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THE HOMOTOPY PRINCIPLE IN COMPLEX
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Introduction

We say that the homotopy principle holds for a certain analytic or geometric
problem if a solution exists provided there are no topological (or homotopical,
cohomological,. .. ) obstructions. One of the principal examples is the theory of
smooth immersions developed during 1958-61 by S. Smale ([Sm1], [Sm2|) and M.
Hirsch ([Hil], [Hi2]): Immersions of a smooth manifold X to affine spaces RN
of dimension N > dim X are classified up to regular homotopy by their tangent
maps, and hence by vector bundle injections from the tangent bundle 7'X to the
trivial bundle X x RY. In particular, an immersion X — R¥ exists if and only
if TX embeds in X x RY. If X is an open manifold then the same holds also for
N =dim X.

Slightly earlier J. Nash ([N1], [N2]) proved that every Riemannian manifold
admits an isometric immersion into a Fuclidean spaces with the flal metric. In the
process of doing this he discovered an important method for inverting certain classes
of non-linear partial differential operators by using a suitably modified Newton’s
iteration to pass from solutions of the linearized problem to a solution of the non-
linear problem. The Nash-Moser-Kolmogorov implicit function theorem became
one of the key methods for proving the homotopy principle in problems involving
underdetermined systems of partial differential equations.

The homotopy principle was investigated even earlier in complex analysis where
the customary notion for this phenomenon is the Oka principle. In 1939 Kiyoshi
Oka [Oka] studied the second Cousin problem: Given an open covering U = {U;} of
a complex manifold X and a collection of nowhere vanishing holomorphic functions
fi; € O*(Us;) satisfying the 1-cocycle condition (fi; = 1, fi; fis = 1, fij fiufrs = 1),
the problem is to find a collection of nonvanishing holomorphic functions f; €
O*(U;) such that f; = f,;f; on U;; = U;NU;. (O denotes the multiplicative sheaf
of nonvanishing holomorphic functions on X.) Oka proved that, if X is a domain of
holomorphy in C™, a second Cousin problem can be solved by holomorphic functions
fi provided that it can be solved by continuous functions. More precisely, the inclu-
sion O* < C* of O* into the sheaf C* of nonvanishing continuous functions induces
an isomorphism H!(X;O*) ~ H(X;C*); the latter group is always isomorphic to
H2(X: 7).
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In 1951 K. Stein [Stn] introduced an important class of complex manifolds,
now called Stein manifolds, on which the algebra of global holomorphic functions
has similar properties as on domains of holomorphy. It soon became clear throught
the work of Remmert [Rem] that Stein manifolds can be characterized as being
biholomorphic to closed complex submanifolds of the affine complex spaces. (For
more precise results see [Nal], [Na2] and [Bis]. For the general theory of Stein
manifolds and Stein spaces we refer to the monographs [GR], [GRe| and [Hér].) H.
Cartan proved that every coherent analytic sheaf on a Stein manifold is generated
by global sections and has vanishing cohomology groups in all dimensions g > 1
(Theorems A and B); hence every analytic problem on a Stein manifold whose
obstruction lies in such a group is solvable.

An equivalent formulation of Oka’s result on the second Cousin problem is
that two holomorphic line bundles on a Stein manifold are holomorphically iso-
morphic provided they are isomorphic as topological complex vector bundles. This
problem has an immediate extension to vector bundles of rank ¢ > 1. The holo-
morphic equivalence classes of such bundles are represented by the cohomology
group H'(X;G,) with coefficients in the non-abelian sheaf of (germs of) holomor-
phic maps X — GL4(C). Cartan’s theory does not apply directly to such sheaves
and one must in some sense linearize the problem. This was done by H. Grauert in
seminal papers [Gral], {Gra2] (1957-58) in which he proved that, on a Stein space,
the holomorphic and topological classification of principal G-bundles coincide for
an arbitrary complex Lie group G; furthermore, on such bundles, the inclusion of
the space of holomorphic seclions inlo the space of continuous sections is a weak
homotopy equivalence. Expositions of Grauert’s theory can be found in [Cal, [Ram],
[Lei]. An equivariant version of Grauert’s theorem was proved in [HK]. A different
proof and extension to 1-convex manifolds was given in [HL1] and [HL2], and the
result has recently been extended to 1-convex complex spaces [LV]. A converse to
Grauert’s theorem for domains in Stein spaces was proved by M. Putinar [Pu].

Progress during the 1960’s brought improvements and extensions of the Hirsch—
Smale theory in real geometry and of Grauert’s theory in complex geometry. Phillips
showed that the homotopy principle, analogous to the Hirsch-Smale theory of im-
mersions, holds for smooth submersions and foliations of open manifolds ([Phl],
[Ph2], [Ph3]). Forster applied the Oka-Grauert principle to study holomorphic em-
beddings of Stein manifolds in low dimensional affine spaces ([Fs1], {I's2]). Forster
and Ramspott [FRa] proved the Oka principle in the problem of holomorphic
complete intersections. In another direction, Gunning and Narasimhan |GN] con-
structed noncritical holomorphic functions on any open Riemann surface.

The homotopy principle in real differential topology in geometry was revolu-
tionized by Mikhael Gromov in the period 1967-73. In his seminal paper [Grl]
Gromov presented the method of conver integration of differential relations which
unified many seemingly unrelated geometric results (in particular the Smale-Hirsch
theory of immersions and Phillips’s result on submersions). Gromov’s methods
initiated rapid progress and new examples which fit into his framework are being
found even today. For a comprehensive survey of this and other methods to prove
the homotopy principle we refer to Gromov’s 1986 monograph [Gro3] and to the
more recent monographs of Springer [Sp| and Eliashberg and Mishachev [EM]. The
convex integration method, together with other methods for solving global prob-
lems such as the removal of singularities (Gromov and Eliashberg [GE], [Gro3]),
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continuous sheaves [Gro3], inversions of differential operators (Nash [N1], [N2],
Hamilton [Ham], Gromov [Gro3]), provides a cornestone of differential topology
and geometry.

In this paper we survey the homotopy principle in complex analysis and ge-
ometry, drawing parallels with the real geometry where appropriate. Results of
this type are commonly referred to (as instances of) the Oka principle when the
underlying manifold is Stein. To our knowledge this notion has never been precisely
defined, or at least there is no universal agreement on what the definition should be.
In the monograph [GRe] of Grauert and Remmert one finds on p. 145 the following
formulation: Analytic problems (on Stein manifolds) which can be cohomologically
formulated have only topological obstructions. If ‘cohomologically’ is interpreted
in the sense that the obstruction lies in a cohomology group with coefficients in
a coherent analytic sheaf then this is just Cartan’s Theorem B. The Oka-Grauert
theory goes a step further by reducing holomorphic problems to problems in homo-
topy theory; hence one is tempted to include in the Oka principle all those analytic
problems on Stein manifolds which can be homotopically formulated. There is a
serious limitation to such attempts since certain analytic problems have no solution
due to hyperbolicity (Picard’s theorems, Kobayashi hyperbolicity, etc.).

What is then a sensible notion of the Oka principle which would adequately
cover the known results? It’s probably impossible to find one. For the purposes of
this paper we adopt the convention that

The Oka principle = the homotopy principle in complex analysis.

We give precise definitions, conforming to Gromov’s [Gro3|, in Section 1.

