holomorphic forms.

We now apply these results to the problem of approximating smooth diffeomor-
phisms between totally real submanifolds inCn by biholomorphic maps in tubes
Tδ and by holomorphic automorphism ofCn. The tools developed here give opti-
mal results without any loss of derivatives in these approximation problems.

Thecomplex normal bundleνM → M of a totally real submanifoldM ⊂ Cn

is defined as the quotient bundleνM = TCn|M/T CM. It can be realized as a
complex subbundle ofTCn|M such thatTCn|M = T CM ⊕ νM. Given a diffeo-
morphismsf :M0 → M1 between totally real submanifoldsM0,M1 ⊂ Cn, we
say that the complex normal bundlesπi : νi → Mi are isomorphic overf if there
exists an isomorphism ofC-vector bundlesφ: ν0→ ν1 satisfyingπ1Bφ = f Bπ0.

1.2. Theorem. Letf :M0→ M1 be a diffeomorphism of classC k between com-
pact totally real submanifoldsM0,M1 ⊂ Cn, with or without boundary(n ≥ 1,
k ≥ 2). Assume that the complex normal bundles toM0 andM1 are isomorphic
overf. Then there are numbersδ0 > 0 anda > 0 such that, for eachδ ∈ (0, δ0),

there exists an injective holomorphic mapFδ: TδM0→ Cn such thatFδ(TδM0) ⊃
TaδM1 and the following estimates hold for0 ≤ r ≤ k asδ→ 0:

‖Fδ|M0 − f ‖C r(M0) = o(δk−r ), ‖F −1
δ |M1 − f −1‖C r(M1) = o(δk−r ). (1.2)

TheC r(M)-norm is defined as usual by using a finite open covering ofM by co-
ordinate charts and a corresponding partition of unity. An important aspect of
Theorem 1.2 is the precise relationship between the rate of approximation onM0

(resp., onM1) and the radiusδ of the tube on which the approximating biholo-
morphic mapFδ is defined. The condition that the complex normal bundles are
isomorphic overf is necessary because the derivative of any biholomorphic map,
defined nearM0 and sufficiently close tof in theC1(M0)-norm, induces such an
isomorphism. IfM0 andM1 are contractible (such as arcs or totally real discs)
or if they are of maximal real dimensionn, then Theorem 1.2 applies to anyC k-
diffeomorphismf :M0→ M1.
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When all data in Theorem 1.2 are real-analytic,f extends to a biholomorphic
mapF from a neighborhood ofM0 onto a neighborhood ofM1 (see Remark (1)
after the proof of Theorem 1.2 in Section 4). In such case we say thatM0 andM1

arebiholomorphically equivalent; such pairs of submanifolds have identical local
analytic properties inCn. This is not so iff is smooth but non–real-analytic, for
there exist smooth arcs inCn that are complete pluripolar as well as arcs that are
not pluripolar [DF], yet any diffeomorphism between smooth arcs can be approx-
imated as in Theorem 1.2.

We don’t know whether in general there exist biholomorphic mapsFδ in a fixed
open neighborhood ofM0 and satisfying (1.2) asδ → 0. However, in certain
situations we can approximate diffeomorphisms by global holomorphic automor-
phisms ofCn. Recall that a compact setK ⊂ Cn is polynomially convexif for
eachz ∈ Cn\K there is a holomorphic polynomialP on Cn such that|P(z)| >
sup{|P(x)| : x ∈ K}. We denote by AutCn the group of all holomorphic auto-
morphisms ofCn.

Definition 1.

(a) A C k-isotopy (or a C k-flow) in Cn is a family of C k-diffeomorphismsft :
M0→ Mt (t ∈ [0,1]) betweenC k-submanifoldsMt ⊂ Cn such thatf0 is the
identity onM0 and such that bothft(z) and ∂

∂t
ft(z) are continuous with re-

spect to(t, z) ∈ [0,1] ×M0 and of classC k(M0) in the second variable for
each fixedt ∈ [0,1].

(b) The isotopy in (a) is said to betotally real (resp.,polynomially convex) if the
submanifoldMt ⊂ Cn is totally real (resp., compact polynomially convex)
for eacht ∈ [0,1].

(c) Theinfinitesimal generatorof ft as in (a) is the time-dependent vector fieldXt
onCn that is uniquely defined alongMt by the equation∂

∂t
ft(z) = Xt(ft(z))

(z∈M0, t ∈ [0,1]).
(d) A holomorphic isotopy(or holomorphicflow) on a domainD ⊂ Cn is a fam-

ily of injective holomorphic mapsFt :D → Cn such thatF0 is the identity
onD and such that the mapsFt(z) and ∂

∂t
Ft(z) are continuous with respect to

(t, z)∈ [0,1]×D. Its infinitesimal generatorXt, defined as in (c), is a holo-
morphic vector field on the domainDt = Ft(D) for eacht ∈ [0,1].

1.3. Theorem. LetM0 ⊂ Cn be a compactC k-submanifold ofCn (n ≥ 2, k ≥
2). Assume thatft :M0 → Mt ⊂ Cn (t ∈ [0,1]) is a C k-isotopy such that the
submanifoldMt = ft(M0) ⊂ Cn is totally real and polynomially convex for each
t ∈ [0,1]. Setf = f1:M0→ M1. Then there exists a sequenceFj ∈Aut Cn (j =
1,2,3, . . . ) such that

lim
j→∞‖Fj |M0 − f ‖C k(M0) = 0, lim

j→∞‖F
−1
j |M1 − f −1‖C k(M1) = 0. (1.3)

Combining Theorem 1.3 with Corollary 4.2 from [FR] yields the following.

1.4. Corollary. Let f :M0 → M1 be aC k-diffeomorphism(k ≥ 2) between
compact, totally real, polynomially convex submanifolds ofCn of real dimension
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m. If 1≤ m ≤ 2n/3, then there exists a sequenceFj ∈Aut Cn (j = 1,2,3, . . . )
satisfying(1.3).

Theorems 1.2 and 1.3 are proved in Section 4. A weaker version of Theorem
1.3 (with loss of derivatives) was obtained in [FL] by applying Hörmander’sL2-
method for solving thē∂-equations in tubes. For a converse to Theorem 1.3 see
[FL, Rem. 2, p.135]. Whenf is a real-analytic diffeomorphism as in Theorem1.3,
the approximating sequenceFj ∈Aut Cn can be chosen such that it converges to a
biholomorphic mapF in an open neighborhood ofM0 in Cn satisfyingF |M0 = f
[FR].

We now consider the approximation problem for maps preserving one of the
forms

ω = dz1∧ dz2 ∧ · · · ∧ dzn, (1.4)

n = 2n′, ω =
n′∑
j=1

dz2j−1∧ dz2j . (1.5)

A holomorphic mapF between domains inCn satisfyingF ∗ω = ω will be called
a holomorphicω-map. The form (1.4) is the (standard)complex volume formon
Cn; in this caseF ∗ω = JF ·ω, whereJF is the complex Jacobian determinant of
F, andω-maps are calledunimodular.The form (1.5) is thestandard holomorphic
symplectic form,and holomorphicω-maps are calledsymplectic holomorphic.We
denote the corresponding automorphism group by

Autω Cn = {F ∈Aut Cn : F ∗ω = ω}.
For convenience we state the approximation results forω-maps (Theorems 1.5

and 1.7 and Corollary 1.6) only for closed submanifolds; for an extension to man-
ifolds with boundary, see the remark following Theorem 1.7.

1.5. Theorem. Let ω be any of the forms(1.4), (1.5). Let f :M0 → M1 be a
C k-diffeomorphism between closed totally real submanifolds inCn (k, n ≥ 2).
Assume that there is aC k−1-mapL:M0→ GL(n,C) satisfying

Lz|TzM0 = dfz, L∗zω = ω (z∈M0). (1.6)

Then for each sufficiently smallδ > 0 there is an injective holomorphic map
Fδ: TδM0→ Cn such thatF ∗δ ω = ω and (1.2)holds asδ → 0. If M0,M1 andf
are real-analytic and if there exists a continuousL satisfying(1.6),thenf extends
to a biholomorphic mapF on a neighborhood ofM0 satisfyingF ∗ω = ω.
The notationL∗zω in (1.6) denotes the pull-back of the multi-covectorωf(z) by the
C-linear mapLz (which we may interpret as a mapTzCn → Tf(z)Cn). Clearly
(1.6) implies that the complex normal bundlesνj → Mj are isomorphic overf.
Denoting by SL(n,C) the special linear group onCn and by Sp(n,C) the linear
symplectic group onC2n,we can express the condition in Theorem 1.5 as follows:

(* ) There exists aC k−1-mapL:M0→ SL(n,C) (resp.,L:M0→ Sp(n,C)) such
thatLz = dfz onTzM0 for eachz∈M0.
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The only obvious necessary conditions for the approximation of aC k-diffeomor-
phismf :M0→ M1 by holomorphicω-maps are that the complex normal bundles
νj → Mj be isomorphic overf and thatf ∗(i∗1ω) = i∗0ω, whereij :Mj ↪→ Cn

is the inclusion. Theorem 1.5 reduces this analytic approximation problem to the
geometric problem of finding an extensionL of df satisfying (1.6). The regularity
of L is not the key point; it would suffice to assume the existence of acontinuous
L satisfying (1.6), since an argument similar to the one in the proof of Theorem
1.5 for the real-analytic case then allows us to approximateL by aC k−1-map sat-
isfying (1.6). We expect that such extension does not always exist, although we
do not have specific examples. Here are some positive results.

1.6. Corollary. Let ω be one of the forms(1.4), (1.5),and letk, n ≥ 2. Let
f :M0 → M1 be aC k-diffeomorphism between closed totally real submanifolds
such that the complex normal bundles toM0 (resp.,M1) in Cn are isomorphic
overf andf ∗ω = i∗0ω. Then the conclusion of Theorem 1.5 holds in each of the
following cases:

(i) dimM0 = dimM1= n;
(ii) ω = dz1∧ · · · ∧ dzn andM0 is simply connected;

(iii) ω = dz1∧ · · · ∧ dzn andν0 admits a complex line subbundle.

In cases (ii) and (iii) we havef ∗ω = i∗0ω = 0 whenm < n. Finally we present
approximation results forω-flows. We first introduce convenient terminology.

Definition 2. Letω be a differential form onCn and letft :M0 → Mt ⊂ Cn

(t ∈ [0,1]) be aC k-isotopy with the infinitesimal generatorXt (see Definition 1).

(a) ft is anω-flow if the formf ∗t ω onM0 is independent oft ∈ [0,1].
(b) Anω-flow ft is closed(resp.,exact) if, for eacht ∈ [0,1], the pull-back toMt

of the formαt = Xtcω (the contraction ofω byXt) is closed (resp., exact).
(c) LetU ⊂ Cn be an open set andω a holomorphic form onCn. A holomor-

phic flow Ft :U → Cn (t ∈ [0,1]) satisfyingF ∗t ω = ω for all t is called a
holomorphicω-flow.

Remark. If dω = 0 (this holds for the forms (1.4), (1.5)) then a flowft :M0→
Mt is anω-flow if and only if the pull-back ofαt = Xtcω toMt is a closed form
onMt for eacht ∈ [0,1]. This can be seen from the following formula for the Lie
derivativeLXt ω [AMR, Thm. 5.4.1 and Thm. 6.4.8(iv)]:

d

dt
(f ∗t ω) = f ∗t (LXt ω) = f ∗t (d(Xtcω)+Xtcdω) = f ∗t (dαt ).

Hencef ∗t ω is independent oft if and only ifd(i∗t αt ) = 0 onMt for eacht ∈ [0,1].

1.7. Theorem. Let ω be any of the forms(1.4), (1.5).Assume thatM0 ⊂ Cn is
a closed totally real submanifold and thatft :M0 → Mt ⊂ Cn (t ∈ [0,1]) is a
totally real ω-flow of classC k for somek ≥ 2. Then for each sufficiently small
δ > 0 there is a holomorphicω-flowF δ

t : TδM0 → Cn (t ∈ [0,1]) such that, for
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0 ≤ r ≤ k, we have the following estimates asδ > 0 (uniformly with respect to
t ∈ [0,1]):

‖F δ
t − ft‖C r(M0) = o(δk−r ), ‖(F δ

t )
−1− f −1

t ‖C r(Mt ) = o(δk−r ).
If in addition n ≥ 2 andft is an exactω-flow that is totally real and polynomi-
ally convex, then for eachε > 0 there is a holomorphicω-flowFt ∈Autω Cn such
that, for all t ∈ [0,1],

‖Ft − ft‖C k(M0) < ε, ‖F −1
t − f −1

t ‖C k(Mt ) < ε.

Theorems 1.5 and 1.7 together with Corollary 1.6 extend to the following situation.
Let M0 be a compact domain in a totally real submanifoldM ′0 ⊂ Cn, not nec-
essarily closed or compact. In particular,M0 may be a totally real submanifold
with boundary∂M0 andM ′0 a larger submanifold containingM0. In the context of
Theorem 1.5 or Corollary 1.6, assume thatf :M ′0→ M ′1 is aC k-diffeomorphism
between totally real submanifolds inCn (k ≥ 2) and thatL:M ′0→ GL(n,C) is
aC k−1-map satisfying (1.6) onM ′0. Then the conclusion of Theorem 1.5 holds for
M0: There exist holomorphicω-mapsFδ: TδM0 → Cn for all sufficiently small
δ > 0 satisfying (1.2) asδ → 0. Likewise, if the flowft as in Theorem 1.7 is
defined onM ′0 then the conclusion of that theorem applies on the compact sub-
domainM0 ⊂ M ′0.

In our last result we consider the problem of approximating a diffeomorphism
f :M0 → M1 by holomorphicω-automorphisms ofCn. Assuming thatM0 and
M1 are polynomially convex, we have two necessary conditions for such approx-
imation:

(1) f ∗ω = i∗0ω; and
(2) there is a totally real, polynomially convex flowft :M0 → Mt ⊂ Cn (t ∈

[0,1]) with f0 = IdM0 andf1= f.
The second condition is necessary because the group Autω Cn is connected (see
[FR]). When dimM0 is smaller than the degree ofω, the first condition is trivial
(both sides are zero). We summarize some of the situations when such an approx-
imation is possible. Letβ be a holomorphic form onCn satisfyingdβ = ω; when
ω is given by (1.4) we may takeβ = 1

n

∑n
j=1(−1)j−1dz1∧ · · · ∧ d̂zj ∧ · · · ∧ dzn,

and whenω is the form (1.5) we may takeβ =∑n′
j=1 z2j−1dz2j .

1.8. Theorem. Let n, k ≥ 2. Let M0 ⊂ Cn be a compact connectedC k-
submanifold of dimensionm and letft :M0 → Mt (t ∈ [0,1]) be a totally real,
polynomially convexC k-flow. Assume either(a) that ω is the volume form(1.4),
dβ = ω, and at least one of the following four conditions holds:

(i) m ≤ n− 2,
(ii) m = n− 1 andHn−1(M0;R) = 0,

(iii) m = n− 1, M0 is closed and orientable, and
∫
M0
β = ∫

M0
f ∗1 β 6= 0,

(iv) m = n, M0 is closed and satisfiesHn−1(M0;R) = 0, andf ∗t ω is indepen-
dent oft;
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or (b) thatn = 2n′ (n′ ≥ 2), ω is the form(1.5),dβ = ω, and at least one of the
following three conditions holds:

(v) M0 is an arc,
(vi) M0 is a circle and

∫
M0
β = ∫

M0
f ∗1 β,

(vii) m = 2, M0 is closed and satisfiesH1(M0;R) = 0, andf ∗t ω is independent
of t ∈ [0,1].

Setf = f1:M0→ M1. Then there is a sequenceFj ∈Autω Cn satisfying(1.3).

For real-analytic data, Theorem 1.7 was proved in [F2] in the symplectic case and
in [F3] in the unimodular case. In the latter situation the sequenceFj ∈Autω Cn

can be chosen such that it converges to a holomorphicω-mapF in a neighborhood
of M0.

The paper is organized as follows. In Section 2 we collect some preliminary
material, mostly extensions of certain well-known results. In Section 3 we con-
struct a family of integral kernels for solving the∂̄-equation in tubes and prove the
stated estimates; we conclude the section by historical remarks concerning such
kernels. In Section 4 we apply Theorem 3.1 to prove Theorems 1.2 and 1.3. In Sec-
tion 5 we solve the equationdv = u in tubes, whereu is an exact holomorphic
form, and we find a holomorphic solutionv satisfying good estimates. In Sections
6 and 7 we prove the results on approximatingω-diffeomorphisms by holomor-
phic ω-maps andω-automorphisms. At the end of Section 4 we also include a
correction to [FL].
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2. Geometric Preliminaries

We denote byXcv the contraction of a formv by a vector fieldX. We shall use
the following version of Poincaré’s lemma [AMR, Deformation Lemma 6.4.17].

2.1. Lemma. LetM be aC2-manifold andw a closedC1p-form onI ×M with
I = [0,1] andp > 0. For t ∈ I let it :M → I ×M be the injectionx → (t, x).

Then the(p − 1)-form v = ∫ 1
0 i
∗
t

(
∂
∂t
cw) dt onM satisfiesdv = i∗1w − i∗0w. In

particular, letF : I ×M → N be aC2-map andu a closedC1p-form onN where
p > 0. Settingft = F B it :M → N andw = F ∗u, we havedv = f ∗1 u− f ∗0 u.
We shall apply this to the case whenF is a deformation retraction of a tubular
neighborhoodTδ = TδM of a submanifoldM ⊂ Cn ontoM. This means thatf1
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is the identity onTδ, ft |M is the identity for allt, andf0(Tδ) = M. Setπ = f0.

With u a closedC1 p-form onTδ andv as before, we obtaindv = u− π∗u in Tδ.
In the situation that we shall consider, we have the following local description

of the retractionF. LetM be aC k-submanifold inCn. ForU a small open neigh-
borhood inM of a pointz0 ∈M there is aC k-diffeomorphismφ:O → π−1(U),

whereO is open inRm × R2n−m, such that:

(i) F −1(U) = O ∩ (Rm × {0}2n−m) = O ′ × {0}2n−m;
(ii) for x ′ ∈ O ′, the setOx ′ = {y ′ ∈ R2n−m : (x ′, y ′) ∈ O} is star-shaped with

respect to 0; and
(iii) the mapft = F B it is φ-conjugate to(x ′, y ′)→ (x ′, ty ′) for eacht ∈ I =

[0,1].

Let u =∑ ′|I |+|J |=p uI,J(x ′, y ′)dx ′I ∧ dy ′J in these coordinates. Then

w =
∑ ′

|I |+|J |=p
uI,J(x

′, ty ′)dx ′I ∧ d(ty ′)J

and it is easy to check that

v =
∑ ′

|I |+|K|=p
(−1)|K|

n∑
j=1

∑
|J |=|K|+1

ε
jK

J y
′
j

(∫ 1

0
uI,J(x

′, ty ′)t |K| dt
)
dx ′I ∧ dy ′K,

whereεjKJ equals (ifjK is a permutation ofJ ) the signature of that permutation
and equals zero otherwise.

