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Oka manifolds: From Oka to Stein and back

Franc Forstnerič
(1)

ABSTRACT. — Oka theory has its roots in the classical Oka-Grauert prin-
ciple whose main result is Grauert’s classification of principal holomorphic
fiber bundles over Stein spaces. Modern Oka theory concerns holomor-
phic maps from Stein manifolds and Stein spaces to Oka manifolds. It
has emerged as a subfield of complex geometry in its own right since the
appearance of a seminal paper of M. Gromov in 1989.
In this expository paper we discuss Oka manifolds and Oka maps. We de-
scribe equivalent characterizations of Oka manifolds, the functorial prop-
erties of this class, and geometric sufficient conditions for being Oka, the
most important of which is Gromov’s ellipticity. We survey the current
status of the theory in terms of known examples of Oka manifolds, mention
open problems and outline the proofs of the main results. In the appendix
by F. Lárusson it is explained how Oka manifolds and Oka maps, along
with Stein manifolds, fit into an abstract homotopy-theoretic framework.
The article is an expanded version of lectures given by the author at
Winter School KAWA 4 in Toulouse, France, in January 2013. A compre-
hensive exposition of Oka theory is available in the monograph [32].

RÉSUMÉ. — La théorie d’Oka tire ses origines du principe classique
d’Oka-Grauert, dont la principale application est la classification par
Grauert des fibrés holomorphes principaux sur les espaces de Stein. La
théorie d’Oka moderne traite des applications holomorphes depuis des
variétés ou des espaces de Stein vers des variétés d’Oka. Elle est deve-
nue un sous-domaine à part entière de la géométrie complexe depuis la
parution d’un article fondateur de M. Gromov en 1989.
Nous présentons ici les variétés et les applications d’Oka. Nous décrivons
les caractérisations équivalentes des variétés d’Oka, les propriétés fonc-
torielles de cette classe, et des conditions suffisantes géométriques pour
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qu’une variété soit d’Oka, dont la plus importante est l’ellipticité de Gro-
mov. Nous donnons un panorama de l’état actuel de la théorie en ce
qui concerne les exemples connus de variétés d’Oka, mentionnons les
problèmes ouverts et esquissons les démonstrations des résultats prin-
cipaux. Dans l’appendice, dû à F. Lárusson, on explique comment les
variétés d’Oka, et les applications d’Oka, s’inscrivent dans le cadre d’une
théorie homotopique abstraite.
Le présent article est une version augmentée des exposés de l’auteur lors de
l’Ecole d’Hiver KAWA 4 à Toulouse, France, en janvier 2013. On trouvera
une présentation exhaustive de la théorie d’Oka dans la monographie [32].
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1. Introduction

Oka theory is about a tight relationship between homotopy theory and
complex geometry involving Stein manifolds and Oka manifolds. It has a
long and rich history, beginning with Kiyoshi Oka in 1939, continued by
Hans Grauert and the German school in the late 1950’s and 1960’s, revi-
talized by Mikhael Gromov in 1989, and leading to an introduction and
systematic study of Oka manifolds and Oka maps in the last decade.

The heuristic Oka principle says that there are only topological obstruc-
tions to solving complex-analytic problems on Stein spaces that can be co-
homologically, or even homotopically, formulated. A classical example is the
Oka-Grauert principle (Grauert [48]; see also Cartan [14] and Henkin and
Leiterer [57]): For any complex Lie group G, the holomorphic classification
of principal G-bundles over any Stein space agrees with their topological
classification. The same holds for fiber bundles with G-homogeneous fibers;
in particular, for complex vector bundles (take G = GLk(C)). The special
case of line bundles (k = 1, G = C

∗ = C \ {0}) is a theorem of Oka [82]
from 1939 which marks the beginning of Oka theory.

Since a fiber bundle is defined by a 1-cocyle of transition maps, it is
not surprising that the original formulation of the Oka-Grauert principle is
cohomological. However, it was already observed by Henri Cartan [14] in
1958 (the year of publication of Grauert’s main paper [48] on this subject)
that the result can be phrased in terms of the existence of holomorphic
sections X → Z of certain associated fiber bundles π:Z → X with Lie
group fibers over a Stein base X. More precisely, the key problem is to find
a holomorphic section homotopic to a given continuous section.

It is this homotopy-theoretic point of view that was adopted and suc-
cessfully exploited by Mikhail Gromov in his seminal paper [52] in 1989. (A
complete exposition of his work first appeared in [35, 36, 37].) This change of
philosophy, together with the introduction of substantially weaker sufficient
conditions, liberated the Oka principle from the realm of fiber bundles with
homogeneous fibers, thereby making it much more flexible and substantially
more useful in applications. In particular, a proof of the embedding theo-
rem for Stein manifolds into Euclidean spaces of minimal dimension, due
to Eliashberg and Gromov [21, 22] and Schürmann [88], became viable only
in the wake of Gromov’s Oka principle. For this and other applications see
[32, Chap. 8].