It is not surprising that some of the most powerful methods to prove the homo-
topy principle in the smooth category do not extend to the holomorphic category.
The absence of partitions of unity can be substituted to a large extent by Car-
tan’s theory and the d-methods. A more serious problem is that boundary values
completely determine holomorphic objects; this disqualifies the convex integration
method which is based on extending a solution by induction over the skeleta of a
CW-complex. Fortunately some of the other methods mentioned above, such as
the elimination of singularities method, remain applicable in Stein geometry.

In 1970’s it became clear that progress on many questions in Stein geometry
depended on extending the Oka-Grauert principle to sections of more general types
of holomorphic fiber bundles, and even of non-locally trivial submersions. A cru-
cial contribution was made by Henkin and Leiterer ([HL1], [HL2]) who reproved
Grauert’s theorem using the ‘bumping method’, thereby localizing the approxima-
tion problems which arise in the construction of global sections. This turned out
to be a key point which opened the way to extensions. The potential was realized
by Gromov in 1989 [Grod] who introduced the concept of a dominating spray as
a replacement of the exponential map in the linearization and patching problems
which appear in the Oka-Grauert theory. The presence of a dominating spray on
the fiber of a holomorphic bundle over a Stein manifold implies the Oka principle
for its sections. Results on this topic are given in Section 3.

In Section 4 we look at the question of removing intersections of holomorphic
maps from Stein source manifolds with closed complex subvarieties of the (not
necessarily Stein) target manifolds. Progress in this direction was made possible
by the techniques developed to prove Gromov’s Oka principle mentioned above. In
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the classical case of complete intersections the Oka principle was proved in 1967 by
Forster and Ramspott [FRal.

1 Section 5 we survey the results on embeddings and immersions of Stein
manifolds into affine spaces. By the results of Remmert [Rem], Bishop [Bis], and
Narasimhan ([Nal], [Na2}), every Stein manifold X™ admits a proper holomorphic
embedding in C?"*! and immersion in C?". For embeddings of smooth manifolds
X" — RY the general minimal dimension is N = 2n (Whitney). However, an
n-dimensional Stein manifold X™ is homotopic to an (at most) n-dimensional CW-
complex which can be used to obtain holomorphic embeddings X" « C¥V for
smaller values of N. After the initial work of Forster ([I's1], [F's2]) the optimal
embedding dimension N = [%ﬂ] + 1 was conjectured by Gromov and Eliashberg in
1971 [GE] and proved in 1992 [EG] (for odd n the proof was completed in [Sch]).
The problem of embedding open Riemann surfaces into C? is still open and we
survey it in Section 6.

Tn Section 7 we survey the results from the recent work [F8| on the existence
of holomorphic submersions of Stein manifolds to complex Euclidean spaces.

This survey is not meant to be comprehensive in any way. Among many top-
ics which are not discussed, even though they would naturally belong here, is the
existence and homotopy classification of Stein structures on smooth manifolds; see
Eliashberg’s paper [El] and the monographs by Gromov [Gro3] and Gompf and
Stipsicz [GSt]. T apologize to all authors whose contributions may have been un-
justly left out, and T hope to compensate in a more comprehensive future work on
this subject.

&1. The homotopy principle and the Oka principle.

We begin by recalling from [Gro3] the notion of a differential relation. Consider
a smooth submersion h: Z — X between smooth real manifolds. Let Z(" denote
the space of r-jets of (germs of) smooth sections f: X — Z for r = 0,1,2,....
The 0-jet of f at = € X is its value f(z) € Z, = h=(z). The r-jet 57(f) € Z\") is
determined in local coordinates near x € X resp. f(x) € Z by the partial derivatives
of f of order < r at z.

We have natural projections p”: Z(") — Z and o Z6) 5 Z0) for s > r > 0,
where Z(© = Z. The jet bundles Z{") carry natural smooth structures, as well as
affine structures in fibers (see [Gro3] for more details). When X and Z are complex
manifolds and h: Z — X is a holomorphic submersion, we shall denote by Z(") the
space of r-jets of holomorphic sections f: X — Z.

Note that for every section g: X — Z{") we get a corresponding ‘base point’
section f =p"(g): X — Z. In general g need not equal j7(f); when g = j7(f) we
say that the section ¢ is holonomic.

1.1 Definition. [Gro3, p. 2]) A differential relation of order r is a subset
R < Z") of the r-jet bundle Z("). A C" section f: X — Z is said to satisfy (or to
be a solution of) R if j7(f): X — Z'") has values in R (i.e., j7(f) belongs to the
fiber Ry = (") '(f(x)) of R over the point f(z) € Z).

The relation R ¢ Z{") is said to be open (resp. closed) when R is an open (resp.
closed) subset of the jet bundle Z("). Natural examples of closed relations which
arise in geometric problems are unions of submanifolds (or subvarieties) of the jet
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bundle Z("), and open relations as complements of submanifolds {or subvarieties).
Differential equations are examples of closed differential relations.

1.2 Definition. (a) ([Gro3, p. 3]) Let r be a nonnegative integer and let s €
{r,7+1,...,00}. We say that solutions of class C* of a differential relation R C Z(")
satisfy the basic h-principle if every continuous section ¢y: X — R is homotopic
through sections ¢,: X — R (¢t € [0,1]) to a holonomic section ¢; = j"(f) for some
C® section f: X — Z.

(b) Assume that h: Z — X is a holomorphic submersion. We say that sections X —
Z of h satisfy the basic Oka principle if every continuous section is homotopic
to a holomorphic section. (For the parametric Oka principle see Definition 2.1.)
(c) ([Gro3, p. 66]; assumptions as in (b).) For r > 1 we say that a differential
relation R C Z") satisfies the holomorphic h-principle if every holomorphic
section ¢g: X — R is homotopic through holomorphic sections ¢;: X — R to a
holonomic holomorphic section ¢, = j7(f): X — R (where f: X — Z is a holo-
morphic section of h: Z — X ). We say that R satisfies the basic Oka principle if
every continuous section ¢g: X — R is homotopic through a family of continuous
sections of R to a holomorphic holonomic section of R.

1.3 Remarks. (a) In the C*-smooth case one usually takes the fine C® topology on
the space of C° sections X — Z. In the holomorphic case one must use the weaker
compact-open topology to obtain meaningful results.

{(b) One can introduce more refined notions such as the parametric h-principle, the
h-principle with approximation (or interpolation), the relative h-principle, etc. We
refer the reader to [Gro3]. In section two we introduce some of these notions in the
holomorphic case (for relations of order zero).

{¢) The problem of deforming a continuous section ¢g: X — R to a holomorphic
holonomic section can be treated in two steps:

- first deform ¢( through continuous sections of R to a holomorphic section
¢1: X — R (the ordinary Oka principle for sections X — R);

- deform a (non-holonomic) holomorphic section ¢1: X — R through a
homotopy of holomorphic sections ¢;: X — R (¢ € [1,2]) to a holomorphic
holonomic section ¢z = j"(f) (the holomorphic h-principle).

1.4 Examples. (a) Mappings X — Y. An open differential relation of order
zero is specified by an open subset €2 C Y, and the h-principle requires that every
continuous map X — § is homotopic to a smooth (real-analytic, holomorphic) map
through a homotopy with range in 2. For smooth maps this follows from Whitney’s
approximation theorem. The problem is highly nontrivial in the holomorphic case
(Sections 2 and 3).