The retractionF is constructed by retracting toM along the fibers of a vector
bundle supplementary to the tangent bundleTM. The normal bundle toM in Cn

is an obvious choice but is only of classC k−1 whenM is aC k-submanifold. We
shall show that there areC k-subbundlesE of M × Cn that are arbitrarily close to
the normal bundle. Whenk > 1, it is easy to see that(z+Ez)∩ Tδ is star-shaped
with respect toz for all z ∈M whenδ > 0 is small enough andE is sufficiently
close to the normal bundle. The mapG:E→ Cn, G(z, v) = z+v,maps the zero
section 0E diffeomorphically ontoM, and its derivativedG is an isomorphism at
each point of 0E; henceG is aC k-diffeomorphism of a neighborhoodUδ ⊂ E

of 0E ontoTδ for δ > 0 small. We may assume thatUδ ∩ Ez is star-shaped with
respect to(z,0) for eachz ∈ M. Whenft is G-conjugate to the map(z, v) →
(z, tv) in Uδ for t ∈ I, the mapF has the properties(i)–(iii) listed previously.

The local coordinates(x ′, y ′) are constructed as follows. Letϕ:O ′ → U ⊂ M
be a localC k-parametrization and lets1, . . . , s2n−m be sections ofE→ M overU
that form aC k-trivialization ofE|U . We set

φ(x ′, y ′) = ϕ(x ′)+
2n−m∑
j=1

y ′j sj(ϕ(x
′)) for x ′ ∈O ′ andy ′ ∈R2n−m,

and we restrict it toO = φ−1(Tδ). Then the fiberOx ′ is star-shaped for allx ′ ∈O ′
whenδ > 0 is small enough.

2.2. Lemma (Approximation of subbundles).LetM be aC k-submanifold ofCn

andE → M a C l-subbundle(real or complex) ofM × Cn for some0 ≤ l < k.
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Then there is aC k-subbundleE ′ of M × Cn arbitrarily close toE in the C l-
topology. Moreover, ifM is totally real inCn and the bundleE is complex, then
E ′ may be taken as the restriction toM of a holomorphic subbundle ofU × Cn

for some open neighborhoodU ofM in Cn.

Proof. A proof may be based on the following standard result. IfL:M →
Lin C(Cn,Cn) is aC l-map such thatLz has constant rankr independent ofz∈M
(abusing the language we shall say thatL has rankr), then

EL = {(z, v)∈M × Cn : v ∈Lz(Cn)} (2.1)

is a complexC l-subbundle of rankr of the trivial bundleM ×Cn, and every sub-
bundleE of M × Cn appears in this manner—for instance, by settingLz to be
the orthogonal projection ofCn onto the fiberEz for z∈M. The analogous result
holds for real vector bundles.

A more regular approximation to a subbundleE may then be obtained by ap-
proximating the corresponding mapL definingE by a more regular map of rank
r. The problem is that the rank of a generic perturbation ofL may increase. To
overcome this we use the following result (see [GLR]).

Let C be a positively oriented simple closed curve inC, and letL ∈
Lin C(Cn,Cn) be a linear map with no eigenvalues onC. ThenCn =
V+⊕V−,whereV+ (resp.,V−) is aL-invariant subspace ofCn spanned
by the generalized eigenvectors ofL inside(resp., outside) ofC. The map

P(L) = 1

2πi

∫
C

(ζI − L)−1dζ (2.2)

is the projection ontoV+ with kernelV−.

Note thatP(L) depends holomorphically onL; thus, ifL dependsC k or holomor-
phically on a parameter, so doesP(L).

We now takeC to be a curve that encircles 1 but not 0; for instance,

C = {ζ ∈C : |ζ −1| = 1/2}. (2.3)

LetP be the associated projection operator (2.2). IfL is a projection thenP(L) =
L. Moreover, for eachL′ sufficiently near a projectionL, each eigenvalue ofL′
is either near 0 or near 1 and henceP(L′) is a projection with the same rank asL.

Thus, to smoothE, let Lz be the orthogonal projection ontoEz for z ∈M; we
approximateL by a C k-mapL′:M → Lin C(Cn,Cn) and letE ′ be the bundle
(2.1) associated toP(L′). By (2.2), the difference equals

P(L′)− L = 1

2πi

∫
C

((ζI − L′)−1− (ζI − L)−1) dζ

and isC l-small whenL′ − L is.
In the real case, we extendL: Rn→ Rn to a complex linear mapL: Cn→ Cn

and observe thatP(L) is also real (i.e., it mapsRn to itself ) whenC is the curve
(2.3). Hence the restriction ofP(L) to Rn solves the problem.
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Let nowM be a totally real submanifold ofCn andE→ M aC l rank-r complex
subbundle ofM×Cn. For eachz∈M letLz: Cn→ Ez be the orthogonal projec-
tion ontoEz. By [RS] we can approximate theC l-mapL:M → Lin C(Cn,Cn)

as well as we like in theC l-topology onM by the restriction toM of a holomor-
phic mapL′:U → Lin C(Cn,Cn) defined on an open neighborhoodU ⊂ Cn of
M. By shrinkingU we may assume thatL′z has exactlyr eigenvalues insideC
in (2.3) for eachz ∈ U, soP(L′z) is a rank-r projection. The mapz → P(L′z) is
holomorphic inU and determines a holomorphic rank-r vector bundleE ′ overU,
with E ′|M close toM.

Let d = ∂ + ∂̄ be the splitting of the exterior derivative on a complex manifold.

Definition 3 (∂̄-flat functions). IfM is a closed subset in a complex manifold
X and ifu is aC k-function(k ≥ 1) defined in a neighborhood ofM inX, then we
say thatu is ∂̄-flat (to orderk) onM if ∂ α(∂̄u)(z) = 0 for eachz∈M and for each
derivative∂ α of total order|α| ≤ k − 1 with respect to the underlying real local
coordinates onX.

We shall commonly use the phrase “u is a∂̄-flatC k-function” when it is clear from
the context which subsetM ⊂ X is meant.

2.3. Lemma (∂̄-flat partitions of unity). LetM be a totally realC k-submanifold
of a complex manifoldX wherek ≥ 1. For every open coveringU ofM inX there
exists aC k-partition of unity on a neighborhood ofM in X that is subordinate to
the coveringU and consists of functions that are∂̄-flat to orderk onM.

Proof. We may assume thatU consists of coordinate neighborhoods. Letφ0
ν be

a C k-partition of unity subordinate toU |M = {U ∩M:U ∈ U }. We may assume
that the index sets agree, so suppφ0

ν ⊂ Uν for eachν. By passing to local coordi-
nates we may find ā∂-flat C k-extensionφ̃ν of φ0

ν with suppφ̃ν ⊂ Uν. Sinceρ =∑
ν φ̃ν = 1 onM, it follows thatρ 6= 0 in a neighborhoodV of M in X. It is im-

mediate thatφν = φ̃ν/ρ is aC k-partition of unity onV that is∂̄-flat (to orderk)
onM.

As a consequence of Lemma 2.3, we see that the usual results about∂̄-flat ex-
tensions of maps intoCN are also valid for totally real submanifolds in arbitrary
complex manifolds.

2.4. Lemma (Asymptotic complexifications). LetM be a totally realC k-sub-
manifold (k ≥ 1) of Cn of real dimensionm ≤ n. Then there exists aC k-
submanifoldM̃ ⊃ M in Cn, of real dimension2m, with the following prop-
erty: M̃ may be covered byC k local parametrizationsZ:U → Z(U) ⊂ M̃, with
U ⊂ Cm open subsets, such thatZ−1(M) = U ∩ Rm andZ is ∂̄-flat onU ∩ Rm.

Moreover, there is aC k-retraction of a neighborhood of̃M in Cn ontoM̃ that is
∂̄-flat onM.
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Proof. By a theorem of Whitney [W2, Thm. 1], there exists aCω-manifoldM0

and aC k-diffeomorphismG0:M0 → M. The manifoldM0 has a complexifica-
tion M̃0 that is a complex manifold containingM0 as a maximal real submanifold.
The mapG0 has a∂̄-flat extensionG: M̃0→ Cn that is an injective immersion at
M. (To obtainG it suffices to patch local̄∂-flat extensions ofG0 by a ∂̄-flat par-
tition of unity provided by Lemma 2.3.) HenceGmaps a neighborhood ofM0 in
M̃0 diffeomorphically onto its imagẽM ⊂ Cn. WhenZ 0:U → M̃0 (U open in
Cm) is a local holomorphic parametrization with(Z 0)−1(M0) = U ∩Rm, the map
Z = G B Z 0:U → M̃ is a local parametrization of the type described in Lemma
2.4. Note thatTzM̃ = T Cz M for eachz∈M.

Next we prove the existence of a retraction ontoM̃ that is∂̄-flat onM. Let ν →
M be the complex normal bundle ofM in Cn. By Lemma 2.2 there is an open
neighborhoodO of M in Cn and a holomorphic rank-(n − m) subbundleN ⊂
O×Cn such thatN |M approximatesν well. By shrinkingO we may assume that
N is transversal toM̃ in O. This means that the mapφ:N |M̃ → Cn, φ(z, v) =
z+ v, is aC k-diffeomorphism from a neighborhoodW of the zero section inN |M̃
onto its imageO0 ⊂ O ⊂ Cn. We may assume thatW ∩ Nz is star-shaped with
respect to 0z ∈ Nz for eachz ∈ M̃. Now the deformation retraction(z, v) →
(z, tv) (t ∈ [0,1]) of W onto the zero section inN |M̃ may be transported byφ to
a retractionF : [0,1] ×O0 → O0 of O0 onto the submanifoldM̃ ∩O0. Setπ =
F0:O0→ M̃∩O0. LetU ⊂ Cm and letZ:U → M̃ be a localC k-parametrization
such thatZ(U ∩Rm) ⊂ M andZ is ∂̄-flat onU ∩Rm. Choose holomorphic sec-
tionss1, . . . , sn−m of N that provide a trivialization ofN nearZ(U). Then

(z ′, w ′)→ Z(z ′)+
n−m∑
j=1

w ′j sj(Z(z
′))

is aC k-diffeomorphism of a neighborhoodW ofU×{0}n−m in Cn ontoπ−1(Z(U)),

and it is∂̄-flat on(U ∩Rm)× {0}n−m. In these coordinates the mapsFt are given
by (z ′, w ′)→ (z ′, tw ′); henceFt is ∂̄-flat onπ−1(M).

2.5. Lemma (Rough multiplication). LetU be an open set inRN, f ∈ C k(U)
andg ∈ C k−1(U), wherek ≥ 1. LetE be a closed subset ofU such thatf(x) =
0 for all x ∈E. Then there exists a functionh∈ C k(U) such that:

(i) |∂ α(h− fg)| = o(d k−|α|E ) for |α| < k, uniformly on compacts inU ;
(ii) at points ofE we have∂ αh =∑06=β≤α

(
α

β

)
∂βf ∂ α−βg for |α| ≤ k; and

(iii) if U ⊂ CN and if f andg as before arē∂-flat onE ⊂ f −1(0), then so ish.

Proof. The proof is similar to the better known “Glaeser–Kneser rough composi-
tion theorem”; the main point is to verify that the collection of functions(∂ αh)|α|≤k
onE, defined by (ii), are a Whitney system (i.e., that they satisfy the assumptions
of the Whitney extension theorem; see [W1] or [T]). We shall leave out the de-
tails of this verification. Leth be aC k-function, provided by Whitney’s theorem,
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whose partial derivatives are given by (ii) at points ofE. Then (i) follows eas-
ily by comparing the Taylor expansions of∂ αh, ∂βf, and∂ α−βg about the nearest
point inE. Case (iii) follows from (ii), which is seen as follows. From (ii) we
get, at points ofE,

∂ α∂̄h = ∂ α(∂̄f · g)+
∑

06=β≤α

(
α

β

)
∂βf ∂ α−β∂̄g

for |α| ≤ k − 1. If f andg are ∂̄-flat onE, then this expression vanishes when
|α| ≤ k −1 and so we get (iii).

The following lemma is needed in the proof of Theorem 1.4 and its corollaries.

2.6. Lemma. LetM be a totally real,m-dimensionalC k-submanifold ofCn,

f :M → Cp a C k-map, andl:M → Lin C(Cn,Cp) a C k−1-map such that, for
eachz∈M, lz agrees withdfz onTzM. Then there is a neighborhoodU ⊂ Cn of
M and aC k-mapF :U → Cp that is ∂̄-flat onM and satisfiesF(z) = f(z) and
dFz = lz for all z∈M.
Proof. It suffices to prove the result for functions(p = 1); the general case then
follows by applying it componentwise. So we shall assumep = 1.

We first consider the local case. Fix a pointz0 ∈M. Choosee1, . . . , en−m ∈Cn

such that these vectors, together with the tangent spaceTz0M, span a totally real
subspace ofTz0C

n of maximal dimensionn. If κ:U → M is aC k-parametrization
of a small neighborhood ofz0 inM with κ(0) = z0 and ifV is a sufficiently small
neighborhood of 0 inRn−m, then the mapφ(x, y) = κ(x)+∑n−m

j=1 yj ej (x ∈U,
y ∈V ) is aC k-diffeomorphism onto ann-dimensional totally real submanifold in
Cn. Observe that, forx ∈U and(u, v)∈Rm × Rn−m, we have

lκ(x) B dφ(x,0)(u, v) = dfκ(x) B dκx(u)+
n−m∑
j=1

vj lκ(x)(ej ).

Sincelκ(x)(ej ) is only of classC k−1 in x,we apply the rough multiplication lemma
to the pairsyj, lκ(x)(ej ) for 1≤ j ≤ n−m to get aC k functionh onU × V satis-
fying ∂h

∂xi
(x,0) = 0 and ∂h

∂yj
(x,0) = lκ(x)(ej ) for 1≤ i ≤ m and 1≤ j ≤ n−m.

With F 0(x, y) = f(κ(x))+h(x, y) it follows thatdF 0
(x,0) = lκ(x) Bdφ(x,0). When

F̃ 0 (resp.,φ̃) is aC k-extension ofF 0 (resp.,φ) that is∂̄-flat onRn, we see that̃φ
is aC k-diffeomorphism of a neighborhood of 0∈Cn onto a neighborhood ofz0 ∈
Cn. Thus, nearz0, F = F̃ 0 B φ̃−1 is aC k ∂̄-flat extension off. Whenz ∈M we
havedFz = lz on a maximal totally real subspace, so these two linear maps are
equal onTzCn. This establishes the local case.

For the global case letU = {Ui} be an open covering ofM and letF (i) be a
∂̄-flat extension off in Ui, with dF (i)

z = lz for z ∈Ui ∩M. By Lemma 2.3 there
is a partition of unity{φi} by ∂̄-flat C k-functions on a neighborhood ofM subor-
dinate toU . We setF = ∑ i φiF

(i), where the term with indexi is zero outside
Ui. Whenz ∈M, dFz = ∑

i φi(z)dF
(i)
z +

∑
i f (z)d(φi)z. Since

∑
i φi = 1, it

follows that
∑

i dφi = 0 and we havedFz = lz.
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3. Solving the∂̄-Equation in Tubes
around Totally Real Manifolds

In this section we construct a family of integral kernels, depending on a parameter
δ > 0, for solving the∂̄-equation in tubesTδM around compact totally real sub-
manifoldsM ⊂ Cn of classC1. The main result is Theorem 3.1, which is identical
to Theorem 1.1 except that it contains additional Hölder estimates (3.3) and (3.4).

We denote bydM the Euclidean distance toM. If M is of classC k, it is well
known thatρ = d2

M is aC k strictly plurisubharmonic function in a neighborhood
ofM whenk > 1; whenk = 1, there is a strictly plurisubharmonicC2-functionρ
such thatρ = d2

M+o(d2
M). As in Section 1, letTδ denote the tubular neighborhood

of M of radiusδ, that is, the set of points whose distance toM is less thanδ.
For a domainD in Rn (or in Cn), a bounded functionu in D belongs to the

Hölder class3s(D) for some 0< s < 1 if |u|s,D := sup{|u(z+ h)− u(z)||h|−s :
h 6= 0, z, z + h ∈ D} < ∞; in this case the Hölders-norm ofu is defined by
‖u‖3s(D) = ‖u‖L∞(D) + |u|s,D. Whens = 1 we set

|u|1,D := sup{|u(z+ h)+ u(z− h)− 2u(z)||h|−1 : h 6= 0, z, z− h, z+ h∈D};
31(D) is called theZygmund classonD. WhenD is a tubular neighborhoodTδM
of a submanifoldM, we write |u|s,δ for |u|s,TδM. Whens = k + α with k ∈ Z+
and 0< α ≤ 1, we take‖u‖3s(D) = ‖u‖C k(D) + |Dku|α,D. We sometimes write
C k+α(D) for 3k+α(D) when 0< α < 1.

We extend function space norms to vector fields or differential forms on open
sets inRn as the sum of the norms of the components. WhenM is a compact
C k-manifold, we define the norms on functions or forms onM as follows. Let
8j :Uj → Vj ⊂ M, j = 1, . . . , p, be a covering ofM by local parametriza-
tions, and let{φ1, . . . , φp} be aC k-partition of unity subordinate to the covering
{V1, . . . , Vp} of M. Then we set‖u‖ = ∑p

j=1‖8∗j (φju)‖, where‖ · ‖ is a Hölder
or some other function space norm. Different choices of{8j } and{φj } give rise
to equivalent norms on the same space.

Let z = (z1, . . . , zn) be the complex coordinates and let(x1, y1, . . . , xn, yn)

(zj = xj + iyj ) be the underlying real coordinates onCn = R2n. For 1≤ j ≤
2n, ∂j denotes the partial derivative with respect to thej th variable. Ifα =
(α1, . . . , α2n) is a multi-index of length 2n, then∂ α denotes the corresponding
partial derivative of order|α| = α1+ · · · + α2n with respect to the real variables
onCn = R2n.

If f is a function or a form nearM, we shall say thatf vanishes to orderl
onM if |f(z)| = o(dM(z)

l) and∂ αf = 0 onM when|α| ≤ l. Recall that any
C k-functionf onM can be extended to aC k-function onCn such that̄∂f vanishes
to orderk −1 onM [HöW, Lemma 4.3].

We call a continuous functionω: R+ → R+ a modulus of continuityif it is
nondecreasing and subadditive and ifω(0) = 0. If f :A → C (A ⊂ Rn) is
uniformly continuous, we define the modulus of continuity off by ω(f, t) =
sup{|f(x) − f(y)|: |x − y| ≤ t}, t ≥ 0, whereω(f, ·) is clearly a modulus
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of continuity as defined previously. We say that a modulus of continuityω is a
modulus of continuity for a functionf if ω(f, t) ≤ ω(t) for all t ≥ 0. If f is a
form onA, thenω(f, t) is defined as the sum of the moduli of continuity of its
components.

We denote byC lp,q(U) the space of(p, q)-forms of classC l on an open set
U ⊂ Cn.

3.1. Theorem. LetM ⊂ Cn be a closed totally realC1-submanifold and let0<
c < 1. Denote byTδ the tube of radiusδ > 0 aroundM. Then there is aδ0 > 0
and, for each integerl ≥ 1, a constantCl > 0 such that the following hold for
0 < δ ≤ δ0 with p ≥ 0 andq ≥ 1: For eachu ∈ C lp,q(Tδ) with ∂̄u = 0, there is a

v ∈ C l(p,q−1)(Tδ) satisfying∂̄v = u in Tcδ and

‖∂ αv‖L∞(Tcδ) ≤ Cl(δ‖∂ αu‖L∞(Tδ) + δ1−|α|‖u‖L∞(Tδ)), |α| ≤ l. (3.1)

In particular we have‖v‖L∞(Tcδ) ≤ Cδ‖u‖L∞(Tδ). If q = 1and the equation̄∂v =
u has a solutionv0 ∈ C l+1

(p,0)(Tδ), then there is a solutionv ∈ C l+1
(p,0)(Tδ) of ∂̄v = u

satisfying, for1≤ j ≤ n,
‖∂j∂ αv‖L∞(Tcδ) ≤ Cl+1(ω(∂j∂

αv0, δ)+ δ−l‖u‖L∞(Tδ)), |α| = l. (3.2)

If we assume in addition that∂ αu ∈3s(Tδ) for some|α| ≤ l and 0 < s ≤ 1, we
may choosev as above satisfying also the following estimates(with constantsCl,s
independent ofu and δ):

‖∂j∂ αv‖L∞(Tcδ) ≤ Cl,s(δ s‖∂ αu‖3s(Tδ) + δ−|α|‖u‖L∞(Tδ)), (3.3)

‖∂j∂ αv‖3s(Tcδ) ≤ Cl,s(‖∂ αu‖3s(Tδ) + δ−|α|−s‖u‖L∞(Tδ)) (3.4)

Remarks. (1) If u is of classC l then there is, in general, noC l+1 solutionv to
∂̄v = u.

