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Abstract
We study the existence of topologically closed complex curves normalized by bordered
Riemann surfaces in complex spaces. Our main result is that such curves abound in
any noncompact complex space admitting an exhaustion function whose Levi form
has at least two positive eigenvalues at every point outside a compact set, and this
condition is essential. We also construct a Stein neighborhood basis of any compact
complex curve with C2-boundary in a complex space.
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1. Introduction
Let X be an irreducible (reduced, paracompact) complex space of dimension greater
than 1. For every topologically closed complex curve C in X, we have a sequence of
holomorphic maps

{CP
1, C, �} � D̃ → D → C ↪→ X,

where C ↪→ X is the inclusion, D → C is a normalization of C by a Riemann
surface D, and D̃ → D is a universal covering combined with a uniformization map.
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Here � = {z ∈ C : |z| < 1}. Thus C is the image of a generically one-to-one proper
holomorphic map D → X; hence it is natural to ask which Riemann surfaces D admit
any proper holomorphic maps to a given complex space and how plentiful they are.
This question has been investigated most intensively for compact complex curves that
form a part of the Douady space and of the cycle space of X (see [3], [8], [18]).

In this article, we obtain essentially optimal existence and approximation results
when D is a finite bordered Riemann surface, that is, a one-dimensional complex
manifold with compact closure D̄ = D ∪ bD whose boundary bD consists of finitely
many closed Jordan curves; such a D is uniformized by the disc �. The existence
of a proper holomorphic map D → X implies that X is noncompact, but additional
conditions are needed in general since there exist open complex manifolds without
any topologically closed complex curves; an example is obtained by removing a point
from a compact complex manifold that admits no closed complex curves (a condition
satisfied, e.g., by certain complex tori of dimension greater than 1).

We begin by a brief survey of the known results. Every open Riemann surface
admits a proper holomorphic immersion in C2 and a proper holomorphic embedding
in C3 (see [7], [61]). Some open Riemann surfaces also embed in C2, but it is unknown
whether all of them do; impressive results on this subject have been obtained recently
by Wold in [77], [78], [79], where the reader can find references to older works on the
subject.

Turning to more general target spaces, we note that the Kobayashi hyperbolicity
of X excludes curves uniformized by C but imposes fewer restrictions on those
uniformized by the disc � (see [50], [51]). There are other, less tangible obstructions:
Dor [17] found a bounded domain with nonsmooth boundary in Cn without any proper
holomorphic images of �; even in smoothly bounded (non-pseudoconvex) domains
in Cn, the union of images of all proper analytic discs can omit a nonempty open
subset (see [27]). On the positive side, every point in a Stein manifold X of dimension
greater than 1 is contained in the image of a proper holomorphic map � → X (see
Globevnik [35]; see also [16], [19], [20], [21], [27], [28], [29]). The same holds for
discs in any connected complex manifold X that is q-complete for some q < dim X

(see [21]). The first cases of interest, inaccessible with the existing techniques, are
Stein spaces with singularities.

Recall that a smooth function ρ : X → R on a complex space X is said to be
q-convex on an open subset U ⊂ X (in the sense of Andreotti and Grauert [2] and
[38, Definition 1.4, page 263]) if there is a covering of U by open sets Vj ⊂ U ,
biholomorphic to closed analytic subsets of open sets �j ⊂ Cnj , such that for each
j the restriction ρ|Vj

admits an extension ρ̃j : �j → R whose Levi form i∂∂̄ ρ̃j

has at most q − 1 negative or zero eigenvalues at each point of �j . The space X is
q-complete (resp., q-convex) if it admits a smooth exhaustion function ρ : X → R

which is q-convex on X (resp., on {x ∈ X : ρ(x) > c} for some c ∈ R). A 1-complete
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complex space is just a Stein space, and a 1-convex space is a proper modification of
a Stein space. We denote by Xreg (resp., by Xsing) the set of regular (resp., singular)
points of X.

We are now ready to state our first main result; it is proved in ğ6.

THEOREM 1.1
Let X be an irreducible complex space of dim X > 1, and let ρ : X → R be a smooth
exhaustion function that is (n − 1)-convex on Xc = {x ∈ X : ρ(x) > c} for some
c ∈ R. Given a bordered Riemann surface D and a C2-map f : D̄ → X which is
holomorphic in D and satisfies f (D) �⊂ Xsing and f (bD) ⊂ Xc, there is a sequence
of proper holomorphic maps gν : D → X homotopic to f |D and converging to f

uniformly on compacts in D as ν → ∞. Given an integer k ∈ N and finitely many
points {zj } ⊂ D, each gν can be chosen to have the same k-jet as f at each of the
points zj .

We now show by examples that the conditions in Theorem 1.1 are essentially optimal.
The assumption on ρ means that its Levi form has at least two positive eigenvalues
at every point of Xc = {ρ > c}. One positive eigenvalue does not suffice in view
of Dor’s example of a domain in Cn without any proper analytic discs (see [17])
and the fact that every domain in Cn is n-complete (see [39], [64]). Necessity of the
hypothesis f (D) �⊂ Xsing is seen by [34, Proposition 3] (based on an example of
Kaliman and Zaidenberg [48]): an analytic disc contained in Xsing may be forced to
remain there under analytic perturbations, and it need not be approximable by proper
holomorphic maps � → X. The only possible improvement is a reduction of the
boundary regularity assumption on the initial map. If D is a planar domain bounded
by finitely many Jordan curves and X is a manifold, it suffices to assume that f is
continuous on D̄ by appealing to [9, Theorem 1.1.4] in order to approximate f by a
more regular map.

If f : D̄ → X in Theorem 1.1 is generically injective, then so is any proper
holomorphic map gν : D → X approximating f sufficiently closely; its image gν(D)
is then a closed complex curve in X normalized by D. Assuming that f (D̄) ⊂ Xreg,
one can choose each gν to be an immersion, and even an embedding when n ≥ 3.
Each map gν is a locally uniform limit in D of a sequence of C2-maps fj : D̄ → X

which are holomorphic in D and satisfy

lim
j→∞

inf
{
ρ ◦ fj (z) : z ∈ bD

} → +∞; (1.1)

that is, their boundaries fj (bD) tend to infinity in X. Embedding D̄ as a domain in
an open Riemann surface S, we can choose each fj to be holomorphic in open set
Uj ⊂ S containing D̄.
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Theorem 1.1 also gives new information on algebraic curves in (n − 1)-convex
quasi-projective algebraic spaces X = Y\Z, where Y, Z ⊂ CPN are closed complex
(i.e., algebraic) subvarieties in a complex projective space. We embed our bordered
Riemann surface D as a domain with smooth real analytic boundary in its double Ŝ, a
compact Riemann surface obtained by gluing two copies of D̄ along their boundaries
(see [5, page 581], [74, page 217]). There is a meromorphic embedding Ŝ ↪→ CP3 with
poles outside of D̄; the subset S ⊂ Ŝ which is mapped to the affine part C3 ⊂ CP3 is a
smooth affine algebraic curve, and D is Runge in S. A holomorphic map f : U → X

from an open set U ⊂ S to a quasi-projective algebraic space X is said to be Nash
algebraic (see Nash [63]) if the graph

Gf = {(
z, f (z)

) ∈ S × X : z ∈ U
}

is contained in a one-dimensional algebraic subvariety of S × X.

COROLLARY 1.2
Let X be an irreducible quasi-projective algebraic space of dim X > 1, and let
D � S be a smoothly bounded Runge domain in an affine algebraic curve S. Assume
that ρ : X → R and f : D̄ → X satisfy the hypotheses of Theorem 1.1. Then there is
a sequence of Nash algebraic maps fj : Uj → X in open sets Uj ⊃ D̄ satisfying (1.1)
such that the sequence fj |D converges to a proper holomorphic map g : D → X.

Corollary 1.2 is obtained by approximating each of the holomorphic maps fj : Uj →
X, obtained in the proof of Theorem 1.1, uniformly on D̄ by a Nash algebraic map,
appealing to theorems of Demailly, Lempert, and Shiffman [15, Theorem 1.1] and
Lempert [54, Theorem 1.1, page 335]. Their results give Nash algebraic approxim-
ations of any holomorphic map from an open Runge domain in an affine algebraic
variety to a quasi-projective algebraic space. Of course, g can be chosen to also
satisfy the additional properties in Theorem 1.1. If �j ⊂ S × X is an algebraic curve
containing the graph of the Nash algebraic map fj : Uj → X, then its projection
Cj ⊂ X under the map (z, x) → x is an algebraic curve in X containing fj (Uj );
as j → ∞, the domains fj (D) ⊂ Cj converge to the closed transcendental curve
g(D) ⊂ X, while their boundaries fj (bD) leave any compact subset of X.

Corollary 1.2 applies, for example, to X = CPn\A, where A is a closed complex
submanifold of dimension d ∈ {[(n + 1)/2], . . . , n − 1}. Indeed, CPn\A is then
(2(n − d) − 1)-complete by a result of Peternell [65] (improving an earlier result of
Barth [4]) and hence is (n − 1)-complete if n ≤ 2d .

Another interesting and relevant example is due to Schneider [71], who proved that
for a compact complex manifold X and a complex submanifold A ⊂ X of codimension
q whose normal bundle NA|X is (Griffiths) positive, the complement X\A is q-convex.
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Thus Theorem 1.1 furnishes closed complex curves in X\A whenever q ≤ dim X−1,
which is equivalent to dim A ≥ 1 (for further examples, see Grauert [38] and Colţoiu
[13]).

The following consequence of Theorem 1.1 was proved in [21] in the special case
when Xsing = ∅ and D = �.

COROLLARY 1.3
Let X be an irreducible (n − 1)-complete complex space of dimension n > 1, and let
D be a bordered Riemann surface. Given a C2-map f : D̄ → X which is holomorphic
in D and satisfies f (D) �⊂ Xsing, a positive integer k ∈ N, and finitely many points
{zj } ⊂ D, there is a sequence of proper holomorphic maps gν : D → X converging
to f |D uniformly on compacts in D such that each gν has the same k-jets as f at each
of the points zj . This holds, in particular, if X is a Stein space.

Let X be a complex manifold. The Kobayashi-Royden pseudonorm of a tangent vector
v ∈ TxX is given by

κX(v) = inf
{
λ > 0: ∃f : � → X holomorphic, f (0) = x, f ′(0) = λ−1v

}
.

The same quantity is obtained by using only maps that are holomorphic in small
neighborhoods of �̄ in C. Corollary 1.3 implies the following.

COROLLARY 1.4
If X is an (n−1)-complete complex manifold of dimension n > 1, then its infinitesimal
Kobayashi-Royden pseudometric κX is computable in terms of proper holomorphic
discs f : � → X.

On a quasi-projective algebraic manifold X, the pseudometric κX and its integrated
form, the Kobayashi pseudodistance, are also computable by algebraic curves (see
[15, Corollary 1.2]).

It is natural to inquire which homotopy classes of maps D → X from a bordered
Riemann surface admit a proper holomorphic representative. Hyperbolicity properties
of X may impose a major obstruction on the existence of a holomorphic map in a given
nontrivial homotopy class (see [50], [51], [22]). The following opposite property is
important in Oka-Grauert theory.

A complex manifold X is said to enjoy the m-dimensional convex approximation
property (CAPm) if every holomorphic map U → X from an open set U ⊂ Cm can be
approximated uniformly on any compact convex set K ⊂ U by entire maps Cm → X

(see [26]).
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COROLLARY 1.5
Let X be an (n − 1)-complete complex manifold of dimension n > 1. If X satisfies
CAPn+1, then for every continuous map f : D → X from a bordered Riemann
surface D, there exists a proper holomorphic map g : D → X homotopic to f .
If f is holomorphic on a neighborhood of a compact subset K ⊂ D, then g can
be chosen to approximate f as close as desired on K . This holds, in particular, if
X = CPn\A, where n ≥ 4 and A ⊂ CPn is a closed complex submanifold of
dimension d ∈ {[(n + 1)/2], . . . , n − 2}.

Proof
We may assume that D̄ = {z ∈ S : v(z) ≤ 0}, where S is an open Riemann surface
and v : S → R is a smooth function with dv �= 0 on bD = {v = 0}. Choose
numbers c0 < 0 < c1 close to zero so that v has no critical values on [c0, c1]. Let
Dj = {z ∈ S : v(z) < cj } for j = 0, 1. We may assume K ⊂ D0. There is a
homotopy of smooth maps τt : D1 → D1 (t ∈ [0, 1]) such that τ0 is the identity on
D1, τ1(D1) = D0, and for all t ∈ [0, 1] we have τt (D) ⊂ D, and τt equals the identity
map near K . Set f̃ = f ◦ τ1 : D1 → X. Note that f̃ |D is homotopic to f via the
homotopy f ◦ τt |D (t ∈ [0, 1]).

By the main result [26, Theorem 1.2], the CAPn+1 property of X implies the
existence of a holomorphic map f1 : D1 → X homotopic to f̃ : D1 → X. Then f1|D
is homotopic to f̃ |D and hence to f . Theorem 1.1, applied to the map f1|D̄ : D̄ → X,
furnishes a proper holomorphic map g : D → X homotopic to f1|D and hence to f .
In addition, f1 and g can be chosen to approximate f uniformly on K .

The last statement follows from the aforementioned fact that CPn\A is (n − 1)-
complete if A is as in the statement of the corollary (see [65]), and it enjoys CAPm

for all m ∈ N provided that dim A ≤ n − 2 (see [26]). �

By [26] and [25], the property CAP = ⋂∞
m=1 CAPm of a complex manifold X is

equivalent to the classical Oka property concerning the existence and the homotopy
classification of holomorphic maps from Stein manifolds to X. Examples in [40] and
[26] show that Corollary 1.5 fails in general if X does not enjoy CAP, and the most
that one can expect is to find a proper map D → X in the given homotopy class which
is holomorphic with respect to some complex structure on the smooth 2-surface D.
This indeed follows by combining Theorem 1.1 with a very special case of the main
result [33, Theorem 1.1, page 616].

COROLLARY 1.6
Let X be an (n − 1)-complete complex manifold of dimension n > 1, and let D̄ be a
compact, connected, oriented real surface with boundary. For every continuous map
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f : D → X, there exist a complex structure J on D and a proper J -holomorphic
map g : D → X which is homotopic to f .

Another result of independent interest is Theorem 2.1 to the effect that a compact
complex curve with C2-boundary in a complex space admits a basis of open Stein
neighborhoods. The following special case is proved in ğ2.

THEOREM 1.7
Let X be an n-dimensional complex manifold. If D is a relatively compact, smoothly
bounded domain in an open Riemann surface S and f : D̄ ↪→ X is a C2-embedding
that is holomorphic in D, then f (D̄) has a basis of open Stein neighborhoods in
X which are biholomorphic to open neighborhoods of D̄ × {0}n−1 in S × Cn−1. In
particular, if D is a smoothly bounded planar domain, then f (D̄) has a basis of open
Stein neighborhoods in X which are biholomorphic to domains in Cn.

Royden showed in [70] that for any holomorphically embedded polydisc f : �k ↪→ X

in a complex manifold X and for any r < 1, the smaller polydisc f (r�k) ⊂ X

admits open neighborhoods in X biholomorphic to �n with n = dim X. We have
the analogous result for closed analytic discs, showing that they have no appreciation
whatsoever of their surroundings.

COROLLARY 1.8
Let X be an n-dimensional complex manifold. For every C2-embedding f : �̄ ↪→ X

which is holomorphic in �, the image f (�̄) has a basis of open neighborhoods in X

which are biholomorphic to �n.

These and related results are used to obtain new holomorphic approximation theorems
(Corollary 2.7, Theorem 5.1).

Outline of proof of Theorem 1.1
Theorem 1.1 is proved in ğ6 after developing the necessary tools in ğğ2 – 5. We begin
by perturbing the initial map f : D̄ → X to a new map for which f (bD) ⊂ Xreg

(see Theorem 5.1). The rest of the construction is done in such a way that the image
of bD remains in the regular part of X. A proper holomorphic map g : D → X is
obtained as a limit g = limj→∞ fj |D of a sequence of C2-maps fj : D̄ → X which
are holomorphic in D such that the boundaries fj (bD) converge to infinity.

