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Abstract Given a Stein manifold x of dimension n > 1, a discrete sequence
{aj} C X, and a discrete sequence {b;} C C" where m > N = [37”] + 1, there
exists a proper holomorphic embedding f: X — C" satisfying f(a;) = b; for
everyj=1,2,...
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1 Introduction

It is known that every Stein manifold of dimension n > 1 admits a proper
holomorphic embedding in CN with N = [37"] + 1, and this N is the smallest
possible by the examples of Forster [9]. The corresponding embedding theorem
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with N replaced by N' = [%] + 1 was proved by Eliashberg and Gromov in

[6] following an earlier announcement in [18]. For even values of n € N we have
N = N’ and hence their result is the best possible; for odd values of n the opti-
mal result was obtained by Schiirmann [25], also for Stein spaces with bounded
embedding dimension. A key ingredient in the known proofs of these results is
the homotopy principle for holomorphic sections of elliptic submersions over
Stein manifolds [14,17].

In this paper we prove the following embedding theorem with interpolation
on discrete sequences; for Stein spaces see Theorem 3.1.

Theorem 1.1 Let X be a Stein manifold of dimension n > 1, and let {a;}jen C X
and {bj}jen C C™ be discrete sequences without repetitions. If m > N = [37"] +1
then there exists a proper holomorphic embedding f: X — C™ satisfying

f(a]-) = b]' (] = 1,2, .. ) (1.1)

This result is optimal in all dimensions n > 1 in view of Forster’s examples
[9]. For even values of n € N Theorem 1.1 coincides with a result of Prezelj

to the effect that the conclusion holds with N replaced by N’ = [%] +1

(Theorem 1.1 (a) in [23]). Our methods also give a different proof of Pre-
zelj’s result to the effect that, under the assumptions of Theorem 1.1 and with

m > [3”; 1], there exists a proper holomorphic immersion f: X — C" satisfy-

ing (1.1); see Theorem 1.1 (b) in [23].

Prezelj obtained her results by carefully elaborating the constructions of
Eliashberg and Gromov [6] and Schiirmann [25]. It is not clear whether the
method from [23] could be improved so as to give the optimal result also for
odd values of n. We prove Theorem 1.1 by combining the known embedding the-
orems with methods of the theory of holomorphic automorphisms of Euclidean
spaces.

If we increase the target dimension to N > 2dim X + 1 then it is possible to
extend any proper holomorphic embedding Y < C» from an arbitrary closed
complex submanifold Y C X (not only a discrete set!) to a proper holomorphic
embedding X — CV [1,3,22].

Before proceeding, we recall that a discrete sequence {a;}jen in CN is said
to be tame in the sense of Rosay and Rudin [24] if there exists a holomorphic
automorphism of CV which maps a;j to the point ¢; = (j,0,...,0) forj =1,2,...
Several criteria for tameness can be found in [24]; for example, a sequence
contained in a proper affine complex subspace of CV is tame.

Theorem 1.1 follows directly from the following two results. The first one
is seen by an inspection of the proofs in [6] and [25] (see Sect. 3 below). The
second one is the main new result of this paper; it has been proposed in [4], and
it improves the result of [21].

All sequences are assumed to be without repetition.
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An interpolation theorem for proper holomorphic embeddings 547

Theorem 1.2 (Eliashberg—-Gromov-Schiirmann) Given a Stein manifold X of
dimension n > 1 and a discrete sequence {a;}jey C X, there exists a proper

holomorphic embedding f: X — CN with N = [37"] + 1 such that the sequence

{f(@p)}jen is tame in CN. There also exists a proper holomorphic immersion
f: X — CICD2 yith the same property.

Theorem 1.3 Let N > 1, let X be a closed, proper complex subvariety of CV,
and let {aj}jcny C X be a discrete sequence which is tame in CN. For every dis-
crete sequence {bj}icn C CN there exist a domain @ c CN containing X and a
biholomorphic map ®: Q — CN onto CN such that ®(aj) =bjforj=1,2,...