(2) In (3.3) one may be tempted to deleteδs and use instead theL∞(Tδ)-norm
of ∂ αu in the first term on the right-hand side. Yet that this proves false even
whenn = 1 is a well-known phenomenon. Since the Bochner–Martinelli operator
used in the proof is a homogeneous convolution operator, it gains one derivative
in norms such as Hölder, Zygmund, and Sobolev, but not in the sup-norm or the
C l-norm.

(3) Theorem 3.1 has the following extension to nonclosed totally realC1-sub-
manifoldsM ′ in Cn. Let K be a compact subset ofM ′ and letK ′ ⊂ M ′ be a
compact neighborhood ofK in M ′. For δ > 0 we set

Uδ = {z∈Cn : dK(z) < δ}, U ′δ = {z∈Cn : dK ′(z) < δ}.
Choosec ∈ (0,1). Given a formu ∈ C lp,q(U ′δ ) with ∂̄u = 0, we can solvē∂v = u
inUcδ; the estimates in Theorem 3.1 remain valid when the tubeTcδ is replaced by
Ucδ on the left-hand side andTδ is replaced byU ′δ on the right-hand side of each es-
timate. The proof can be obtained by simple modifications of the kernel construc-
tion that follows. This applies to compact totally real submanifolds with boundary
in Cn since any such is a compact domain in a larger totally real submanifold.
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In this section,C denotes some constant whose value may change every time it
occurs but does not depend on quantities such asu, δ, etc.

For (0,1)-formsu (and hence for(p,1)-forms, 0≤ p ≤ n), a large part of the
result comes from the interior elliptic regularity of the∂̄-operator and has nothing
to do with the particular solutionv.

3.2. Lemma. Let 0< c < 1. There exist constantsCl > 0 (l ∈N) satisfying the
following. IfK ⊂ Cn is a compact subset withTδ = {z : d(z,K) < δ} and if v
is a continuous function inTδ such that∂̄v ∈ C l(0,1)(Tδ) for somel ∈ N, thenv ∈
C l(Tδ) and

‖∂ αv‖L∞(Tcδ) ≤ Cl(δ‖∂ α∂̄v‖L∞(Tδ) + δ−|α|‖v‖L∞(Tδ)); |α| ≤ l.
If ∂̄v = ∂̄f for somef ∈ C l+1(Tδ), thenv is also of classC l+1 and satisfies

‖∂j∂ αv‖L∞(Tcδ) ≤ Cl+1(ω(∂j∂
αf, δ)+ δ−l−1‖v‖L∞(Tδ)); |α| = l.

Proof. We apply the Bochner–Martinelli formula

g(z) =
∫
∂Tδ
g(ζ)B(ζ, z)−

∫
Tδ
∂̄g(ζ) ∧ B(ζ, z),

valid for g ∈ C1(T̄δ), whereB(ζ, z) is the Bochner–Martinelli (B-M) kernel

B(ζ, z) = cn
n∑
j=1

(−1)j−1 ζj − zj
‖ζ − z‖2n dζ̄ [j ] ∧ dζ,

which is a closed integrable(n, n − 1)-form. Let z ∈ Tcδ and letχ : R → [0,1]
be a cut-off function withχ(t) = 1 when|t | ≤ 1

2 andχ(t) = 0 when|t | ≥ 1.
Forw ∈ Cn, setχδ(w) = χ

( 2|w|
(1−c)δ

)
. It follows that the partial derivatives satisfy

|∂ αχδ| ≤ Cαδ−|α| for all α. Applying the Bochner–Martinelli formula tog(ζ) =
χδ(ζ − z)v(ζ), we obtain

v(z) = −
∫
Tδ
∂̄ζ(χδ(ζ − z)v(ζ)) ∧ B(ζ, z)

= −
∫
Tδ
∂̄v(ζ) ∧ χδ(ζ − z)B(ζ, z)−

∫
Tδ
v(ζ) ∂̄ζχδ(ζ − z) ∧ B(ζ, z)

= I1(z)+ I2(z). (3.5)

These are convolution operators and we may differentiate on either integrand. This
gives, for|α| ≤ l,

∂ αv(z) = ∂ αI1(z)+ ∂ αI2(z)

= −
∫
Tδ
∂ α∂̄v(ζ) ∧ χδ(ζ − z)B(ζ, z)

−
∫
Tδ
v(ζ) ∂ αz (∂̄χδ(ζ − z) ∧ B(ζ, z)).
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Settingc ′ = 1−c
2 andc ′′ = 1

2c
′ and using|B(ζ, z)| ≤ C|ζ − z|1−2n, we can esti-

mate the integrals for|α| ≤ l as follows:

|∂ αI1(z)| ≤ C
∫
|ζ−z|≤c ′δ

|∂ α∂̄v(ζ)|· |ζ − z|1−2n dV

≤ C‖∂ α∂̄v‖L∞(Tδ)
∫
|ζ−z|≤c ′δ

|ζ − z|1−2n dV

≤ C‖∂ α∂̄v‖L∞(Tδ)
∫ c ′δ

0

r 2n−1dr

r 2n−1
≤ Cδ‖∂ α∂̄v‖L∞(Tδ),

|∂ αI2(z)| ≤ C
∫
c ′′δ≤|ζ−z|≤c ′δ

|v(ζ)|· δ−2n−|α| dV ≤ C‖v‖L∞(Tδ)δ−|α|.

This proves the first estimate in Lemma 3.2. The estimate for|∂ αI2| also holds for
derivatives of order|α| = l +1.

We now assume that∂̄v = ∂̄f for somef ∈ C l+1(Tδ); thenv − f is holomor-
phic and hencev is alsoC l+1. We wish to estimate the derivatives of orderl+1 of
I1(z). For |α| = l we have

∂j∂
αI1(z) = −∂j

∫
Tδ
∂ α∂̄v(ζ) ∧ χδ(ζ − z)B(ζ, z).

We now apply (3.5) tof, replacing∂̄f by ∂̄v(= ∂̄f ) in the first term on the right-
hand side and differentiating under the integral, to get

∂j∂
αf(z) = −∂j

∫
Tδ
∂ α∂̄v(ζ) ∧ χδ(ζ − z)B(ζ, z)

−
∫
Tδ
∂j∂

αf(ζ) ∧ ∂̄χδ(ζ − z) ∧ B(ζ, z).

Observe that the first term on the right-hand side equals∂j∂
αI1(z) from the pre-

vious display. For a fixedz ∈ Cn we also apply (3.5) to the constant function
∂j∂

αf(z):

∂j∂
αf(z) = −

∫
Tδ
∂j∂

αf(z) ∂̄χδ(ζ − z) ∧ B(ζ, z).

Combining the three preceding formulas yields

∂j∂
αI1(z) =

∫
Tδ
(∂j∂

αf(ζ)− ∂j∂ αf(z)) ∂̄χδ(ζ − z) ∧ B(ζ, z)

and hence|∂j∂ αI1(z)| ≤ Cω(∂j∂ αf, δ).
From Lemma 3.2 it follows that the estimates (3.1) and (3.2) in Theorem 3.1 will
be proved for(p,1)-formsu if we can find a solutionv that satisfies a sup-norm
estimate‖v‖L∞(Tcδ) ≤ Cδ‖u‖L∞(Tδ). Such a solution is obtained by a linear oper-
ator given by an integral kernel that we now construct.
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Construction of the Kernel for(0,1)-Forms

We shall use Koppelman’s formula, which we now recall. Forv,w ∈ Cn, let
〈v,w〉 = ∑n

i=1viwi. Let V ⊂ C2n and�′ ⊂ � ⊂⊂ Cn be open subsets
such that� has piecewiseC1-boundary and�̄ × � ⊂ V. Let P = P(ζ, z) =
(P1, . . . , Pn):V → Cn be aC1-map satisfying

(i) P(ζ, z) = ζ − z in a neighborhood of the diagonal of�′ ×�′ and
(ii) the function8:V → C, 8(ζ, z) = 〈P(ζ, z), ζ − z〉, satisfies8(ζ, z) 6= 0

whenz∈�′ andζ ∈ �̄\{z}.
Any such mapP is called aLeray mapfor the pair�′ ⊂ �, and8 is the corre-
spondingsupport function.We shall use the notation

dζ = dζ1∧ · · · ∧ dζn,
∂̄ζP [j ] = ∂̄ζP1∧ · · · ∧ ̂̄∂ζPj ∧ · · · ∧ ∂̄ζPn,

∂̄ζP [i, j ] = ∂̄ζP1 ∧ · · · ∧ ̂̄∂ζPi ∧ · · · ∧ ̂̄∂ζPj ∧ · · · ∧ ∂̄ζPn.
Define the integral kernels

K(ζ, z) = cn8(ζ, z)−n
n∑
j=1

(−1)j−1Pj ∂̄ζP [j ] ∧ dζ,

L(ζ, z) = cn8(ζ, z)−n
∑
i 6=j
(−1)i+jPj ∂̄zPi ∧ ∂̄ζP [i, j ] ∧ dζ.

Note that the kernelK(ζ, z) is locally integrable whenz∈�′. It is also important
to observe that, ifa(ζ, z) is aC1 function, then the kernels generated byP (resp.,
aP ) are identical outside the zero seta = 0. For a suitable choice of the constant
cn ∈R, we then have the following Koppelman–Leray representation formula for
∂̄-closed(0,1)-formsu∈ C1

0,1(�̄):

u(z) =
∫
∂�

L(ζ, z) ∧ u(ζ)+ ∂̄z
∫
�

K(ζ, z) ∧ u(ζ), z∈�′. (3.6)

This follows by applying the Stokes formula to the first integral on the right-hand
side to transfer the integration to anε-sphere aroundz and usinḡ∂zK = −∂̄ζL; in
the limit asε→ 0 we obtain (3.6) by a usual residue calculation. Forζ nearz, the
kernelL coincides with the B-M kernel for(0,1)-forms; in fact, for the Leray map
P(ζ, z) = ζ − z, (3.6) is the classical Bochner–Martinelli–Koppelman formula.

We have a lot of freedom in the choice of the mapP that determinesK andL. If
we choose it such thatP(ζ, ·) is holomorphic in�′ whenζ ∈ ∂�, thenL(ζ, z) =
0 for suchζ andz (since each term inL contains a derivativē∂zPi) and hence the
function

v(z) =
∫
�

K(ζ, z) ∧ u(ζ) (3.7)

solves the equation̄∂v = u in �′.
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We shall construct the integral kernel of our solution operator onTδ by combin-
ing the B-M kernel near the diagonalζ = z of the smaller tubeTcδ with the Henkin
kernel whenζ is near the boundary ofTδ andz ∈ Tcδ. This will give a family of
linear solution operators of the form (3.7) depending onδ for smallδ > 0.

Let ρ be the strongly plurisubharmonic function mentioned in the beginning of
this section. Since{ρ < (1− ε)δ2} ⊂ Tδ ⊂ {ρ < (1+ ε)δ2} for sufficiently small
δ > 0, we may replace the tubeTδ with the sublevel sets{ρ < δ2}, which we still
denote byTδ.

The construction of the kernel will proceed through several lemmas. First we re-
call from [HL] the following well-known result about the existence of the Henkin
support function8 and the corresponding Leray mapP on a fixed strongly pseudo-
convex domain, which in our case is a tubeTδ0.

3.3. Lemma. There exist constantsC,R > 0 such that, forδ0 > 0 sufficiently
small, there are functions8(ζ, z) andA(ζ, z) in C1(Tδ0 × Tδ0 ), with8 holomor-
phic inz, and there is aC1-functionB(ζ, z) defined forζ, z∈ Tδ0 and |ζ − z| ≤ R
that satisfies the following:

(i) 8(ζ, z) = A(ζ, z)B(ζ, z),
(ii) |B(ζ, z)| ≥ C andReA(ζ, z) ≥ ρ(ζ)−ρ(z)+C|ζ − z|2 when|ζ − z| ≤ R,

(iii) |8(ζ, z)| ≥ C when|ζ − z| ≥ 1
2R, and

(iv) with 8 as described here, there exists a mapP = P(ζ, z) = (P1, . . . , Pn)

such that, for allj, Pj ∈ C1(Tδ0×Tδ0 ), Pj is holomorphic inz, and8(ζ, z) =
〈P(ζ, z), ζ − z〉.

Proof. This follows from the proof of Theorems 2.4.3 and 2.5.5. in [HL]. Here
A(ζ, z) is an approximate Levi polynomial inz∈Cn of the form

A(ζ, z) = 2
n∑
j=1

∂ρ(ζ)

∂ζj
(ζj − zj )−

n∑
j,k=1

ajk(ζ)(ζj − zj )(ζk − zk),

where theajk areC1 functions that approximate the partial derivatives∂2ρ/∂ζj∂ζk
sufficiently well onTδ0 [HL, Lemma 2.4.2]. In fact, whenρ is of classC3 or better,
we might simply takeajk = ∂2ρ/∂ζj∂ζk.

The only small change from [HL] is that, in our situation, the maps8 andP
may be defined globally forζ ∈ Tδ0, and not only forζ near the boundary ofTδ0,

provided thatδ0 > 0 is sufficiently small. This follows from the thinness of the
tubeTδ0 and can be seen as follows. Observe that, forζ ∈M, the linear terms in
A(ζ, ·) vanish and we have<A(ζ, z) < 0 for all pointsz∈M\{ζ} sufficiently close
to ζ. Hence forδ0 > 0 small we can chooseε > 0 (depending onδ0) such that
<A(ζ, z) < 0 wheneverz, ζ ∈ Tδ0 andε ≤ |ζ − z| ≤ 2ε. The proof of Theorem
2.4.3 in [HL] (which proceeds by cutting of logA onB(ζ,2ε) ∩ Tδ0 and solving
a ∂̄-equation onTδ0 ) then gives a globally defined8 (and henceP).

Let8, P, A, andB be as in Lemma 3.3, constructed on a fixed tubeTδ0; P is not
quite a Leray map because it does not equalζ − z near the diagonal, and we shall
now modify it suitably on tubesTδ for 0< δ ≤ δ0. Let 0< c < c ′ < 1. Choose a
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cut-off functionλδ such thatλδ = 1 in Tc ′δ andλδ = 0 near∂Tδ. We may assume
that its (real) gradient satisfies‖∇λδ‖ ≤ Cδ−1 for someC > 0 independent ofδ.
We will show that, for a suitably chosen functionφ(ζ, z) on T̄δ × T̄δ, the condi-
tions in Koppelman’s formula (3.6) are satisfied for the pair of domains� = Tδ
and�′ = Tcδ if we define the Leray map̃P by

P̃(ζ, z) = (1− λδ(ζ))φ(ζ, z)P(ζ, z)+ λδ(ζ)ζ − z,
with the corresponding support function given by

8̃ = 〈P̃, ζ − z〉 = (1− λδ)φ8+ λδ|ζ − z|2.
We need to findφ such that8̃(ζ, z) 6= 0 whenz ∈ Tcδ andζ ∈ T̄δ\{z}. Whenζ ∈
T̄cδ, we have8̃(ζ, z) = |ζ − z|2, so the condition is satisfied for any choice ofφ.
Hence it suffices to consider the pointsζ whereρ(ζ) > ρ(z). Letψ : R→ [0,1]
be a cut-off function such thatψ(t) = 1 for |t | ≤ 1

2R andψ(t) = 0 for |t | ≥ 2
3R.

Set
φ(ζ, z) = ψ(|ζ − z|)B(ζ, z)−1+ (1− ψ(|ζ − z|))8(ζ, z),

whereB is as in Lemma 3.3. Thenφ8 = ψA+ (1− ψ)|8|2 (sinceB−18 = A),
and we have the following estimates for the real partθ(ζ, z) := Reφ8(ζ, z)when
ρ(ζ) > ρ(z).

(a) When|ζ − z| ≤ 1
2R: θ = ReA ≥ C|ζ − z|2.

(b) When1
2R ≤ |ζ − z| ≤ R:

θ = ψ ReA+ (1− ψ)|8|2 ≥ ψC|ζ − z|2 + (1− ψ)C2 > 0.

(c) When|ζ − z| > R: θ = |8|2 ≥ C2.

This verifies the required properties, and hence (3.6) is valid whenK(ζ, z) and
L(ζ, z) are the kernels generated by the Leray mapP̃ . For ζ near∂Tδ we have
P̃ = φP ; sinceφ 6= 0 there, the kernelL is identical to the one generated by the
holomorphic Leray mapP, and hence the first term in (3.6) is zero. This gives
us the solution formula (3.7) for the equation∂̄v = u in Tcδ. This completes the
construction of the kernel for(0,1)-forms.

Proof of the sup-norm Estimates

It suffices to show that the sup-norm estimate holds in our situation whenn ≥ 3.
In casen < 3 we simply identifyCn with Cn × {0} ⊂ C3 and extendf indepen-
dently of the additional variables; the solution to the extended problem will satisfy
the estimates, and its restriction toCn will be a solution to the original̄∂-problem.

3.4. Lemma. The solutionv(z) = ∫Tδ K(ζ, z)∧u(ζ) defined previously satisfies
the estimate‖v‖L∞(Tcδ) ≤ Cδ‖u‖L∞(Tδ) whenn ≥ 3.

Proof. Let P 0 = φP ; P 0 is independent ofδ andP̃ = (1− λ)P 0 + λ(ζ − z).
This gives



388 Franc Forstneri č , Erik Løw, & Nils Øvrelid

∂̄P̃j = ∂̄λ(ζj − zj − P 0
j )+ (1− λ)∂̄P 0

j + λdζ̄j
=: ∂̄λ(ζj − zj − P 0

j )+ ηj . (3.8)

The terms inK(ζ, z) are of the form8̃−nP̃j ∂̄P̃ [j ] ∧ dζ. Since∂̄λ ∧ ∂̄λ = 0, this
is a sum of terms of the following two types:

8̃−nP̃j η[j ] ∧ dζ and 8̃−nP̃j(ζk − zk − P 0
k )∂̄λ ∧ η[j, k] ∧ dζ.

We shall estimate the integrals of these overTδ whenz ∈ Tcδ. We have already
shown that Rẽ8(ζ, z) ≥ C|ζ − z|2. For |ζ − z| ≤ 1

2R we have

n∑
j=1

P 0
j (ζ, z)(ζj − zj ) = 〈P 0(ζ, z), ζ − z〉 = A(ζ, z)

= 2
n∑
j=1

∂ρ(ζ)

∂ζj
(ζj − zj )+O(|ζ − z|2).