(b) Smooth immersions. Let X be a smooth manifold. A map f = (fi1,..., fy):
X — R7 is an immersion if its differential df,: T, X — Ty,)R? >~ RY is a injective
for every z € X. The pertinent differential relation (of order one) consists of .

points (z,y,\) where 2 € X, y € R? and A € Hom(T,X,R?) with )\ injective.
Clearly the value f(z) is unimportant due to translation invariance, and we can
reduce the problem to the relation R whose sections are injective vector bundle
maps TX — X x R? from the tangent bundle of X into the trivial bundle X x RY.
(Alternatively, we can consider the relation whose sections are g-tuples of differential
1-forms 6 = (64, ..,0,) on X which together span the cotangent space T X at each
point z € X.) The h-principle of Smale ([Sm1], [Sm2]) and Hirsch ([Hil], [Hi
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asserts that if either ¢ > dim X, or if ¢ = dim X and X is open, then the regular
homotopy classes of smooth immersions X — R? are in one-to-one correspondence
with the homotopy classes of vector bundle injections TX — X x R?. In particular,
an immersion X — R exists if and only if the cotangent bundle 7*X is generated
by g sections.

(¢) Holomorphic immersions. The Oka principle for holomorphic immersions
X — C49 of Stein manifolds to affine spaces of dimension ¢ > dim X was proved
by Eliashberg and Gromov [Gro3] (Section 5 below). The problem is open in the
critical dimension ¢ = dim X except for a positive result in dimension n = 1
due to Gunning and Narasimhan [GN]. The Oka principle also holds for relative
immersions (maps g: X — C" such that f =b® g: X — C™" is a holomorphic
immersion, where b: X — C™ is a fixed holomorphic map).

(d) Smooth submersions. These are smooth maps X — Y of rank equal to
dim Y at each point of X (hence dimY < dim X). The tangent map of a submersion
X™ — R? induces a surjective vector bundle map T'X — X x R?. The homotopy
principle due to Phillips ([Phl1], [Ph3|) asserts that for any open manifold X, the
reqular homotopy classes of submersions X — RY are in one-to-one correspondence
with surjective vector bundle maps TX — X x R?. In particular, a submersion
X — RY exists if the tangent bundle TX admits a trivial subbundle of rank g¢.
(See also Gromov [Gro3], p. 26 and p. 53.) In fact the h-principle holds for smooth
submersions of open manifolds to arbitrary manifolds. It also holds for smooth
maps X — Y of constant rank k& [Ph2] or rank > k ([Fe], [Gro3, p. 27]).

(e) Holomorphic submersions. In 1967 Gunning and Narasimhan proved that
every open Riemann surface admits a holomorphic function without critical points
[GN]. Very recently it was proved in [F8] that the same holds on every Stein manifold
X. Moreover, holomorphic submersions X — C? satisfy the Oka principle when
g < dim X (Section 7 below). In the maximal dimension ¢ = dim X the problem is
still open: Does every Stein manifold X™ with trivial tangent bundle admit o locally
bitholomorphic map f: X — C™?

(f) Foliations. A foliation F of rank g of an n-dimensional manifold X is deter-
mined by an integrable rank ¢ subbundle E C T'X whose fiber E, is the tangent
space to the leaf of F through x € X. The corresponding homotopy principle was
proved for smooth open manifolds by Phillips [Ph2] and Gromov [Grol], and for
closed manifolds by Thurston ([Th1], [Th2]) (see also [Gro3], p. 102 and p. 106): If a
smooth subbundle E C T'X has a trivial normal bundle TX/E then E is homotopic
to an integrable smooth subbundle in T'X (which therefore determines a smooth
foliation on X). The same holds if N = T'X/E admits locally constant transition
functions. In [F8] the analogous results are proved for holomorphic foliations on
Stein manifolds. The h-principle fails for real-analytic foliations on closed mani-
folds since no closed simply connected real-analytic manifold admits a real-analytic
foliation of codimension one (Haefliger [Hae]). For example, the seven-sphere S”
admits a smooth codimension one foliation but no real-analytic one.

(g) Totally real immersions and embeddings. Let S be a smooth manifold
and X a complex (or almost complex) manifold. An immersion f: § — X is totally
real if for each p € S the image A, = dfy(1S) C T¢ X is a totally real linear
subspaces of T, X, ie, A, N J(Ay) = {0} where J € End(TX) is the almost
complex structure on X. The pertinent differential relation is the set of tripples
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(p,z,A) where pe §, x € X and A € Hom(T,5, T, X) is an injective R-linear map
whose image is a totally real subspace of T, X. When X = C™ we can reduce
the problem to a relation whose sections are injective R-linear vector bundle maps
t: TS — 8 xC™ with o(T,5) Nie(T,S) = {0} for all p € S. The homotopy principle
holds for totally real immersions and embeddings of any smooth manifold into any
complex manifold. An important point is that the Whitney trick can be performed
through totally real submanifolds. See [Gro3], [EH], [F1], [Au], and for dimension
two also [F2], [F7] and [Ne].

{h) Isometric immersions and embeddings. The fundamental work of Nash
([Nal], [Na2]) initiated a rich and complex theory. An interesting feature of Nash’s
discovery is that every smooth Riemannian manifold (X", g) admits local isometric
immersions of class C! in R**2 (codimension two!), but C*> isometric immersions
require larger codimension. For ¢ > J(n + 2)(n + 3) free isometric immersions
X™ — RY satisfy the homotopy principle [Gro3, p. 12]. Important results in this
field were obtained by R. Greene and collaborators [Gn], [GW], [GSh]. We refer to
[Gro3] for further results and references.

&2. The Oka principle for mappings: first examples.

Let X and Y be complex manifolds. We say that mappings X — Y satisfy the
basic Oka principle if every continuous map is homotopic to a holomorphic map.
For mappings between Riemann surfaces a complete answer on the validity of the
Oka principle was given by Winkelmann [Wi]. For manifolds of higher dimension
only partial results are known.

A compact set K in a Stein manifold X is holomorphically convez if for every
point p € X\ K there is an f € O(X) such that f(po) > sup,ex |f(x)]. Let P be a
compact Hausdorfl space (the parameter space) and Py C P be a compact subset
which is a strong deformation retraction of some neighborhood of Fy in P. We
shall consider the following stronger versions of the Oka principle (see the notion
of Ells fibrations in [Grod], as well as Theorem 1.5 in [FP2].)

2.1 Definition. (a) Maps X — Y satisy the parametric Oka principle if for
any continuous map f: X x P — Y such that f, = f(-,p): X — Y is holomorphic
for each p € Py there is a homotopy of continuous maps fi: X x P =Y (t € [0,
such that (i) f¥ = f, (i) the map f} := f*(-,p): X — Y is holomorphic for eacn
p € P, and (iii) f} = f, for eachp € Py and t € [0,1].

(b) Let X be a Stein manifold and let p be a metric on the complex manifold Y
inducing the manifold topology. Maps X — Y satisfy the parametric Oka prin-
ciple with approximation if for every compact holomorphically convex subset
K C X and forevery f: XxP — Y asin (a) such that all maps f, (p € P) are holo-
morphic in an open neighborhood of K in X, there is for every ¢ > 0 a homotopy
i X x P =Y satisfying (a) and also p(f(z,p), f(z,p)) < e (z € K, pe€ P).