Thus X — ®(X) c CV is another embedding of X into CV which interpo-
lates the given sequences. In addition one can prescribe finite order jets of @ (X)
at all points of the sequence which belong to the regular locus of the subvariety
(Sect. 2). Note that € in Theorem 1.3 is a Fatou-Bieberbach domain. The fact
that ®(X) can be made to contain a given discrete sequence {b;} C CN, but
without matching points, had been proved (for complex lines C < C?) in [12],
and in general in [10]. Not surprisingly, the interpolation is considerably more
difficult to achieve.

Since any discrete sequence contained in a proper algebraic subvariety of CV
is tame [24], Theorem 1.3 applies to all discrete sequences {a;} C X, {bj} C cN
when X is contained in a proper algebraic subvariety of CV.

Example 2.4 below shows that Theorem 1.3 fails in general for non-tame
sequences {a;}. The following problem of embedding with interpolation for a
given Stein manifold whose embedding dimension is lower than the general
dimension N from Theorem 1.2 therefore remains open.

Problem 1.4 Let X be a Stein manifold (or a Stein space) which admits a proper
holomorphic embedding into C” for some m € N. Given discrete sequences
{aj}jen C X and {b;}jen C C™ without repetitions, does there exist a proper
holomorphic embedding f: X < C™ satisfying the interpolation condition
(1.1)?

Since any discrete sequence in CN = CN x {0} c CV +1is tame in CN 1! [24],
Theorem 1.3 implies the following improvement of Proposition 2.7 from [21]
(adding only one extra dimension instead of two).

Corollary 1.5 Let X be a Stein space which admits a proper holomorphic embed-
ding into CN. If m > N + 1 then for any two discrete sequences {aj}jen C X and
{bj}jen C C™ without repetitions there exists a proper holomorphic embedding
f+ X — C" satisfying (1.1).

The case dim X =1, i.e.,, when X is an open Riemann surface, is absent from
the statement and discussion of Theorem 1.1. The standard method fails when
trying to embed such X into C? (it embeds into C3, also with interpolation
on discrete sets [1,3,21]). For results in this direction see the survey [11] and
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the recent papers of Forness Wold [7,8] who showed in particular that every
finitely connected planar domain embeds in C?, thereby extending the result of
Globevnik and Stensgnes [16].

Problem 1.6 For which open Riemann surfaces X is Problem 1.4 solvable with
m = 27 Is it solvable for every finitely connected planar domain?

Only two examples come to mind: X an algebraic curve in C? when the result
follows by applying Theorem 1.3, and X the unit disc when the interpolation
theorem is due to Globevnik [15].

2 Proof of Theorem 1.3

We shall use the theory of holomorphic automorphisms of CV. The precise
result which we shall need is the following.

Theorem 2.1 ([5], Theorems 1.1 and 1.2) Assume that N > 1, {a;} and {a]f}

are tame sequences in CN, K c CN is a compact, polynomially convex set
contained in CN \{a;}, and g is a holomorphic automorphism of CN such that
g(K) c CN \{a]’.}. Then for every € > 0 there exists a holomorphic automor-
phism ¢ of CN satisfying ¢(aj) = a]’. (G=1,2,...), sup,cx |9 (2) — g2)| < €, and
SUDyyeq(K) lp~L(w) — g_l(w)| < €. In addition one can prescribe finite order jets

of ¢ at the points {a;}, and one can choose ¢ to exactly match g up to a prescribed
finite order at finitely many points of K.

The statement concerning the approximation of g~! on g(K) is a consequence
of the approximation of g on a slightly larger polynomially convex set containing
K in its interior, provided that ¢ > 0 is sufficiently small.

The proof of Theorem 2.1 in [5] relies upon the developments in [2,13] and
especially [10]. We shall use the special case of Theorem 2.1 when g is the
identity map and the sequence {a]{} differs from {a;} only in finitely many terms.
(Any modification of a tame sequence on finitely many terms is again tame.)
The following lemma will provide the key step.