This impliesP 0
j (ζ, z) = 2∂ρ(ζ)

∂ζj
+O(|ζ − z|) = O(δ + |ζ − z|). By choice ofλ

this gives(1−λ(ζ, z))P 0
j (ζ, z) = O(|ζ − z|) and thereforeP̃j(ζ, z) = O(|ζ − z|).

Since|ηj | ≤ C, we have

8̃−nP̃j η[j ] ∧ dζ = O(|ζ − z|1−2n),

8̃−nP̃j(ζk − zk − P 0
k )∂̄λ ∧ η[j, k] ∧ dζ = O(|ζ − z|1−2n + δ−1|ζ − z|2−2n),

which shows that the kernelK(ζ, z) has a singularity of the same type as the
Bochner–Martinelli kernel on the diagonal.

Locally we may straightenM; that is, for eachp ∈ M there is a neighbor-
hoodVp of p and aC1-diffeomorphism9:U → Vp, whereU is a neighborhood
of the origin inR2n, such that9 is nearly volume- and distance-preserving and
9(U ∩ Rm) = Vp ∩M, wherem is the dimension ofM. We denote the points in
R2n by (u′, u′′) ∈ Rm × R2n−m. By compactness we may assume thatTδ is cov-
ered by a finite number (independent ofδ) of sets

Kδ
j = 9j({(u′, u′′); |u′| ≤ a, |u′′| ≤ δ})

for some constanta. We keep the notationζ andz for the points in the new coor-
dinates also. We then have the estimate(ζ = (u′, u′′)):∣∣∣∣∫

Kj

K(ζ, z) ∧ u(ζ)
∣∣∣∣

≤ C‖u‖L∞(Tδ)
∫
|u′|≤a,|u′′|≤δ

(|ζ − z|1−2n + δ−1|ζ − z|2−2n) dV(ζ)

≤ C‖u‖L∞(Tδ)
∫
|u′|≤a,|u′′|≤δ

(|ζ|1−2n + δ−1|ζ|2−2n) dV(ζ).

Form < t < 2n we estimate these integrals as follows:



Solving thed- and ∂̄-Equations in Thin Tubes and Applications to Mappings389∫
|u′|≤a,|u′′|≤δ

1

|ζ|t ≤ C
(∫ √2δ

0

r 2n−1

r t
dr +

∫ a

δ

δ2n−mr m−1

r t
dr

)
≤ Cδ2n−t . (3.9)

Hence ∣∣∣∣∫
Kj

K(ζ, z) ∧ u(ζ)
∣∣∣∣ ≤ C‖u‖L∞(Tδ)(δ + δ−1δ2) = 2C‖u‖L∞(Tδ)

when 2n− 2> m. Sincem ≤ n, this holds forn > 2.

Construction of the Kernel for Forms of Higher Degree

We consider the form

K(ζ, z) = cn8̃(ζ, z)−n
n∑
j=1

(−1)j−1P̃j ∂̄P̃ [j ] ∧ d(ζ − z)

onTδ × Tc ′δ, where∂̄ is now taken with respect to bothζ andz. We decompose

K(ζ, z) =
∑
p≤n

∑
q≤n−1

Kp,q(ζ, z),

whereKp,q has bidegree(p, q) with respect toz and(n− p, n− q −1) with re-
spect toζ. If q > 0 thenKp,q(ζ, z) = 0 whenz ∈ Tc ′δ andζ is near∂Tδ. (Recall
thatK(ζ, z) = Kδ(ζ, z) depends onδ via the cut-off functionλδ.) It follows that
the(p, q −1)-form

v(z) =
∫
Tδ
Kp,q−1(ζ, z) ∧ u(ζ) = (−1)p+q

∫
Tδ
u(ζ) ∧Kp,q−1(ζ, z)

solves∂̄v = u in Tc ′δ for each∂̄-closed(p, q)-form u in Tδ, q > 0. The precise
meaning of the integral is as follows. Write

Kp,q−1(ζ, z) =
∑
|I |=p

∑
|J |=q−1

kI,J(ζ, z)dz
I ∧ dz̄J ,

wherekI,J(ζ, z) is an(n − p, n − q)-form in ζ ∈ Tδ depending smoothly onz ∈
Tc ′δ. Then

v(z) =
∑
|I |=p

∑
|J |=q−1

(−1)p+q
(∫
Tδ
u(ζ) ∧ kI,J(ζ, z)

)
dzI ∧ dz̄J .

This completes the construction of the kernel. The reader may find some addi-
tional references and historical remarks about the solution formula at the end of
this section.

Before proceeding we make the following elementary comments.

Geometric observations.LetM be a compactm-dimensionalC1-submanifold
of RN. There exists a constantB > 0 such that, ifz0, z1∈ Tδ(M) for sufficiently
smallδ, thenz0 andz1 may be joined by a path inTδ(M) of length no more than
B|z1− z0|. This is due to the fact that the tubes may be locally straightened, in a
uniform way, to tubes aroundRm × {0} in RN.
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From this we obtain the following: Ifu ∈ C1(TδM), ‖u‖L∞(Tδ) ≤ A, and
‖u‖C1(Tδ) ≤ At−1 for t ≤ 1 and 0< s < 1, then |u|s,δ ≤ max(2, B)At−s .
We see this as follows. If|h| ≤ t, we can integrateDu from z to z + h to get
|u(z+ h)− u(z)||h|−s ≤ BAt−1|h|1−s ≤ BAt−s . If |h| ≥ t, the triangle inequal-
ity gives|u(z+ h)− u(z)||h|−s ≤ 2At−s .

We also have a corresponding result for compact manifoldsM: If ‖u‖C r(M) ≤
A and‖u‖C r+1(M) ≤ At−1 for t ≥ 0, then‖u‖C r+s(M) ≤ CAt−s , whereC is a con-
stant independent ofu.

Proof of the Estimates for Forms of Higher Degree

The proof of the sup-norm estimate, which we gave for(0,1)-forms, carries over
almost verbatim to the general case. However, Lemma 3.2 fails and we must pro-
ceed differently to estimate the derivatives.

With c0 = c ′ − c we introduce smooth cut-off functionsχδ ∈ C∞0 (B(0, c0δ))

with χδ(w) = 1 when|w| < c0δ/2 and|∂ αχδ| ≤ Cαδ−|α|. Then we decomposev
asv ′ + v ′′, with

v ′(z) =
∫
Tδ
χδ(ζ − z)Kp,q−1(ζ, z) ∧ u(ζ),

v ′′(z) =
∫
Tδ
(1− χδ(ζ − z))Kp,q−1(ζ, z) ∧ u(ζ);

we then estimate each summand separately.
Recall that ifz ∈ Tcδ and |ζ − z| ≤ c0δ thenK(ζ, z) equals the Bochner–

Martinelli kernel. Thusv ′(z) is obtained forz ∈ Tcδ by applying a convolution
operator tou; hence

∂ αv ′(z) =
∫
Tδ
χδ(ζ − z)Kp,q−1(ζ, z) ∧ ∂ αu(ζ).

Thus the components of∂ αv ′(z)are linear combinations of termsh(z) = (k∗g)(z),
wherek(w) = χδ(w)w̄j |w|−2n andg is a component of∂ αu. Since|k(w)| ≤
|w|1−2n and k is supported byB(0, c0δ), an obvious estimate gives|h(z)| ≤
Cδ‖g‖∞, so

‖∂av ′‖L∞(Tcδ) ≤ Cδ‖∂ αu‖L∞(Tδ).
In order to estimate the finer norms ofh, we introduce the auxiliary kernels

kt(w) = χδ(w)w̄j(t 2 + |w|2)−n, t > 0.

This is a smooth function of(t, z) satisfying|kt(z)| ≤ |k(z)| and limt→0 kt(z) =
k(z). Since eachkt has compact support, it follows that

∫
∂jD

βkt(w) dV(w) = 0
for every(t, z)-derivativeDβ. Thus, settinght(z) = (kt ∗ g)(z), we see that

Dβ∂jht(z) =
∫
Tδ
∂jD

βkt(w)(g(z− w)− g(z)) dV(w).

Observing that|∂γχδ(w)| ≤ Cγ |w|−|γ | on suppχδ, a simple calculation gives

|Dβ∂jkt(w)| ≤ Cβ |w|−|β|(t + |w|)−2n.
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Assume that∂ αu∈3s(Tδ) for somes ∈ (0,1). We haveg ∈3s(Tδ), and fort > 0
we can estimate in polar coordinates:

|∂jht(z)| ≤ C|g|s,δ
∫
|w|<c0δ

(t + |w|)s−2n dV(w)

≤ C|g|s,δ
∫ c0δ

0
r s−1dr = Csδs |g|s,δ.

For the first-order derivatives with respect to(t, z), in the same way we derive

|D∂jht(z)| ≤ C|g|s,δ
∫
|w|<c0δ

|w|s−1(t + |w|)−2n dV(w)

≤ C|g|s,δ
∫ c0δ

0
(t + r)s−2 dr ≤ C ′s t s−1|g|s,δ. (3.10)

By the dominated convergence theorem we haveht(z)→ h(z) and

∂jht(z)→ h(j)(z) =
∫
Tδ
∂j k(w)(g(z− w)− g(z)) dV(w)

ast → 0. We also have

|∂jht(z)− h(j)(z)| ≤
∫ t

0

∣∣∣∣ ∂∂τ ∂jhτ (z)
∣∣∣∣ dτ ≤ C|g|s,δt s;

hence the convergence of the derivatives is uniform and thereforeh(j)(z) = ∂jh(z).
Thus|∂jht(z)| ≤ Csδs |g|s,δ, and we conclude that

‖∂j∂ αv ′‖L∞(Tcδ) ≤ Csδs |∂ αu|s,δ.
We have also shown that

∂j∂
αv ′(z) =

∫
Tδ
∂j(χδ(ζ − z)Kp,q−1(ζ, z)) ∧ (∂ αu(ζ)− (∂au)z).

In order to estimate the3s-norm of∂j∂ αv ′, we need the following standard.

Lemma. Letφ ∈ C(Tδ)have an extensioñφ ∈ C1(R+×Tδ) satisfying|Dφ̃(t, z)| ≤
At s−1 for some0< s < 1. Thenφ ∈3s(Tδ) and |φ|s,δ ≤ (B + 2/s)A.

This is just a slight modification of [HL, Apx. 1, Prop. 2]. Applying this toφ =
∂jh andφ̃(t, z) = ∂jht(z), (3.10) gives|∂jh|s,cδ ≤ C ′s(B + 2/s)|g|s,δ. Thus

|∂j∂ αv ′|s,cδ ≤ Cs |∂ αu|s,δ.
In order to studyv ′′, we setK ′′p,q−1(ζ, z) = (1− χδ(ζ − z))Kp,q−1(ζ, z) on

Tδ × Tcδ. This kernel has continuousz-derivatives of all orders, and it equals zero
when|ζ − z| ≤ c0δ/2. It follows thatv ′′ is a smooth form with

∂ αv ′′(z) =
∫
Tδ
∂ αzK

′′
p,q−1(ζ, z) ∧ u(ζ).

We recall formula (3.8) and point out that|∂̄λδ| = O(δ−1)and|φ̃(ζ, z)| ≥ C|ζ−z|2
onTδ × Tcδ; moreover, the quantities|Dzφ̃(ζ, z)|, |ηj |, and|P 0

j | are all bounded
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by C|ζ − z|, while their derivatives with respect toz are bounded independently
of δ (sinceλδ is independent ofz).

An induction on|α| shows that the components of∂ αzK
′′
p,q−1(ζ, z) are linear

combinations of terms of the type

φ̃−n−k∂ βz (1− χd(ζ − z))a0(ζ, z) · · · at(ζ, z)
(with β ≤ α, k ≤ |α − β|, andt ≥ 2k +1− |α − β|) and terms of the type

φ̃−n−k
∂λδ(ζ)

∂ζ̄i
a0(ζ, z) · · · at(ζ, z)

(with k ≤ |α| and t ≥ 2k + 2 − |α|), where theaj(ζ, z) have continuousz-
derivatives of all orders that have upper bounds independent ofδ and where
|aj(ζ, z)| ≤ C|ζ − z| when t > 0 and 1≤ j ≤ t. Because|ζ − z| > c0δ/2
whenK ′′p,q−1 6= 0, it follows easily that

|∂ αzK ′′p,q−1(ζ, z)| ≤ Cαδ−1|ζ − z|2−2n−|α|.
Thus

|∂ αv ′′(z)| ≤ Cαδ−1‖u‖L∞(Tδ)
∫
Tδ\B(z,c0δ/2)

|ζ − z|2−2n−|α| dV(ζ)

≤ Cαδ1−|α|‖u‖L∞(Tδ)
for z∈ Tcδ andα ∈Zn+. The last estimate follows for|α| > 2, |α| = 2, and|α| =
1, respectively, from the following three integral estimates:∫

|ζ−z|>δ
|ζ − z|−2n−t dV(ζ) = Ct δ−t , t > 0; (3.11)∫

Tδ\B(z,c1δ)
|ζ − z|−2n dV(ζ) ≤ C(c1), z∈ Tδ, (3.12)∫

Tδ
|ζ − z|s−2n dV(ζ) ≤ Csδs, 0< s < 2n−m. (3.13)

Equation (3.11) follows immediately by a change of variable. Inequality (3.12) is
proved exactly like (3.9); in the sum in the middle of (3.9), the first integral has
lower limit c1δ instead of 0. Finally, (3.13) follows by settingt = 2n− s in (3.9).

Using the geometric observation following the construction of the kernel, we
have

‖∂ αv ′′‖3s(Tcδ) ≤ Cα,s δ1−|α|−s‖u‖L∞(Tcδ).
This completes the proof of the Hölder estimates in Theorem 3.1 for the case 0<

s < 1. The proof fors = 1 follows the same lines, with certain small modifica-
tions; since that case will not be used in this paper, we omit the details.

Remarks on Constructions of Kernels

The first integral kernel operators with holomorphic kernels, those solving the
∂̄-equation on strongly pseudoconvex domains inCn, have been constructed by
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Henkin and independently by R. deArellano (see the references in [HL]). Henkin’s
approach is to patch the Bochner–Martinelli and Leray kernels on the boundary
∂�. Our patching of the two kernels (by first multiplying byφ) is the same as
in Øvrelid [Ø1; Ø2]. The whole construction is similar to the one by Harvey and
Wells [HW].

It seems that the first really preciseL∞ andC k-estimates for thē∂-equation in
thin tubes around a totally real submanifoldM ⊂ Cn, proved by means of integral
solution operators, are due to Harvey and Wells [HW] in 1972. In 1974, Range
and Siu [RS] used a more refined kernel construction to prove estimates for the
highest-order derivatives of their solution onM and deducedC k-approximation
of C k-functions on aC k-submanifoldM ⊂ Cn by holomorphic functions, a case
left open in [HW]. In fact, this approximation problem has been one of the orig-
inal motivations in proving such estimates. This approximation was later accom-
plished more efficiently (and in greater generality) by Baouendi and Treves [BT1;
BT2], who used the convolution with the complex Gaussian kernel. This latter
method does not seem to give the approximation of diffeomorphisms obtained in
this paper because we must work in tubular neighborhoods and not solely on the
submanifold.

As remarked previously, our construction of the kernel in this paper is close to
[HW] and our main contribution is the way in which we estimate the solutions.
We find it quite striking that this simple and seemingly crude construction of the
kernel gives rise to results that are essentially optimal for the applications to map-
pings presented in this paper. For the benefit of the reader we have given a fairly
self-contained presentation based on the text [HL]. Another closely related paper
is [BB], where Bruna and Burgués approximate∂̄-closed jets on a totally real set
X in Hölder norms by functions holomorphic in a neighborhood ofX. It seems
likely that their method—making use of weighted integral kernels of Anderson
and Berndtsson type [AB]—may also be used to prove our results. However, we
believe that our approach is simpler and more elementary. Our results, suitably
reformulated, may also be proved for neighborhoods of totally real sets.

4. Proof of Theorems 1.2 and 1.3

Proof of Theorem 1.2.We consider first the case dimM0 = dimM1= n. Letd(z)
denote the Euclidean distance ofz toM0, and letTδ (resp.,T ′δ ) denote the open
tube of radiusδ aroundM0 (resp., aroundM1). TheC k-diffeomorphismf :M0→
M1 can be extended to aC k-map onCn, still denotedf, that is ∂̄-flat to orderk
atM0:

|∂ α(∂̄f )(z)| = o(d(z)k−1−|α|), 0 ≤ |α| ≤ k −1.

In particular, the derivativeDf(z) is a nondegenerateC-linear map at each point
z ∈M0 (the complexification ofdfz: TzM0 → Tf(z)M1) and hencef is aC k dif-
feomorphism in some neighborhood ofM0 in Cn. The(0,1)-formu = ∂̄f of class
C k−1 satisfies̄∂u = 0 and

‖∂ αu‖L∞(Tδ) = o(δk−1−|α|), 0 ≤ |α| ≤ k −1,
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asδ→ 0. Applying Theorem 3.1 (specifically, the estimates (3.1) withl = k−1≥
0 and a fixed constant 0< c < 1), for each sufficiently smallδ > 0 we obtain a
solutionvδ to ∂̄vδ = u in Tδ satisfying the following estimates:

‖∂ αvδ‖L∞(Tcδ) ≤ C(δ‖∂ αu‖L∞(Tδ) + δ1−|α|‖u‖L∞(Tδ))
≤ C(δo(δk−1−|α|)+ δ1−|α|o(δk−1))

= o(δk−|α|), |α| ≤ k −1.

Moreover, sincē∂v = u has a solution of classC l+1 = C k (namely,f ), we can
choosevδ to satisfy in addition the estimates (3.2) for the derivatives of top-orderk:

‖∂ αvδ‖L∞(Tcδ) ≤ C(ωk(f ; δ)+ δ−k+1‖∂̄f ‖L∞(Tcδ)) = o(1), |α| = k.
Hereωk(f ; δ) denotes the modulus of continuity of thekth-order derivatives off.
SetFδ = f − vδ in Tδ. Then∂̄Fδ = 0 and the estimates onvδ imply

‖Fδ − f ‖C r(Tcδ) = ‖vδ‖C r(Tcδ) = o(δk−r ), 0 ≤ r ≤ k,
which gives the first estimate in (1.2). It remains to prove thatFδ is biholomorphic
and satisfies the inverse estimates in (1.2) for all sufficiently smallδ > 0. To sim-
plify the notation we replaceδ by cδ/2, so thatFδ is holomorphic in the tubeT2δ

and satisfies
‖Fδ − f ‖C r(T2δ) = o(δk−r ), 0 ≤ r ≤ k, (4.1)

asδ→ 0. Sincef is a diffeomorphism nearM0, so is any sufficiently closeC1 ap-
proximation off ; hence (4.1) withr = 1 implies that, forδ > 0 sufficiently small
(say, 0< δ ≤ δ0 ≤ 1), the mapFδ is diffeomorphic (and hence biholomorphic)
in T2δ. Decreasingδ0 if necessary, there is a numbera > 0 such that

|f(z)− f(z ′)| ≥ 2a|z− z ′|, z, z ′ ∈ Tδ0.

Sincef(M0) = M1, this implies thatf(Tδ) contains the tubeT ′2aδ.
Fix anε > 0. By (4.1) applied withr = 0,we obtain a constantδ1= δ1(ε)with

0< δ1 ≤ δ0 such that‖Fδ − f ‖L∞(T2δ) < aεδk for 0< δ ≤ δ1. Fix a pointz∈ Tδ
and letw = f(z). For eachz ′ with |z ′ − z| = εδk, we have

|Fδ(z ′)− w| = |(Fδ(z ′)− f(z ′))+ (f(z ′)− f(z))|
≥ |f(z ′)− f(z)| − |Fδ(z ′)− f(z ′)|
≥ 2aεδk − aεδk = aεδk.