(c) Maps X — Y satisfy the parametric Oka principle with interpolation if
for every closed complex subvariety Xg C X and for every f: X x P — Y as in
(a) such that all maps f, (p € P) are holomorphic in an open neighborhood of Xg
in X, there is for every r € N a homotopy f*: X x P — Y as in (a) such that f}
agrees with f, to order r on X for every ¢ € [0,1] and p € P.

The above notions clearly extend to sections f: X — Z of a holomorphic
submersion h: Z — X (see [Grod] or [FP2]).
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2.2 Remark. The parametric Oka principle for maps X — Y implies that the
inclusion

v: Holo(X; Y} < Cont(X;Y) (2.1)

of the space of holomorphic maps into the space of continuous maps is a weak ho-
motopy equivalence, i.e., it induces isomorphisms of the corresponding homotopy
groups of the two spaces which are equipped with the compact-open topology [FP1].
(In some papers this is the definition of the parametric Oka principle.) In particular,
each connected component of Cont(X;Y") contains precisely one connected compo-
nent of Holo(X;Y) which means that (a) every continuous map is homotopic to
a holomorphic map, and (b) every homotopy between a pair of holomorphic maps
can be continuously deformed to a homotopy consisting of holomorphic maps.

The basic Oka principle can hold for a trivial reason that either of the mani-
folds X or Y is contractible (hence every map is homotopic to constant). However,
topological contractibility does not necessarily imply the parametric (or any other)
Oka principle. In all nontrivial situations where the Oka principle has been estab-
lished for all Stein source manifolds X, it was actually proved in the strongest form
(parametric, with interpolation and approximation). This is no coincidence since
at least the approximation is built into all the known proofs.

We collect positive results on the Oka principle for maps (and sections) in
Section 3 below. In the remainder of this section we give examples illustrating the
failure of the Oka principle for maps from Stein source manifolds. In most examples
the reason for the failure is hyperbolicity of the target manifold.

2.3 Example. If either X or Y is contractible then the Oka principle for maps
X — Y trivially holds. However, the Oka principle with approximation fails already
for self-maps of the unit disc U = {z € C: |z] < 1}: Ifa € U\{0} and 0 < 7 < 1—]a],
the translation f(z) = z+ a maps {|z| < r} holomorphically into U and it extends
to a smooth a map U — U, but it cannot be approximated uniformly on any
neighborhood of the origin 0 € U by a holomorphic map g: U — U since this
would give ¢’(0) &~ f'(0) = 1 in contradiction to the Schwarz lemma.

2.4 Example. This and the next example can be found in [{Gro4] (see also [Wi]).
Let X = {1 < |z] <r}and Y = {1 < |z| < R} be annuli in C. The space of
homotopy classes of maps X — Y equals m(Y) = Z. However, if 1 < R < r
then every holomorphic map X — Y is homotopic to constant and hence the Oka
principle fails. Furthermore, for any choice of values of r, R > 1 only finitely many
homotopy classes of maps X — Y are represented by holomorphic maps. To see
this, observe that the infimum of the Kobayashi length of closed curves in X or
Y which generate the respective fundamental group is positive, and holomorphic
maps do not increase the length. On the other hand, the Oka principle holds for
maps X — C\{0} from any Stein manifold X (Section 3).

2.5 Example. The argument in Example 2.4 extends to any Kobayashi hyperbolic
target manifold. Recall that a complex manifold Y is Kobayashi hyperbolic if for
any point y € Y and tangent vector v € T,,Y € {0} the set of all numbers X € C of
the form f/(0) = Av for some holomorphic map f: U — Y, f(0) =y, is bounded:
[A| < M for some M = M(y,v) < -oo. For instance, the twice punctured plane
©C\{0,1} is hyperbolic by Picard’s theorem. If we take as before X to be an annulus
then even the basic Oka principle fails for maps X — Y = C\{0, 1} which is seen
by the following argument from [Gro4, p. 853]. Take a circle S = {|z| = p} C X
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and wrap is sufficiently many times around each of the points 0,1 by a smooth
map f: S — Y. Since the minimal Kobayashi length of closed curves representing
a given homotopy class in 71(Y") increases to +oo when we increase the number
of rotations around the two punctures, the length of f(S) in ¥ will exceed the
length of S in X for any f representing a suitably chosen class in 71(Y). Since
holomorphic maps do not increase the Kobayashi length, it follows that such f is
not homotopic to any holomorphic map X — Y. In fact only finitely many classes
in 71(Y) can be represented by holomorphic maps X — Y.

2.6 Example. The following example, due to J.-P. Rosay (private communication),
is an improvement of Proposition 2.2 in [CF] It shows that holomorphic graphs over
the unit disc cannot avoid even fairly simple complex curves in C?. Let (z,w) be
complex coordinates on C?. For k € C let

Yp = {w=0}U{w=1}U{w=kz} U{2w =1} c C*

Proposition. (J.-P. Rosay) There is a k > 0 such that the graph of any holomor-
phic function f: U = {|z| < 1} — C intersects L. (Indeed this is true for every
sufficiently large |k|.) On the other hand, for any k there exists a smooth function
U — C whose graph avoids Xy

This should be compared with Examples 3.4 and 3.5 below on avoiding subva-
rieties of codimension at least two. This is also in strong contrast to the situation
for holomorphic motions, i.e., disjoint unions of holomorphic graphs over the disc,
which can always be extended to maximal motions according to Slodkow  ([SI1],

1812)).

Proof.  The last statement is a simple topological exercise. Suppose now that
f: U — C\{0,1} is a holomorphic function omitting 0 and 1. Denote by [ the
length of the circle C' = {|z| = 1/2} with respect to the Kobayashi (=Poincaré)
metric on U. Denote by d the Kobayashi distance function on C\{0,1}. Let

ko = sup{|¢| € C\{0,1}: inf d(¢, 2¢") <}

We have ky < +oo since C\{0,1} is complete hyperbolic. Observe that the
Kobayashi length of f(C) C C\{0,1} is at most . We consider two cases.

Case 1. There exists a § € R such that |f(¢’?/2)] < 2. Then for all v € R we
have |f(e?/2)| < ko by the choice of ky. Rouché’s theorem shows that for every
k > 2kg the equation kz — f(z) = 0 has a solution with |z| < 1/2, and at this point
the graph of f intersects .

Case 2. For every 6 € R we have |f(e*/2)| > 2. Since f has values in C\{0, 1}, so
does g = 1/f, and the above gives |g(e*?/2)| < 1/2 for every . Rouché’s theorem
implies that z — g(z) = z — ﬁ has one zero with |z| < 1/2, which means that
zf(z) = 1 has a solution with |z| < 1/2. At this point the graph of f intersects X.
This completes the proof.

2.7 Example. This example is taken from [FP3]. For every n € N there erists a
discrete subset P C C™ such that the basic Oka principle fails for maps X — C™\P
from some Stein manifold X. In fact this holds for any discrete set P which is
unavoidable in the sense of Rosay and Rudin [RR], i.e., such that any entire map
C™ — C™ of generically maximal rank intersects P infinitely often. Alternatively,
any entire map C*¥ — C™\P has rank < n at each point (here k may be different
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from n). The same holds for maps X — C™\P for any X covered by an affine
space.