Our local method of lifting the boundary f (bD) is similar to the one used (in the
special case D = �) in earlier articles on the subject (see [16], [19], [20], [27], [28],
[35]). Since the Levi form Lρ is assumed to have at least two positive eigenvalues at
every point of f (bD), we get at least one positive eigenvalue in a direction tangential
to the level set of ρ at each point f (z), z ∈ bD; this gives a small analytic disc in
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X, tangential to the level set of ρ at f (z), along which ρ increases quadratically.
By solving a certain Riemann-Hilbert boundary value problem, we obtain a local
holomorphic map whose boundary values on the relevant part of bD are close to the
boundaries of these discs, and hence ρ◦f has increased there. (One positive eigenvalue
of Lρ does not suffice since the corresponding eigenvector may be transverse to the
level set of ρ and cannot be used in the construction.)

To globalize the construction, we develop a new method of patching holomorphic
maps by improving a technique from the recent work of Forstnerič [26] on localization
of the Oka principle. We embed a given map f : D̄ → X into a spray of maps, that
is, a family of maps ft : D̄ → X depending holomorphically on the parameter t

in a Euclidean space and satisfying a certain submersivity property outside of an
exceptional subvariety. The local modification method explained above gives a new
spray near a part of the boundary bD; by ensuring that the two sprays are sufficiently
close to each other on the intersection of their domains D0 ∩ D1, we patch them into
a new spray over D0 ∪ D1 (see Proposition 4.3). This is accomplished by finding a
fiberwise biholomorphic transition map between them and decomposing it into a pair
of maps over D̄0 (resp., D̄1) which are used to correct the two sprays so as to make
them agree over D0 ∩ D1.

The main step, namely, a decomposition of the transition map (Theorem 3.2), is
achieved by a rapidly convergent iteration. This result generalizes the classical Cartan
lemma to nonlinear maps, with Cr -estimates up to the boundary. Unlike in [26, Lemma
2.1], the base domains do not shrink in our present construction — this is not allowed
since all action in the construction of proper maps takes place at the boundary.

Our method of gluing sprays is also useful in proving holomorphic approximation
theorems (see Theorem 5.1).

One of the difficult problems in earlier works has been to avoid running into a
critical point of the given exhaustion function ρ : X → R. For Stein manifolds, this
problem was solved by Globevnik [35]. Here we apply an alternative method from
[23] and cross each critical level by using a different function constructed especially
for this purpose.

We believe that the methods developed in this article are applicable in other
problems involving holomorphic maps. With this in mind, many of the new technical
tools are obtained in the more general context of strongly pseudoconvex domains in
Stein manifolds.

2. Stein neighborhoods of smoothly bounded complex curves
Let (X, OX) be a complex space. We denote by O(X) the algebra of all holomorphic
functions on X, endowed with the compact-open topology. A compact subset K of
X is said to be O(X)-convex if for any point p ∈ X\K , there exists f ∈ O(X) with
|f (p)| > supK |f |. If X is Stein and K is contained in a closed complex subvariety
X′ of X, then K is O(X′)-convex if and only if it is O(X)-convex. (For Stein spaces,
we refer to [41] and [47].)
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Figure 1. Theorem 2.1

We say that a compact set A in a complex space X is a complex curve with
Cr -boundary bA in X if
(i) A\bA is a closed, purely one-dimensional complex subvariety of X\bA

without compact irreducible components; and
(ii) every point p ∈ bA has an open neighborhood V ⊂ X and a biholomorphic

map φ : V → V ′ ⊂ � ⊂ CN onto a closed complex subvariety V ′ in an open
subset � � CN such that φ(A∩V ) is a one-dimensional complex submanifold
of � with Cr -boundary φ(bA ∩ V ).

Note that bA consists of finitely many closed Jordan curves and has no isolated
points, but it may contain some singular points of X.

THEOREM 2.1
Let A be a compact complex curve with C2-boundary in a complex space X. Let K

be a compact O(�)-convex set in a Stein open set � ⊂ X. If bA ∩ K = ∅ and A ∩ K

is O(A)-convex, then A ∪ K has a fundamental basis of open Stein neighborhoods ω

in X (see Figure 1).

Theorem 2.1 is the main result of this section (see also Theorem 2.6). For X = Cn,
this follows from results of Wermer [76] and Stolzenberg [75]. We use only the special
case with K = ∅, but the proof of the general case is not essentially more difficult, and
we include it for future applications. The necessity of O(A)-convexity of K ∩A is seen
by taking X = C2, A = {(z, 0) : |z| ≤ 3}, and K = {(z, w) : 1 ≤ |z| ≤ 2, |w| ≤ 1}.
Every Stein neighborhood of A ∪ K contains the bidisc {(z, w) : |z| ≤ 2, |w| ≤ 1}.

In this connection, we mention a result of Siu [73, Main Theorem, page 89] to the
effect that a closed Stein subspace (without boundary) of any complex space admits
an open Stein neighborhood. Extensions to the q-convex case and simplifications of
the proof were given by Colţoiu [12] and Demailly [14]. These results do not seem to
apply directly to subvarieties with boundaries.
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Proof
We adapt [25, proof of Theorem 2.1]. (It is based on the proof of Siu’s theorem [73,
Main Theorem, page 89] given in [14].) We begin with preliminary results. We have
bA = ⋃m

j=1 Cj , where each Cj is a closed Jordan curve of class C2 (a diffeomorphic
image of the circle T = {z ∈ C : |z| = 1}).

LEMMA 2.2
There are a Stein open neighborhood Uj ⊂ X of Cj , with Uj ∩ K = ∅, and a
holomorphic embedding Z = (z, w) : Uj → C1+nj for some nj ∈ N such that Z(Uj )
is a closed complex subvariety of the set

U ′
j = {

(z, w) ∈ C
1+nj : 1 − rj < |z| < 1 + rj , |w1| < 1, . . . , |wnj

| < 1
}

for some 0 < rj < 1, and

Z(A ∩ Uj ) = {
(z, w) ∈ U ′

j : z ∈ �j , w = gj (z)
}
,

where

�j = {
z = reiθ ∈ C : 1 − rj < r ≤ hj (θ)

}
,

hj is a C2-function close to 1 (in particular, |hj (θ) − 1| < rj for every θ ∈ R), and
gj = (gj,1, . . . , gj,nj

) : �j → �nj is a C2-map that is holomorphic in the interior of
�j .

Proof
We claim that Cj , being a totally real submanifold of class C2 in X, admits a basis
of open Stein neighborhoods in X. This is standard when X is smooth (without
singularities), in which case the squared distance to Cj with respect to any smooth
Riemannian metric on X is a strongly plurisubharmonic function in a neighborhood
of Cj , and its sublevel sets provide a basis of open Stein neighborhoods of Cj . In the
general case, when Cj contains some singular points of X we cover Cj by finitely
many open sets Uk ⊂ X (k = 1, . . . , mj ) such that each Uk admits a holomorphic
embedding φk : Uk ↪→ �k ⊂ CNk onto a closed complex subvariety φk(Uk) in an
open set �k ⊂ CNk . The function ρk(x) = dist2(φk(x), φk(Cj ∩ Uk)) ≥ 0 (x ∈ Uj )
is then strongly plurisubharmonic near the set ρ−1

k (0) = Cj ∩ Uk . (We are using the
Euclidean distance in the above definition of ρk .) Patching these functions ρ1, . . . , ρmj

by a smooth partition of unity along Cj in X, we obtain a strongly plurisubharmonic
function ρ ≥ 0 in a neighborhood of Cj which vanishes precisely on Cj , and the
sublevel sets {ρ < c} for small c > 0 provide a Stein neighborhood basis of Cj (see
[62]). The details of the patching argument are similar to the nonsingular case and are
omitted.
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Choose a Stein open neighborhood Uj � X of Cj . By shrinking Uj slightly
around Cj , we may assume that Uj embeds holomorphically into a Euclidean space
C1+nj . Denote by C ′

j ⊂ C1+nj (resp., by A′) the image of Cj (resp., of A ∩ Uj ) under
this embedding. We identify the circle T with T × {0}nj ⊂ C1+nj . The complexified
tangent bundle to C ′

j and the complex normal bundle to C ′
j in C1+nj are trivial (since

every complex vector bundle over a circle is trivial). Using standard techniques for
totally real submanifolds (see, e.g., [31]), we find a C2-diffeomorphism 
j from a
tube around C ′

j in C1+nj onto a tube around the circle T such that 
j (C ′
j ) = T and

such that ∂̄ 
j and its total first derivative D1(∂̄ 
j ) vanish on C ′
j .

By [31, Theorems 1.1, 1.2], we can approximate 
j in a tube around C ′
j by a

biholomorphic map 
′
j that maps C ′

j very close to T and that spreads a collar around
C ′

j in A′ as a graph over an annular domain in the first coordinate axis. Composing
the initial embedding Uj ↪→ C1+nj with 
′

j , we obtain (after shrinking Uj around
Cj ) the situation in the lemma. �

Using the notation in the statement of Lemma 2.2, we set

�j = {
x ∈ Uj : z(x) ∈ �j

} ⊂ X, (2.1)

φj (x) = w(x) − gj

(
z(x)

) ∈ C
nj , x ∈ �j. (2.2)

We can extend |φj |2 to a C2-function on Uj which is positive on Uj\�j . Choose
additional open sets Um+1, . . . , UN in X whose closures do not intersect any of the
sets Uj\�j for j = 1, . . . , m such that A ∪ K ⊂ ⋃N

j=1 Uj . By choosing these sets
sufficiently small, we also get for each j ∈ {m + 1, . . . , N} a holomorphic map
φj : Uj → Cnj whose components generate the ideal sheaf of A at every point of Uj .
If Uj ∩ A = ∅ for some j , we take nj = 1 and φj (x) = 1. Choose slightly smaller
open sets Vj � Uj (j = 1, . . . , N) such that A ∪ K ⊂ ⋃N

j=1 Vj . Choose an open set

V ⊂ X with A ∪ K ⊂ V � ⋃N

j=1 Vj , and let

� =
m⋃

j=1

(V ∩ �j ) ∪
N⋃

j=m+1

(V ∩ Vj ). (2.3)

LEMMA 2.3
There are a family of C2-functions vδ : V → R (δ ∈ (0, 1]) and a constant M > −∞
such that i∂∂̄ vδ ≥ M on � for all δ ∈ (0, 1) and such that v0(x) = limδ→0 vδ(x) is
of class C2 on V \A and satisfies v0|A = −∞.

Proof
We adapt [14, proof of Lemma 5]. Let rmax denote a regularized maximum (see [14,
page 286]); this function is increasing and convex in all variables (hence it preserves
plurisubharmonicity), and it can be chosen as close as desired to the usual maximum.
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On every set Vj , we choose a smooth function τj : Vj → R which tends to −∞ at
bVj . For each δ ∈ [0, 1], we set

vδ,j (x) = log
(
δ + |φj (x)|2) + τj (x), x ∈ Vj ,

and vδ(x) = rmax(. . . , vδ,j (x), . . .), where the regularized maximum is taken over
all indices j ∈ {1, . . . , N} for which x ∈ Vj . As δ → 0, vδ decreases to v0 and
{v0 = −∞} = A. Since the generators φj and φk for the ideal sheaf of A can be
expressed in terms of one another on Uj ∩ Uk , the quotient |φj |/|φk| is bounded
on V j ∩ V k , and hence (δ + |φj |2)/(δ + |φk|2) is bounded on V j ∩ V k uniformly
with respect to δ ∈ [0, 1]. Since τj tends to −∞ along bVj , none of the values
vδ,j (x) for x sufficiently near bVj contributes to the value of vδ(x) since the other
functions take over in rmax, and this property is uniform with respect to δ ∈ [0, 1].
Since log(δ + |φj (x)|2) is plurisubharmonic on �j if j ∈ {1, . . . , m} (resp., on Uj if
j ∈ {m + 1, . . . , N}), we have i∂∂̄ vδ,j ≥ i∂∂̄ τj on the respective sets. The above
argument therefore gives a uniform lower bound for i∂∂̄ vδ on the compact set � (see
(2.3)). However, we cannot control the Levi forms of vδ from below on the sets Vj\�j

for j ∈ {1, . . . , m} since φj fails to be holomorphic there. �

LEMMA 2.4
Let U ⊂ X be an open set containing A∪K . There exists a neighborhood W of A∪K

with W ⊂ U and a C2-function ρ : X → R which is strongly plurisubharmonic on
W such that ρ < 0 on K and ρ > 0 on bW .

Proof
Since A∩K is O(A)-convex, there exists a compact neighborhood K ′ ⊂ U ∩� of K

such that the set K ′∩A ⊂ A\bA is also O(A)-convex. Since K is O(�)-convex, there is
a smooth strongly plurisubharmonic function ρ0 : � → R such that ρ0 < 0 on K and
ρ0 > 1 on �\K ′ (see [47, Theorem 5.1.5, page 117]). Set �c = {x ∈ � : ρ0(x) < c}.
Fixing a number c with 0 < c < 1/2, we have K ⊂ �c ⊂ �2c ⊂ K ′.

Since the restricted function ρ0|A∩� is strongly subharmonic and the set K ′ ∩A is
O(A)-convex, a standard argument (see [25, page 737]) gives another smooth function
ρ̃0 : X → R which agrees with ρ0 in a neighborhood of K ′ in X such that ρ̃0|A is
strongly subharmonic, ρ̃0 > c on A\�c, ρ̃0 > 2c on A\�2c, and ρ̃0|bA = c0 ≥ 1 is
constant.

Choose a strongly increasing convex function h : R → R satisfying h(t) ≥ t for
all t ∈ R, h(t) = t for t ≤ c, and h(t) > t + 1 for t ≥ 2c. The function

ρ1 = h ◦ ρ̃0 : X → R (2.4)

is then strongly plurisubharmonic on K ′ and along A, and it satisfies
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(i) ρ1 = ρ̃0 = ρ0 on �c,
(ii) ρ1 ≥ ρ̃0 > c on A\�c,
(iii) ρ1 > ρ̃0 + 1 on A\�2c, and
(iv) ρ1|bA = c1 > 2.

To complete the proof of Lemma 2.4, we need the following result (see [14,
Theorem 4]).

LEMMA 2.5
Let A be a compact complex curve with C2-boundary in a complex space X. For every
function ρ1 : X → R of class C2 such that ρ1|A is strongly subharmonic, there exists
a C2-function ρ2 : X → R which is strongly plurisubharmonic in a neighborhood of
A and satisfies ρ2|A = ρ1|A.

Proof
Let {Uj : j = 1, . . . , N} be the open covering of A chosen at the beginning of the
proof of Theorem 2.1. (For the present purpose, we delete those sets that do not
intersect A.) For each index j ∈ {1, . . . , m}, let Z = (z, w) : Uj → U ′

j ⊂ C1+nj , �j ,
�j , and φj be as above. Denote by ψ ′

j : �j × Cnj → R the unique function that is
independent of the variable w ∈ Cnj and satisfies ρ1 = ψ ′

j ◦ Z on A ∩ Uj . We extend
ψ ′

j to a C2-function ψ ′
j : U ′

j → R which is independent of the w-variable and set

ψj = ψ ′
j ◦ Z : Uj → R. (2.5)

Then ψj |A∩Uj
= ρ1, and there is an open set �̃j ⊂ {1 − rj < |z| < 1 + rj }, with

�j ⊂ �̃j , such that ψj is subharmonic in the open set

Ũj = {
x ∈ Uj : z(x) ∈ �̃j

} ⊂ X. (2.6)

By choosing the remaining sets Uj for j ∈ {m + 1, . . . , N} sufficiently small,
we also get a holomorphic map φj : Uj → Cnj , whose components generate the
ideal sheaf of A at every point of Uj , and a strongly plurisubharmonic function
ψj : Uj → R extending ρ1|A∩Uj

.
Choose a smooth partition of unity {θj } on a neighborhood of A in X with

supp θj ⊂ Uj for j = 1, . . . , N . Fix an ε > 0, and set

ρ2(x) =
N∑

j=1

θj (x)
(
ψj (x) + ε3 log(1 + ε−4|φj (x)|2)

)
.