This means that the image byFδ of the sphereS = {z ′ : |z ′ − z| = εδk} is a
hypersurface containing the ballB(w; aεδk) = {w ′ : |w ′ − w| < aεδk} in the
bounded component of its complement. By degree theory, theFδ-image of the
ballB(z; εδk) contains the ballB(w; aεδk). Hence there is a pointζ ∈B(z; εδk)
such thatFδ(ζ) = w = f(z), and we have|F −1

δ (w)− f −1(w)| = |ζ − z| < εδk.

Since this applies to any pointw ∈ T ′2aδ, we conclude thatFδ(T2δ) ⊃ T ′2aδ and
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‖F −1
δ − f −1‖L∞(T ′2aδ) ≤ εδk, 0< δ ≤ δ1(ε). (4.2)

Sinceε > 0 was arbitrary, this gives the inverse estimate in (1.2) forr = 0.
We proceed to estimate the derivatives of the inverse maps. Denote by‖A‖ the

spectral norm of a linear mapA ∈ GL(R,2n). Note thatDf −1(w) = Df(z)−1,

wherew = f(z). Fix a pointw ∈ T ′2aδ and letz = f −1(w) andzδ = F −1
δ (w)

(these are points inT2δ). By (4.2) we have|z − zδ| ≤ εδk. Writing A = Df(z)
andB = DFδ(zδ), we get

‖DF −1
δ (w)−Df −1(w)‖ = ‖A−1− B−1‖

= ‖A−1(B − A)B−1‖
≤ ‖A−1‖ · ‖A− B‖ · ‖B−1‖.

Sincef is a diffeomorphism andFδ is C1-close tof, the eigenvalues ofA and
B are uniformly bounded away from zero, and this gives a uniform estimate on
‖A−1‖ and‖B−1‖ (independent ofδ). The middle term is

‖A− B‖ = ‖Df(z)−DFδ(zδ)‖ ≤ ‖Df(z)−Df(zδ)‖ + ‖Df(zδ)−DFδ(zδ)‖.
The second term on the right-hand side is of sizeo(δk−1), according to (4.1). As
δ → 0, we havezδ → z, and hence the first term on the right-hand side goes to
zero (by continuity ofDf ). Hence sup{‖DF −1

δ (w)−Df −1(w)‖ : w ∈ T ′2aδ} goes
to zero asδ→ 0. This completes the proof whenk = 1. If k > 1, we can further
estimate‖Df(z)−Df(zδ)‖ ≤ C|z− zδ| ≤ Cεδk, whereC is an upper bound for
the second derivatives off. This gives

sup{‖DF −1
δ (w)−Df −1(w)‖ : w ∈ T ′2aδ} = o(δk−1),

as required by (1.2) for derivatives of orderr = 1. To obtain the estimates (1.2) for
the higher derivatives ofF −1

δ − f −1, we may apply the same method to the tan-
gent map—that is, the induced map on tangent bundles over the tubes that equals
the derivative of the given map on each tangent space. We leave out the details.
This proves Theorem 1.2 when dimM0 = n.

Suppose now thatm = dimM0 < n. We are assuming that there is an isomor-
phismφ: ν0 → ν1 of the complex normal bundlesν0 → M0 (resp.,ν1 → M1)

overf ; by approximation we may assume thatφ is of classC k−1. For eachz∈M0

we haveTzCn = T C
z M0⊕ ν0,z. Let lz be theC-linear map onCn that is uniquely

defined by takinglz = dfz onT C
z M0 andlz = φz on ν0,z. Clearly lz ∈GL(n,C)

for eachz ∈ M. Applying Lemma 2.6, we obtain aC k-extensionf̃ of f that is
∂̄-flat onM0. Now the proof may proceed exactly as before. This proves Theo-
rem 1.2.

Remarks. (1) If f0:M0→ M1 is areal-analytic diffeomorphismand if the com-
plex normal bundles toM0 (resp.,M1) are isomorphic overf, thenf extendsto
a biholomorphic mapF from neighborhood ofM0 onto a neighborhood ofM1.

We see this as follows. Letφ: ν0 → ν1 be the continuous isomorphism (overf )
of the complex normal bundles toM0 (resp.,M1). There exist complexifications
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M̃i ⊂ Cn ofMi (i = 0,1) such thatf extends to a biholomorphic map̃f : M̃0→
M̃1 and such that the complex normal bundlesνi → Mi extend to holomorphic
vector bundles̃νi → M̃i . We define a continuous mapψ :M0 → GL(n,C) by
ψ(z) = df̃z ⊕ φz. SinceM0 ⊂ M̃0 is totally real,ψ may be approximated by
a holomorphic map̃ψ : M̃0 → GL(n,C). We now defineφ̃: ν̃0 → M̃1 × Cn by
φ̃z(v) = (f̃ (z), ψ̃z(v)). Clearly φ̃ is a holomorphic vector bundle isomorphism
betweenν̃0 and a holomorphic subbundlẽν2 ⊂ M̃1× Cn that is an approxima-
tion of ν̃1. In particular,φ̃ is a biholomorphic map between neighborhoodsVi of
the zero sections of̃νi. These neighborhoods map biholomorphically onto neigh-
borhoods ofM0 (resp.,M1) under the projection maps (the Docquier–Grauert
theorem). This gives the desired biholomorphic extension off.

(2) If instead of Theorem 3.1 we use Hörmander’sL2-estimates when solving
∂̄vδ = u (= ∂̄f ) in Tδ, the resulting holomorphic mapsFδ = f − vδ can be shown
to satisfy the weaker estimate‖Fδ|M0 − f ‖C r(M0) = o(δk−r−l) for 0 ≤ r ≤ l,

wherel is the smallest integer larger than1
2 dimM0. This approach had been used

in [FL].

Proof of Theorem 1.3.The proof can be obtained by repeating the proof of Theo-
rem 1.1 in [FL] (or of its more technical version, [FL, Thm. 2.1]), except that one
applies our Theorem 3.1 whenever solving a∂̄-equation. This gives the improved
estimates in (1.3) with no loss of derivatives. We leave out the details.

A correction to[FL]. We take this opportunity to correct an error in the proof of
Lemma 4.1 in [FL]. (Equation numbers in the balance of this section refer to that
paper.) The lemma is correct as stated, but the proof of the estimate (4.5) is not
correct. Using the notation of that proof, we have the higher variational equations

∂

∂t
Dpφt(x) = DXt(φt(x)) BDpφt(x)+Hp

X(t, x)

for p ≤ k, whereDpf denotes thepth-order derivative of a mapf :� ⊂ Rn →
Rn, soDpf ∈Lp(Rn,Rn). HereHp

X(t, x) is a sum of terms involving derivatives
of the vector fieldXt and derivatives of order less thanp of the flowφt , andH1

X =
0. We use the same notation forY εt and its flowψε

t .

Choose unit vectorsv1, . . . , vp ∈Rn and set

y(t) = [Dpφt(x)−Dpψε
t (x)](v1, . . . , vp).

It will be sufficient to show that‖y(t)‖ = o(εk−p) uniformly for 0≤ t ≤ t0, x ∈
K(ε), and unit vectorsv1, . . . , vp. Now y(t) satisfies the differential equation

y ′(t) = DY εt (ψ ε
t (x))· y(t)+ (DXt(φt(x))−DY εt (ψ ε

t (x)) BDpφt(x)(v1, . . . , vp)

+ (Hp

X(t, x)−Hp

Y ε (t, x))(v1, . . . , vp).

This is a linear systemy ′ = A(t) B y + b(t), y ∈ Rn. Suppose the matrix norms
satisfy‖A(t)‖ ≤ A and‖b(t)‖ ≤ b for t ∈ [0, t0]. The functionu(t) = ‖y(t)‖ is
differentiable outside the zeroes ofu, with u′(t) = y ′(t)· y(t)/‖y(t)‖ ≤ ‖y ′(t)‖,
so u′(t) ≤ Au(t) + b outside the zeroes ofu. Sinceφ0 = ψε

0 = Id, we have



Solving thed- and ∂̄-Equations in Thin Tubes and Applications to Mappings397

y(0) = 0. We shall first show thatu(t) ≤ b
A
(eAt − 1) for t ∈ [0, t0]. If u(t) = 0

then there is nothing to prove. If not, lett1 be the largest zero ofu on [0, t ]. Thus
u′(s) ≤ Au(s)+ b for s ∈ (t1, t ]. Settingv(s) = u(s)e−As yieldsv ′(s) ≤ be−As
for s ∈ (t1, t ]. Integration fromt1 to t givesv(s) ≤ b

A
(e−At1 − e−At ). Thusu(t) ≤

b
A
(eA(t−t1) −1) ≤ b

A
(eAt −1).

In our situation, by (4.4) the matrix norm ofA(t) = DY εt (ψ ε
t (x)) is bounded

independently ofε > 0, x ∈ K(ε), andt. It is therefore sufficient to prove that
b = o(εk−p) uniformly in x, t, and unit vectorsv1, . . . , vn. It is shown in [FL]
that the matrix norm‖DXt(φt(x))−DY εt (ψ ε

t (x))‖L∞(K(ε)) = o(εk−1). Since the
flow φt(x) is of classC k, it follows that the matrix norm‖Dpφt(x)‖ is uniformly
bounded forx ∈ K(ε) andt ∈ [0, t0]. Applying (4.4) and (4.5) inductively as in
[FL], we obtain‖Hp

X −Hp

Y ε‖L∞(K(ε)) = o(εk−p) uniformly in t, which proves the
claim.

5. Solving the Equationdv=u for
Holomorphic Forms in Tubes

Let d denote the exterior derivative. In this section we solve the equationdv = u
with sup-norm estimates for holomorphic forms in tubesTδ = TδM around totally
real submanifoldsM ⊂ Cn. We denote by3s the Hölder spaces as in Section 3.
We first state our main result for closed submanifolds; for an extension to compact
submanifolds with boundary, see Remark (3) following Theorem 5.1.

5.1. Theorem. Leti:M ↪→ Cn denote the inclusion of a closed,m-dimensional,
totally real submanifold of classC2 in Cn. Let a positive constantc < 1be given.
Then there exist positive constantsC, δ0, andCs for all s ∈ (0,1) such that, ifu is
a d-closed holomorphicp-form in the tubeTδ = TδM for some0 < δ ≤ δ0 and
1≤ p ≤ n, then:

(a) if p > m, the equationdv = u has a holomorphic solutionv in Tδ satisfying

‖v‖L∞(Tcδ) ≤ Cδ‖u‖L∞(Tδ); (5.1)

(b) if p ≤ m and the formi∗u is exact onM, then for any solution ofdv0 = i∗u
of class3s(M) (0 < s < 1) there is a holomorphic solutionv of dv = u in
Tδ satisfying

‖v‖L∞(Tcδ) ≤ Cs(δ‖u‖L∞(Tδ) + ‖v0‖L∞(M) + δs‖v0‖3s(M)); (5.2)

(c) if p ≤ m andi∗u is exact onM, then there is a holomorphic solution ofdv =
u with

‖v‖L∞(Tcδ) ≤ C‖u‖L∞(Tδ). (5.3)

Remarks. (1) If � is a Stein manifold, then the Rham cohomology groups
Hp(�;C) can be calculated by holomorphic forms in the following sense: Each
closed form is cohomologous to a closed holomorphicp-form, and if a holo-
morphic formu is exact (i.e., ifu = dv0 for some not necessarily holomorphic
(p −1)-form v0) then alsou = dv for a holomorphic(p −1)-form v on�. (See
[Hö, Thm. 2.7.10].)
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(2) On aC2-manifoldM, theC1-forms and thed-operatord: C1
p−1(M)→ C 0

p (M)

are intrinsically defined. By duality, the notiondv = u (weakly) is well-defined
onM. The condition in Theorem 5.1 thati∗u be exact onM need only hold in the
weak sense.

(3) Theorem 5.1 has an extension to nonclosed totally realC1-submanifoldsM ′
in Cn. LetK be a compact subset ofM ′ and letK ′ ⊂ M ′ be a compact neighbor-
hood ofK in M ′. (For instance,K = M may be a compact totally real submani-
fold with boundary inCn.) For δ > 0 we set

Uδ = {z∈Cn : dK(z) < δ}, U ′δ = {z∈Cn : dK ′(z) < δ}.
Choosec ∈ (0,1). Assume thatu is ad-closed holomorphicp-form in U ′δ with
i∗u exact onU ′δ ∩M ′ (wherei:M ′ ↪→ Cn is the inclusion map). Then there is
a holomorphic solution ofdv = u in Ucδ such that the estimates (5.1)–(5.3) are
valid whenTcδ is replaced byUcδ andTδ is replaced byU ′δ .

Proof of Theorem 5.1

We give the details in the case whenM is closed (compact and without boundary);
for the nonclosed case, see Remark (4) following the proof.

SinceM is a strong deformation retraction of the tubeTδ, the equationdv =
u has a differentiable solution onTδ under the previous assumptions. The strat-
egy is to first find a good differentiable solutionv1 and then successively get rid
of its (p − q − 1, q)-components forq > 0. The second part, Lemma 5.2, fol-
lows the proof of Serre’s theorem [Hö, Thm. 2.7.10], which amounts to solving a
∂̄-equation at each step. We use the solution provided by Theorem 3.1; it is here
that we need the sharp estimates (3.3) and (3.4) for the Hölder norms.

5.2. Lemma. Let 0 < c < c1 < 1. Let u be a closed holomorphicp-form on
Tδ for 0 < δ ≤ δ0, as in Theorem 5.1. Suppose that there exists a differentiable
(p − 1)-formv1 onTc1δ satisfyingdv1= u and

‖v1‖L∞(Tc1δ) ≤ Aδ, ‖v1‖3s(Tc1δ) ≤ Aδδ−s , (5.4)

whereAδ depends onδ andu. Then there exists a holomorphic(p−1)-formv in
Tcδ satisfyingdv = u and ‖v‖L∞(Tcδ) ≤ C0Aδ for 0 < δ ≤ δ0, whereC0 is an
absolute constant.

Proof. Let v1=∑q≤q0
v(q),wherev(q) is of bidegree(p−1−q, q). By compar-

ing the terms of bidegree(p−1− q0, q0+1) in the equationdv1= ∂v1+ ∂̄v1=
u and taking into account thatu is holomorphic, we see that∂̄v(q0) = 0. If q0 > 0
then we have (by Theorem 3.1) a formw onTδ solving ∂̄w = v(q0) and satisfying
the following estimates for some fixedc < c2 < 1 and for all 1≤ j ≤ 2n:

‖∂jw‖L∞(Tc2δ)
≤ C1(‖v(q0)‖L∞(Tc1δ) + δs‖v(q0)‖3s(Tc1δ)) ≤ 2C1Aδ,

‖∂jw‖3s(Tc2δ)
≤ C1(‖v(q0)‖3s(Tc1δ) + δ−s‖v(q0)‖L∞(Tc1δ)) ≤ 2C1Aδδ

−s .

Thus the formv2 = v1− w solvesdv2 = dv1 = u, has only components of bi-
degree(p − q −1, q) for q < q0, and it satisfies
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‖v2‖L∞(Tc2δ)
≤ C ′Aδ, ‖v2‖3s(Tc2δ)

≤ C ′Aδδ−s .
Repeated use of this argument gives a holomorphic solution of the equationdv =
u satisfying‖v‖L∞(Tcδ) ≤ C0Aδ.

To prove Theorem 5.1 it thus suffices to construct a good differentiable solution
satisfying Lemma 5.2, withAδ as small as possible. LetF = {Ft }: [0,1]×Tδ0 →
Tδ0 be aC2 deformation retraction of a tubeTδ0 ontoM, with F1 the identity map
andπ = F0: Tδ0 → M a retraction ontoM. Let it :M → [0,1] × M be the
mapx → (t, x). By Lemma 2.1, the form̃v = ∫ 1

0 i
∗
t

(
∂
∂t
cF ∗u) dt solvesdṽ =

u − π∗u in Tδ0. In the special local coordinates provided by Lemma 2.4, ifu =∑
|I |+|J |=p uI,J dxI ∧ dyJ then the components of̃v are linear combinations of

termsyj
∫ 1

0 t
|J |−1uI,J(x, ty) dt for j ∈ J. Since the variablesyj are transverse

to M, we have|yj | = O(δ) on Tδ and hence‖ṽ‖L∞(Tδ) ≤ Cδ‖u‖L∞(Tδ), with C
independent ofδ. Replacingδ by c1δ and changingC in each step below if neces-
sary (but keeping it independent ofδ), it follows from Cauchy’s inequalities that
‖Du‖L∞(Tc1δ) ≤ Cδ−1‖u‖L∞(Tδ) and thus

‖Dṽ‖L∞(Tc1δ) ≤ C‖u‖L∞(Tδ), ‖ṽ‖3s(Tc1δ) ≤ Cδ1−s‖u‖L∞(Tδ).
In part (a) of Theorem 5.1 we havep > m and soπ∗u = π∗(i∗u) = 0 by de-

gree reasons; hence the formv1 = ṽ satisfiesdv1 = u and the estimate (5.4) with
Aδ = Cδ‖u‖L∞(Tδ). Lemma 5.2 now completes the proof in this case.

To prove case (b) we setv1= ṽ + π∗v0, wherev0 ∈3s(M) solvesdv0 = i∗u.
We obtain

‖v1‖L∞(Tc1δ) ≤ C(δ‖u‖L∞(Tδ) + ‖v0‖L∞(M)),
‖v1‖3s(Tc1δ) ≤ C(δ1−s‖u‖L∞(Tδ) + ‖v0‖3s(M)).

Lemma 5.2 then provides a holomorphic solution ofdv = u satisfying the esti-
mates (5.2).

Finally, to prove part (c) in Theorem 5.1 we shall construct a good solution of
dv0 = i∗u onM belonging to3s(M) and then apply (b). In order to circum-
vent problems caused by low differentiability ofM, we use the following result
of Whitney [W2]: If M is a compactC k manifold(k ≥ 1), possibly with bound-
ary, then the underlying topological manifold may be given a structure of aC∞
manifold, denotedM0, such that the set-theoretical identity mapi0:M0 → M is
aC k-diffeomorphism.

Let i0:M0→ M be as before. We choose a smooth Riemann metric onM0 and
refer to Wells [We] for what follows. Letd ∗ denote the Hilbert space adjoint of
the exterior derivatived with respect to the corresponding inner product on forms.
The Laplace operator4 = d ∗d + dd ∗ has a correspondingGreen operator
G:L2

(p)(M0)→ H 2
(p)(M0)) with the property thatβ = d ∗G(α) is the solution of

dβ = α with minimalL2-norm (orthogonal to the null-space of4), provided that
the equationdβ = α is (weakly) solvable. For further details, see [We, Sec. 4.5].

The Green operator is a classical pseudodifferential operator of order−2, so
it induces bounded operatorsL∞ → 32 and3s → 3s+2 for s > 0. (See [S,
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Sec. VI, 5.3.) Nowi∗0u is aC1-form onM0, andv0 = (i−1
0 )
∗(d ∗Gi∗0u) is aC1-form

onM with dv0 = i∗u, satisfying

‖v0‖3s(M) ≤ C ′s‖i∗u‖L∞(M) ≤ Cs‖u‖L∞(Tδ).
Substituting this into (5.2) gives (5.3).