A simple argument shows that any holomorphic map X — C"™\P of rank
< n is homotopic to the constant map in C™"\P. However, for certain X covered
by an affine space there exist homotopically nontrivial smooth maps X — C™\P
and hence the Oka principle fails. To obtain such an example let n = 2 and
X = (C\{0})? (which is universally covered by C3). There is a smooth contraction
of X onto the standard torus 7% C C3. Let f: T3 — C?\P be an embedding of 7%
onto a small hypersurface torus surrounding a point pg € . Composing [ with
the contraction X — T° we get a nontrivial smooth map X — C?\P which is not
homotopic to any holomorphic map.

Note that the infinitesimal Kobayashi pseudometric on ¥ = C™\ P is totally
degenerate, but the Kobayashi-Eisenmann volume form on Y is nontrivial (when
P is unavoidable).

& 3. Mappings of Stein manifolds into subelliptic manifolds.

In this section we present results on the Oka principle for maps X — Y from
Stein source manifolds, as well as for section of submersions onto a Stein base. Our
main references are the papers by Grauert ([Gral], [Gra2]), Cartan [Ca], Gromov
[Grod], and [FP1], [FP2|, [FP3], [IF5].

By definition every Stein manifold admits plenty of holomorphic maps to com-
plex affine spaces C9. The basic idea introduced by Gromov [Grod] is the following.
Suppose that a complex manifold Y admits sufficiently many dominating holomor-
phic maps s: C? — Y, where the domination property means s is a submersion
outside a subvariety of C?. Then there also exist plenty of holomorphic maps
X — Y from any Stein X. (In some sense the idea is to factor maps X — YV
as X — C?9 —» Y.) What is needed in the proofs is a family of dominating maps
sy: C? — Y, depending holomorphically on the point y = s,(0) € Y. This leads
to the following concept of a dominating spray introduced by Gromov |Grod]. The
notion of a dominating family of sprays and of subelliptic manifolds was introduced
in [F5].

3.1 Definition. A spray on a complex manifold Y is a holomorphic map s: F —
Y, defined on the total space of a holomorphic vector bundle p: ' — Y, such that
5(0y) = y for every y € Y. The spray is dominating at y if its differential
dsg,: To, /0 — T,Y maps E, (which is a linear subspace of Ty (F)) onto )Y ; it is
dominating if this holds at every point y € Y. A dominating family of sprays
is a collection of sprays s;: E; — Y (j =1,2,...,k) such that for every y € Y we
have

(ds1)o, (E1y) + (dsz)o, (Fa,y) -+ + (dsk)o, (Ery) = T,Y. (3.1)

A manifold Y is called elliptic if it admits a dominating spray, and subelliptic if
it admits a finite dominating family of sprays.

3.2 Theorem. (The Oka principle for maps to subelliptic manifolds.) If
X is a Stein manifold and Y is a subelliptic manifold then mappings X — Y satisfy
the parametric Oka principle with interpolation and approximation. Furthermore,
the Oka principle holds (in all forms) for sections X — Z of any holomorphic fiber
bundle h: Z — X with subelliptic fiber Z, = h™'(x).
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that the matrix g(z) = (g1(2),. .., gn(x)) with columns g,(x) satisfies det g(x) # 0
(or even det g(z) = 1) for every & € X. The Oka principle holds in this problem
(in all forms); in particular, a holomorphic solution ezists provided there exists a
continuous solution. To see this we consider the manifold

Z={(z,v41,--sn):z€X, v, €Crforj=k+1,...,n,
det(gl($)7"'7gk($)7vk+17"'7vn) 7é 0}

with the projection h: Z — X onto the first factor. A solution to the problem is
a section X — Z of this fibration. The Oka principle follows from the observation
that Z — X is a holomorphic fiber bundle whose fiber GL,, ¢(C) x CF" %) is a
complex Lie group. For maps into SL,(C) is suffices to divide one of the columns
by the (nonvanishing) determinant function.

Theorem 3.2 extends to sections of subelliptic submersions which we now intro-
duce. Let A: Z — X be a holomorphic submersion onto X. For U C X we write
.5 hYU). For z € Z we denote by VT,Z the kernel of dh, (which equals the
tangent space to the fiber of Z at z) and call it the vertical tangent space of Z at
z. The space VT'(Z) — Z with fibers VT, Z is a holomorphic vector subbundle of
the tangent bundle T'Z.

If p: E — Z is a holomorphic vector bundle we denote by 0, € F the base
point in the fiber £, = p~*(z). At each point z € Z (=the zero section of F) we
have a natural splitting 1o, E =T, Z & E,.

3.7 Definition. [Gro4, sec. 1.1.B] A spray associated to a holomorphic submer-
sion h: Z — X (an h-spray) is a triple (E,p, s), where p: E — Z is a holomorphic
vector bundle and s: E — Z is a holomorphic map such that for each z € Z we
have 5(0,) = z and s(E,) C Zp(,). The spray s is dominating at the point z € Z
if the derivative ds: Ty, E — T,Z maps E, (which is a linear subspace of Ty, E)
surjectively onto V1,7 = ker dh,. The submersion h: Z — X is called subelliptic
if each point in X has an open neighborhood U C X such that h: Z|; — U admits
finitely many h-sprays (E;,p;,s;) for j =1,... k satisfying

(ds1)o, (E1,2) + (ds2)o, (Faz) -+ (dsk)o, (Bk,.) = VT.Z (3.2)

for each z € Z|;. A collection of sprays satisfying (3.1) is said to be dominating at
z. A submersion h is elliptic if the above holds with k = 1.

Comparing with Definition 3.1 we see that a spray on a manifold Y is the same
thing as a spray associated to the trivial submersion ¥ — point. By definition every
elliptic submersion is also subelliptic, but the converse is not known. A holomorphic
fiber bundle Z — X is (sub)elliptic if and only if the fiber has this property (since
a spray on F induces an h-spray on the product bundle h: U x E — U).

3.8 Theorem. Ifh:Z — X is a subelliptic submersion onto a Stein manifold
X then sections f: X — Z satisfy the parametric Oka principle with interpolation
and approximation.

For elliptic submersions Theorem 3.8 coincides with Gromov’s Main Theorem in
[Grod, Sec. 4.5]. The result is proved in [FP1] for fiber bundles with elliptic fibers,
in "P2] for elliptic submersions but without interpolation, in [FP3| for elliptic
submersions with interpolation, and the extension to subelliptic submersions is
obtained in [F5]. A version of the Oka principle for multi-valued sections of ramified
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The main problem in this connection is the following. Suppose that C C
B C €™ is a pair of compact convex sets. Let K be a closed ball in C* and
let f: c — C™\ K Dbe a holomorphic map on a neighborhood of C whose range
avoids K. Is it possible to approximate f uniformly on C' by a holomorphic map
f: B — C™"\K defined on a neighborhood of B ?

3.12 Problem. For any Stein manifold ¥ Theorem 3.2 has the following converse:
If the Oka principle holds for maps X — Y from any Stein manifold X, with second
order interpolation on any closed complex submanifold Xo C X, then Y admits a
dominating spray (see [Gro4] and [FP3]). In [Grod] the reader can find some further
ex Hles of target manifolds Y for which this holds, but it is not known whether
it holds for all manifolds.

&4. Removing intersections with complex subvarieties.