For x ∈ A, we have ρ2(x) = ∑
j θj (x)ψj (x) = ρ1(x). One can easily verify that

ρ2 is strongly plurisubharmonic in a neighborhood of A in X provided that ε > 0
is chosen sufficiently small. Indeed, as ε → 0, the function ε3 log(1 + ε−4|φj (x)|2)
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is of size O(ε3), its first derivatives are of size O(ε), and its Levi form at points of
Areg ∩ Uj in the direction normal to A is of size comparable to ε−1, which implies
that the Levi form of ρ2 is positive definite at each point of A provided that ε > 0 is
chosen sufficiently small (see [14, proof of Theorem 4] for the details). �

With ρ1 given by (2.4) and ρ2 furnished by Lemma 2.5, we set

ρ = rmax{̃ρ0, ρ2 − 1}.

It is easily verified that ρ is strongly plurisubharmonic on a compact neighborhood
W ⊂ U of the set A ∪ �c, ρ = ρ̃0 = ρ0 on �c (hence ρ < 0 on K), ρ =
ρ2 − 1 > ρ̃0 in a neighborhood of A\�2c, and ρ|bA has a constant value C > 1. After
shrinking W around A ∪ �c, we also have ρ > 0 on bW . This concludes the proof of
Lemma 2.4. �

Completion of the proof of Theorem 2.1
We use the notation established at the beginning of the proof: Uj ⊂ X is an open Stein
neighborhood of a boundary curve Cj ⊂ bA, �j and φj : Uj → Cnj are defined by
(2.1) (resp., by (2.2)), and ψj : Uj → R is defined by (2.5).

Let V be an open set containing A ∪ K , and let vδ : V → R (δ ∈ [0, 1]) be a
family of functions furnished by Lemma 2.3. Let � denote the corresponding set (2.3)
on which i∂∂̄ vδ is bounded from below uniformly with respect to δ ∈ (0, 1]. As δ

decreases to zero, the functions vδ decrease monotonically to a function v0 satisfying
{v0 = −∞} = A. By subtracting a constant, we may assume that vδ ≤ v1 < 0 on K

for every δ ∈ [0, 1].
Given an open set U ⊂ X containing A ∪ K , we must find a Stein neighborhood

ω ⊂ U of A ∪ K . We may assume that U ⊂ V . Let ρ be a function furnished by
Lemma 2.4; thus ρ is strongly plurisubharmonic on the closure W ⊂ U of an open
set W ⊃ A ∪ K , ρ|K < 0, and ρ|bW > 0. Let

ρε,δ = ρ + ε vδ : W → R.

Choose ε > 0 sufficiently small such that ρε,0 > 0 on bW (such ε exists since
{v0 = −∞} = A); hence ρε,δ ≥ ρε,0 > 0 on bW for every δ ∈ [0, 1]. Decreasing
ε > 0 if necessary, we may assume that ρε,δ is strongly plurisubharmonic on � ∩ W

for every δ ∈ (0, 1] (since the positive Levi form of ρ compensates the small negative
part of the Levi form of εvδ). Fix an ε with these properties. Now, choose a sufficiently
small δ > 0 such that ρε,δ < 0 on A. (This is possible since vδ decreases to v0, which
equals −∞ on A.) Note that ρε,δ < 0 on K since both ρ and vδ are negative on K .
By continuity, ρε,δ is strongly plurisubharmonic also on the set W ∩ Ũj for every
j = 1, . . . , m, where Ũj ⊂ Uj is an open set of the form (2.6).
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The function ψj : Ũj → R (see (2.5)) is plurisubharmonic on the open set Ũj

(see (2.6)) that contains �j , ψj has a constant value c1 on the curve Cj ⊂ bA, and
{ψj ≤ c1} = �j ⊃ A∩Uj . Let χ : R → R+ be a smooth increasing convex function
with χ(t) = 0 for t ≤ c1 and χ(t) > 0 for t > c1. The plurisubharmonic function
χ ◦ ψj : Ũj → R then vanishes on �j and is positive on Ũj\�j ; extending it by
zero along A, we obtain a plurisubharmonic function ψ : V → R+ which vanishes
on W ∩� and is positive on each of the sets Ũj\�j (where it agrees with χ ◦ψj ). By
choosing χ to grow sufficiently fast on {t > c1}, we can ensure that the sublevel set

ω = {
x ∈ W : ψ(x) + ρε,δ(x) < 0

}
� W

(which contains A ∪ K) is contained in the set on which ρε,δ is strongly plurisubhar-
monic. The purpose of adding ψ is to round off the sublevel set sufficiently close to bA,
where it exists from � ∩ W , thereby ensuring that ω remains in the region where the
defining function ψ + ρε,δ is strongly plurisubharmonic. Narasimhan’s theorem [62,
Theorem, page 355] now implies that ω is a Stein domain. This completes the proof of
Theorem 2.1. �

The restriction to one-dimensional subvarieties A ⊂ X was essential only in the proof
of Lemma 2.2. For higher-dimensional subvarieties, we have the following partial
result.

THEOREM 2.6
Let h : X → S be a holomorphic map of a complex space X to a complex manifold
S, and let D � S be a strongly pseudoconvex Stein domain in S. Let f : D̄ → X

be a C2-section of h (i.e., h(f (z)) = z for z ∈ D̄) which is holomorphic in D. If
f (bD) ⊂ Xreg and h is a submersion near f (bD), then A = f (D̄) has a basis of
open Stein neighborhoods in X.

Proof
The only necessary change in the proof is in the construction of the sets �j (2.1)
and the functions φj (2.2), which describe the subvariety A ⊂ X in a neighborhood
of its boundary. When dim A = 1, we can choose φj globally around the respective
boundary curve Cj ⊂ bA due to the existence of a Stein neighborhood of Cj . When
dim A > 1, this is no longer possible, and hence this step must be localized as follows.

Fix a point p ∈ bD, and let q = f (p) ∈ bA ⊂ Xreg. Since h is a submersion
near q, there are local holomorphic coordinates x = (z, w) in an open neighborhood
U ⊂ X of q, and there is an open neighborhood U ′ ⊂ S of the point p = h(q) such
that h(x) = h(z, w) = z ∈ U ′ for x ∈ U , and f (z) = (z, g(z)) for z ∈ U ′ ∩ D̄. We
take � = {x = (z, w) ∈ U : z ∈ U ′ ∩ D̄} and φ(x) = φ(z, w) = w −g(z). Covering
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bA by finitely many such neighborhoods, the rest of the proof of Theorem 2.1 applies
mutatis mutandis. �

COROLLARY 2.7
Let S and X be complex manifolds, and let D � S be a strongly pseudoconvex Stein
domain with boundary of class C�. If 2 ≤ r ≤ �, then every Cr -map f : D̄ → X

which is holomorphic in D is a Cr (D̄)-limit of a sequence of maps fj : Uj → X

which are holomorphic in small open neighborhoods of D̄ in S.

For maps from Riemann surfaces, a stronger result is proved in ğ5.

Proof
When S = Cn, X = CN , � = 2, and r = 0, this classical result on uniform
approximation of holomorphic functions that are continuous up to the boundary fol-
lows from the Henkin-Ramı́rez integral kernel representation of functions in A(D)
(see Henkin [42], Ramı́rez [66], Kerzman [49], Lieb [55], Henkin and Leiterer
[44, page 87]). Another approach that works for 0 ≤ r ≤ �, 2 ≤ �, is via the
solution to the ∂̄-equation with Cr -estimates (see Range and Siu [68], Lieb and Range
[57], Michel and Perotti [60], and [56, Chapter 8, ğ3, Theorem 3.43]).

Assume now that X is a complex manifold and 2 ≤ r ≤ �. By Theorem 2.6, the
graph Gf = {(z, f (z)) : z ∈ D̄} admits an open Stein neighborhood � in S × X.
Choose a proper holomorphic embedding ψ : � ↪→ CN and a holomorphic retraction
π : W → ψ(�) from an open neighborhood W ⊂ CN of ψ(�) onto ψ(�). Choose
a neighborhood U ⊂ S of D̄ and a sequence of holomorphic maps gj : U → CN

such that the sequence gj |D̄ converges in Cr (D̄) to the map z → ψ(z, f (z)) as
j → +∞. Denote by prX : S × X → X the projection (z, x) → x. Let Uj = {z ∈
U : gj (z) ∈ W }. The sequence fj = prX ◦ψ−1 ◦π ◦gj : Uj → X then satisfies Corol-
lary 2.7. �

Proofs of Theorem 1.7 and Corollary 1.8
Let D � S be a smoothly bounded domain in an open Riemann surface S, and let
f : D̄ ↪→ X be a C2-embedding that is holomorphic in D. By Theorem 2.1, the image
f (D̄) admits an open Stein neighborhood � ⊂ X. Choose a proper holomorphic
embedding ψ : � ↪→ CN , and let � = ψ(�) ⊂ CN . Also, choose a holomorphic
retraction π : W → � from an open neighborhood W ⊂ CN of � onto �. The
embedding ψ ◦ f : D̄ ↪→ � extends to a Cr -map F from a neighborhood of D̄ in S

to �; as r ≥ 2, ∂̄F and its first derivative D1(∂̄F ) vanish on D̄.
Set A = F (D̄) ⊂ �. Let ν = T �|A/T A denote the complex normal bundle

of the embedding F : D̄ ↪→ �; this bundle is holomorphic over IntA = F (D) and
is continuous (even of class C1) up to the boundary. An application of Theorem B
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for vector bundles that are holomorphic in the interior and continuous up to the
boundary (see [46], [53], [68]) gives a direct sum splitting T �|A = T A ⊕ ν which is
holomorphic over Int A and continuous up to the boundary. (It suffices to follow the
proof for vector bundles over open Stein manifolds; see, e.g., [41, page 256].)

Since A is a bordered Riemann surface, the bundle ν is topologically trivial and
hence also holomorphically trivial in the sense that it is isomorphic to the product
bundle A × Cn−1 (n = dim X = dim �) by a continuous complex vector bundle
isomorphism that is holomorphic over the interior of A (see [45, Theorem 2], [52]).
Hence there exist continuous vector fields v1, . . . , vn−1 tangent to ν ⊂ T �|A which
are holomorphic in the interior of A and generate ν at every point of A. Considering
these fields as maps A → T CN = CN ×CN , we can approximate them uniformly on
A by vector fields (still denoted v1, . . . , vn−1) that are holomorphic in a neighborhood
of A in � and tangent to �. (The last condition can be fulfilled by composing them with
the differential of the retraction π : W → �.) If the approximations are sufficiently
close on A, then the new vector fields are also linearly independent at each point of
A and transverse to T A. The flow θ t

j of vj is defined and holomorphic for sufficiently
small values of t ∈ C beginning at any point near A. The map

F̃ (z, t1, . . . , tn−1) = θ
t1
1 ◦ · · · ◦ θ

tn−1

n−1 ◦ F (z)

is a diffeomorphism from an open neighborhood of D̄ × {0}n−1 in S × Cn−1 onto
an open neighborhood of A = F (D̄) in � ⊂ CN . F̃ is holomorphic in the variables
t = (t1, . . . , tn−1) and satisfies ∂F̃

∂z̄
(z, t) = 0 for z ∈ D̄.

Choose a strongly subharmonic C2-function ρ : S → R such that D = {z ∈
S : ρ(z) < 0} and dρ(z) �= 0 for every z ∈ bD = {ρ = 0}. For ε ≥ 0 (small and
variable) and M > 0 (large and fixed), the set

Oε = {
(z, t) ∈ S × C

n−1 : ρ(z) + M|t |2 < ε
}

is strongly pseudoconvex with C2-boundary and is contained in the domain of F̃ .
(The latter condition is achieved by choosing M > 0 sufficiently large.) Note that
D̄ × {0}n−1 ⊂ Oε for ε > 0. The properties of F̃ described above imply that
‖∂̄F̃‖L∞(Oε ) = o(ε) as ε → 0. There are constants C > 0 and ε0 > 0 such that for
every ε ∈ (0, ε0), the equation ∂̄U = ∂̄F̃ has a solution U = Uε ∈ C2(Oε) satisfying
a uniform estimate

‖Uε‖L∞(Oε ) ≤ C‖∂̄F̃‖L∞(Oε ) = o(ε) (2.7)

(see [43], [56], [68], and the discussion in ğ3). The map

Gε = π ◦ (F̃ − Uε) : Oε → � ⊂ C
N
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is then holomorphic, and it is homotopic to F̃ |Oε
through the homotopy Gε,s = π ◦

(F̃ −sUε) ∈ � (s ∈ [0, 1]) satisfying ‖Gε,s−F̃‖L∞(Oε ) = o(ε) as ε → 0, uniformly in
s ∈ [0, 1]. Choosing ε > 0 sufficiently small, we conclude that Gε,s(z, t) ∈ �\F̃ (Ō0)
for each (z, t) ∈ bOε/2 and s ∈ [0, 1]. It follows that for each point x ∈ F̃ (Ō0), the
number of solutions (z, t) ∈ Oε/2 of the equation Gε,s(z, t) = x, counted with
algebraic multiplicities, does not depend on s ∈ [0, 1], and hence it equals one (its
value at s = 0). Taking s = 1, we see that the set Gε(Oε/2) contains F̃ (Ō0) ⊃ A.

From (2.7) and the interior elliptic regularity estimates (see [31, Lemma 3.2]), we
also see that ‖dUε‖L∞(Oε/2) = o(1) as ε → 0, and hence Gε is an injective immersion
on Oε/2 for every sufficiently small ε > 0 (since it is a C1-small perturbation of F̃ ). For
such values of ε, the set Uε := ψ−1(Gε(Oε/2)) ⊂ X is an open Stein neighborhood
of f (D̄), and Uε is biholomorphic (via ψ−1 ◦ Gε) to the domain Oε/2 ⊂ S × Cn−1.

Since X can be replaced by an arbitrary open neighborhood of f (D̄) in the above
construction, this concludes the proof of Theorem 1.7. �

The same proof gives Corollary 1.8. �

3. A Cartan-type lemma with estimates up to the boundary
In this section, we prove one of our main tools, Theorem 3.2.

Definition 3.1
A pair of relatively compact open subsets D0, D1 � S in a complex manifold S is
said to be a Cartan pair of class C� (� ≥ 2) if
(i) the sets D0, D1, D = D0 ∪ D1 and D0,1 = D0 ∩ D1 are Stein domains with

strongly pseudoconvex boundaries of class C�, and
(ii) D0\D1 ∩ D1\D0 = ∅ (the separation property).

Replacing S by a suitably chosen neighborhood of D0 ∪ D1, we can assume that S is
a Stein manifold.

Let P be a bounded open set in Cn. We denote the variable in S by z and the
variable in Cn by t = (t1, . . . , tn). For each pair of integers r, s ∈ Z+ = {0, 1, 2, . . .},
we denote by Cr,s(D̄ × P ) the space of all functions f : D̄ × P → C with bounded
partial derivatives up to order r in the z-variable and up to order s in the t-variable,
endowed with the norm

‖f ‖Cr,s (D×P ) = sup
{|Dµ

z Dν
t f (z, t)| : z ∈ D̄, t ∈ P, |µ| ≤ r, |ν| ≤ s

}
< +∞.

Here Dν
t denotes the partial derivative of order ν ∈ Z2n with respect to the real and

imaginary parts of the components tj of t ∈ Cn. The same definition applies to Dµ
z

when S = Cm; in general, we cover D̄ with a finite system of local holomorphic
charts Uj � Vj ⊂ S, with biholomorphic maps φj : Vj → V ′

j ⊂ Cm, and take at each
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point z ∈ D̄ the maximum of the above norms calculated in the φj -coordinates with
respect to those charts (Vj , φj ) for which z ∈ Uj . Alternatively, we can measure the
z-derivatives with respect to a smooth Hermitian metric on S; the two choices yield
equivalent norms on Cr,s(D̄ × P ). Set

Ar,s(D × P ) = O(D × P ) ∩ Cr,s(D̄ × P ), r, s ∈ Z+.

For t = (t1, . . . , tn) ∈ Cn, we write |t | = ( ∑ |tj |2
)1/2

. For a map f =
(f1, . . . , fn) : D̄ × P → Cn with components fj ∈ Cr,s(D̄ × P ), we set

‖f ‖Cr,s (D×P ) =
( n∑

j=1

‖fj‖2
Cr,s (D×P )

)1/2
.