Remarks. (1) In general the constantC = Cδ in the estimate (5.3) cannot be
chosen so that limδ→0Cδ = 0. To see this, leti∗u 6= 0 and choose a form
φ ∈ C1

(m−p)(M) with
∫
M
u ∧ φ 6= 0. If vδ solvesdvδ = u in Tcδ and satisfies

limδ→0 ‖vδ‖L∞(Tδ) = 0, we get∫
M

u ∧ φ =
∫
M

dvδ ∧ φ = ±
∫
M

vδ ∧ dφ→ 0

asδ→ 0, a contradiction.
(2) If M is only of classC1, the operatord is not well-defined onM. Instead,

we call ap-form α onM exact if there exists an integrable(p − 1)-form β on
M such that, for each smooth(m− p)-form φ on a neighborhood ofM, we have∫
M
β ∧ i∗(dφ) = (−1)p

∫
M
α ∧ i∗φ. Then it is not hard to verify thatd(i∗0β) =

i∗0α (weakly) onM0 and also thatd(π∗β) = π∗α on Tδ0. Using this, the proof
carries over with only minor changes to the case whereM is of classC1+ε for some
ε > 0, whendv0 = i∗u is interpreted as above.

(3) If M is of classC2+ε for someε > 0, a more refined argument gives a holo-
morphic solution ofdv = u that also satisfies‖v‖C1(Tcδ) ≤ C log(1/δ)‖u‖L∞(Tδ)
wheneveri∗u is exact. This reflects the fact that one expects to “gain almost a
derivative” in the interior estimates for thed-equation. We cannot establish such
estimates with a constant independent ofδ. In fact, whenM = {z∈Cn: |zj | = 1,
1 ≤ j ≤ n}, this would lead to the estimate‖β‖C1(M) ≤ const‖α‖L∞(M) for a
solution ofdβ = α, a contradiction.

(4) Small changes are needed to prove Theorem 5.1 whenM = K is a compact
subset of a larger totally realC2-submanifoldM ′ ⊂ Cn (see Remark (3) follow-
ing the statement of Theorem 5.1). We follow the same proof as before, using the
appropriate version of̄∂-results given by Remark (3) following Theorem 3.1. Dur-
ing the proof we shrinkK ′ ⊃ K andδ > 0 several times. In the proof of (5.2),
we observe that theL2-minimal solution ofdv0 = i∗u in U ′δ ∩M ′ also satisfies
d ∗v0 = 0 whenp > 1, and we may apply the interior elliptic estimates to obtain
Hölder estimates forv0 in a neighborhood ofK. There are also arguments to se-
cure the necessary control of‖v0‖L2, for instance, the Hodge decomposition in a
manifold with boundary.

6. Proof of Theorem 1.5

In this section we prove Theorem 1.5. We shall adapt a method of J. Moser [M]
to the holomorphic setting.

Let ω be either the holomorphic volume formdz1 ∧ · · · ∧ dzn or the holo-
morphic symplectic form

∑n′
j=1 dz2j−1∧ dz2j, n = 2n′. WriteM = M0 and let



Solving thed- and ∂̄-Equations in Thin Tubes and Applications to Mappings401

f :M = M0→ M1 be aC k-diffeomorphism as in Theorem1.5(k ≥ 2), satisfying
condition (1.6) for someC k−1-mapL:M → GL(n,C). Let i:M ↪→ Cn denote
the inclusion. We assume in the proofs thatM is compact and without boundary.
As usual, we denote byTδ = TδM the tube of radiusδ aroundM.

By Lemma 2.6 there is a neighborhoodU ⊂ Cn ofM and aC k-diffeomorphism
f̃ :U → f̃ (U) ⊂ Cn extendingf such thatf̃ is ∂̄-flat onM and satisfies(f̃ ∗ω)z =
ωz at all pointsz ∈M. The proof of Theorem 1.2 then gives, for each smallδ >

0, a holomorphic mapF ′δ : Tδ → Cn of the form

F ′δ = f̃ + Rδ, ‖Rδ‖Cj(TδM) = o(δk−j ); 0 ≤ j ≤ k. (6.1)

In order to prove Theorem 1.5, we must construct biholomorphic mapsFδ as be-
fore but which in addition satisfyF ∗δ ω = ω. We need the following two lemmas.

6.1. Lemma (Existence of a good̄∂-flat extension). If f̃ is any∂̄-flat C k-exten-
sion off satisfying(f̃ ∗ω)z = ωz for all z ∈M, then there exists another̄∂-flat
C k-extensionf̂ of f satisfying|f̂ ∗ω − ω| = o(d k−1

M ) nearM anddf̃z = df̂z for
all z∈M.
6.2. Lemma (Approximation of a good̄∂-flat extension). Assume thatf̃ is any
∂̄-flat C k-extension off satisfying|f̃ ∗ω−ω| = o(d k−1

M ). Then, for all sufficiently
small δ > 0, there exist biholomorphic mapsFδ: Tδ → Cn with F ∗δ ω = ω and
‖Fδ − f̃ ‖Cj(TδM) = o(δk−j ) for 0 ≤ j ≤ k.
We postpone the proof of Lemmas 6.1 and 6.2 for a moment.

Proof of Theorem 1.5 in the Smooth Case.Let f :M = M0 → M1 be aC k-
diffeomorphism as in Theorem 1.5. By Lemma 2.6, there is a∂̄-flat extensionf̃ of
f satisfyingf̃ ∗ω = ω at points ofM. By Lemma 6.1 we can modify this exten-
sion, still denoting itf̃ , such that|f̃ ∗ω−ω| = o(d k−1

M ). Finally we apply Lemma
6.2 to derive biholomorphic mapsFδ in tubesTδ aroundM satisfyingF ∗δ ω = ω
and the estimates (1.2). This proves Theorem 1.5 in the smooth case, granted that
Lemmas 6.1 and 6.2 hold. We postpone the proof in the real-analytic case to the
end of this section.

Proof of Lemma 6.2.Let f̃ be as described in the lemma and letF ′δ : Tδ → Cn (for
small δ > 0) be holomorphic maps of the form (6.1) obtained as in the proof of
Theorem 1.2. From the estimates onRδ in (6.1) and the assumption|f̃ ∗ω− ω| =
o(d k−1

M ), it follows that

‖(F ′δ )∗ω − ω‖Cj(Tδ) = o(δk−j−1), 0 ≤ j ≤ k −1.

Setωδ = (F ′δ )∗ω; this is a holomorphicp-form onTδ that is close toω. Choose
constants 0< a < c < 1. Using Moser’s method [M] we shall construct a holo-
morphic mapGδ: Taδ → Tδ that is very close to the identity map and satisfies
G∗δ ωδ = ω onTaδ. The holomorphic mapFδ = F ′δ BGδ: Taδ → Cn is then close
to F ′δ (and hence tof̃ ), and it satisfiesF ∗δ ω = G∗δ (ωδ) = ω.
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We first outline Moser’s method, postponing the estimates for a moment. Set
ωδ1 = (F ′δ )∗ω andωδt = (1− t)ω + tωδ1 for t ∈ [0,1]. Thendωδt = 0, andωδt is
close toω for eacht andδ. Our goal is to construct aC1-family of holomorphic
mapsGt = Gδ,t : Taδ → Tδ satisfyingG0 = Id andG∗t ωδt = ω for all t ∈ [0,1];
the time-1 mapGδ = Gδ,1 will then solve the problem.

To simplify the notation we suppressδ for the moment, writingωδt = ωt and
Gδ,t = Gt. Suppose that such a flowGt exists. Denote byZt its infinitesimal gen-
erator; this is a holomorphic time-dependent vector field on the image ofGt that
satisfiesd

dt
Gt(z) = Zt(Gt(z)) for eacht ∈ [0,1] and eachz in the domain ofGt.

Differentiating the equationG∗t ωt = ω on t and applying the time-dependent Lie
derivative theorem [AMR, Thm. 5.4.5], we have

0= d

dt
(G∗t ωt ) = G∗t

(
LZtωt +

d

dt
ωt

)
= G∗t (d(Ztcωt)+ ω1− ω). (6.2)

We have also used the Cartan formula for the Lie derivativeLZtωt , as well as
dωt = 0. This shows thatG∗t ωt = ω holds for allt ∈ [0,1] if and only if the gen-
eratorZt satisfies the equationd(Ztcωt)+ ω1− ω = 0 for all t ∈ [0,1].

At this point we observe thatω is exact holomorphic onCn, ω = dβ; in fact,
whenω is the volume form (1.4) we may takeβ = 1

n

∑n
j=1(−1)j+1dz[j ], and

whenω is the symplectic form (1.5) we may takeβ =∑n′
j=1 z2j−1dz2j . Hence the

differenceω1−ω = F ′∗δ dβ − dβ = d(F ′∗δ β −β) is exact holomorphic onTδ. By
Theorem 5.1 we can solve the equationdv = ω1− ω to get a small holomorphic
(p−1)-form v = vδ in Tcδ. LetZt be the unique holomorphic vector field onTcδ
solving the (algebraic!) equationZtcωt + v = 0. IntegratingZt yields a flowGt
that satisfiesG∗t ωt = ω on its domain of definition.

For this approach to work we must choosevδ onTcδ to have as small sup-norm
as possible; this will imply that|Zt | is small and hence its flowGt(z) will not es-
cape the tubeTcδ (on whichZt is defined) before timet = 1, provided that the
initial pointG0(z) = z belongs to the smaller tubeTaδ. (In particular, the solution
vδ = (F ′δ )∗β − β may not work becauseF ′δ is not close to the identity map.)

In order to apply Theorem 5.1 efficiently we must first show thatdv0 =
i∗(ω1−ω) has a solution onM with small norm. Consider the maph: [0,1]×M →
Cn, h(t, z) = f̃ (z)+ tRδ(z), and setw = h∗ω. Also let it :M → [0,1]×M de-
note the injectionit(z) = (t, z) (z ∈ M, t ∈ [0,1]). It follows from Lemma 2.1
that v0 =

∫ 1
0 i
∗
t

(
∂
∂t
cw) dt solvesdv0 = i∗1w − i∗0w. We havei∗1w = i∗ω1 and

i∗0w = i∗f̃ ∗ω = i∗ω, sodv0 = i∗(ω1−ω). It follows from the preceding formula
thatv0 = ∑n

j=1 r
δ
j vj, wherer δ1, . . . , r

δ
n are the components ofRδ andv1, . . . , vn

are(p−1)-forms onM with ‖vj‖C k−1(M) bounded independently ofδ. This gives
‖v0‖C l(M) = o(δk−l) for 0 ≤ l ≤ k − 1. It follows that‖v0‖3s(M) = o(δk−s) for
a givens ∈ (0,1). Since‖ω1− ω‖L∞(Tδ) = o(δk−1), it follows from Theorem 5.1
that, for all sufficiently smallδ > 0, we have a holomorphic solution ofdvδ =
ω1− ω in Tcδ that satisfies‖vδ‖L∞(Tcδ) = o(δk).

LetZδ
t be the holomorphic vector field inTcδ satisfyingZδ

t cωδt = vδ. The pre-
vious estimate onvδ implies ‖Zδ

t ‖L∞(Tcδ) = o(δk) uniformly in t ∈ [0,1]. The
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standard formula for the rate of escape of the flow shows that we can chooseδ0 >

0 sufficiently small such that, for allδ ∈ (0, δ0) and all initial pointsz ∈ Taδ, the
flow Gδ,t(z) of Zδ

t remains inTcδ for all t ∈ [0,1]. At t = 1 we have a mapGδ =
Gδ,1: Taδ → Tcδ satisfyingG∗δ ωδ1 = ω and|Gδ(z)− z| = o(δk) for z∈ Taδ.

SetFδ = Gδ B F ′δ . Since the mapsF ′δ have uniformly boundedC1-norms on
Tδ, we see that‖Fδ − F ′δ‖L∞(Taδ) = o(δk). Replacinga by a smaller constant and
applying the Cauchy inequalities, we also get

‖Fδ − f̃ ‖Cj(Taδ ) ≤ ‖Fδ − F ′δ‖Cj(Taδ) + ‖F ′δ − f̃ ‖Cj(Tδ) = o(δk−j ), j ≤ k.
By construction we haveF ∗δ ω = ω, soFδ solves the problem.

Remark. This method applies on any domainD ⊂⊂ Cn on which we can solve
the ∂̄-equations with estimates (e.g., on pseudoconvex domains); it shows that,
for any holomorphic mapF ′:D → Cn for which |F ′∗ω − ω| is sufficiently uni-
formly small onD, there exists a holomorphic mapF :D ′ → Cn on a slightly
smaller domainD ′ ⊂⊂ D such thatF ∗ω = ω andF is uniformly close toF ′
onD ′. We obtainF in the formF = F ′ B G, whereG:D ′ → D is a holomor-
phic map close to the identity and chosen such thatG∗(F ′∗ω) = ω. The precise
amount of shrinking of the domain depends on‖F ′∗ω−ω‖L∞(D) and on the con-
stants in the solutions of thē∂-equations; we do not know if there is a solution to
this problem on all ofD.

We now turn to the proof of Lemma 6.1. We shall need the following.

6.3. Lemma. Letu be ad-closedp-form of classC k−1 in a neighborhood ofM,
withp ≥ 1, such that the(p, 0)-componentu′ ofu is ∂̄-flat onM andu′′ = u−u′
is (k − 1)-flat onM. Assumei∗u = 0, wherei:M ↪→ Cn is the inclusion. Then
there exists a(p−1,0)-formv in a neighborhood ofM such thatv =∑N

j=1ζjvj,

where eachζj is a∂̄-flat C k-function vanishing onM, eachvj is a∂̄-flat C k−1-form,
and |u− dv| = o(d k−1

M ). If u = 0 onM, we may takevj = 0 onM for all j.

Remark. Using rough multiplication (Lemma 2.5), we see that there is a∂̄-flat
(p,0)-form v of classC k that also satisfies|dv − u| = o(d k−1

M ). However, the
version stated here is often technically more convenient, since we may wish to
postpone the use of rough multiplication.

Proof of Lemma 6.3.In the casem = n we may takev = 0, which can be seen as
follows. We haveu′ =∑|I |=p uI dzI , where the coefficientsuI areC k-functions

that are∂̄-flat onM; hencei∗u = 0 means thatuI = 0 onM for all I (since the
coefficients ofu′′ vanish onM). It follows from the Cauchy–Riemann equations
that eachuI is flat onM, so we may choosev = 0.

Whenm < n, we use the asymptotically holomorphic extensionM̃ of M
(Lemma 2.4) and thē∂-flat retractionF toM̃. Recall that a neighborhood ofMmay
be covered byC k-chartsGi :Ui → Vi (Gi(z) = (z ′(i)(z), w ′(i)(z)) ∈ Cm × Cn−m,
1≤ i ≤ r) satisfying:
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(a) Gi is ∂̄-flat onM, Gi(M ∩ Ui) = Vi ∩ (Rm × {0}), andGi(M̃ ∩ Ui) =
Vi ∩ (Cm × {0});

(b) the retractionF is given in these local coordinates by(t, (z ′, w ′))→ (z ′, tw ′).
Let ĩ: M̃ ↪→ Cn be the inclusion. Arguing as in the casem = n and making

use of thē∂-flat local parametrizations of̃M, we see that̃i∗u is flat onM and so is
π̃∗u = π̃∗ ĩ∗u, whereπ̃ = F0. WhenF : [0,1]×W → W is the retraction toM̃,
the form

v̂ =
∫ 1

0
i∗t

(
∂

∂t
cF ∗u

)
dt (6.3)

solvesdv̂ = u− π̃∗u on a neighborhood ofM, according to Lemma 2.1. Express-
ing u in theGi-coordinates(z ′(i)(z), w

′
(i)(z)) (which are∂̄-flat onM) yields

u =
∑

|I |+|J |=p
aI,J(z

′
(i), w

′
(i))dz

′I
(i)∧ dw ′J(i) + r ′(i)

onUi,where theaI,J areC k−1-functions that arē∂-flat onRm×{0} and wherer ′(i)
is aC k−1-form that is flat onM. Using the formula following Lemma 2.1, we see
that v̂ in (6.3) is a linear combination of terms

w ′(i),j

(∫ 1

0
aI,J(z

′
(i), tw

′
(i))t

|K| dt
)
dz ′I(i)∧ dw ′K(i) ,

where|I | + |K| = p−1 and 1≤ j ≤ n−m, plus a remainder termr ′′(i) satisfying
|∂ αr ′′(i)| = o(d k−|α|M ) onUi for |α| ≤ k−1. Herew ′(i),j denotes thej th component

of w ′(i). SinceG(i) is ∂̄-flat, it follows that

v̂ =
n−m∑
j=1

∑
|L|=p−1

w ′(i),j g
(i)
j,Ldz

L + r(i)

in Ui, where eachg(i)j,L is a ∂̄-flat C k−1-function and wherer(i) behaves liker ′′(i).
Choose ā∂-flat partition of unity{ψi}ri=1 subordinate to the covering{Ui}ri=1,

and choosē∂-flat cut-off functionsχi ∈ C∞0 (Ui) with χi = 1 near suppψi ∩M for
i = 1, . . . , r. Let ζ1, . . . , ζN (withN = r(n−m)) be some enumeration of the col-
lection of functions{ψiw ′(i),j : i ≤ r, j ≤ n − m}. Furthermore, letv1, . . . , vN be
the corresponding enumeration of the formsχi

∑
|L|=p−1 g

(i)
j,Ldz

L, prolonged by

zero outsideUi. Setv =∑N
l=1ζlvl. Clearly|dv − u| = o(d k−1

M ). Furthermore, if
u = 0 onM, we also see that

∫ 1
0 aI,J(z

′, tw ′)t |K| dt = 0 onVi ∩ (Rm × {0}) and
hencev1= · · · = vN = 0 onM.

Proof of Lemma 6.1.In the unimodular case,ω = dz1 ∧ · · · ∧ dzn, we could
successively increase the order of vanishing off̃ω − ω onM by adding certain
correction terms tof̃ . This seems harder to do in the symplectic case, so we shall
instead present an argument that works uniformly in both cases. It is a modification
of Moser’s method: withωt = (1− t)ω+ tf̃ ∗ω, we shall construct aC1-family of
∂̄-flat C k-mapsgt on a neighborhood ofM, with g0 = id and

∣∣ d
dt
g∗t ωt

∣∣ = o(d k−1
M )



Solving thed- and ∂̄-Equations in Thin Tubes and Applications to Mappings405

uniformly in t. Given such a family, integration int gives‖g∗1ω1−ω‖ = o(d k−1
M ).

We will also show thatg1 is ∂̄-flat onM. Hence the mapf̂ = f̃ B g1 will satisfy
Lemma 6.1. Furthermore, we shall see that|g1(z) − z| = O(dM(z)2), soDg1 =
Id onM and hencef̂ andf̃ have the same differential onM.

We shall obtaingt by integrating a certain real time-dependent vector field
Xt of classC k. Differentiating d

dt
g∗t ωt as in (6.2), we see thatXt must satisfy

|d(Xtcωt)+ω1−ω| = o(d k−1
M ). We shall now construct such a vector field. More

precisely, we shall construct a continuous family ofC k real vector fieldsXt, on a
tubeT0 = Tδ0, satisfying the following properties for eacht ∈ [0,1].

(1) Xt, considered as a mapT0 → Cn, is ∂̄-flat onM. (Here we identify a real
tangent vectorX =∑n

j=1 aj
∂
∂xj
+ bj ∂

∂yj
∈ TzCn with the corresponding com-

plex vector(a1+ ib1, . . . , an + ibn)∈Cn.)