Let X and Y be complex manifolds and A C Y a closed complex subvariety of
Y. Given a holomorphic map f: X — Y we write f~}(4) = {z € X: f(z) € A}
and call it the intersection set of f with A. The question is to what extent is it
possible to prescribe the intersection set if f is allowed to vary within a homotopy
class of maps X — Y. More precisely, we consider the following

4.1 Problem. Suppose that f~1(A) = Xy U X1, where Xo, X; C X are disjoint
complex subvarieties of X. When is it possible to remove X; from f~1(4) by
homotopy of holomorphic maps f;: X — Y (¢ € [0,1]) which is fixed on Xq and
satisfles fo = f and f; '(A) = Xo?

In the simplest case when X = C and A consists of d points in Y = CP! the
answer changes when passing from d = 2 to d = 3: One can prescribe the pull-
back of any two points in CP! by a holomorphic map f: C — CP! (and there are
infinitely many such maps), but when d > 3 the pull-back divisor f*A completely

‘termines the map f. Similar situation occurs when A consists of d hyperplanes

in general position in Y = CP"™: we have flexibility (=infinitely many maps) for
d < n+ 1 and rigidity (few maps) for d > n + 2.

We say that the Oka principle holds if the existence of a homotopy of con-
tinuous maps X — Y (which remain holomorphic near Xy and remove X, from
the preimage) implies the existence of a holomorphic homotopy with the required
properties. We break down the problem as follows.

Step 1: Find a homotopy fi: X — Y (0 <t <1/2) with fy = f such that each f;
equals f in an open neighborhood of Xy in X and fl_/12(A) = Xp. This is
a homotopy theoretical problem.

Step 2: With f,/, as in Step 1, find a homotopy f;: X Y (1/2 <t < 1) such
that each f; is holomorphic near Xy and matches f on X, f; *(A) = X,
for each t, and f; is holomorphic on X. A solution is given by Theorem
4.2 below when X is Stein and Y\ 4 is subelliptic.

Step 3: Deform the combined homotopy f; (0 < ¢ < 1) from Steps 1 and 2, with
fixed fy and fi1, to a holomorphic homotopy ﬁ: X - Y (t € [0,1]) such
that the resulting two-parameter homotopy is fixed along Xg. This is
possible if X is Stein and Y is subelliptic (Theorem 4.4 below).

The conclusion is that the Oka principle holds in Problem 4.1 provided that X is
Stein and the manifolds Y and Y\ A are subelliptic. Examples of such pairs A C Y
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4.6 Example: Smooth versus holomorphic complete intersections. In [F4]
it was proved that there exists a three dimensional closed compler submanifold X
in C% which is a smooth (even real-analytic) complete intersection but which is not
a holomorphic complete intersection. More precisely, given any compact orientable
two dimensional surface M of genus g > 2, there is a three dimensional Stein
manifold X which is homotopy equivalent to M and whose tangent bundle T'X is
trivial as a real vector bundle but is nontrivial as a complex vector bundle over
X. The image of any proper holomorphic embedding of X in C® (or in C7) is a
smooth complete intersection in C° (resp. C”) but is not a holomorphic complete
intersection in any open neighborhood of X (since its normal bundle is nontrivial
as a complex vector bundle on X). The following problem remains open.

Problem: Let X C C" be a closed complex submanifold such that (i) X is a
smooth complete intersection in C", and (ii) its normal bundle TC"|x /T X is trivial
as a complex vector bundle (hence X is a holomorphic complete intersection in an
open neighborhood U C C™). Is X a holomorphic complete intersection in C™ ?

4.7 Example: Unavoidable discrete sets. Theorem 4.4 fails if Y = C™ and
A is any unavoidable discrete subset of C™ (see Example 2.7 above). To see this,
write A = {p} U A; for some p € A. Then A, is still unavoidable and consequently
every entire map F: C” — C™\ 4; has rank < n at each point. Take X = C",
f=1Id:C"— C", Xg = {p} and X; = A;. The conditions of Theorem 4.4 are
clearly satisfied but its conclusion fails since the rank condition for holomorphic
maps F: C* — C™\ A, implies that F~!(p) contains no isolated points, and hence
X = {p} cannot be a connected component of F~1(p).

&5. Embeddings and immersions of Stein manifolds.

In this section we collect results on holomorphic immersions and embeddings
of Stein manifolds into affine complex spaces. There has been considerable progress
on this subject since the 1990 survey of Bell an Narasimhan [BN].

In 1956 Remmert announced that every Stein manifold of dimension n > 1
admits a proper holomorphic embedding in €2"*! and a proper holomorphic im-
mersion in C?" [Rem]. Further more precise results were obtained by Narasimhan
([Nal], Va2]), Bishop [Bis], Ramspott [Ram], Forster ([Fsl], [Fs2]), Schaft [Sht],
and otners. The following optimal result, due to Eliashberg and Gromov, was an-
nounced in 1971 [GE] and proved in 1992 [EG]. An improvement of the embedding
dimension for odd n is due to Schiirmann [Sch] (1997).

5.1 Theorem. Every Stein manifold X of dimension n > 1 admits a proper holo-
morphic embedding in CI3"/3+1 and a proper holomorphic immersion in CI37+1)/2]

Also there exists a (not necessarily proper) holomorphic immersion X — Cln/2l
(see Theorem 5.9 below). Schiirmann |Sch| also proved an optimal embedding theo-
rem for Stein spaces with singularities which have uniformly bounded local embed-
ding dimension. Recently J. Prezelj [Pr2] constructed proper weakly holomorphic
embeddings of Stein spaces with isolated singularities in Fuclidean spaces of mini-
mal dimension. These results strongly depend on Lefschetz’s theorem to the effect
that a Stein manifold is homotopically equivalent to a CW-complex of real dimen-
sion at most dim ¢X [AF]. The following example of Forster {Fsl] shows that the
dimensions in Theorem 5.1 cannot be lowered.
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5.2 Example. Let Y = {[z: y: 2] € CP?: 2% + 42 + 22 # 0} and

v Y, il n = 2m;
Y™ xC, ifn=2m+1.

Clearly X is a Stein manifold of dimension n. Forster proved ([Fol], Proposition
3) that the Stiefel-Whitney class wao,, (TX) is the nonzero element of the group
H?™(X; Zy) = H*™((RP?)™; Z3) = Z,, and consequently the Chern class ¢,, (T X)
is the nonzero element of H*™(X;Z) = Z;. It follows that X does not embed in
CB7/2 and does not immerse in C37/2=1 (see [Hu, p. 263]).

The proof of Theorem 5.1 in [EG] and [Sch] relies on the elimination of singu-
larities method and on the Oka principle for sections of certain submersions onto
Stein manifolds (Example 3.9 above). We describe the main idea. One begins by
choosing a generic almost proper holomorphic map b: X™ — C™ constructed by
Bishop [Bis|. This means that the b-preimage of any compact set in C™ has (at
most countably many) compact connected components. We then try to find a map
g: X — C7 which ‘desingularizes b’ in the sense that f = (b,g): X — C"™¥ is a
proper holomorphic embedding (resp. immersion). Properness is easily achieved by
choosing g sufficiently large on a certain sequence of compact sets in X (here we
need that b is almost proper).