Let B(t ; δ) ⊂ Cn denote the ball of radius δ > 0 centered at t ∈ Cn. For any
subset P ⊂ Cn and δ > 0, we set

P−δ = {
t ∈ P : B(t ; δ) ⊂ P

}
.

THEOREM 3.2 (Generalized Cartan lemma)
Let (D0, D1) be a Cartan pair of class C� (� ≥ 2), and let P be a bounded open set
in Cn containing the origin. Set D = D0 ∪ D1 and D0,1 = D0 ∩ D1. Given δ∗ > 0
and r ∈ {0, 1, . . . , �}, there exist numbers ε∗ > 0 and Mr,s ≥ 1 (s = 0, 1, 2, . . .)
satisfying the following. For every map γ : D̄0,1 × P → Cn of class Ar,0(D0,1 × P )n

satisfying

γ (z, t) = t + c(z, t), ‖c‖Cr,0(D0,1×P ) < ε∗,

there exist maps α : D̄0 × P−δ∗ → Cn, β : D̄1 × P−δ∗ → Cn of the form

α(z, t) = t + a(z, t), β(z, t) = t + b(z, t),

with a ∈ Ar,s(D0 × P−δ∗)n and b ∈ Ar,s(D1 × P−δ∗)n for all s ∈ Z+, which are
fiberwise injective holomorphic and satisfy

γ
(
z, α(z, t)

) = β(z, t), z ∈ D̄0,1, t ∈ P−δ∗ , (3.1)

and also the estimates

‖a‖Cr,s (D0×P−δ∗ ) ≤ Mr,s · ‖c‖Cr,0(D0,1×P ),

‖b‖Cr,s (D1×P−δ∗ ) ≤ Mr,s · ‖c‖Cr,0(D0,1×P ).

If γ (z, t) = t + c(z, t) is tangent to the map γ0(z, t) = t to order m ∈ N at t = 0
(i.e., the function c(· , t) vanishes to order m at t = 0), then α and β can be chosen to
satisfy the same property.
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Remark 3.3
The relation (3.1) is equivalent to

γz = βz ◦ α−1
z , z ∈ D̄0,1.

The classical Cartan lemma (see [41, Theorem 7, page 199]) corresponds to the
special case when αz = α(z, · ), βz, and γz are linear automorphisms of Cn depending
holomorphically on the point z in the respective base domain. A version of the Cartan
lemma without shrinking the base domains was proved by Douady [18] and was proved
for matrix-valued functions of class A∞ by Sebbar [72, Theorem 1.4]. Berndtsson
and Rosay [6] proved a splitting lemma over the disc � for bounded holomorphic
maps into GLn(C). A key difference between all these results and Theorem 3.2 is that
we do not restrict ourselves to fiberwise linear maps. A result similar to Theorem 3.2,
but less precise as it requires shrinking of the base domains, is [26, Lemma 2.1], which
follows from [23, Theorem 4.1]. That lemma does not suffice for the application in
this article, where it is essential that no shrinking be allowed in the base domain.

Theorem 3.2 is proved by a rapidly convergent iteration similar to the one in [23,
proof of Theorem 4.1], but with estimates of derivatives. At an inductive step, we
split the map c(z, t) = γ (z, t) − t into a difference c = b − a, where the maps
a : D̄0 × P → Cn and b : D̄1 × P → Cn are of class Ar,0, with estimates of their
Cr,0-norms in terms of the Cr,0-norm of c (see Lemma 3.4). Set

αz(t) = α(z, t) := t + a(z, t), βz(t) = β(z, t) := t + b(z, t).

We then show that for z ∈ D̄0,1 and t in a smaller set P−δ ⊂ Cn, with ε suffi-
ciently small compared to δ, there exists a map γ̃ : D̄0,1 × P−δ → Cn of the form
γ̃ (z, t) = t + c̃(z, t) satisfying

γz ◦ αz = βz ◦ γ̃z, z ∈ D̄0,1,

and a quadratic estimate

ε̃ = ‖̃c‖Cr,0(D0,1×P−δ ) ≤ const ·
‖c‖2

Cr,0(D0,1×P )

δ

(see Lemma 3.5). If ε = ‖c‖Cr,0(D0,1×P ) is sufficiently small compared to δ, then ε̃ is
much smaller than ε. Choosing a sequence of δ ’s with the sum δ∗/2 and assuming
that the initial map c is sufficiently small, the sequences of compositions of the maps
αz (resp., βz), obtained in the individual steps, converge on P−δ∗/2 to limit maps α

(resp., β) satisfying γz ◦ αz = βz for z ∈ D̄0,1. After another shrinking of the fiber
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by δ∗/2, we obtain injective holomorphic maps on P−δ∗ satisfying the estimates in
Theorem 3.2.

We begin by recalling the relevant results on the solvability of the ∂̄-equation. Let
D be a relatively compact strongly pseudoconvex domain with boundary of class C�

(� ≥ 2) in a Stein manifold S. Let Cr
0,1(D̄) denote the space of (0, 1)-forms with Cr -

coefficients on D̄, and let Zr
0,1(D̄) = {f ∈ Cr

0,1(D̄) : ∂̄f = 0}. According to Range
and Siu [68] and Lieb and Range [57, Theorem 1] (see also [60, Theorem 1′]), there
exists a linear operator T : C0

0,1(D) → C0(D) satisfying the following properties:
(i) if f ∈ C0

0,1(D̄) ∩ C1
0,1(D) and ∂̄f = 0, then ∂̄(Tf ) = f ;

(ii) if f ∈ C0
0,1(D̄) ∩ Cr

0,1(D) (1 ≤ r ≤ �), then for each l = 0, 1, . . . , r ,

‖Tf ‖Cl,1/2(D̄) ≤ Cl‖f ‖Cl
0,1(D̄). (3.2)

The results in [57] are stated only for the case bD ∈ C∞, but a more careful analysis
shows that one needs only C�-boundary in order to get estimates up to order �;
this is implicitly contained in the article by Michel and Perotti [60] (the special
case of domains without corners). The case of domains in Stein manifolds easily
reduces to the Euclidean case by standard techniques (holomorphic embeddings and
retractions). Lieb and Range showed that for strongly pseudoconvex domains with
smooth boundaries in Cn, the estimates (3.2) also hold for the Kohn solution operator
T = ∂̄∗N (see [59], [58, Corollary 2]). Here ∂̄∗ is the formal adjoint of ∂̄ on (0, 1)-
forms (under a suitable choice of a Hermitian metric on S), and N is the corresponding
Neumann operator on (0, 1)-forms on D (the inverse of the complex Laplacian � =
∂̄ ∂̄∗ + ∂̄∗∂̄ acting on (0, 1)-forms; see also [56, Chapter 8, ğ3, Theorem 3.43]; for
Sobolev estimates, see [11, Theorem 5.2.6, page 103]).

LEMMA 3.4
Let D = D0 ∪ D1 � S, D0,1 = D0 ∩ D1, and P ⊂ Cn be as in Theorem 3.2. For
every r ∈ {0, 1, . . . , �}, there are a constant Cr ≥ 1, independent of P , and linear
operators

A : Ar,0(D0,1 × P )n −→ Ar,0(D0 × P )n,

B : Ar,0(D0,1 × P )n −→ Ar,0(D1 × P )n

satisfying

c = Bc|D̄0,1×P − Ac|D̄0,1×P , c ∈ Ar,0(D0,1 × P )n,
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and the estimates

‖Ac‖Cr,0(D0×P ) ≤ Cr · ‖c‖Cr,0(D0,1×P ),

‖Bc‖Cr,0(D1×P ) ≤ Cr · ‖c‖Cr,0(D0,1×P ).

If c vanishes to order m ∈ N at t = 0, then so do Ac and Bc.

Proof
The separation condition (ii) in the definition of a Cartan pair implies that there
exists a smooth function χ on S with values in [0, 1] such that χ = 0 in an open
neighborhood of D0\D1 and χ = 1 in an open neighborhood of D1\D0. Note that
χ(z)c(z, t) extends to a function in Cr,0(D̄0 ×P ) which vanishes on D0\D1 ×P , and
(χ(z)−1)c(z, t) extends to a function in Cr,0(D̄1 ×P ) which vanishes on D1\D0 ×P .
Furthermore, ∂̄(χc) = ∂̄((χ − 1)c) = c∂̄χ is a (0, 1)-form on D̄ with Cr -coefficients
and with support in D̄0,1 × P , depending holomorphically on t ∈ P .

Let T denote a linear solution operator to the ∂̄-equation satisfying (3.2). For any
c ∈ Ar,0(D0,1 × P ) and t ∈ P , we set

(Ac)(z, t) = (
χ(z) − 1

)
c(z, t) − T

(
c(· , t)∂̄χ

)
(z), z ∈ D̄0.

(Bc)(z, t) = χ(z)c(z, t) − T
(
c(· , t)∂̄χ

)
(z), z ∈ D̄1.

Then Ac − Bc = c on D̄0,1 × P , ∂̄z(Ac) = 0, and ∂̄z(Bc) = 0 on their respective
domains. The bounded linear operator T commutes with the derivative ∂̄t on the
parameter t . Since ∂̄t (c(z, t)∂̄χ(z)) = 0, we get ∂̄t (Ac) = 0 and ∂̄t (Bc) = 0. The
estimates follow from boundedness of T (see (3.2)). �

LEMMA 3.5
Let D = D0 ∪ D1 � S, D0,1 = D0 ∩ D1, and P ⊂ Cn be as in Theorem 3.2.
Given c ∈ Ar,0(D0,1 × P )n, let a = Ac and b = Bc be as in Lemma 3.4. Let
α : D̄0 × P → Cn, β : D̄1 × P → Cn, and γ : D̄0,1 × P → Cn be given by

α(z, t) = t + a(z, t), β(z, t) = t + b(z, t), γ (z, t) = t + c(z, t).

Let Cr ≥ 1 be the constant in Lemma 3.4. There is a constant Kr > 0 with the following
property. If 4

√
nCr‖c‖Cr,0(D0,1×P ) < δ, then there is a map γ̃ : D̄0,1 × P−δ → Cn of

the form γ̃ (z, t) = t + c̃(z, t), with c̃ ∈ Ar,0(D0,1 × P−δ)n, satisfying the identity

γz ◦ αz = βz ◦ γ̃z, z ∈ D̄0,1,

and the estimate

‖̃c‖Cr,0(D0,1×P−δ) ≤ Kr ·
‖c‖2

Cr,0(D0,1×P )

δ
.
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If the functions a, b, and c vanish to order m ∈ N at t = 0, then so does c̃.

Proof
We begin by estimating the composition γz ◦ αz. Since the same estimate is used for
other compositions as well, we formulate the result as an independent lemma.

LEMMA 3.6
Let D be a domain with C1-boundary in a complex manifold S, let P be an open
set in Cn, and let 0 < δ < 1. Given maps αj (z, t) = t + aj (z, t) (j = 0, 1) with
a0 ∈ Ar,0(D × P )n, a1 ∈ Ar,0(D × P−δ)n, and ‖a1‖Cr,0(D×P−δ) < δ/2, we have for
all (z, t) ∈ D̄ × P−δ ,

α0

(
z, α1(z, t)

) = t + a0(z, t) + a1(z, t) + e(z, t),

where

‖e‖Cr,0(D×P−δ ) ≤ Lr

δ
· ‖a0‖Cr,0(D×P )· ‖a1‖Cr,0(D×P−δ )

for some constant Lr > 0 depending only on r and n.

Proof
We have

α0

(
z, α1(z, t)

) = α1(z, t) + a0

(
z, α1(z, t)

)
= t + a1(z, t) + a0

(
z, t + a1(z, t)

)
= t + a0(z, t) + a1(z, t) + e(z, t),

where the error term equals

e(z, t) = a0

(
z, t + a1(z, t)

) − a0(z, t).

Fix a point (z, t) ∈ D̄ × P−δ . Since |a1(z, t)| < δ/2, the line segment λ ⊂ Cn with
the endpoints t and α1(z, t) = t + a1(z, t) is contained in P−δ/2. Using the Cauchy
estimates for the partial derivative ∂ta0, we obtain

|e(z, t)| =
∣∣∣ ∫ 1

0
(∂ta0)

(
z, t + τa1(z, t)

)· a1(z, t) dτ

∣∣∣
≤ sup

t ′∈λ

‖∂ta0(z, t ′)‖· |a1(z, t)|

≤ 2
√

n

δ
· ‖a0‖C0,0(D×P )· ‖a1‖C0,0(D×P−δ),
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which is the required estimate for r = 0. We proceed to estimate the partial differential
of e(z, t):

∂ze(z, t) = (∂za0)
(
z, t + a1(z, t)

) − (∂za0)(z, t)

+ (∂ta0)
(
z, t + a1(z, t)

)· (∂za1)(z, t).

The difference in the first line equals∫ 1

0
∂t (∂za0)

(
z, t + τa1(z, t)

)· a1(z, t) dτ,

which can be estimated exactly as above (using the Cauchy estimates for ∂t∂za0) by

const

δ
· ‖a0‖C1,0(D×P )· ‖a1‖C0,0(D×P−δ ).

Applying the Cauchy estimate for ∂ta0, we estimate the remaining term in the expres-
sion for e(z, t) by

const

δ
· ‖a0‖C0,0(D×P )· ‖a1‖C1,0(D×P−δ ).

This proves the estimate in Lemma 3.6 for r = 1.
We proceed in a similar way to estimate the higher-order derivatives of e. In the

expression for ∂k
z e(z, t), we have a main term

(∂k
z a0)

(
z, t + a1(z, t)

) − (∂k
z a0)(z, t) =

∫ 1

0
∂t (∂

k
z a0)

(
z, t + τa1(z, t)

)· a1(z, t) dτ,

which is estimated by const· δ−1‖a0‖Ck,0(D×P )· ‖a1‖C0,0(D×P−δ ). The remaining terms
in e(z, t) are products of partial derivatives of order at most k of a0 (with respect
to both z and t variables) with partial derivatives of a1 of order at most k with
respect to the z-variable. Each t-derivative of a0 can be removed by using the Cauchy
estimates, contributing another δ in the denominator. The chain rule shows that each
term containing l derivatives of a0 on the t-variable is multiplied by l factors involving
a1 and its z-derivatives; this gives an estimate const· δ−l ‖a0‖Ck,0(D×P )· ‖a1‖l

Ck,0(D×P−δ ).
Since we have assumed that ‖a1‖Cr,0(D×P ) < δ/2, this is less than

const

δ
· ‖a0‖Ck,0(D×P )· ‖a1‖Ck,0(D×P−δ),

and the lemma is proved. �

Now, let α, β, and γ be as in Lemma 3.5. Set ε = ‖c‖Cr,0(D0,1×P ); then ‖a‖Cr,0(D0×P ) ≤
Crε and ‖b‖Cr,0(D1×P ) ≤ Crε by Lemma 3.4. Since we have assumed that
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4
√

nCrε < δ, Lemma 3.6 with α0 = γ and α1 = α gives, for z ∈ D̄0,1 and
t ∈ P−δ ,

γ
(
z, α(z, t)

) = t + c(z, t) + a(z, t) + e(z, t) = β(z, t) + e(z, t) ∈ P−δ/2,

where

‖e‖Cr,0(D0,1×P−δ ) ≤ Lr

δ
· ‖c‖Cr,0(D0,1×P )· ‖a‖Cr,0(D0,1×P−δ) ≤ LrCrε

2

δ
.

It remains to find a map γ̃ (z, t) = t + c̃(z, t) on D̄0,1 × P−δ satisfying

β(z, t) + e(z, t) = β
(
z, t + c̃(z, t)

) = t + c̃(z, t) + b
(
z, t + c̃(z, t)

)
and an estimate

‖̃c‖Cr,0(D0,1×P−δ ) ≤ const · ε2δ−1.

For the existence of γ̃ , it suffices to see that the map βz is injective on P−δ/4 and
βz(P−δ/4) ⊃ P−δ/2 for every z ∈ D̄0,1; since γz ◦ αz ∈ P−δ/2, we can then take
γ̃z = β−1

z ◦ γz ◦ αz. To see the injectivity of βz, note that for t, t ′ ∈ P−δ/4, t �= t ′, we
have

|βz(t) − βz(t
′)| ≥ |t − t ′| − |bz(t) − bz(t

′)| ≥ |t − t ′|
(

1 − 4
√

nC0ε

δ

)
> 0.