(2) |Xt(z)| ≤ CdM(z)2 for someC > 0 independent oft ∈ [0,1].
(3) |d(Xtcωt)+ ω1− ω| = o(d k−1

M ) uniformly in t ∈ [0,1].

Let us first show that this solves the problem. We must show thatXt can be in-
tegrated fromt = 0 to t = 1 for all initial values in a smaller tube. Recall that,
after shrinkingδ0 if necessary, the functiondM is differentiable inT0\M, with a
gradient of length 1. Letz(t) be an integral curve ofXt in T0\M, t ∈ [0, t0], and
setu(t) = dM(z(t)). Then

u′(t) = ∇dM(z(t))·Xt(z(t)) ≤ |Xt(z(t))| ≤ Cu(t)2.
Here we denote byv·w the real inner product of the vectorsv,w ∈Cn. Integrating
the inequalityu′(t)/u(t)2 ≤ C from 0 to t gives 1/u(0) − 1/u(t) ≤ Ct and thus
u(t)(1−Ctu(0)) ≤ u(0) for 0 ≤ t ≤ t0. Let the initial valuez(0)∈ Tδ1\M,where
δ1 ≤ min(δ0/2,1/2C). It follows thatu(t) ≤ u(0)/(1− Ctu(0)) ≤ 2u(0) and
hence the integral curve extends to all valuest ∈ [0,1]. Since|Xt(z(t))| ≤ Cu(t)2,
we see that|z(t)− z(0)| ≤ 4Cu(0)2t. In other words, the time-t diffeomorphisms
gt are well-defined onTδ1 for all t ∈ [0,1] and satisfy|gt(z) − z| ≤ 4CtdM(z)2.
In particular,gt(z) = z andDgt(z) = Id for z∈M andt ∈ [0,1].

To show that theC k-mapsgt are∂̄-flat onM, we consider the variational equa-
tion ∂

∂t
Dzgt(z) = DzXt(gt(z)) B Dzgt(z) with the initial conditionDzg0 = Id.

Decomposing the differentialDφ as the sum of aC-linear partD ′φ and aC-
conjugate partD ′′φ, we get

∂

∂t
D ′′zgt(z) = D ′′z

(
∂

∂t
gt(z)

)
= D ′′z (Xt(gt(z)))

= (D ′zXt )(gt(z)) BD ′′zgt(z)+ (D ′′z Xt )(gt(z)) BD ′zgt(z).
We apply both sides to a unit vectorv ∈Cn and sety(t) = D ′′zgt(z)v ∈Cn. We ob-
tain a linear differential equationy ′(t) = A(t)y(t)+b(t)with the initial condition
y(0) = D ′′zg0(z)v = 0. The functionu(t) = |y(t)| is differentiable whenu(t) 6=
0 andu′(t) = y ′(t)· y(t)/|y(t)| ≤ |y ′(t)|. Thus, if |A(t)| ≤ A and|b(t)| ≤ b then
u′(t) ≤ Au(t) + b, whereu(t) 6= 0. We shall prove thatu(t) ≤ b

A
(eAt − 1), t ∈

[0,1]. If u(t) = 0 then there is nothing to prove. If not, lett0 be the largest zero of
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u on the interval [0, t ]. Thenv(s) = u(s)a−As satisfies the differential inequality
v ′(s) ≤ be−As for s ∈ (t0, t ]. Integration fromt0 to t givesv(t) ≤ b

A
(e−At0−e−At )

andu(t) ≤ b
A
(eA(t−t0) −1) ≤ b

A
(eAt −1).

We know that|DzXt(z)| and |Dzgt(z)| are bounded uniformly inz ∈ Tδ1 and
t ∈ [0,1], while |D ′′z Xt(z)| = o(dM(z)k−1). Thus we may choose the upper bound
A for |A(t)| independently ofz ∈ Tδ1 and the unit vectorv, and we may choose
the upper boundb of |b(t)| to be of sizeb = o(dM(z)k−1) uniformly in v. Since
u(t) = |D ′′zGt(z)v|, it follows that |D ′′zgt(z)| = o(dM(z)k−1), so eachgt is ∂̄-flat
onM.

By assumption we have|d(Xtcωt)z + (ω1 − ω0)z| = o(dM(z)
k−1). Since

dM(gt(z)) ≤ 2dM(z) and the norms|Dzgt(z)| are bounded uniformly inz ∈ Tδ1
andt ∈ [0,1], we have

∣∣ ∂
∂t
(g∗t ωt )z

∣∣ = o(dM(z)k−1) uniformly in t. By integration
in t we obtain|(g∗1ω1− ω)z| = o(dM(z)k−1). Settingf̂ = f̃ B g1, we see thatf̂
is a∂̄-flat C k-extension off̃ , Df̂ = Df̃ onM, and|(f̂ ∗ω−ω)z| = o(dM(z)k−1).

Thusf̂ satisfies Lemma 6.1.
It remains to construct the vector fieldXt . Applying Lemma 6.3 toω−ω1 yields

a(p−1,0)-form v nearM with |dv− (ω−ω1)| = o(d k−1
M ) andv = 0 onM. We

decomposeωt asω ′t + ω ′′t , whereω ′t is the(p,0)-component ofωt . Thenω ′t =
ω+ t(ω ′1−ω), andω ′t = ω onM for eacht. Hence the mapφ:Z→ Zcω ′t , taking
the(1,0)-vectorsZ ∈ T (1,0)z Cn to3(p−1,0)T ∗z Cn, is an isomorphism forz nearM
andt ∈ [0,1]. Hence the equationZ′tcωt = v uniquely defines a time-dependent
(1,0)-vector fieldZ′t onCn nearM.

With respect to the basis∂
∂z1
, . . . , ∂

∂zn
for (1,0)-vectors and the basisdz[1], . . . ,

dz[n] (resp.,dz1, . . . , dzn) for the(p − 1,0)-covectors, the mapφ is represented
by an(n×n)matrix–valued functionA(t, z) = A0+ tB(z),whereA0 is constant
and invertible and where the entries ofB(z) are∂̄-flat C k−1-functions that vanish
onM. It follows that the entries ofA(t, z)−1 are rational functionsb(t, z) in t with
coefficients that arē∂-flat C k−1-functions. From the properties ofv as given by
Lemma 6.3, it follows thatZ′t =

∑N
j=1ζj

∑n
k=1 rjk(t, z)

∂
∂zk
, whereζ1, . . . , ζN are

C k-functions that vanish onM and are∂̄-flat onM and where eachrjk is a ratio-
nal function int with coefficients that arē∂-flat C k−1-functions withrjk(t, z) = 0
for z∈M.

We next apply the rough multiplication lemma to the pairs(ζj(z), rjk(t, z))with
respect to the compact subsetM × [0,1] in Cn ×R. We thus obtainC k-functions
al(z, t) (1≤ l ≤ n), ∂̄-flat onM with respect toz, such that∣∣∣∣ N∑

j=1

ζj rjl(t, ·)− al(t, ·)
∣∣∣∣ = o(d kM)

uniformly in t. (Note: Use of the parametrized version of rough multiplication
gives a smooth family ofC k-functions, but we do not need this.)

We setZt =∑n
l=1 al(t, z)

∂
∂zl

andXt = Zt + Z̄t . Writing al = ul + ivl, with

ul andvl real, we haveXt =∑n
l=1ul(z, t)

∂
∂xl
+ vl(z, t) ∂∂yl . If we considerXt as

a mapT0→ Cn, this means thatXt = (a1(t, z), . . . , an(t, z)) and is∂̄-flat onM.



Solving thed- and ∂̄-Equations in Thin Tubes and Applications to Mappings407

Furthermore, sinceζj(z) andrjl(t, z) both vanish whenz∈M, we see that theXt
vanish to the second order onM.

Finally, we must show that (3) is satisfied. WritingXt = Z̄t + (Zt −Z′t )+Z′t ,
we see that

d(Xtcωt)+ ω1− ω = d(Z̄tcω ′′t )+ d((Zt − Z′t )cω ′t )+ (dv + ω1− ω).
The first term on the right-hand side iso(d kM), sinceω ′′t vanishes to orderk−1 and
Zt vanishes to the second order onM. Furthermore,Zt − Z′t vanishes to thekth
order, so the second term iso(d k−1

M ) and the third term is|dv+ω1−ω| = o(d k−1
M ).

Thus, (3) holds uniformly int, since the derivatives are continuous in(z, t).

Proof of Theorem 1.5 in the Real-Analytic Case.By assumption, there is a con-
tinuous mapψ0:M0 → SL(n,C) (resp.,ψ0:M0 → Sp(n,C)) such thatψ0,z

agrees withdzf on TzM0 for eachz ∈ M0. By Remark (1) following the proof
of Theorem 1.2 in Section 4,ψ0 may be approximated by a holomorphic mapψ1

from a neighborhood ofM0 to GL(n,C) with ψ1,z = dzf̃ onTzM̃0 for eachz ∈
M̃0. Sinceψ∗0,zω = ω for z ∈M0 and sinceψ1 approximatesψ0 onM0, it fol-
lows that the formψ∗1,zω = (detψ1,z)ω is close toω for all z∈ M̃0 sufficiently
nearM0.

We may think ofψ1 as a holomorphic automorphism of the trivial bundle
M̃0 × Cn → M̃0. We claim that there is another holomorphic automorphism
g of M̃0 × Cn such thatg|TM̃0

= Id andg∗ψ∗1ω = ω. In the unimodular case,
we letg act as the identity onTM̃0 and as multiplication by(detψ1)

−1/(n−m) on
ν̃0 (the holomorphic extension of the complex normal bundleν0 to M̃0); the root
is well-defined because the function detψ1,z is close to 1. In the symplectic case,
g is a reduction to symplectic normal form with holomorphic dependence onz ∈
M̃0. In both cases the mapψ = ψ1 B g is an automorphism of the trivial bundle
M̃0 × Cn satisfyingψ∗ω = ω.

Let F1 be a biholomorphic extension of̃f , constructed fromψ = ψ1 B g as in
Remark (1) (Section 4), that satisfiesdzF1= ψz at pointsz∈ M̃0. ThusF ∗1 ω = ω
at points ofM̃0. Applying Moser’s method as before, we can construct a biholo-
morphismG in a tubular neighborhood of̃M0 that equals the identity oñM0 and
satisfiesG∗(F ∗1 ω) = ω. ThenF = F1 BG is a biholomorphic map nearM0 that
extendsf and satisfiesF ∗ω = ω.

7. Proof of Theorems 1.7 and 1.8

We need to consider maps that have different degrees of smoothness with respect
to the time variable and the space variable. We use the following terminology.

Definition 4. LetU be an open subset of [0,1]×Rm. A mappingf :U → Rn

is called aC l-family of C k-mapsif ∂jt (∂
α
xf ) is continuous inU for 0 ≤ j ≤ l and

|α| ≤ k. There is an obvious extension of this notion to mapsf : [0,1]×M → N

whereM andN areC k manifolds. If in additionft = f(t, ·) is a diffeomorphism



408 Franc Forstneri č , Erik Løw, & Nils Øvrelid

(of its domain onto its image) for eacht ∈ [0,1], we callf = {ft } aC l-family of
C k-diffeomorphisms.

Thus, aC1-family of C k-diffeomorphisms is the same as aC k-isotopy (or aC k-
flow) in the sense of Definition 1 in Section 1. We remark that ifft is aC l-family
of diffeomorphisms on domainsUt ⊂ Rn for t ∈ [0,1], then the family of inverses
f −1
t are not necessarily aC l-family if l > 0; the reason is that thet-derivatives of

the (derivatives of the) inverse map will involve higher orderx-derivatives of the
original map.

In the situation of Theorem 1.7 we shall say that a time-dependent family of
C k-forms on submanifoldsMt ⊂ Cn, αt =∑|I |=p αI,t dzI with αI,t ∈ C k(Mt), is
acontinuous family ofC k-formsif αI,t B ft is a continuous family ofC k-functions
onM for all multi-indicesI. Recall thatTδ = TδM is the open tube of radiusδ
around a submanifoldM ⊂ Cn.

The main step in the proof of Theorem 1.7 is the following result.

7.1. Theorem. Let ft :M = M0 → Mt ⊂ Cn (t ∈ [0,1]) be aC1-family of
C k-diffeomorphisms between compact, totally realC k-submanifolds ofCn, with
f0 the identity onM. By it :Mt ↪→ Cn we denote the inclusion map. Letαt (t ∈
[0,1]) be a continuous family of(p, 0)-forms of classC k onMt such thati∗t αt is
closed onMt for eacht. Then there exists an extension ofαt to a continuous fam-
ily α̂t of (p, 0)-forms of classC k on a neighborhood of̃M =⋃t∈[0,1]{t} ×Mt in
[0,1] × Cn such that, for all sufficiently smallδ > 0, there exists a continuous
family of closed holomorphicp-formsuδt onUδ =⋃t∈[0,1]{t} × TδMt satisfying

‖uδt − α̂t‖C r(TδMt ) = o(δk−r ), 0 ≤ r ≤ k,
uniformly int ∈ [0,1]. If i∗t αt is exact onMt for eacht ∈ [0,1] then we may choose
uδt exact for everyt; in this case,uδt can be chosen to be entire if eachMt is poly-
nomially convex.

In the simplest case, whenMt = M andαt = α for all t ∈ [0,1], the main steps
in the proof of Theorem 7.1 are as follows (we writeTδ = TδM).

(i) We construct a(p,0)-form α̂ on a neighborhood ofM such thatdα̂ is flat on
M. In particular,α̂ is ∂̄-flat onM.

(ii) We approximate the coefficients ofα̂ by holomorphic functions to obtain a
holomorphicp-form u′ in Tδ with ‖du′‖L∞(Tδ) = o(δk−1).

(iii) We solvedv = du′, with v holomorphic and‖v‖L∞(Tδ = o(δk), and setu =
u′ − v.

(iv) If i∗α is exact, the norm of the de Rham cohomology class ofi∗u is o(δk),
and this class may be represented by a holomorphicp-form u0 onTδ of size
o(δk). Thenu1 = u − u0 is exact and approximatesα to the correct order
onM.

In the parametric case we perform these steps such that the solutions are contin-
uous with respect to the parametert. Before giving the proof of Theorem7.1, we
summarize (slight extensions of ) certain well-known results that we shall need.
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We begin by considering theparameter dependence in Whitney’s extension the-
orem. Instead of a general compact subsetK ⊂ Rn (or K ⊂ Cn), we consider
the case whenK is a compactC1-submanifold, with or without boundary. This is
a so-called 1-regular set, so we have the following more precise results (see [T,
Chap. IV, Secs. 1 and 2, esp. p. 76).

(i) Let A = {α ∈ Zn+ : |α| ≤ k}. The collectionsF = (fα)α∈A ∈ C(K)A satis-
fying the Whitney condition form a closed subspaceE k(K) of C(K)A with
respect to the sup-norm; we shall call such collectionsWhitney functions.

(ii) The Whitney extension operatorW: E k(K)→ C k0(K ′), whereK ′ ⊂ Rn is a
closed neighborhood ofK, is linear and norm-continuous. Thus∂ αW(F ) =
fα onK for eachα ∈A and

‖W(F )‖C k(K ′ ) ≤ C sup{‖fα‖L∞(K): |α| ≤ k}.
(iii) There exists a constantC > 0 such thatCω is a modulus of continuity for

∂ αW(F ), |α| = k,wheneverω is a modulus of continuity for allfα, |α| = k.
From this it follows immediately that iffα,t (α ∈A) areC l-families of continu-

ous functions onK and ifFt = (fα,t )α∈A is a Whitney function for eacht ∈ [0,1],
then their Whitney extensionsW(Ft ) are aC l-family of C k-functions and we may
bound thet andx derivatives ofW(Ft ) in terms ofFt .

Using these results, the proof of Lemma 2.5 gives the following lemma.

7.2. Lemma (Parameter-dependent rough multiplication).Let K ⊂ Rn be a
compactC1-submanifold, with or without boundary. Letft be aC l-family of C k-
functions, and letgt be aC l-family of C k−1-functions on a neighborhood ofK in
Rn such thatft = 0 onK for eacht ∈ [0,1]. Then there exists aC l-family of
C k-functionsht on a neighborhood ofK such that|ht − ftgt | = o(d kK) uniformly
in t ∈ [0,1]. If K ⊂ Cn and ifft andgt are ∂̄-flat onK, then so isht .

We next prove an extension lemma.

7.3. Lemma. LetM ⊂ Cn be a compact, totally realC k-submanifold. For any
C l-family of C k-mapsft :M → CN (t ∈ [0,1]), there exist an open setU ⊂ Cn

containingM and aC l-family of C k-mapsf̃t :U → CN such that eachf̃t is ∂̄-flat
onM and restricts toft onM. If N = n andft :M → Mt = ft(M) ⊂ Cn is a
diffeomorphism for eacht ∈ [0,1], we can choosẽft as before to be aC l-family
of C k-diffeomorphisms onU.

Proof. Let m = dimR M ≤ n. We consider first the case whenM = V̄ is a
smoothly bounded compact domain inRm ⊂ Cm ⊂ Cn. Write zj = xj + iyj with
xj, yj ∈ R. Givenf ∈ C k(V̄ ), we consider the following Whitney function on̄V
for the real coordinatesx1, . . . , xm, y1, . . . , ym in Cm:

F : f(α ′,α ′′ ) = i|α ′′| ∂ α ′+α ′′x (f ), α ′, α ′′ ∈Zm
+, |α ′| + |α ′′| ≤ k.

From the Cauchy–Riemann equations∂g
∂yj
= i ∂g

∂xj
(1≤ j ≤ m) for a functiong in

a neighborhood of̄V in Cm, it follows that the Whitney extensioñf =W(F ) of
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F to Cm is ∂̄-flat on V̄. If m < n then we extendW(F ) trivially in the variables
zm+1, . . . , zn to get a Whitney extension onCn. Moreover, if{ft : t ∈ [0,1]} is a
C l-family of C k-functions onV̄ and ifFt is defined as before, then the Whitney
extensionsW(Ft ) are aC l-family of C k-functions that arē∂-flat onV̄.

Next we consider a localC k-parametrizationφ:U → M around a pointw0 ∈
M, whereU is an open set inRm. Let z0 = φ−1(w0) ∈ U. Choose a smoothly
bounded domainV ⊂⊂ U containingz0 and setW = φ(V̄ ) ⊂ M. Let φ̃ be an
extension ofφ to Cn (as constructed previously) that is∂̄-flat on V̄. If m < n,

we also choose a basisv1, . . . , vn−m of the complex normal space(T C
w0
M)⊥ toM

atw0. The map8(z) = φ̃(z)+∑n−m
j=1 zm+j vj is then aC k-diffeomorphism in a

neighborhood ofz0 that is∂̄-flat on V̄ ; hence its inverse8−1 is well-defined in a
neighborhoodW̃ ⊂ Cn of w0 and is∂̄-flat onW ∩ W̃ ⊂ M.

The first part of the proof also provides an extensionψt of the mapft Bφ: V̄ →
Cn to a neighborhood of̄V in Cn such thatψt is ∂̄-flat on V̄. The composition
ψt B8−1: W̃ → Cn is aC k-extension of the mapft that is∂̄-flat onW ∩ W̃ ⊂ M.

This gives us a local̄∂-flat C k-extension offt in a neighborhood of each point
w0 ∈M. We can patch these local extensions by a∂̄-flat partition of unity along
M (as in Lemma 2.6) to obtain a desiredC l-family f̃t satisfying Lemma 7.3.