Lemma 2.2 Let {aj} C X C CN and {bj} C CN satisfy the hypotheses of
Theorem 13. Let B c B' C CN be closed balls and L. = X N B'. Assume
that all points of the {b;} sequence which belong to B U L coincide with the
corresponding points of the {a;} sequence, and all remaining points of the {a;}
sequence are contained in X\L. Given € > 0 and a compact set K C X, there
exist a ball B” ¢ CVN containing B' (B" may be chosen as large as desired), a
compact polynomially convex set M C X with L U K C M, and a holomorphic
automorphism 6 of CVN satisfying the following properties:

(i) 10(z) —z| <eforallze BUL,
(i) ifaj € M for some index j then 6(a;) = b; € B”,
(iii) if bj € B'\(BU L) for some j then a; € M and 6(a;) = b;,
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An interpolation theorem for proper holomorphic embeddings 549

(iv) 6(M) c IntB’, and
(v) ifaj € X\M for some j then 6(a;) € CM\B".

Remark 2.3 1If 0 satisfies the conclusion of Lemma 2.2 then the set
L'={zeX:0(z) e B}

contains M (and hence KU L), and L"\M does not contain any points of the {a;}
sequence (since the #-image of any point a; € X\ M lies outside of B” according

to (v)).

Proof An automorphism 6 of CV with the required properties will be con-
structed in two steps, 6 = ¢ o ¢.

Since X N B C L C X and the sets B and L are polynomially convex, BU L
is also polynomially convex (see e.g., Lemma 6.5 in [10], p. 111).

By applying a preliminary automorphism of C which is very close to the
identity map on B U L we may assume that X does not contain any points of
the {b;} sequence, except those which coincide with the corresponding points
aj € X. The same procedure will be repeated whenever necessary during later
stages of the construction without mentioning it again.

Choose a pair of compact, polynomially convex neighborhoods Dy ¢ D C
CN of BU L, with Dy c IntD, such that D does not contain any additional
points of the {a;} or the {b;} sequence. Choose ¢y > 0 so small that

dist(BU L,CN\Dy) > ¢, dist(Do,CN\D) > .

By decreasing € > 0 if necessary we may assume 0 < € < €.

Choose a compact polynomially convex set M C X containing K U (X N D)
(and hence the set L), and also containing all those points of the {a;} sequence
for which the corresponding point b; is contained in the ball B’. (Of course
M may also contain some additional points of the {a;} sequence for which
bj CN\B'.) Theorem 2.1 furnishes an automorphism ¢ of CV satisfying the
following:

(a) sup.eplb(2) —z| < §andsup,cpl¢~' () — 2| < 5,

(b) ¢(aj) = bjforalla; € M, and
(c) ¢(aj) =ajforalla; e X\M.

Condition (a) and the choice of € imply ¢ (Do) € D and ¢(CN\D) N Dy = ¥,
and the latter condition also implies ¢ (X) N Dy C ¢(M). Since the sets ¢ (M)
and Dy are polynomially convex, their union ¢ (M) U Dy is also polynomially
convex (Lemma 6.5 in [10]).

Choose a large ball B” ¢ CV containing ¢ (M) U B". Theorem 2.1 furnishes
an automorphism v of CV satisfying the following:

(@) |¥(z) —z| <5 when z € $(M) U Dy,
(0" v(¢(a))) = ¢(aj) = bjforallaj € M, and
() (aj) € CN\B” for all aj € X\M.
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Fig.1 The proof of T
Lemma 2.2 S

We may also require that y fixes all points ¢ (a;) € ¢ (X)\B”. It is immediate
that & = ¢ o ¢ satisfies the conclusion of Lemma 2.2. O

The scheme of proof of Lemma 2.2 is illustrated in Fig. 1. The first drawing
shows the initial situation; the thick dots on X indicate the points b; € BU L
which agree with the corresponding points a;, while the crosses indicate the
remaining points b; € B’ which will be matched with the images of a; by applying
the automorphism ¢. The second drawing shows the situation after the applica-
tion of ¢: The large black dots in ¢ (X) N B’ indicate the points b; = ¢ (a;) € B,
while the crossed dots on the subvariety ¢(X) inside the set B”\B’ will be
expelled from the ball B” by the next automorphism .