(We applied the Cauchy estimate to ∂tbz.) The inclusion P−δ/2 ⊂ βz(P−δ/4) follows
from the estimate ‖b‖Cr,0(D1×P ) ≤ Crε ≤ δ/(4

√
n) by Rouché’s theorem.

In order to estimate c̃, we rewrite its defining equation in the form

c̃(z, t) = b(z, t) − b
(
z, t + c̃(z, t)

) + e(z, t)

= −
∫ 1

0
(∂tb)

(
z, t + τ c̃(z, t)

)· c̃(z, t) dτ + e(z, t).

Since the path of integration lies in P−δ/2, the Cauchy estimates for ∂tb give

|̃c(z, t)| ≤ 2
√

nC0ε

δ
· |̃c(z, t)| + |e(z, t)| ≤ 1

2
|̃c(z, t)| + |e(z, t)|

and hence |̃c(z, t)| ≤ 2|e(z, t)| ≤ const· ε2δ−1. We proceed inductively to estimate the
derivatives ∂k

z c̃ for k ≤ r by differentiating the implicit equation for c̃. The top-order
differential |∂k

z c̃| appearing on the right-hand side is multiplied by a constant less than 1
arising from an estimate on b ( just as was done above); subsuming this term by the left-
hand side, we obtain the estimates of |∂k

z c̃| for all k ≤ r . Although we obtain a term δr

in the denominator, we can cancel r −1 powers of δ by appropriate terms of size O(ε),
just as we did at the end of proof of Lemma 3.6 to get ‖̃c‖Cr,0(D0,1×P−δ) = O(ε2δ−1). �
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Proof of Theorem 3.2
We write (γα)(z, t) = γ (z, α(z, t)), and similarly for the fiberwise composition of
several maps. Let

γ (z, t) = γ0(z, t) = t + c0(z, t), ε0 = ‖c0‖Cr,0(D0,1×P ),

and let δ∗ > 0 be as in Theorem 3.2. We first describe the inductive procedure
and subsequently show convergence, provided that ε0 > 0 is sufficiently small. Let
P0 = P and P∗ = P−δ∗/2. For every k ∈ Z+, set

δk = 2−k−2δ∗, Pk+1 = (Pk)−δk
.

Then
∑∞

k=0 δk = δ∗/2, and
⋂∞

k=0 Pk = P̄∗. Let Cr ≥ 1, Kr ≥ 1, and Lr ≥ 1
be the constants in Lemmas 3.4, 3.5, and 3.6, respectively. We inductively construct
sequences of maps

αk(z, t) = t + ak(z, t), ak ∈ Ar,0(D0 × Pk)n,

βk(z, t) = t + bk(z, t), bk ∈ Ar,0(D1 × Pk)n,

γk(z, t) = t + ck(z, t), ck ∈ Ar,0(D0,1 × Pk)n,

such that, setting εk = ‖ck‖Cr,0(D0,1×Pk ), the following hold for all k ∈ Z+:
(1k) ‖ak‖Cr,0(D0×Pk ) ≤ Crεk, ‖bk‖Cr,0(D1×Pk ) ≤ Crεk;
(2k) 4

√
nCrεk < δk = 2−k−2δ∗;

(3k) γkαk = βkγk+1 on D̄0,1 × Pk+1;
(4k) εk+1 = ‖ck+1‖Cr,0(D0,1×Pk+1) ≤ Krε

2
k δ

−1
k = (4Krδ

∗−1)2kε2
k .

These conditions imply, for every k ∈ Z+,

γ0(α0α1 · · ·αk) = (β0β1 · · · βk)γk+1 on D̄0,1 × Pk+1. (3.3)

Assuming that ε0 = ‖c0‖Cr,0(D0,1×P ) > 0 is sufficiently small, we prove that as k →
+∞, the sequence of maps

α̃k = α0α1 · · · αk : D̄0 × Pk → C
n (3.4)

converges to a map α : D̄0 × P∗ → Cn, the sequence

β̃k = β0β1 · · · βk : D̄1 × Pk → C
n (3.5)

converges to a map β : D̄1 × P∗ → Cn, and the sequence γk converges on D̄0,1 × P∗
to the map (z, t) → t . (All convergences are in the Cr,0-norms on the respective
domains.) In the limit, we obtain a desired splitting

γα = β on D̄0,1 × P∗.
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We begin at k = 0 with the given map γ0(z, t) = t + c0(z, t) on D̄0,1 × P0.
Lemma 3.4, applied to c0, gives maps a0 and b0 satisfying (10). If (20) holds (which is
the case if ε0 = ‖c0‖Cr,0(D0,1×P0) > 0 is sufficiently small), then Lemma 3.5 furnishes
a map γ1 : D̄0,1 × P1 → Cn satisfying (30) and (40).

Assume inductively that for some k ∈ N, we already have maps satisfying
(1j ) – (4j ) for j = 0, . . . , k − 1, and consequently, (3.3) holds with k replaced by
k − 1. Lemma 3.4, applied to ck(z, t) = γk(z, t) − t on D̄0,1 × Pk , gives maps ak

and bk satisfying (1k). If (2k) holds (and we show that it does if ε0 is sufficiently
small), then Lemma 3.5, applied with α = αk , β = βk , γ = γk , furnishes a map
γ̃ = γk+1 : D̄0,1 × Pk+1 → Cn satisfying (3k) and (4k). This completes the inductive
step.

To make the induction work, we must ensure that the sequence εk =
‖ck‖Cr,0(D0,1×Pk) satisfies (2k) for every k = 0, 1, 2, . . . . To control this process, we set
N = max{4Kr/δ

∗, 1} and define a sequence σk > 0 by

σ0 = ε0, σk+1 = 2kNσ 2
k , k = 0, 1, 2, . . . . (3.6)

Any sequence εk ≥ 0 beginning with ε0 = σ0 and satisfying (4k) for all k ∈ Z+
clearly satisfies εk ≤ σk . If we can ensure (by choosing ε0 > 0 sufficiently small) that

σk <
δ∗

2k+4
√

nCr

, k ∈ Z, (3.7)

then 4
√

nCrεk ≤ 4
√

nCrσk < 2−k−2δ∗ = δk , and hence (2k) holds.
We look for a solution in the form σk = 2µkNνk ε0

τk . From (3.6), we get

µk+1 = 2µk + k, µ0 = 0;

νk+1 = 2νk + 1, ν0 = 0;

τk+1 = 2τk, τ0 = 1.

Solutions are

µk = 2k

k∑
l=1

l2−l < 2k+1, νk = 2k − 1, τk = 2k.

Therefore

σk < 22k+1
N2k

ε0
2k = (4Nε0)2k

, k ∈ N. (3.8)

If ε0 = ‖c0‖Cr,0(D0,1×P0) > 0 is sufficiently small, then this sequence converges to zero
very rapidly and satisfies (3.7) (see [23, Lemma 4.8, page 166] for more details). For
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such ε0, we have

‖ck‖Cr,0(D0,1×Pk ) = εk ≤ σk ≤ (4Nε0)2k → 0,

and hence γk(z, t) → t in Cr,0(D̄0,1 × P∗) as k → ∞.
To complete the proof of Theorem 3.2, we must show that the sequences (3.4)

and (3.5) also converge in Cr,0(D̄0 × P∗) (resp., Cr,0(D̄1 × P∗)), provided that ε0 > 0
is sufficiently small. Write

α̃k(z, t) = t + ãk(z, t), β̃k(z, t) = t + b̃k(z, t).

By Lemma 3.6, we have ãk+1 = ãk + ak+1 + ek+1, where

‖ek+1‖Cr,0(D0×Pk+1) ≤ Lr

δk

‖̃ak‖Cr,0(D0×Pk)‖ak+1‖Cr,0(D0×Pk+1).

Assuming a priori that ‖̃ak‖Cr,0(D0×Pk ) ≤ 1 for all k ∈ Z+, we get the following
estimates for the Cr,0(D0 × Pk+1)-norms:

‖̃ak+1 − ãk‖ ≤ ‖ak+1‖ + ‖ek+1‖ ≤ Cr

(
1 + Lr

δ∗
2k+1

)
εk+1 ≤ R2k+1εk+1

with R = Cr (1 + Lr/δ∗). Note that ã0 = a0 and ‖a0‖ ≤ Crε0. Hence

‖̃a0‖Cr,0(D0×P0) +
∞∑

k=0

‖̃ak+1 − ãk‖Cr,0(D0×Pk+1) ≤ Crε0 + R

∞∑
k=1

2kεk.

Since εk ≤ σk ≤ (4Nε0)2k

for k ∈ N (see (3.8)), we see that R
∑∞

k=1 2kεk < ε0

if ε0 > 0 is sufficiently small (see [23, Lemma 4.8, page 166] for the details).
This justifies the assumption ‖̃ak‖Cr,0(D0×Pk ) ≤ 1 and implies that the sequence ãk =
ã0 + ∑k

j=1( ãj − ãj−1) converges on D̄0 × P∗ to a limit a = limk→∞ ãk satisfying
‖a‖Cr,0(D0×P∗) ≤ (C0 + 1)ε0. Hence the estimate in Theorem 3.2 holds for s = 0 with
the constant Mr,0 = C0 + 1.

The same proof shows convergence of the sequence b̃k → b on D̄1 × P∗ and the
estimate ‖b‖Cr,0(D1×P∗) ≤ (C0 + 1)ε0.

By shrinking the fiber domain P∗ = P−δ∗/2 by an extra δ∗/2 and applying the
Cauchy estimates to the maps a(z, · ) and b(z, · ), we also obtain the estimates in
the Cr,s-norms in Theorem 3.2. In addition, if ε0 is sufficiently small, then the maps
α(z, · ) : P−δ∗ → Cn and β(z, · ) : P−δ∗ → Cn are injective holomorphic for each z in
their respective domain D̄0 (resp., D̄1).

This completes the proof of Theorem 3.2. �
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Remark 3.7
Theorem 3.2 holds whenever D0, D1, D0,1 = D0 ∩ D1, D = D0 ∪ D1 are relatively
compact domains with C1-boundaries satisfying the separation condition D0\D1 ∩
D1\D0 = ∅, and there exists a linear operator T : Zr

0,1(D̄) → Cr (D̄) satisfying

∂̄(Tf ) = f, ‖Tf ‖Cr (D̄) ≤ Cr‖f ‖Cr
0,1(D̄).

Strong pseudoconvexity of D0,1 is not needed here, but it is used in the gluing of
sprays (see Proposition 4.3). The proof of Theorem 3.2 carries over to the parametric
case when γ depends smoothly on real parameters s = (s1, . . . , sm) ∈ [0, 1]m ⊂ Rm.
Indeed, the proof of Lemma 3.4 remains valid in the parametric case, and the estimates
controlling the iteration process are uniform with respect to a finite number of s-
derivatives. This gives a family of splittings γ s

z = βs
z ◦ (αs

z)−1 for z ∈ D̄0,1 with
Ck-dependence on the parameter s ∈ [0, 1]m for a given k ∈ N.

4. Gluing sprays on Cartan pairs
In this section, X is an irreducible complex space, and h : X → S is a holomorphic
map to a complex manifold S. Its branching locus br(h) is the union of Xsing and the set
of all those points in Xreg at which h fails to be a submersion; thus br(h) is an analytic
subset of X, X′ = X\br(h) is a connected complex manifold, and h|X′ : X′ → S is
a holomorphic submersion. For each x ∈ X′, we set V TxX = ker dhx , the vertical
tangent space of X.

A section of h : X → S over a subset D ⊂ S is a map f : D → X satisfying
h(f (z)) = z for all z ∈ D. Let D � S be a smoothly bounded domain, and let
r ∈ Z+. A section f : D̄ → X is of class Ar (D) if it is holomorphic in D and r

times continuously differentiable on D̄. (At points of f (bD) ∩ Xsing, we use local
holomorphic embeddings of X into a Euclidean space.)

Definition 4.1
An h-spray of class Ar (D) with the exceptional set σ = σ (f ) ⊂ D̄ of order k ≥ 0
is a map f : D̄ × P → X, where P (the parameter set of f ) is an open subset of a
Euclidean space Cn containing the origin, such that the following hold:
(i) f is holomorphic on D × P and of class Cr on D̄ × P ;
(ii) h(f (z, t)) = z for all z ∈ D̄ and t ∈ P ;
(iii) the maps f (· , 0) and f (· , t) agree on σ up to order k for t ∈ P ; and
(iv) for every z ∈ D̄\σ and t ∈ P , we have f (z, t) /∈ br(h), and the map

∂tf (z, t) : TtC
n = C

n → V Tf (z,t)X

is surjective (the domination condition).
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For a product fibration h : X = S × Y → S, h(z, y) = z, we can identify an h-spray
D̄×P → S ×Y with a spray of maps D̄×P → Y by composing with the projection
S × Y → Y , (z, y) → y. In this case, (ii) is redundant, and the domination condition
(iv) is replaced by the following:
(iv′) if z ∈ D̄\σ and t ∈ P , then f (z, t) ∈ Yreg, and ∂tf (z, t) : TtC

n → Tf (z,t)Y is
surjective.

Condition (ii) means that ft = f (· , t) : D̄ → X is a section of h of class Ar (D)
for every t ∈ P , and by (i), these sections depend holomorphically on the parameter
t . We call f0 the core (or central) section of the spray. Conditions (iii) and (iv) imply
that the exceptional set σ (f ) is locally defined by functions of class Ar (D).

Unlike the sprays used in Oka-Grauert theory, which are defined for all values
t ∈ Cn but are dominant only at the core section f0, our sprays are local with respect
to t and dominant at every point (z, t) with z /∈ σ . In applications, the parameter
domain P is allowed to shrink.

LEMMA 4.2 (Existence of sprays)
Let h : X → S be a holomorphic map of a complex space X to a complex manifold S.
Let r ≥ 2 and k ≥ 0 be integers. Let D be a relatively compact domain with strongly
pseudoconvex boundary of class C2 in a Stein manifold S, and let σ ⊂ D̄ be the
common zero set of finitely many functions in Ar (D). Given a section f0 : D̄ → X

of class Ar (D) such that the set {z ∈ D̄ : f (z) ∈ br(h)} does not intersect bD and
is contained in σ , there exists an h-spray f : D̄ × P → X of class Ar (D) with the
core section f0 and with the exceptional set σ of order k.

Proof
By Theorem 2.6, there exists a Stein open set � ⊂ X containing f0(D̄). (This is
the only place in the proof where the assumption r ≥ 2 is used.) According to [24,
Proposition 2.2] (for manifolds, see [32, Lemma 5.3]), there exist an integer n ∈ N, an
open set V ⊂ � × Cn containing � × {0}, and a holomorphic spray map s : V → �

satisfying the following:
(a) s(x, 0) = x for x ∈ �;
(b) h(s(x, t)) = h(x) for (x, t) ∈ V ;
(c) s(x, t) = x when (x, t) ∈ V and x ∈ br(h); and
(d) for each (x, t) ∈ V with x ∈ �\br(h), we have s(x, t) ∈ X\br(h), and the

partial differential ∂t s(x, t)|t=0 : T0C
n → V TxX = ker dhx is surjective.

A map s with these properties is obtained by composing small complex time flows of
certain holomorphic vector fields on � which vanish on br(h) ∩ � and are tangential
to the fibers of h.