To insure that f = (b,g) is an immersion we must choose g such that its
differential dg, is nondegenerate on the kernel of db, at each z € X. To obtain
injectivity we must choose g to separate points on the fibers of b. Both requirements
can be satisfied if ¢ > [n/2] + 1 and this number is determined by topological
restrictions. (The immersion condition requires ¢ > [n/2].) One proves this by
a finite induction. We stratify X by a descending finite chain of closed complex
subvarieties X = Xy O X; O Xu... O X,, = 0 such that the kernel of db,
has constant dimension on each stratum Sy = X3\ X1 (which is chosen to be
nonsingular), and the number of distinct points in b~ 1(z) is constant for z € Sj.
(In the actual proof we must replace X by a suitable subset B C X which is mapped
by b properly onto a bounded domain in C™; in the end we perform an induction by
increasing B to X.) Furthermore, once we have a map gi: X — C9 satisfying these
conditions along X}, we choose gr_1: X — C? such that it satisfies both condition
on the next stratum Si_; and agrees with g to second order along Xj (so that
gr—1 does not destroy what g, has achieved). A suitable g;_; is obtained by the
Oka principle (Section 3) provided there are no topological obstructions, and this
is so when g > [n/2] + L.

Although Theorem 5.1 gives the optimal result for the entire collection of n-
dimensional Stein manifolds, the method does not give a better result for ‘simple’
Stein manifolds which are expected to embed in lower dimensional space. For
instance, it is not known what is the minimal proper embedding dimension of the
polydisc or the ball in C". Globevnik proved by a different method (using shear
automorphisms of C™) that there are arbitrarily small perturbations of the polydisc
in C™ which embed in C"*! [GI2].

5.3 Question. What is the proper holomorhic embedding dimension of the ball?
The polydisc? A general convex domains in C"? How does it depend on the
topology and geometry of the domain?
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We now consider the existence of relative embeddings. The following result was
proved in [ABT] following the method of Narasimhan [Na2].

5.4 Theorem. Suppose that X is a Stein manifold of dimension n, ¥ C X
is a closed complex submanifold in X and f: Y — CV is a proper holomorphic
embedding. If N > 2n + 1 then there exists a proper holomorphic embedding
f: X — CN such that fly = f.

It is not known whether Theorem 5.4 is valid for N = 2n, but it is false for
N < 2n — 1 by Corollary 5.7 below which follows from the following interpolation
results for holomorphic embeddings from [BFn] and [F3].

5.5 Theorem. Let 3 be a discrete subset of CV for some N > 1. If a Stein
manifold X admits a proper holomorphic embedding fo: X — CV then X also
admits an embedding f: X — C¥ whose image f(X) contains . In addition
we may choose f such that for every entire map v: C* — CN whose rank equals
d= N —dim X at most points of C? the set 1/(C%) N f(X) is infinite. If d = 1, we
may insure that CN\ f(X) is Kobayashi hyperbolic.

5.6 Corollary. Letn,d> 1, N =n+d. There exists a proper holomorphic em-
bedding f: C* — CV such that every entire map 1: C¢ — C~ of rank d intersects
f(C™) at infinitely many points. For d = 1 we may choose f such that C**1\ f(C")
is Kobayashi hyperbolic.

The proofs in [BFn] and [F3] use results on holomorphic automorphisms of CV
obtained in [And], [AL], [FRo]. The first result in this direction [FGR] was that
there exist holomorphically embedded complex lines in C? which are not equivalent
to the standard embedding C — C x {0} C C? by automorphisms of C?. This is
in strong contrast to the situation for algebraic (polynomial) embeddings C — C?
which are all equivalent to the standard embedding by polynomial automorphisms
of C? according to Abhyankar and Moh [AM]. Using such ‘twisted’ holomorphic
embeddings of C in C? Derksen and Kutzschebauch constructed nonlinearizable
periodic holomorphic automorphisms of C* [DK].

5.7 Corollary.  For every m > 2 there exists a proper holomorphic embed-
ding f: C" ! — C?"~! which does not admit an injective holomorphic extension
f: Cr — C?n 1,

Proof. Choose f: C" 1 — C?"~! as in Corollary 5.6 such that the range of any

entire map C™ — C2"~1 of generic rank n intersects f(C* 1). If f: C" — C2n—1
is an injective holomorphic extension of f: C"~! x {0} — C?*! then

w(z):w(’zl)"'azn):fN(Zlv'”azn—laezn) (Ze(cn)

is an entire map which has rank n at a generic point of C™ and whose image misses
f(C™ 1) c C* ! in contradiction to the assumption on f.

In Theorem 5.5 the image f(X) C CV contains a given discrete set {p;} C C¥,
but we don’t specify the points in X which correspond to the points p; under
the embedding f. The following more precise interpolation theorem was proved
recently by J. Prezelj [Pr1].

5.8 Theorem. Let X be a Stein manifold of dimension n > 1. Define ¢(n) =
min{[21]4+1,3}. Then for any N > n+q(n) and any pair of discrete sets {ax} C X,
{br} C CV there exists a proper holomorphic embedding f: X — CV satisfying
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flag) = by for every k = 1,2,3,.... The analogous conclusion holds for proper
holomorphic immersions X — CN when N > [32EL],

Comparing with Theorem 5.1 we see that the embedding dimension is minimal
for even n and is off by at most one for odd n. Prezelj’s proof in [Pr uses an
improved version of the scheme from [EG] and [Sch]. By entirely different methods
(using holomorphic automorphisms) J. Globevnik proved that the conclusion of
Theorem 5.8 also holds for proper holomorphic embeddings of the unit disc in
C? [G13]. A Carleman type embedding theorem (approximating a given smooth
proper embedding R — C” in the fine C* topology on R by proper holomorphic
embeddings C — C™) was proved in [BF].

It is not known whether proper holomorphic immersions or embeddings of Stein
manifolds satisfy the Oka principle. However, non-proper holomorphic immersions
of Stein manifolds do satisly the following Oka principle (Gromov and Eliashberg
[GE]; see also section 2.1.5. in [Gro3]).

5.9 Theorem. If the cotangent bundle T*X of a Stein manifold is generated
by ¢ differential (1,0)-forms 64,...,0, for some ¢ > dimX then there exists a
holomorpbic immersion X — C?. More precisely, every such g-tuple (01,...,0;)
can be changed by a homotopy (through g¢-tuples generating T*X) to a g-tuple
(df1,....dfg) where f = (fi,..., fq): X — C? is a holomorphic immersion. Every
n-dimensional Stein manifold admits a holomorphic immersion in C¥"/2],

Example 5.2 above shows that the immersion dimension [3] is the best possible
for every n. The idea of the proof of Theorem 5.9 is the following. By the Oka-
Grauert principle we may assume that 6; are holomorphic 1-forms. In the first
step one of the forms, say 04, is replaced by the differential df, of a holomorphic
function on X such that 6q,...,04_1,dfq still generate T*X. Since ¢ > dim X,
we may assume that the forms 64,...,8,-1 already generate 7" X outside a proper
complex subvariety ¥ C X, and f, must satisfy an essentially algebraic condition on
its jet along . Once f, has been chosen one proceeds in the same way and replaces
84-1 with an exact differential. In finitely many steps all forms are replaced with
differentials. The technical details of the proof are considerable.

&6. Embeddings of open Riemann surfaces in the affine plane.

In this section we describe the state of knowledge on the following problem.

6.1 Problem. Does every open Riemann surface admit a proper holomorphic
embedding in C?? Is the algebra of global holomorphic functions on such a surface
always doubly generated?