Proof of Theorem 1.3 Choose an exhaustion K| C K> C --- C Ufil Ki=X
by compact sets. Fix a number € with 0 < € < 1. We shall inductively construct
the following:

(a) A sequence of holomorphic automorphisms ®; of CV (k € N),

(b) Anexhaustion L; C Lp C --- C U]?'L L; = X by compact, polynomially
convex sets,

(c) Asequenceof balls By C B C --- C U Bj = CN centered at 0 € CN
whose radii satisfy rg 1 > g +1fork=1,2,...,
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such that the following hold for all k¥ = 1,2,... (conditions (iv) and (v) are
vacuous for k = 1):

(i) Dr(Ly) = (X)) N Byy1,
(ii) if a; € Ly for some j then ®y(aj) = b;,
(iii) if bj € ®x(Lg) U By for some j then a; € Ly and Oy (aj) = bj,
(iv) Lp_q1UKj_1 C Intly,
V) [®p(z) — Dr_1(2)] < €2 forallz e Br_1ULi 4.

To begin we set By = # and choose a pair of balls B; ¢ B, ¢ CN whose
radii satisfy , > r; + 1. Theorem 2.1 furnishes an automorphism ®; of CV such
that ®;(a;) = b; for all those (finitely many) indices j for which b; € B;, and
®1(aj) € CN\B; for the remaining indices j. (Of course we only need to move
finitely many points of the {a;} sequence.) Setting L; = {z € X: ®1(z) € B2},
the properties (i), (ii) and (iii) are satisfied for k = 1 and the remaining two
properties (iv), (v) are void.

Assume inductively that we have already found sets Lq,..., Ly C X, balls
Bi,...,Bis1 € CN and automorphisms @1, . .., ®; such that (i)—(v) hold up to
index k. We now apply Lemma 2.2 with B = By, B’ = By, X replaced by
X = Op(X) c CN,and L = &y (Ly) C Xp. This gives us a compact polyno-
mially convex set M = M} C Xj containing ®;(Ky U L), an automorphism
6 = 6, of CN,and aball B” = By, c CN of radius r4 45 > r¢41 + 1 such that the
conclusion of Lemma 2.2 holds. In particular, 6 (My) C By, the interpolation
condition is satisfied for all points b; € 6y (M) U By 1, and the remaining points
in the sequence {®(a))}jen are sent by 6 out of the ball By ,,. Setting

DPpy1 =0k oDy, Ly ={z€X: Pry1(z) € Bryo}

one easily checks that the properties (i)—(v) hold for the index k + 1 as well.
(Note that Ly corresponds to the set L’ in Remark 2.3). The induction may
now continue.

Let © consist of all points z € CN for which the sequence {P(2)}keN remains
bounded. Proposition 5.2 in [10] (p. 108) implies that limy_,, ®; = P exists
on €, the convergence is uniform on compacts in ©, and ®: Q@ — CV is a
biholomorphic map of Q onto CV (a Fatou-Bieberbach map). In fact, Q =
Ures d),?l(Bk) (Proposition 5.1 in [10]). From (v) we see that X C €, and prop-
erties (ii), (iii) imply that ®(a;) = bj for allj = 1,2,... This completes the proof
of Theorem 1.3.