By the hypothesis, we have σ = {z ∈ D̄ : g1(z) = 0, . . . , gm(z) = 0}, where
g1, . . . , gm ∈ Ar (D). We can assume that supz∈D̄ |gj (z)| < 1 for j = 1, . . . , m.
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Denote the coordinates on (Cn)m = Cnm by t = (t1, . . . , tm), where tj =
(tj,1, . . . , tj,n) ∈ Cn for j = 1, . . . , m. Let l ∈ N. The map φl : D̄ × (Cn)m → Cn,
defined by

φl(z, t1, . . . , tm) =
m∑

j=1

gj (z)k+l tj ,

is a linear submersion Cnm → Cn over each point z ∈ D̄\σ , and it vanishes to order
k + l on σ . Let P ⊂ Cnm be a bounded open set containing the origin. By choosing
the integer l sufficiently large, we can ensure that the map

f (z, t) = s
(
f0(z), φl(z, t)

) ∈ X

is a spray D̄ × P → X with the core section f0 and with the exceptional set σ of
order k. All conditions except Definition 4.1(iv) are evident. To get (iv), let � denote
the set of all points (x, t) ∈ V such that either x ∈ br(h), or x /∈ br(h) and the maps
∂t s(x, t) : TtC

n → V Ts(x,t)X fail to be surjective. Then � is a closed analytic subset
of V satisfying �∩(�×{0}) = br(h)×{0} according to property (d) of s. Analyticity
of � is clear except perhaps near the points (x0, t0) ∈ V with x0 ∈ br(h). To see the
analyticity near such points, we choose a holomorphic embedding ψ : U → Ũ ⊂
CN of a small open neighborhood U ⊂ X of x0 onto a local complex subvariety
Ũ = ψ(U ) ⊂ CN with ψ(x0) = 0. Note that s(x0, t0) = x0. There is a holomorphic
map s̃ from a neighborhood of (0, t0) ∈ CN × Cn to CN such that s̃(0, t0) = 0
and s̃(ψ(x), t) = ψ(s(x, t)); that is, s̃ is a local holomorphic extension of s if U is
identified with its image Ũ ⊂ CN . Locally near the point (x0, t0), � corresponds to the
set of points (w, t) ∈ CN ×Cn near (0, t0) such that w ∈ Ũ and the partial differential
∂t s̃(w, t) has rank less than dim V T (X\br(h)); the latter dimension is constant since
X is assumed irreducible. Clearly, the latter set is analytic. The contact between � and
�×{0} is necessarily of finite order along their intersection br(h) ×{0}. By choosing
l ∈ Z+ large enough, we ensure that φl(z, t) ∈ V \� for every z ∈ D̄\σ and t ∈ P .
For such choices, f also satisfies property (iv). �

The following proposition provides the main tool for gluing holomorphic sections on
Cartan pairs by preserving their boundary regularity.

PROPOSITION 4.3 (Gluing sprays)
Let h : X → S be a holomorphic map from a complex space X onto a Stein manifold
S. Let (D0, D1) be a Cartan pair of class C� (� ≥ 2) in S (see Definition 3.1), and let
D = D0 ∪ D1, D0,1 = D0 ∩ D1. Given integers r ∈ {0, 1, . . . , �}, k ∈ Z+, and an
h-spray f : D̄0 × P0 → X of class Ar (D0) with the exceptional set σ (f ) of order k
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and satisfying σ (f ) ∩ D̄0,1 = ∅, there is an open set P � P0 containing 0 ∈ Cn such
that the following hold.

For every h-spray f ′ : D̄1 × P0 → X of class Ar (D1) with the exceptional set
σ (f ′) of order k, with σ (f ′) ∩ D̄0,1 = ∅, such that f ′ is sufficiently Cr close to f on
D̄0,1×P0, there exists an h-spray g : D̄×P → X of class Ar (D) with the exceptional
set σ (g) = σ (f ) ∪ σ (f ′) of order k whose restriction g : D̄0 × P → X is as close
as desired to f : D̄0 × P → X in the Cr -topology. The core section g0 = g(· , 0) is
homotopic to f0 on D̄0, and g0 is homotopic to f ′

0 on D̄1. In addition, g0 agrees with
f0 up to order k on σ (f ), and g0 agrees with f ′

0 up to order k on σ (f ′).
If f and f ′ agree to order m ∈ N along D̄0,1 ×{0}, then g can be chosen to agree

with f to order m along D̄0 × {0} and to agree with f ′ to order m along D̄1 × {0}.

Proof
First, we find a holomorphic transition map between the two sprays (see Lemma
4.4); decomposing this map by Theorem 3.2, we can adjust the two sprays to match
them over D̄0,1. The first step is accomplished by the following lemma applied on the
strongly pseudoconvex domain D0,1.

LEMMA 4.4
Let D � S be a strongly pseudoconvex domain with C�-boundary (� ≥ 2) in a Stein
manifold S, let P0 be a domain in Cn containing the origin, and let f : D̄×P0 → X be
a spray of class Ar (D) (0 ≤ r ≤ �) with trivial exceptional set. Choose ε∗ > 0. There
exists an open set P1 ⊂ Cn, with 0 ∈ P1 � P0, satisfying the following. For every
spray f ′ : D̄ × P0 → X of class Ar (D) which approximates f sufficiently closely
in the Cr -topology, there exists a map γ : D̄ × P1 → Cn of class Ar,0(D × P1)
satisfying

γ (z, t) = t + c(z, t), ‖c‖Cr,0(D×P1) < ε∗, (4.1)

f (z, t) = f ′(z, γ (z, t)
)
, (z, t) ∈ D̄ × P1. (4.2)

If f and f ′ agree to order m along D̄ × {0}, then we can choose γ of the form
γ (z, t) = t + ∑

|J |=m c̃J (z, t)tJ with c̃J ∈ Ar,0(D × P1)n.

Assuming Lemma 4.4 for the moment, we conclude the proof of Proposition 4.3 as
follows. Let γ and P1 be as in the conclusion of Lemma 4.4. (We emphasize that this
lemma is applied on the set D0,1.) Choose an open set P ⊂ Cn with 0 ∈ P � P1. For
ε∗ > 0 chosen sufficiently small, Theorem 3.2 applied to γ gives a decomposition

γ
(
z, α(z, t)

) = β(z, t), (z, t) ∈ D̄0,1 × P, (4.3)
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where α : D̄0 × P → P1 ⊂ Cn and β : D̄1 × P → P1 ⊂ Cn are maps of class Ar,0.
Replacing t by α(z, t) in (4.2) gives

f
(
z, α(z, t)

) = f ′(z, β(z, t)
)
, (z, t) ∈ D̄0,1 × P. (4.4)

Hence the two sides define a map g : D̄ × P → X of class Cr (D̄ × P ) which is
holomorphic in D × P . Since the maps α and β are injective holomorphic on the
fibers {z} × P , g is a spray with the exceptional set σ (g) = σ (f ) ∪ σ (f ′).

The estimates on α and β in Theorem 3.2 show that their distances from the
identity map are controlled by the number ε∗ and hence (in view of Lemma 4.4) by
the Cr -distance of f ′ to f on D̄0,1 × P0. Hence the new spray g approximates f in
Cr (D̄0 ×P ). On the other hand, we do not get any obvious control on the Cr -distance
between f ′ and g on D̄1 ×P , the problem being that the Cr -norm of f ′ is not a priori
bounded, and precomposing f ′ by a map β (even if it is close to the identity map) can
still cause a big change. However, in our application in ğ6, we need only control the
range (location) of g, and this is ensured by the construction.

Finally, if f and f ′ agree to order m along D̄0,1 ×{0}, then by Lemma 4.4, we can
choose γ of the form γ (z, t) = t +∑

|J |=m c̃J (z, t)tJ with c̃J ∈ Ar,0(D0,1 ×P1)n for
each multi-index J . Theorem 3.2 then gives a decomposition (4.3), where α(z, t) =
t + ∑

|J |=m ãJ (z, t)tJ and β(z, t) = t + ∑
|J |=m b̃J (z, t)tJ , thereby ensuring that the

spray g (4.4) agrees with f (resp., f ′) to order m at t = 0. This proves Proposition 4.3,
granted that Lemma 4.4 holds. �

Proof of Lemma 4.4
Let E denote the subbundle of D̄ × Cn with fibers

Ez = ker
(
∂tf (z, t)|t=0 : C

n → V Tf (z,0)X
)
, z ∈ D̄.

This subbundle is holomorphic over D and of class Cr on D̄. We claim that E is
complemented; that is, there exists a complex vector subbundle G ⊂ D̄×Cn which is
continuous on D̄ and holomorphic over D such that D̄×Cn = E⊕G. For holomorphic
vector bundles on open Stein manifolds, this follows from Cartan’s Theorem B [41,
page 256]; the same proof applies in the category of holomorphic vector bundles
with continuous boundary values over a strongly pseudoconvex domain by using the
corresponding versions of Theorem B due to Leiterer [53] and Heunemann [46].
Finally we use a result of Heunemann [45] to approximate G uniformly on D̄ by a
holomorphic vector subbundle (still denoted G) of U ×Cn over an open neighborhood
U ⊃ D̄; a simple proof of this result can be found in the appendix to this article.

For each fixed z ∈ U , we write Cn � t = t ′
z ⊕ t ′′

z with t ′
z ∈ Ez and t ′′

z ∈ Gz.
The partial differential ∂t |t=0f (· , t) gives an isomorphism G|D̄ → V Tf0(D̄)X, and
it vanishes on E. The implicit function theorem now gives an open neighborhood
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P1 � P0 of 0 ∈ Cn such that for each spray f ′ : D̄ × P0 → X which is sufficiently
Cr close to f on D̄ × P0, there is a unique map

γ̃ (z, t ′
z ⊕ t ′′

z ) = t ′
z ⊕ (

t ′′
z + c̃(z, t)

) ∈ Ez ⊕ Gz = C
n

of class Ar,0(D×P1) solving f (z, γ̃ (z, t)) = f ′(z, t), and ‖̃c‖Ar,0(D0,1×P1) is controlled
by the Cr -distance between f and f ′ on D̄ × P0. After shrinking P1, the fiberwise
inverse γ (z, t) = t ′ ⊕ (t ′′

z + c′′(z, t)) of γ then satisfies (4.2), and ‖c′′‖Ar,0(D0,1×P1) is
controlled by the Cr -distance between f and f ′ on D̄ × P0. �

Remark 4.5
The additions to Theorem 3.2, explained in Remark 3.7, yield the corresponding
additions to Proposition 4.3. First of all, one can relax the definition of a spray by
omitting the condition regarding the exceptional set. The only essential condition
needed in Proposition 4.3 is that the spray f is dominating on D̄0,1, in the sense that
its t-differential is surjective on this set at t = 0. (This notion of domination agrees
with the one introduced by Gromov [40].) Approximating such spray f sufficiently
closely in the Cr -topology on D̄0 × P (for some open neighborhood P ⊂ Cn of the
origin) by another spray f ′, we can glue f and f ′ into a new spray g over D̄0 ∪ D̄1

which is dominating over D̄0,1. The exceptional set condition in Definition 4.1 is
needed only when one wishes to interpolate a given spray on a subvariety of D̄0. The
parametric version of Theorem 3.2 (see Remark 3.7) also gives the corresponding
parametric version of Proposition 4.3, in which the two h-sprays f and f ′ depend
smoothly on a real parameter s ∈ [0, 1]m ⊂ Rm. The remaining ingredients of the
proof (such as Lemma 4.4) carry over to the parametric case without difficulties.

5. Approximation of holomorphic maps to complex spaces
In this section, we prove the following approximation theorem for maps of bordered
Riemann surfaces to arbitrary complex spaces. This result is used in the proof of
Theorem 1.1 to replace the initial map by another one that maps the boundary into the
regular part of the space.

THEOREM 5.1
Let D be a connected, relatively compact, smoothly bounded domain in an open
Riemann surface S, let X be a complex space, and let f : D̄ → X be a map of class
Cr (r ≥ 2) which is holomorphic in D. Given finitely many points z1, . . . , zl ∈ D and
an integer k ∈ N, there is a sequence of holomorphic maps fν : Uν → X in open sets
Uν ⊂ S containing D̄ such that fν agrees with f to order k at zj for j = 1, . . . , l and
ν ∈ N, and the sequence fν converges to f in Cr (D̄) as ν → +∞. If f (D) �⊂ Xsing,
we can also ensure that fν(bD) ⊂ Xreg for each ν ∈ N.
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Proof
We proceed by induction on n = dim X. The result trivially holds for n = 0. Assume
that it holds for all complex spaces of dimension less than n for some n > 0, and let
dim X = n. If f (D) ⊂ Xsing, then the conclusion holds by applying the inductive
hypothesis with the complex space Xsing. Suppose now that f (D) �⊂ Xsing. The set

σ = {
z ∈ D̄ : f (z) ∈ Xsing

}
(5.1)

is compact, σ ∩ D is discrete, and σ ∩ bD has empty relative interior in bD. Indeed,
as Xsing is an analytic subset of X, and hence complete pluripolar, the existence of a
nonempty arc in bD which f maps to Xsing implies f (D̄) ⊂ Xsing, in contradiction
to our assumption.

Set K = {z1, . . . , zl}. Let bD = ⋃m

j=1 Cj , where each Cj is a closed Jordan
curve. For each j = 1, . . . , m, we choose a point pj ∈ Cj\σ and an open set Uj ⊂ S

such that pj ∈ Uj and Uj does not intersect σ ∪ K . We choose the sets Uj so small
that f (D̄ ∩ Uj ) is contained in a local chart of Xreg.

LEMMA 5.2
The map f can be approximated in Cr (D̄, X) by maps f ′ : D̄′ → X of class
Ar (D′, X), where D′ ⊂ S is a smoothly bounded domain (depending on f ′) sat-
isfying D ∪{pj }m

j=1 ⊂ D′ ⊂ D ∪ (⋃m

j=1 Uj

)
. In addition, we can choose f ′ such that

it agrees with f to order k at zj for j ∈ {1, . . . , l}.

Proof
By Theorem 2.1, the graph of f over D̄ has an open Stein neighborhood in S × X. It
follows that the set σ (see (5.1)) is the common zero set of finitely many functions in
Ar (D). By Lemma 4.2, there is a spray f̃ : D̄ × P → X (P ⊂ CN ) of class Ar (D),
with the core map f̃ (· , 0) = f and the exceptional set σ̃ = σ ∪ K of order k.

After shrinking the parameter set P ⊂ CN of f̃ around 0 ∈ CN , we may assume
that f̃ maps the set Ej = (Uj ∩ D̄) × P̄ into a local chart � ⊂ Xreg for each
j = 1, . . . , m. Hence we can approximate the restriction of f̃ to Ej as close as
desired in the Cr -sense by a spray g̃j : V j × P → Xreg, where Vj is an open set in S

(depending on g̃j ) satisfying Uj ∩ D̄ ⊂ Vj ⊂ Uj .
If the approximations are sufficiently close, Lemma 4.4 furnishes a transition map

γj between f̃ and g̃j for each j (we shrink P as needed), and Proposition 4.3 lets us
glue f̃ with the sprays g̃j into a spray F of class Ar (D′) over a domain D′ ⊂ S as in
Lemma 5.2. By the construction, F approximates f̃ in the Cr (D̄×P )-topology, and it
agrees with f̃ to order k at the points zj ∈ K . The core map f ′ = F (· , 0) : D̄′ → X

then satisfies the conclusion of the lemma.
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A word is in order regarding the application of Proposition 4.3. Unlike in that
proposition, the final domain D′ in our present situation depends on the choices of
the sprays g̃j (since the size of their z-domains in S depends on the rate of approx-
imation). We can choose from the outset a fixed domain D1 ⊂ S such that (D, D1)
is a Cartan pair in S satisfying D ∩ D1 ⊂ ⋃m

j=1(D̄ ∩ Uj ). Applying Theorem 3.2

gives maps α and β over D̄ (resp., D̄1); the new spray F is defined as f̃ (z, α(z, t))
for z ∈ D̄ and by g̃j (z, β(z, t)) for z ∈ D̄1 ∩ Uj . Thus we are not using
the map β on its entire domain of existence but only over the domain of the
sprays g̃j . �

We continue with the proof of Theorem 5.1. Let f ′ : D̄′ → X be a map furnished by
Lemma 5.2. In each boundary curve Cj ⊂ bD, we choose a closed arc λj ⊂ Cj such
that Cj\λj ⊂ D′. (This is possible since D′ contains the point pj ∈ Cj .) Let ξj be
a holomorphic vector field in a neighborhood of λj in S such that ξ (z) points to the
interior of D for every z ∈ λj . More precisely, if D = {v < 0}, with dv �= 0 on bD,
we ask that �(ξj · v) < 0 on λj ; such fields clearly exist.