It remains to consider the case whenft :M → Mt is a diffeomorphism for each
t ∈ [0,1]. Let M̃ =⋃t∈[0,1]{t} ×Mt ⊂ [0,1]× Cn, and letf̃ : [0,1] ×M → M̃

be the mapf̃ (t, z) → (t, ft(z)). Let ν denote the complex normal bundle ofM
andν t the complex normal bundle ofMt in Cn. Thenν̃ =⋃t∈[0,1]{t} × ν t is, in
an obvious way, a vector bundle overM̃, and [0,1] × ν is a vector bundle over
[0,1] × M. By standard bundle theory (see [Ati, Lemma 1.4.5]) there exists a
bundle equivalenceψ : [0,1] × ν → ν̃ over f̃ . Thus we have continuously vary-
ing isomorphismsνz → ν̃ tft(z) (z ∈M, t ∈ [0,1]) that we extend to a continuous
mapA′: [0,1]×M → EndC(Cn). Then we approximateA′ by aC l-family of C k-
mapsA: [0,1] ×M → EndC(Cn) so thatA(t, z)νz is a supplementary subspace
to (Dft )z(T Cz M) for each(t, z) ∈ [0,1] ×M. Let L(t, z) equal(Dft )Cz on T Cz M
andA(t, z) on νz. SinceTzCn = T Cz M ⊕ νz, it follows thatL(t, z) belongs to
GL(n,C); it is not hard to check thatLt = L(t, ·):M → GL(n,C) is aC l-family
of C k−1-maps extendingDft . Using Lemma 7.2, it is easy to see that Lemma 2.6
has a parameter-dependent version that gives the desired conclusion.

Proof of Theorem7.1. SetM = M0 and i = i0:M ↪→ Cn. We first apply
Lemma 7.3 to find a neighborhoodU ⊂ Cn of M and a continuous family of
C k-diffeomorphismsf̂t :U → Ut ⊂ Cn that are∂̄-flat onM. The family of in-
verses(f̂t )−1:Ut → U is then a continuous family ofC k-diffeomorphisms oñU =⋃
t∈[0,1]{t} × Ut which are∂̄-flat onMt and which extendf −1

t :Mt → M.

Letαt =∑|I |=p αI,t dzI be as in Theorem7.1,withαI,t ∈ C k(Mt). Our assump-
tion is thatαI,t B ft (t ∈ [0,1]) is a continuous family ofC k-functions for eachI.
Applying Lemma 7.3, we can extend it to a continuous familyα ′I,t of C k-functions
on [0,1]×U that arē∂-flat onM. Setα̃I,t = α ′I,t B (f̂t )−1andα̃t =∑|I |=p α̃I,t dzI ;
this is a continuous family ofC k (p,0)-forms onŨ, andα̃t is ∂̄-flat onMt.



Solving thed- and ∂̄-Equations in Thin Tubes and Applications to Mappings411

The next step is to modifỹαt so as to make its differential flat onMt.We observe
that bothf̂ ∗t α̃t andβt := df̂ ∗t α̃t = f̂ ∗t (dα̂t ) are continuous families ofC k−1-forms
onU. By assumption,di∗t αt = 0 and hencei∗βt = 0.

It is clear that the proof of Lemma 6.3 produces aC l-family of solutionsvt for
anyC l-family ut satisfying the assumptions in that lemma. Applying this to the
formsut = βt constructed here, we obtain a continuous family of(p,0)-forms
γ ′t =

∑N
j=1ζjγ

′
j,t (t ∈ [0,1]) such thatdγ ′t − βt is (k − 1)-flat onM, where the

ζ1, . . . , ζN are∂̄-flat C k-functions vanishing onM and where theγ ′j,t are continu-
ous families ofC k−1 (p,0)-forms that arē∂-flat onM.

Then(f̂ −1
t )∗γ ′j,t =

∑
|I |=p aj,I,t dzI + λj,t whereaj,I,t are continuous families

of C k−1-functions that arē∂-flat onMt andλj,t = o(d k−1
Mt
)uniformly in t.Applying

parameter-dependent rough multiplication (Lemma 7.2) toζj andaj,I,t B f̂t gives
continuous familiesbj,I,t of C k-functions nearM that are∂̄-flat onM. Setting
γt = ∑|I |=p∑N

j=1(bj,I,t B f̂ −1
t )dzI andα̂t = α̃t − γt , we haveα̂t |Mt

= αt (t ∈
[0,1]) and|dα̂t | = o(d k−1

Mt
) uniformly in t.

The next step is to approximatêft well by biholomorphic maps in tubular neigh-
borhoodsTδ ofM. Note thatf̂t mapsM ontoMt and is a diffeomorphism from a
neighborhoodU ofM on a neighborhoodUt ofMt, with estimates on derivatives
that are valid for allt ∈ [0,1]. It follows that, for somēa > 0 and all sufficiently
smallδ > 0,we havef̂t(TāδM) ⊂ TδMt andf̂ −1

t (TāδMt) ⊂ TδM for all t ∈ [0,1].
If we apply the solution operator of Theorem 3.1 to the equation∂̄Rδ

t = ∂̄f̂t in
Tδ = TδM and sethδt = f̂t − Rδ

t , we obtain a continuous family of holomorphic
mapshδt onTδ satisfying‖hδt − f̂t‖Cj(TδM) = o(δk−j ) for j ≤ k, wherek ≥ 2. It
follows that, for smallδ > 0, the maphδt is a biholomorphism ofTδ onto its image
andgδt := f̂ −1

t B hδt is aC k-diffeomorphism of the tubeTδ onto a small perturba-
tion of Tδ.

Sincehδt is close tof̂t , it is not hard to see (using the argument in the proof
of Theorem 1.2) that, if 0< a < ā andε > 0 are given, then forδ > 0 suffi-
ciently small (depending ona andε) we have the inclusionshδt (Tδ ′M) ⊃ Taδ ′Mt

for εδ ≤ δ ′ ≤ δ and(hδt )
−1(Tδ ′Mt) ⊃ Taδ ′M for εδ ≤ δ ′ ≤ aδ. For all t, we also

haveTd ′/2M ⊂ gδt (Td ′M) ⊂ T2d ′M for εδ ≤ δ ′ ≤ δ.
The next step is to approximatêαt by a continuous family of holomorphicp-

formsu′t (= u′δt ) on tubesTδMt . Suppose that̂αt =∑|I |=p α̂t,I dzI . For small
δ > 0, we havehδ/at (Tδ/aM) ⊃ TδMt for t ∈ [0,1]. Let u′′t,I be holomorphic ap-

proximations tôαt,I Bhδ/at , constructed asFδ in Section 4. Setu′t,I = u′′t,I B(hδ/at )−1.

Then thep-form u′t =
∑
|I |=p u

′
t,I dz

I is holomorphic inTδMt and satisfies‖u′t −
α̂t‖Cj(TδMt ) = o(δk−j ) uniformly in t. We also see that‖du′t‖L∞(TδMt ) = o(δk−1),

and if we setv0,t = i∗t (u′t − α̂t ) thendv0,t = i∗t du′t .
We wish to prove the existence of a continuous family of holomorphic(p−1)-

formsvt (= vδt ) onTbδMt for someb > 0,with ‖vt‖L∞(TbδMt
) = o(δk), uniformly

in t, and solvingdvt = du′t . Thenuδt = u′t − vt would be a continuous family of
closed holomorphicp-forms with‖ut |Mt

− αt‖Cj(Mt ) = o(δk−j ), uniformly in t,
as required.
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A parameter-dependent version of Theorem 5.1 for the familyMt would yield
that result. The following argument will give this for a smallb > 0, but we shall
restrict ourselves to the special case we need. Choosea < ā andε = a/2. Forδ >
0 small,w ′t = f̂ ∗t (du′δt ) areC k−1-forms onTāδM with ‖w ′t‖L∞(TāδM) = o(δk−1)

and‖w ′t‖C s(TāδM) = o(δk−1−s), uniformly in t.
Furthermore, withv ′0,t = f ∗t v0,t ,we havedv ′0,t = i∗w ′t onM,with ‖v ′0,t‖L∞ =

o(δk) and‖v ′0,t‖C s = o(δk−s), uniformly in t. Then the first part of the proof of
Theorem 5.1 and the remarks on continuoust-dependence give a continuous fam-
ily of C k−1-forms ω ′t on TāδM solving dω ′t = w ′t , with ‖ω ′t‖L∞ = o(δk) and
‖ω ′t‖C s = o(δk−s), uniformly in t. Thenωt = (gδt )

∗ω ′t are defined onTāδ/2M

and satisfy the same kind of estimates, anddωt = (hδt )∗(f̂ −1
t )∗w ′t = (hδt )∗du′t is

holomorphic. Sincea < ā, the second part of the proof of Theorem 5.1 gives the
existence of a continuous family of holomorphicp-formsv ′t on Taδ/2M satisfy-
ing dv ′t = (hδt )∗du′t and‖v ′t‖L∞(Taδ/2M) = o(δk) uniformly in t. By assumption,
hδt (Taδ/2M) ⊃ Ta2δ/2Mt for eacht and sovδt = (hδt )−1∗v ′t is a continuous family
of holomorphicp-forms onTa2δ/2Mt with dvδt = du′t onTa2δ/2Mt and‖vδt ‖L∞ =
o(δk) uniformly in t.

We now show that ifi∗t αt is exact for everyt then the holomorphic formsuδt
described here may be chosen to be exact. We recall that the de Rham cohomol-
ogy groupHp(M,C) is finite dimensional andf ∗t :Hp(Mt,C) → Hp(M,C)
is an isomorphism for everyt. We have thatHp(M,C) ≈ {α ∈ C(p)(M) :
dα = 0}/(exact forms), where derivatives are taken in the weak sense, and we
may equipHp(M,C) with the quotient norm.

For eacht0 ∈ [0,1], there exist closed holomorphicp-forms û1, . . . , ûN on
an open neighborhoodU of Mt0 such that [i∗t0ûj ], 1 ≤ j ≤ N, is a basis for
Hp(Mt0,C). Then t → [f ∗t uδt ] is a continuous map [0,1] → Hp(M,C), and
t → [f ∗t ûj ] (1 ≤ j ≤ N) is continuous fort neart0. It follows that {[f ∗t ûj ] :
j ≤ N} is a basis forHp(M,C) for t in a neighborhoodJ ⊂ [0,1] of t0, and we
may write [f ∗t uδt ] =

∑N
j=1 c

δ
j (t)[f

∗
t ûj ] with cδj continuous onJ. Each formf ∗t αt

is exact onM, so

‖[f ∗t uδt ]‖ ≤ ‖f ∗t (uδt )− α̂t‖L∞(M) = o(δk).
This means that, forJ1⊂⊂ J, we have maxt∈J1|cδj (t)| = o(δk) for all j ≤ N. For

δ > 0 small andt ∈ J1 we haveTδMt ⊂ U ; u0δ
t = uδt −

∑N
j=1 c

δ
j (t)ûj is exact on

TδMt (since [i∗t u0δ
t ] = 0) and approximatesαt well enough. We can now patch

these together with a partition of unity int to obtain a solutionuδt for t ∈ [0,1] that
satisfies Theorem7.1.

Finally, assumeMt is polynomially convex for allt ∈ [0,1] and letuδt be the
exact solution onUδ. For δ > 0 sufficiently small we may also assume that
TδMt is Runge inCn for all t. Given a < a ′ < 1 andε > 0, there existtj ∈
[0,1], j = 1, . . . , N, and (relatively) open intervalsIj ⊂ [0,1], tj ∈ Ij, such that
Uaδ ⊂ ⋃N

j=1Ij × Ta ′δMtj ⊂ Uδ; for all t ∈ Ij we have‖uδt − uδtj ‖C k(Ta ′δMt j )
< ε

and‖α̂δt − α̂δtj ‖C k(Ta ′δMt j )
< ε. Let βj be a holomorphic(p − 1)-form onTδMtj



Solving thed- and ∂̄-Equations in Thin Tubes and Applications to Mappings413

such thatdβj = uδtj . By Oka’s theorem there is an entire(p − 1)-form vj such
that‖βj − vj‖L∞(TδMt j )

< ε. The Cauchy estimates imply‖βj − vj‖C r(Ta ′δMt j )
=

εo(δ−r ) and hence‖uδtj −dvj‖C r(Ta ′δMt j )
= εo(δ−(r+1)). Choosingε = o(δk+1),we

obtain‖dvj−α̂δt ‖C r(TaδMt ) = o(δk−r )whenevert ∈ Ij . If χj(t) is a partition of unity
on [0,1] subordinate to the covering{Ij } and if we definevt =∑N

j=1χj(t)vj(z),

thenut = dvt is an entire form for eacht that satisfies Theorem7.1.

Proof of Theorem1.7.By assumption,ft :M → Mt isC1-family of C k-diffeomor-
phisms andω is one of the forms (1.4), (1.5). LetXt be the infinitesimal generator
of ft , that is,∂tft(z) = Xt(ft(z)) for z ∈M andt ∈ [0,1]. Thenαt = Xtcω is a
continuous family of(p,0)-forms onMt, with p = n − 1 whenω is the volume
form (1.4) andp = 1 whenω is the symplectic form (1.5). Sinceft is anω-flow,
i∗t αt is closed onMt for eacht (by the remark after Definition 2).

By Theorem 7.1 there exists an extension ofαt to a continuous familŷαt of
(p,0)-forms of classC k on a neighborhood of̃M = ⋃t∈[0,1]{t} ×Mt such that,
for all sufficiently smallδ > 0, there exists a continuous family of closed holomor-
phicp-formsuδt onUδ = ⋃t∈[0,1]{t} × TδMt with ‖uδt − ât‖C r(TδMt ) = o(δk−r ),
uniformly in t, for 0 ≤ r ≤ k.

The equationuδt = Y δt cω uniquely defines a time-dependent holomorphic vec-
tor fieldY δt onUδ. Sinceuδt is closed, the flowF δ

t of Y δt is a holomorphicω-flow
wherever it is defined (see Definition 2). If we letXt denote the extension ofXt to
Uδ defined byα̂t = Xtcω, then‖Y δt −Xt‖C r(TδMt ) = o(δk−r ) uniformly in t. We
may apply [FL, Lemma 4.1] to see that, for smallδ > 0, the flowF δ

t (z) exists for
all t ∈ [0,1] andz ∈ TδM0 and that‖F δ

t − ft‖C r(TδM0) = o(δk−r ) uniformly in t.
In fact, it follows from the proof of this lemma (see Section 4 and [FL]) that the
same approximation also holds for the flow from timet to times; if we let ft,s =
fs Bf −1

t : TδMt → Cn denote the flow ofXt from t to s and letF δ
t,s = F δ

s B (F δ
t )
−1

denote the flow ofY δt from t to s, then for smallδ > 0 the flowF δ
t,s exists for

all s, t ∈ [0,1] and we have‖F δ
t,s − ft,s‖C r(TδMt ) = o(δk−r ) uniformly in s andt.

Sincef −1
t = ft,0, the second estimate in Theorem 1.7 follows.

Finally, if ft is an exactω-flow (i.e., i∗t αt is exact onMt for eacht) and if each
Mt is also polynomially convex, then by (the proof of ) Theorem 7.1 above we may
chooseuδt (z) =

∑N
j=1χ

δ
j(t)dvj(z),wherevj(z) are entire(p−1)-forms onCn and

χδj (1≤ j ≤ N) areC∞ functions with compact support inR that form a partition
of unity on [0,1]. We may even assume thatvj are(p−1)-forms with polynomial
coefficients. This means that the polynomial vector fieldsXj onCn, uniquely de-
fined by the equationdvj = Xjcω, are divergence-free (resp., Hamiltonian). By
[F4, Prop. 4.1] these can be written as finite sumsXj(z) =∑Nj

k=1Xj,k(z), where
Xj,k are complete divergence-free (resp., Hamiltonian) polynomial vector fields
on Cn (in fact they are shear fields). “Completeness” means that the fieldsXjk
may be integrated in time for allt ∈C (and initial pointsz∈Cn). ThenYjk(t, z) :=
χδj(t)Xjk(z) is also a complete vector field whose integral curves are reparametriza-
tions of the integral curves ofXjk. Hence we may writeY δt =

∑
j,k Yjk(t, z); that is,

Y δt is the sum of complete, divergence-free (resp., Hamiltonian), time-dependent,
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polynomial (inz ∈ Cn) vector fields. For the rest of this proof it is more conve-
nient to write this sum as

∑N
l=1Yl(t, z), where eachYl is one of theYjk above.

Let Gl
t,t+s be the flow ofYl(t, z) from time t to time t + s. This means that

Gl
t,t(z) = z and d

ds
Gl
t,t+s(z) = Yl(t + s,Gl

t,t+s(z)). DefineGt,t+s(z) = (GN
t,t+s B

· · · B G1
t,t+s)(z). We can regard this as the flow of a time-dependent vector field

X
t,t+s
t ′ defined for timest ′ betweent andt+ s; for t + j−1

N
s ≤ t ′ ≤ t + j

N
s we de-

fineXt,t+s
t ′ (z) = 1

N
Yj
(
t +N(t ′ − j−1

N
s
)
, z
)
. If we reparametrize time such that the

joints are passed at zero speed, we may even assume thatX
t,t+s
t ′ is smooth and van-

ishes near the endpoints. We denote this smooth flow byG
t,t+s
t ′ (z). By definition,

Gt,t+s(z) = G
t,t+s
t+s (z). Since the vector fieldsYj are complete divergence-free

(resp., Hamiltonian) entire vector fields, it follows thatGt,t+s
t ′ is a holomorphic

ω-flow; that is,(Gt,t+s
t ′ )∗ω = ω whent ≤ t ′ ≤ t + s.

For eachm∈N we define the concatenationsF m
1 (z) = (G1− 1

m
,1B· · ·BG0, 1

m
)(z).

Then (by [AMR, Suppl. 4.1.A]) we have limm→∞ F m
1 (z) = F δ

1 (z) uniformly for
z ∈ TδM0. As before, we can viewF m

1 (z) as the time-1 map of the flow of the

vector fieldXt defined byXt = X
j−1
m
,
j

m
t for t ∈ [ j−1

m
,
j

m

]
, 1 ≤ j ≤ m. Let

F m
t (z) be the flow of this vector field. It is easy to see that we can arrange for

limm→∞ F m
t = F δ

t uniformly in [0,1] × TδM0 and that the Cauchy estimates
imply ‖F m

t − F δ
t ‖C k(M0) < ε for all t ∈ [0,1] and all sufficiently largem ∈ N.

Similarly, (F m
1 )
−1 is a concatenation and hence limm→∞(F m

1 )
−1 = (F δ

1 )
−1 uni-

formly on TδM1; it follows that limm→∞(F m
t )
−1 = (F δ

t )
−1 onMt and thus the

result follows by the Cauchy estimates.

Proof of Theorem 1.8.We shall see that, in all cases except (iii) and (vi), the
pull-backi∗t αt of the formαt = Xtcω to Mt is exact for eacht; henceft is an
exactω-flow and the result follows from the second part of Theorem 1.7.

In case (i) we havei∗t αt = 0 by degree reason. In cases (ii), (iv), (v), and (vii),
we first see that the formi∗t αt is closed onMt, either by degree reasons or by the
comment after Definition 2 in Section 1; hence the cohomological assumptions
imply, in each of these cases, thati∗t αt is exact onMt.

For the two remaining cases (iii) and (vi) it is shown in [F3, pp. 439, 441] that
the initial familyft may be altered to an exact, totally real, and polynomially con-
vex ω-flow without changing the mapsf0 = Id andf1; hence the result again
follows from Theorem 1.7.
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