Example 2.4 We show that Theorem 1.3 is not valid in general if {g;} is a non-
tame sequence in CV. Choose a sequence {aj}jen C CN whose complement
cN \{a;}jen is Eisenman N-hyperbolic [20,24]. As already mentioned in the
introduction, any complex subvariety X c CV can be embedded in CV so
that its image contains a given sequence [10], and hence we may assume that
{aj}jen C X. Assume that Theorem 1.3 holds, i.e., there is a biholomorphic map
®: Q — CN from a domain Q@ c CV containing X onto CV satisfying ®(aj) = b;
forallj = 1,2,... The set Q\{a;}jen, being contained in (CN\{aj}jeN, is Eisenman
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N-hyperbolic, and hence its ®-image CV \{bj}jen is Eisenman N-hyperbolic as
well. But this is not true in general, for instance if the sequence {b;} e is tame
in CN.

3 Embedding Stein spaces with interpolation

We begin by indicating how Theorem 1.2 is obtained from Schiirmann’s proof
in [25].

One begins by choosing a sufficiently generic almost proper holomorphic
map b: X — C” with n = dim X; this means that there are sequences of com-
pact special analytic polyhedra Ky ¢ K, C --- C jen Kj =X and polydiscs
Py C Py C - CUjew Pj = C"suchthat b|k;: Kj — Pjisaproper map sending
the boundary 9K to dP; for every j = 1,2,... Such maps were first constructed
by Bishop [3] where the reader can find more details; another source is Chapter
VIl in [19].

For a fixed b as above one then constructs a holomorphic map g: X — CN—"
such that f = (b,g): X = CV is a proper holomorphic embedding. The map g
is obtained as the limit g = limy_, o, gx Where the map gx: X — CN-" accom-
plishes the job on K} and it approximates g;_1 uniformly on K;_1. The map g
has three tasks: to insure properness (this is done by choosing |gx| sufficiently
large on K;\Ky_1), to eliminate the kernel of the differential of b, and to sep-
arate pairs of points which are not separated by b. Such map can be found by
the ‘elimination of singularities’ method, due to Eliashberg and Gromov [6],
which proceeds by a finite induction over strata in a suitable stratification of X.
When extending the map from one stratum to the next one uses the h-principle
for sections of elliptic submersions [14,17]. For the present purposes it is not
necessary to understand this method completely, and we refer the reader to [6]
and [25] for further details.

Suppose now that {a;} is a discrete sequence in X. It is possible to choose the
exhaustion of X by special analytic polyhedra K as above such that K;\Ky_1
contains at most one point of the sequence for each k. Call this point a.
When constructing the map g; (which fulfills the relevant conditions on Kj)
it now suffices to require that the modulus of the last component of the point
gr(ay) is sufficiently large; it was already observed in [23,25] that this condition
is easily built into the construction. In this way we can achieve that the last
components of the sequence {g(a;)};cy form a discrete sequence (without repe-
titions) in C. It follows from standard methods (see e.g., [24]) that the sequence
f(ay) = (b(a)),g(a)) € CN is then tame. This proves Theorem 1.2.

Essentially the same proof applies if X is a (reduced) Stein space with singu-
larities and with bounded embedding dimension [25]. Let Embdim, X denote
the local embedding dimension of X at x, that is, the smallest integer such that
the germ of X at x embeds as a local closed complex subvariety of the Euclidean
space of that dimension. Assume that

q = Embdim X := sup Embdim, X < +o0.
xeX
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Let n(k) denote the dimension of the analytic set of points in X at which X has
embedding dimension at least k. Set

b'(X) = max{k + [n(k)/2] : k=0,...,q}.
With this notation we have the following result, extending Theorem 1.1.

Theorem 3.1 Let n > 1 and let X be an n-dimensional Stein space of finite
embedding dimension. Let m > N = max{[%”] + 1,b'(X)}. Given discrete

sequences {aj} C X and {b;j} C C" without repetitions, there exists a proper
holomorphic embedding f: X — C™ satisfying f(aj) = bj forj=1,2,...

Theorem 3.1 is proved in the same way as Theorem 1.1 by first embedding X
into C” so that {a;} is mapped to a tame sequence in C" (this is accomplished
by the modification of the proof in [25] described above), and subsequently
applying Theorem 1.3.
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