Choose a domain D0 ⊂ S with D̄′ ⊂ D0 such that D̄ is holomorphically convex
in D0. (This holds when D0\D̄ is connected.) The union of K with all the arcs λj

is a compact holomorphically convex set in D0. The tangent bundle of D0 is trivial,
which lets us identify vector fields with functions. Hence there exists a holomorphic
vector field ξ on D0 which approximates the field ξj sufficiently closely on λj so that
it remains inner radial to D there, and ξ vanishes to order k at the points zj ∈ K . For
sufficiently small t > 0, the flow φt of ξ carries each of the arcs λj into D, and hence
φt (D̄) ⊂ D′, provided that t > 0 is small enough. (Recall that Cj\λj ⊂ D′; hence
the points of D̄ which may be carried out of D̄ by the flow φt along Cj\λj remain in
D′ for small t > 0.)

Since the set σ ′ = {z ∈ D′ : f ′(z) ∈ Xsing} is discrete, a generic choice of t > 0
also ensures that φt (bD) ∩ σ ′ = ∅. For such t , the map f ′ ◦ φt is holomorphic in an
open neighborhood of D̄, it maps bD to Xreg, it approximates f in the Cr (D̄)-topology,
and it agrees with f to order k at each point zj ∈ K . This provides a sequence fν

satisfying Theorem 5.1. �

Remark 5.3
D. Chakrabarti proved the following approximation result in [9, Theorem 1.1.4] (see
also [10]). If D is a domain in C bounded by finitely many Jordan curves and X is
a complex manifold, then every continuous map f : D̄ → X which is holomorphic
on D can be approximated uniformly on D̄ by maps that are holomorphic in open
neighborhoods of D̄ in C. A comparison with Theorem 5.1 shows that there is a
stronger hypothesis on X but a weaker hypothesis on the map.
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Figure 2. A 2-convex bump

6. Proof of Theorem 1.1
We begin with the two main lemmas. The induction step in the proof of Theorem 1.1
is provided by Lemma 6.3, and the key local step is furnished by Lemma 6.2.

We denote by d1,2 the partial differential with respect to the first two complex
coordinates on Cn.

Definition 6.1
Let A and B be relatively compact open sets in a complex space X. We say that B is
a 2-convex bump on A (see Figure 2) if there exist an open set � ⊂ Xreg containing
B̄, a biholomorphic map 
 from � onto a convex open set ω ⊂ Cn, and smooth real
functions ρB ≤ ρA on ω such that


(A ∩ �) = {
x ∈ ω : ρA(x) < 0

}
,



(
(A ∪ B) ∩ �

) = {
x ∈ ω : ρB(x) < 0

}
,

ρA and ρB are strictly convex with respect to the first two complex coordinates, and
d1,2(tρA + (1 − t)ρB) is nondegenerate on ω for each t ∈ [0, 1].

Let ρ : X → R be a smooth function that is (n − 1)-convex on an open subset
U ⊂ X. If the set {x ∈ U : c0 ≤ ρ(x) ≤ c1} is compact, contained in Xreg, and
contains no critical points of ρ, then the set {x ∈ U : ρ(x) ≤ c1} is obtained from
{x ∈ U : ρ(x) ≤ c0} by a finite process in which every step is an attachment of
a 2-convex bump (see [44, Lemma 12.3]). The essential ingredient in the proof is
Narasimhan’s lemma on local convexification.

The following lemma was proved in [21] in the case when X is a complex
manifold and D is the disc and for holomorphic maps instead of sprays. Its proof in
[21, Lemma 3.1] was based on the solution of the nonlinear Cousin problem in [69].
This does not seem to suffice in the case of a complex space with singularities and an
arbitrary bordered Riemann surface. Instead, we use Proposition 4.3.
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Since the complex space X is paracompact, it is metrizable. Fix a complete
distance function d on X.

LEMMA 6.2
Let X be an irreducible complex space of dim X ≥ 2. Let A � X be a relatively
compact open subset of X, and let B be a 2-convex bump on A (see Definition 6.1).
Let D be a bordered Riemann surface with smooth boundary, let P be a domain in
CN containing 0, and let k ≥ 0 be an integer. Assume that f : D̄ × P → X is a
spray of maps of class A2(D) with the exceptional set σ of order k (see Definition
4.1) such that f0(bD) ∩ Ā = ∅. (Here f0 = f (· , 0) is the core map of the spray.)
Further, assume that K is a compact subset of A and U is an open subset of D such
that f0(D̄\U ) ∩ K = ∅.

Given ε > 0, there are a domain P ′ ⊂ P containing 0 ∈ CN and a spray of
maps g : D̄ × P ′ → X of class A2(D), with the exceptional set σ of order k, such
that g0 is homotopic to f0 and the following hold for all t ∈ P ′:
(i) gt (bD) ∩ A ∪ B = ∅,
(ii) d(gt (z), ft (z)) < ε for z ∈ U ,
(iii) gt (D̄\U ) ∩ K = ∅, and
(iv) the maps f0 and g0 have the same k-jets at every point in σ .

Proof
Let 
 : X ⊃ � → ω ⊂ Cn be a biholomorphic map as in Definition 6.1. By enlarging
the set U � D, we may assume that σ ⊂ U . For small λ > 0, set

ωλ = {
x ∈ ω : ρB(x) < λ, ρA(x) > λ

}
, �λ = 
−1(ωλ).

Then ωλ � ω, and �λ � �.
Since f0(bD) ∩ Ā = ∅, we have ρA

(

(f0(z))

)
> λ for every sufficiently small

λ > 0 and for all z ∈ bD with f0(z) ∈ �. A transversality argument shows that
for almost every small λ > 0, the set bD ∩ f −1

0 (�λ) is a finite union
⋃m′

j=1 Ij

of pairwise disjoint closed arcs Ij (j = 1, . . . , m) and simple closed curves Ij

(j = m + 1, . . . , m′). Fix a λ for which the above hold.
If Ij is an arc, we choose a smooth simple closed curve �j ⊂ D̄\U such that

�j ∩ bD is a neighborhood of Ij in bD, and �j bounds a simply connected domain
Uj ⊂ D\U (see Figure 3). Choose a smooth diffeomorphism hj : �̄ → Uj which is
holomorphic on �, and choose a compact set Vj ⊂ Uj containing a neighborhood of
Ij in �̄.

If Ij is a simple closed curve, there is a collar neighborhood Uj ⊂ D̄\U of Ij

in D̄ whose boundary bUj = Ij ∪ I ′
j consists of two smooth simple closed curves.

For consistency of notation, we set �j = Ij . There are an open subset Wj of �
and a diffeomorphism hj : �̄\Wj → Ūj which is holomorphic on �\Wj such that
hj (b�) = �j . Choose a compact annular neighborhood Vj of �j in Uj ∪ �j .
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Figure 3. Cartan pair (D0, D1)

By choosing the sets U1, . . . , Um′ sufficiently small, we can ensure that their
closures are pairwise disjoint and do not intersect U , and we have

f0(Uj ) ⊂ {
x ∈ � : ρA

(

(x)

)
> λ

}
, j = 1, . . . m′.

Denote by D1 the union
⋃m′

j=1 Uj . There is a smoothly bounded open set D0, with

D\D1 ⊂ D0 ⊂ D\ ⋃m′
j=1 Vj , such that (D0, D1) is a Cartan pair (see Definition 3.1;

see also Figure 3). Let D0,1 = D0 ∩ D1.
Our goal is to approximate f in the C2-topology on D̄0,1 by a spray f ′ over

D̄1 so that the maps f ′
t satisfy properties (i) and (iii) on its domain. (The final spray

g over D̄ is obtained by gluing the restriction of f to D̄0 with the spray f ′, using
Proposition 4.3.) To this end, we now find a suitable family of holomorphic discs that
are used to increase the value of ρ ◦ f0 on the part of bD which is mapped by f0 into
�λ.

Consider the homotopy ρs : ω → R defined by

ρs = (1 − s)(ρA − λ) + s(ρB − λ), s ∈ [0, 1].

The function ρs is strictly convex with respect to the first two coordinates (since it is
a convex combination of functions with this property), and d1,2ρs is nondegenerate
on ω by the definition of a 2-convex bump. As the parameter s increases from s = 0
to s = 1, the sets {ρs ≤ 0} increase smoothly from {ρA ≤ λ} to {ρB ≤ λ}. (Inside
ωλ, these sets are strictly increasing.) For each point q ∈ ωλ, we have ρA(q) > λ,
while ρB(q) < λ; hence there is a unique s ∈ [0, 1] such that ρs(q) = 0. Write
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q = (q1, q2, q
′′) with q ′′ ∈ Cn−2. The set

Ms,q ′′ = {
(x1, x2, q

′′) ∈ ω : ρs(x1, x2, q
′′) = 0

}
is a real three-dimensional submanifold of C2 × {q ′′}. Let TqMs,q ′′ denote its real
tangent space at q; then Eq = TqMs,q ′′ ∩ i TqMs,q ′′ is a complex line in TqC

n = Cn.
By strict convexity of ρB with respect to the first two variables, the intersection

Lq = (q + Eq) ∩ {
x ∈ ω : ρB(x) ≤ λ

}
is a compact, connected, smoothly bounded convex subset of q + Eq with bLq ⊂
{ρB = λ} (see Figure 2). The sets Lq depend smoothly on q ∈ ωλ and degenerate to
the point Lq = {q} for q ∈ b ωλ ∩ {ρA > λ}. We set Lq = {q} for all points q ∈ ω

with ρB(q) ≥ λ.
Given a point z ∈ �j ⊂ bD1 for some j ∈ {1, . . . , m′}, we set

L̃z = Lq with q = 

(
f0(z)

)
.

The definition is good since ρA

(

(f0(z))

)
> λ for all z ∈ D̄1.

An elementary argument (see, e.g., [35, ğ4]) gives for each j ∈ {1, . . . m′} a
continuous map Hj : �j × �̄ → ω such that for each z ∈ Ij , the map �̄ � η �→
Hj (z, η) ∈ L̃z is a holomorphic parametrization of L̃z and Hj (z, 0) = 
(f0(z)); if
z ∈ �j\Ij , then Hj (z, η) = 
(f0(z)) for all η ∈ �̄.

Recall that hj is a parametrization of Uj by a �̄ if j ∈ {1, . . . , m} (resp., by an
annular region in �̄ if j ∈ {m + 1, . . . , m′}). Let Gj : b� × �̄ → Cn be defined by

Gj (ζ, η) = Hj

(
hj (ζ ), η

) − 

(
f0(hj (ζ ))

)
, ζ ∈ b�, η ∈ �̄.

Observe that Gj (ζ, η) = 0 if ζ ∈ h−1
j (�j\Ij ) and η ∈ �̄.

Let B ⊂ Cn denote the unit ball and δ B the ball of radius δ. For each j ∈
{1, . . . , m′} and each δ > 0, we solve approximately the Riemann-Hilbert problem
for the map Gj , using [35, Lemma 5.1], to obtain a holomorphic polynomial map
Qδ,j : C → Cn satisfying the following properties:

Qδ,j (ζ ) ∈ Gj (ζ, b�) + δ B for ζ ∈ b�, (6.1)

|D2Qδ,j (ζ )| < δ for ζ ∈ h−1
j (Uj\Vj ), (6.2)

Qδ,j (ζ ) ∈ Gj (b�, �̄) + δ B for ζ ∈ h−1
j (Uj ). (6.3)

Here D2Q = (Q, Q′, Q′′) is the second-order jet of Q. Although [35, Lemma 5.1]
only gives a uniform estimate in (6.2), we can apply it to a larger disc containing
h−1

j (Uj\Vj ) in its interior to obtain the estimates of derivatives.
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Define a map Qδ : D̄1 = ⋃m′
j=1 Uj → Cn by

Qδ(z) = Qδ,j

(
h−1

j (z)
)
, z ∈ Uj .

By (6.2), the map Qδ and its first two derivatives have modulus bounded by δ on⋃m′
j=1 Uj\Vj and hence on D̄0,1. If z ∈ �j ∩ bD, then (6.1) gives∣∣Qδ(z) + 


(
f0(z)

) − Hj (z, η)
∣∣ < δ for some η ∈ b�,

and hence the point Qδ(z) + 
(f0(z)) is contained in the δ-neighborhood of bL̃z.
Recall that for z ∈ Ij , we have bL̃z ⊂ {ρB = λ}, and for z ∈ �j\Ij , we have
L̃z = {
(f0(z))}. By choosing δ0 > 0 sufficiently small, we ensure that

ρB

(
Qδ(z) + 
(f (z, t))

)
> 0

for all z ∈ �j ∩ bD, j = 1, . . . , m′, 0 < δ < δ0, and all t in a certain neigh-
borhood P0 ⊂ P of 0 ∈ CN . For such choices (and a fixed δ ∈ (0, δ0)), the map
f ′ = f ′

δ : D̄1 × P0 → X, defined by

f ′(z, t) = 
−1
(
Qδ(z) + 
(f (z, t))

)
, z ∈ D̄1, t ∈ P0,

is a spray of maps of class A2(D1), with trivial (empty) exceptional set, whose
boundary values on bD1 ∩bD lie outside of A ∪ B. By choosing δ > 0 small enough,
we ensure that f ′ approximates the spray f as closely as desired in the C2-norm on
D̄0,1 × P0.

By Proposition 4.3, we can glue f and f ′ into a spray of maps g : D̄×P ′ → X ap-
proximating f on D̄0 ×P ′; hence the central map g0 = g(· , 0) satisfies Lemma 6.2(ii)
and also property (i) on bD0 ∩ bD. For z ∈ D̄1, we have g(z, t) = f ′(z, β(z, t)) by
(4.4), where the C2-norm of β is controlled by δ. Choosing δ > 0 sufficiently small,
we ensure that for each z ∈ bD1 ∩ bD, we have g0(z) = g(z, 0) ∈ X\A ∪ B, so
(i) holds also on bD1 ∩ bD. Similarly, since f ′

t (D̄1) does not intersect Ā ⊃ K , we
see that g0 satisfies property (iii). By shrinking P ′, we obtain the same properties for
all maps gt , t ∈ P ′. Finally, property (iv) holds by the construction. (This does not
depend on the choice of the constants.) �

LEMMA 6.3
Let X be an irreducible complex space of dimension n ≥ 2, and let ρ : X → R be a
smooth exhaustion function that is (n − 1)-convex on {x ∈ X : ρ(x) > M1}. Let D

be a finite Riemann surface, let P be an open set in CN containing the origin, and
let M2 > M1. Assume that f : D̄ × P → X is a spray of maps of class A2(D) with
the exceptional set σ ⊂ D of order k ∈ Z+, and U � D is an open subset such that
f0(z) ∈ {x ∈ Xreg : ρ(x) ∈ (M1, M2)} for all z ∈ D̄\U . Given ε > 0 and a number
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M3 > M2, there exist a domain P ′ ⊂ P containing 0 ∈ CN and a spray of maps
g : D̄ × P ′ → X of class A2(D), with exceptional set σ of order k, satisfying the
following properties:
(i) g0(z) ∈ {x ∈ Xreg : ρ(x) ∈ (M2, M3)} for z ∈ bD,
(ii) g0(z) ∈ {x ∈ X : ρ(x) > M1} for z ∈ D̄\U ,
(iii) d(g0(z), f0(z)) < ε for z ∈ U , and
(iv) f0 and g0 have the same k-jets at each of the points in σ .
Moreover, g0 can be chosen homotopic to f0.

Proof
The idea is the following. Lemma 6.2 allows us to push the boundary of our curve out
of a 2-convex bump in X. By choosing these bumps carefully, we can ensure that in
finitely many steps, we push the boundary of the curve to a given, higher super level
set of ρ (see property (i)); at the same time, we take care not to drop it substantially
lower with respect to ρ (see property (ii)) and to approximate the given map on the
compact subset U ⊂ D (see property (iii)). In the construction, we always keep the
boundary of the image curve in the regular part of X. Special care must be taken to
avoid the critical points of ρ. We now turn to details.

By [14, Lemma 5], there exists an almost plurisubharmonic function v on X (i.e.,
a function whose Levi form has bounded negative part on each compact in X) which
is smooth on Xreg and satisfies v = −∞ on Xsing. We may assume that v < 0 on
{ρ ≤ M3 + 1}.