Open Riemann surfaces are precisely Stein manifolds of dimension one, and in
view of Theorem 5.1 (on embedding n-dimensional Stein manifolds in CI%/2+1 for
n > 1) one might expect that they embed in C2. (For comparison we recall that
every compact Riemann surface embeds in CP? but most of them don’t embed in
CP? [FK].) The proof of Theorem 5.1 only gives embeddings into C3, the reason
being that for embeddings X < C? it runs into a hyperbolicity obstruction (Ex-
ample 2.6 in Section 2). The main difficulty is to find injective holomorphic maps
to C?; this is essentially equivalent to the algebra of holomorphic functions being

doubly generated. Here are some Riemann surfaces which are known to er ed in
C?:
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— the disc U = {z € C: |z| < 1} (Kasahara and Nishino [Ste]);

annuli {1 < |z} < r} (Laufer [Lau]),

— punctured disc U\{0} (Alexander [Ale}),

— all finitely connected planar domains 2 C C different from C whose bound-
ary contains no isolated points (Globevnik and Stensgnes [GS]).

We now consider the embedding problem for bordered Riemann surfaces. Let
R be a compact, orientable, smooth real surfaces whose boundary bR = UJL,C;
consists of finitely many curves and no isolated points. Such R is a sphere with
¢ handles (g is the geometric genus of R) and m > 1 holes (removed discs). A
complex structure on R is determined by an endomorphism J of the tangent bundle
TR satisying J2 = —Id (Gauss-Ahlfors-Bers). We may assume that J is Holder
continuous of class C*(R) for a fixed o € (0,1). A differentiable function f: R — C
is J-holomorphic if df o J = /—1df. Two complex structures Jy and J; are
equivalent if there exists a diffeomorphism ¢: R — R of class CV*(R) satisfying
dp o Jy = Jy odp. The set of equivalence classes of complex structures on R is
the moduli space M(R). The following result from [CF] shows that there are no
topological obstructions for embedding finite bordered Riemann surfaces in C2.

6.2 Theorem. For every smooth bordered surface R there exists a nonempty
open set Q C M(R) such that for every complex structure J on R with [J] €
the open Riemann surface R = R\bR admits a proper J-holomorphic embedding
in C2.

Theorem 6.2 follows from the following result in [CF] which sems to contain

all known results on embeddings in C? except for the punctured disc. (For planar
domains see [GS] and [CG]). Let U = {z € C: |z| < 1}.

6.3 Theorem. Let (R,J) be a finite bordered Riemann surface of genus g with
m boundary components, where J is of class C*(R) for some « € (0,1). Assume
that there exists an injective immersion f = (f1, f2): R — U x C of class C? which
is J-holomorphic in 702, |f1] = 1 on bR, and the generic fiber of fi contains at
least 2g +m — 1 points. Then R admits a proper J- holomorphic embedding in C?.

Furthermore, for every complex structure J sufficiently C* close to J the surface R
also admits a proper J- holomorphic embedding in C2.

6.4 Corollary. The following Riemann surfaces admit a proper holomorphic em-
bedding in C?:
(i) finitely connected domains in C without isolated boundary points,
(ii) every complex torus with one hole,
(iil) every bordered Riemann surface whose double is hyperelliptic.

The proof of Theorems 6.2 and 6.3 in [CF] is based partly on the method de-
veloped by Globevnik and Stengnes [GS] who proved the result for planar domains.
In this case the conditions in Theorem 6.3 are satisfied if we take g(z) = z and f an
inner function of degree > m — 1, where m is the number of boundary components
of the domain.

A hyperelliptic (compact) Riemann surface X is the normalization of a curve
in CP? given by

y' =

—

(x — a;)(1 —@;z) (6.1)
0

i

J
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on X, and hence X admits a nonsingular hypersurface foliation transverse to the
submanifold Xj.

The main result of [F8] is a homotopy principle for holomorphic submersions
of Stein manifolds to Euclidean spaces of lower dimension. A holomorphic map
[+ X — Cis a submersion if dfy: T, X — Ty, C? ~ C9 is surjective for every
x € X, and hence its differential induces a surjective complex vector bundle map
of the tangent bundle TX onto the trivial bundle X x C%. For ¢ < dim X this
necessary condition for the existence of a submersion X — C? is also sufficient.
The following is Theorem II from [F8].

7.2 Theorem. If X is a Stein manifold and 1 < q < dimX then every sur-
jective complex vector bundle map TX — X x C4 is homotopic (in the space of
surjective complex vector bundle maps) to the differential of a holomorphic sub-
mersion X — C4. If fo, f1: X — CY are holomorphic submersions whose differ-
entials are homotopic through a family of surjective complex vector bundle maps
O:: TX — X x C4 (t €]0,1]) then there exists a regular homotopy of holomorphic
submersions fy: X — C? (t € [0,1]) connecting fo to f1.

For a more precise result see Theorem 2.5 in {F8]. It is not known whether
the same conclusion holds for ¢ = dim X, except on open Riemann surfaces where
it was proved in [GN]. The corresponding homotopy principle for submersions of
smooth open manifolds to R is due to Phillips ([Phl], [Ph3]) and Gromov [Grl].
For an extension to smooth (or real-analytic) foliations see [Ph2], [Thl], [Th2].

In [F8] the reader can find numerous applications to the existence of nonsingu-
lar holomorphic foliations on Stein manifolds. For instance we have the following
(Corollary 2.9 and Theorem 7.1 in [F8]).

7.3 Corollary. Let X be a Stein manifold of dimension n and £ C TX a
complex subbundle of rank k > 1. If the quotient bundle TX/FE is trivial or admits
locally constant transition functions then E is homotopic (through complex rank
k subbundles of TX) to the tangent bundle of a nonsingular holomorphic foliation
of X. If E is holomorphic then the homotopy may be chosen through holomorphic
subbundles.

When TX/E is trivial (of rank g = n— k) the foliation in Corollary 7.3 is given
by a holomorphic submersion X — C¢4.

To any complex subbundle £ C TX we associate its conormal bundle © =
El C T*X with fibers ©, {w € T)X: w(w) = 0 forallv € E,}. Then
O = (TX/E)*, and the first part of Corollary 7.3 can be equivalently expressed
as follows: Any trivial complex subbundle ©® C T*X of rank g < dimX 1s homo-
topic to a subbundle generated by holomorphic differentials dfy, ..., dfq.

By a theorem of Lefschetz [AF] an n-dimensional Stein manifold X is homo-
topic to a CW-complex of real dimension at most n. Elementary homotopy theory
implies that every complex vector bundle of rank m > [§]41 on X admits a nonva-
nishing section. Avolying this inductively we see that T* X admits a trivial complex
subbundle of rank -  Hence Corollary 7.3 implies the following (compare with
Theorem 7.1):

7.4 Corollary. Every n-dimensional Stein manifold X admits nonsingular holo-
morphic foliations of any dimension k > []. If X is holomorphically parallelizable,
it admits a holomorphic submersion X — C"~! and holomorphic foliations of any
dimension 1,2,...,n — 1.
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constant Jacobian; compare with the Jacobian problem for polynomial
maps [BN, p. 21].

3. Let f: X™ — C"! be a holomorphic submersion and let F denote the
foliation {f = ¢}, ¢ € C*~!. Assuming that the tangent bundle TF is
trivial, find a ¢ € O(X) which is noncritical on every leaf of F. (The map
(f,g): X — C™ is then locally biholomorphic.)
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