For every sufficiently small δ > 0, the function τδ = ρ − M1 + δv is (n − 1)-
convex on {ρ ≤ M3}, and its Levi form is positive on the linear span of the eigenspaces
corresponding to the positive eigenvalues of the Levi form of ρ at each point. Note
that Xsing ∪ {ρ ≤ M1} ⊂ {τδ < 0}. Since ρ(f0(z)) > M1 and f0(z) ∈ Xreg for all
z ∈ bD, we have τδ(f0(z)) > 0 for all z ∈ bD and all small δ > 0. Fix δ > 0 for
which all of the above hold, and write τ = τδ .

Choose a number M ∈ (M2, M3). (The central map g0 of the final spray maps
bD close to {ρ = M, τ > 0}.) Since τ = −∞ on Xsing, the set

� = {
x ∈ X : ρ(x) < M3, τ (x) > 0

}
is contained in the regular part of X. By a small perturbation, one can in addition
achieve that zero is a regular value of τ , M is a regular value of ρ, and the level sets
{ρ = M} and {τ = 0} intersect transversely. Denote their intersection manifold by
�. There is a neighborhood U� of � in X with U� ⊂ {ρ > M2} ∩ Xreg.

We are now in the same geometric situation as in [23, ğ6.5] (see especially [23,
proof of Lemma 6.9]; the fact that our X is not necessarily a manifold is unimportant
since � ⊂ Xreg). For s ∈ [0, 1], set

ρs = (1 − s)τ + s(ρ − M), Gs = {ρs < 0} ∩ {ρ < M3}.
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Figure 4. The sets Gs

The Levi form of ρs , being a convex combination of the Levi forms of τ and ρ, is
positive on the linear span of the eigenspaces corresponding to the positive eigenvalues
of the Levi form of ρ. Therefore Gs is strongly (n−1)-convex at each smooth boundary
point for every s ∈ [0, 1]. As the parameter s increases from s = 0 to s = 1, the
domains Gs ∩{ρ < M} increase from {τ < 0, ρ < M} to G1 = {ρ < M}. (The sets
Gs ∩ {M < ρ < M3} decrease with s, but that part is not used.) All hypersurfaces
{ρs = 0} = bGs intersect along �. Since dρs = (1−s) dτ +sdρ and the differentials
dτ and dρ are linearly independent along �, each hypersurface bGs is smooth near
�. By a generic choice of ρ and τ , we can ensure that only for finitely many values of
s ∈ [0, 1] does the critical point equation dρs = 0 have a solution on bGs ∩ �, and
in this case, there is exactly one solution. Therefore bGs has nonsmooth points only
for finitely many values of s ∈ [0, 1] (see Figure 4).

Fix two values of the parameter, say, 0 ≤ s0 < s1 ≤ 1. Consider first the
noncritical case when dρs �= 0 on bGs ∩ � for all s ∈ [s0, s1], and hence all
boundaries bGs for s ∈ [s0, s1] are smooth. By attaching to Gs0 finitely many small
2-convex bumps of the type used in Lemma 6.2 and contained in G1 ∪ U� , we cover
the set Gs1 ∩ � (see [23, page 180] for a more detailed description). Using Lemma
6.2 at each bump, we push the boundary of the central map in the spray outside the
bump while keeping control on the compact subset U ⊂ D. After a finite number of
steps, the boundary of the central map lies outside Gs1 ∩ � and inside G1 ∪ U� . Up
to the end of ğ6, this is called the noncritical procedure.
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Figure 5. The level sets of h̃

It remains to consider the values s ∈ [0, 1] for which bGs has a nonsmooth point
(the critical case). We begin by discussing the most difficult case, dim X = 2, when
there is the least space to avoid the critical points. The functions ρ and τ are then
1-convex and hence strongly plurisubharmonic. As in [23, page 180], we introduce
the function

h(x) = τ (x)

τ (x) + M − ρ(x)
, x ∈ �.

A generic choice of τ ensures that h is a Morse function. Note that {h = s} = {ρs =
0} = bGs . The critical points of h coincide with critical points of ρs on {ρs = 0}, and
the Levi form of h at a critical point is positive definite (see [23, page 180]).

To push the boundary over a critical level of h, we apply [23, Lemma 6.7,
page 177] (see also [30, ğ4]). Let p be a critical point of h with h(p) = c ∈ (0, 1). (Our
h corresponds to ρ in [23].) It suffices to consider the case when the Morse index of p is
either 1 or 2 since we cannot approach a minimum of h by the noncritical procedure.
Choose a neighborhood W ⊂ X of p on which h is strongly plurisubharmonic.
Lemma 6.7 in [23] furnishes a new function h̃ (denoted τ in [23]) that is strongly
plurisubharmonic on W , while outside of W each level set {̃h = ε} (for values ε

close to zero) coincides with a certain level set {h = c(ε)} such that h̃ satisfies the
following properties (see Figure 5). The sublevel set {̃h ≤ 0} is contained in the union
of the sublevel set {h ≤ c0} for some c0 < c (close to c) and a totally real disc E

(the unstable manifold of the critical point p with respect to the gradient flow of h).
Furthermore, for a small d > 0 with c0 < c − d , we have

{h ≤ c + d} ⊂ {̃h ≤ 2d} ⊂ {h < c + 3d}; (6.4)

h̃ has no critical values on (0, 3d), and h has no critical values on [c − d, c + 3d]
except for h(p) = c.
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By the noncritical procedure applied with the function h, we push the boundary
of the central map of the spray into the set {c − d < h < c}. Let f̃ denote the new
spray. For parameters t ∈ CN sufficiently close to the origin, the map f̃t also has
boundary values in {c − d < h < c}. Since dim RE ≤ 2, we can find t arbitrarily
close to the origin such that f̃t (bD) ∩ E = ∅. By translation in the t-variable, we can
choose f̃t as the new central map of the spray.

Since {̃h ≤ 0} ⊂ {h ≤ c0} ∪ E ⊂ {h ≤ c − d} ∪ E, the above ensures that
h̃ > 0 on f̃t (bD). Since h̃ has no critical values on (0, 3d), we can use the noncritical
procedure with h̃ to push the boundary of the central map into the set {̃h > 2d},
appealing to Lemma 6.2. As {̃h > 2d} ⊂ {h > c + d} by (6.4), we have thus pushed
the image of bD across the critical level {h = c} and avoided running into the critical
point p. Now, we continue with the noncritical procedure applied with h to reach the
next critical level of h.

This concludes the proof for n = 2. The same procedure can be adapted to the
case where n = dim CX > 2 by considering the appropriate two-dimensional slices
on which the function ρ is strongly plurisubharmonic. Alternatively, we can apply the
same geometric construction as in [21] to keep the boundary of the central map at a
positive distance from the critical points of ρ. �

Proof of Theorem 1.1
Let d denote a complete distance function on X. We denote the initial map in Theorem
1.1 by f0 : D̄ → X. By Theorem 5.1, we may assume that f0 is holomorphic in a
neighborhood of D̄ in an open Riemann surface S ⊃ D̄ and f0(bD) ⊂ (Xc)reg.
Here Xc = {ρ > c} is the set on which ρ is assumed to have at least two positive
eigenvalues.

Choose an open, relatively compact subset U � D and a number ε > 0. It suffices
to find a proper holomorphic map g : D → X such that supz∈U d(f0(z), g(z)) < ε and
such that g agrees with f0 to order k at each of the given points zj ∈ D; a sequence
of proper maps gν as in Theorem 1.1 is then obtained by Cantor’s diagonal process.

Let σ denote the union of {z ∈ D : f0(z) ∈ Xsing} and the finite set
{zj } ⊂ D on which we interpolate to order k ∈ N; thus σ is a finite subset of D.
Lemma 4.2 furnishes a spray of maps f : D̄ × P → X of class A2(D), with the
given central map f0 and the exceptional set σ of order k, such that ft (bD) ⊂ (Xc)reg

for each t ∈ P ⊂ CN .
Set f 0 = f , set c = c0, and choose an open subset P0 � P containing the

origin 0 ∈ CN . Choose a number c1 > c0 such that c0 < ρ(f 0
t (z)) < c1 for all

z ∈ bD and t ∈ P0, and then choose an open subset U0 � D containing σ ∪ U

such that f 0
t (D̄\U0) ⊂ {x ∈ X : c0 < ρ(x) < c1} for all t ∈ P0. Choose a sequence

c0 < c1 < c2 · · · with the given initial numbers c0 and c1 such that limj→∞ cj = +∞.
Also, choose a decreasing sequence εj > 0 with 0 < ε1 < ε such that for each j ∈ N,
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we have (
x, y ∈ X, ρ(x) < cj+1, d(x, y) < εj

) ⇒ |ρ(x) − ρ(y)| < 1.

We inductively find a sequence of sprays f j : D̄ ×Pj → X of class A2(D) with
the exceptional set σ of order k, with P = P0 ⊃ P1 ⊃ P2 ⊃ · · · , and a sequence of
open sets U0 ⊂ U1 ⊂ · · · ⊂ ⋃∞

j=1 Uj = D satisfying the following properties for
each j ∈ Z+ and t ∈ Pj :
(i) f

j
t (bD) ⊂ {x ∈ Xreg : cj < ρ(x) < cj+1},

(ii) f
j
t (D̄\Uj ) ⊂ {x ∈ X : cj < ρ(x) < cj+1},

(iii) f
j
t (D̄\Uj−1) ⊂ {x ∈ X : cj−1 < ρ(x) < cj+1},

(iv) d(f j

0 (z), f j−1
0 (z)) < εj 2−j for z ∈ Uj−1, and

(v) f
j

0 and f
j−1

0 are homotopic, and they have the same k-jets at each of the points
in σ .

For j = 0, properties (i) and (ii) hold, while the remaining properties are vacuous.
(In (iii), we take U−1 = U0 and c−1 = c0.) Assuming that we already have sprays
f 0, . . . , f j satisfying these properties, Proposition 6.3 applied to f = f j furnishes
a new spray f j+1 (called g in the statement of that proposition) satisfying (i), (iii),
(iv), and (v). Choose an open set Uj+1 � D with Uj ⊂ Uj+1 such that (ii) holds.
(This is possible by continuity since (i) already holds, and we are allowed to shrink
the parameter set Pj+1.) Hence the induction proceeds. When choosing the sets Uj ,
we can easily ensure that they exhaust D.

Conditions (i) – (v) imply that the sequence of central maps f
j

0 : D̄ → X (j ∈
Z+) converges uniformly on compacts in D to a proper holomorphic map g : D → X

satisfying d(f0(z), g(z)) < ε (z ∈ U 0) and such that the k-jet of g agrees with the
k-jet of f0 at every point of σ . In addition, we can combine the homotopies from f

j

0

to f
j+1

0 (j = 0, 1, . . .) to obtain a homotopy from f0|D to g. This completes the proof
of Theorem 1.1. �

Appendix. Approximation of holomorphic vector subbundles
In the proof of Lemma 4.4, we used the following approximation result.

THEOREM A.1 (Heunemann [45, Theorem 1, page 275])
If D is a relatively compact strongly pseudoconvex domain in a Stein manifold S and
E ⊂ D̄ × Cn is a continuous complex vector subbundle of the trivial bundle over
D̄ such that E is holomorphic over D, then E can be uniformly approximated by
holomorphic vector subbundles Ẽ ⊂ U × Cn over small open neighborhoods U ⊂ S

of D̄.
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Proof
We offer a simple proof of this useful result. Choose a complementary to E subbundle
G ⊂ D̄ × Cn of the same class A(D) (the existence of such G follows from Cartan’s
Theorem B for vector bundles of class A(D); see [46], [53]). Let � : D̄ × Cn → E

denote the fiberwise C-linear projection with kernel G and image E. By the Oka-Weil
theorem, we approximate � uniformly on D̄ by a holomorphic fiberwise linear map
�′ : U ′ × Cn → U ′ × Cn over an open set U ′ ⊃ D̄. In general, �′ fails to be a
projection map on the fibers, but this can be corrected by the following simple device
(see, e.g., [36]).

Let C be a positively oriented simple closed curve in C, and let L ∈ LinC(Cn, Cn)
be a linear map with no eigenvalues on C. Then Cn = V+ ⊕ V−, where V+ (resp.,
V−) are L-invariant subspaces of Cn spanned by the generalized eigenvectors of L

corresponding to the eigenvalues inside (resp., outside) of C. The map

P(L) = 1

2πi

∫
C

(ζ I − L)−1 dζ

is a projection onto V+ with kernel V−.

Choose a curve C ⊂ C which encircles 1 but not zero; for instance, C =
{ζ ∈ C : |ζ − 1| = 1/2}. Let P denote the associated projection operator. If L ∈
LinC(Cn, Cn) is a projection, then P(L) = L. If L′ is near a projection L, then each
eigenvalue of L′ is either near zero or near 1, and hence P(L′) is a projection that is
close to L and has the same rank as L.

Assuming that �′ is sufficiently close to � on D̄, it follows that for each point
z in an open set U ′ with D̄ ⊂ U ⊂ U ′, the map �̃z = P(�′

z) ∈ LinC(Cn, Cn) is
a projection of the same rank as �z, and it depends holomorphically on z ∈ U . The
map �̃ : U × Cn → U × Cn with fibers �̃z is then a projection onto a holomorphic
vector subbundle Ẽ ⊂ U × Cn whose restriction to D̄ is uniformly close to E, and
G̃ = ker �̃ is a holomorphic vector subbundle of U × Cn whose restriction to D̄ is
uniformly close to G. �
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[29] F. FORSTNERIČ, J. GLOBEVNIK, and B. STENSØNES, Embedding holomorphic discs

through discrete sets, Math. Ann. 305 (1996), 559 – 569. MR 1397436 204
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[32] F. FORSTNERIČ and J. PREZELJ, Oka’s principle for holomorphic fiber bundles with
sprays, Math. Ann. 317 (2000), 117 – 154. MR 1760671 232
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[71] M. SCHNEIDER, Über eine Vermutung von Hartshorne, Math. Ann. 201 (1973),
221 – 229. MR 0357858 206

[72] A. SEBBAR, Principe d’Oka-Grauert dans A∞, Math. Z. 201 (1989), 561 – 581.
MR 1004175 222

[73] Y.-T. SIU, Every Stein subvariety admits a Stein neighborhood, Invent. Math. 38
(1976/1977), 89 – 100. MR 0435447 211, 212

[74] G. SPRINGER, Introduction to Riemann Surfaces, Addison-Wesley, Reading, Mass.,
1957. MR 0092855 206

[75] G. STOLZENBERG, Polynomially and rationally convex sets, Acta Math. 109 (1963),
259 – 289. MR 0146407 211

[76] J. WERMER, The hull of a curve in C
n, Ann. of Math. (2) 68 (1958), 550 – 561. 211

[77] E. F. WOLD, Embedding Riemann surfaces properly in C
2, Internat. J. Math. 17 (2006),

963 – 974. MR 2261643 204

http://www.ams.org/mathscinet-getitem?mr=0597825
http://www.ams.org/mathscinet-getitem?mr=0846935
http://www.ams.org/mathscinet-getitem?mr=0835763
http://www.ams.org/mathscinet-getitem?mr=1038709
http://www.ams.org/mathscinet-getitem?mr=0148942
http://www.ams.org/mathscinet-getitem?mr=0148943
http://www.ams.org/mathscinet-getitem?mr=0050928
http://www.ams.org/mathscinet-getitem?mr=0759689
http://www.ams.org/mathscinet-getitem?mr=0895316
http://www.ams.org/mathscinet-getitem?mr=0269874
http://www.ams.org/mathscinet-getitem?mr=0847923
http://www.ams.org/mathscinet-getitem?mr=0338450
http://www.ams.org/mathscinet-getitem?mr=1973910
http://www.ams.org/mathscinet-getitem?mr=0335851
http://www.ams.org/mathscinet-getitem?mr=0357858
http://www.ams.org/mathscinet-getitem?mr=1004175
http://www.ams.org/mathscinet-getitem?mr=0435447
http://www.ams.org/mathscinet-getitem?mr=0092855
http://www.ams.org/mathscinet-getitem?mr=0146407
http://www.ams.org/mathscinet-getitem?mr=2261643


254 DRINOVEC DRNOVŠEK and FORSTNERIČ
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