The modern Oka principle focuses on those analytic properties of a com-
plex manifold Y which ensure that every continuous map X → Y from a
Stein space X is homotopic to a holomorphic map, with certain natural ad-
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ditions (approximation, interpolation, the inclusion of a parameter) that are
motivated by classical function theory on Stein spaces. Specifically, we say
that a complex manifold Y enjoys the weak homotopy equivalence principle
if for every Stein space X, the inclusion ι:O(X,Y ) ↪→ C(X,Y ) of the space
of all holomorphic maps X → Y into the space of all continuous maps is
a weak homotopy equivalence with respect to the compact-open topology,
that is, ι induces isomorphisms of all homotopy groups:

πk(ι):πk(O(X,Y ))
∼=−→ πk(C(X,Y )), k = 0, 1, 2, . . . . (1.1)

The analogous questions are considered for sections of holomorphic sub-
mersions π:Z → X onto Stein spaces X. Gromov’s main result in [52] is that
the existence of a holomorphic fiber-dominating spray on Z|U := π−1(U)
over small open subsets U of a Stein base space X implies all forms of the
Oka principle for sections X → Z (Theorem 2.44 in §2.9 below). Submer-
sions with this property are said to be elliptic. In particular, a complex
manifold Y with a dominating holomorphic spray – an elliptic manifold –
enjoys all forms of the Oka principle for maps X → Y from Stein spaces.
Although ellipticity is a useful geometric sufficient condition for validity of
the Oka principle, it is still not clear whether it is also necessary, and not
many interesting functorial properties have been discovered for the class of
elliptic manifolds.

In the papers [26, 25, 28] it was proved that a complex manifold Y
satisfies the Oka principle (with approximation, interpolation, parametric)
if (and only if) it has the so-called convex approximation property (CAP)
that was first introduced in [26]:

CAP of Y : Any holomorphic map K → Y from a compact convex set K
in Cn to Y is a uniform limit of entire maps Cn → Y .

(See Def. 2.1 and Theorem 2.2 below.) This in particular answered a
question raised by Gromov [52, 3.4.(D), p. 881]. A complex manifold en-
joying these equivalent properties is said to be an Oka manifold, a term
that was first introduced in [28] (see also [69]). Every complex homoge-
neous manifold is an Oka manifold, so Theorem 2.2 includes the classical
Oka-Grauert theory. In the wake of this simple characterization it became
clear, mainly through the work of F. Lárusson and the author, that the
class of Oka manifolds satisfies several nontrivial functorial properties; see
§2.3. The picture was completed in [29] where the analogous results were
obtained for the class of Oka maps; see §2.10.

F. Lárusson constructed an underlying model structure that shows that
the Oka property is, in a precise sense, homotopy-theoretic; see §4.
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Although this expository article is largely based on the recent monograph
[32], we use this occasion to survey the developments since its publication in
August 2011. Here is a sampling of new results: examples due to A. Hanysz
of Oka hyperplane complements in projective spaces (§2.3.4); F. Lárusson’s
proof that smooth toric varieties are Oka (§2.3); the notion of a stratified
Oka manifold and related results on Kummer surfaces (§2.3.5); a survey of
the Oka property for compact complex surfaces, with emphasis on class VII
(§2.8). There is a growing list of applications of the modern Oka principle
for which the older theory does not suffice; see Chapters 7 and 8 of [32]
and the preprint [1] on directed immersions of open Riemann surfaces into
Euclidean spaces.

2. Oka manifolds, Oka maps, and elliptic submersions

The main theme of modern Oka theory is the study of those complex
analytic properties of a complex manifold Y which say that there exist
‘many’ holomorphic maps X → Y from any Stein manifold (or Stein space)
X. These Oka properties indicate that Y is in a certain sense holomorphi-
cally large, or, as we prefer to say, holomorphically flexible. Oka properties
are modeled upon the classical results concerning holomorphic functions on
Stein manifolds, considered as maps X → Y = C to the complex number
field. They are opposite to holomorphic rigidity properties, the latter being
commonly expressed by various types of hyperbolicity.

We begin in §2.1 with a survey of the main hyperbolicity and flexibility
properties. In §2.2 we introduce our basic flexibility property, the Convex
Approximation Property (CAP), which is essentially dominability with ap-
proximation on compact geometrically convex sets in Cn. We then state
our main result, Theorem 2.2, to the effect that CAP implies, and hence is
equivalent to, all Oka properties that have been considered in the literature.
A complex manifold satisfying these equivalent properties is said to be an
Oka manifold. The proof of Theorem 2.2 is outlined in §3. In §2.3–§2.8 we
give examples and functorial properties of the class of Oka manifolds. In
§2.9 we describe Gromov’s Oka principle for sections of elliptic submersions
over Stein spaces. A proof of this result and generalizations can be found in
[32, Chap. 6] and in the papers [36, 37, 24, 30].

Sections 2 and 3 together constitute an abridged version of Chapters 5
and 6 in author’s monograph [32], but with the addition of some new results.
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2.1. Complex manifolds: flexibility versus rigidity

A main feature distinguishing complex geometry from smooth geometry
is the phenomenon of holomorphic rigidity.

In smooth geometry there is no rigidity, unless we introduce some ad-
ditional structure (a Riemannian metric, a symplectic structure, a contact
structure, etc.). Indeed, every continuous map between smooth manifolds
can be approximated in all natural topologies by smooth maps; the analo-
gous statement also holds in the real-analytic category. In particular, every
homotopy class of maps is represented by a smooth map.

This is not at all the case in the holomorphic category. For example, Li-
ouville’s theorem tells us that there are no nonconstant holomorphic maps
of C to the disc D = {z ∈ C: |z| < 1}, or to any bounded domain in C. Fur-
thermore, Picard’s theorem says that there are no nonconstant holomorphic
maps C → C \ {0, 1}. Looking at annuli Ar = {z ∈ C: 1/r < |z| < r} for
1 < r � ∞, there is a holomorphic map Ar → AR of degree k ∈ Z (in the
homotopy class of the map z �→ zk/|z|k) if and only if r|k| � R; in this case
the map z �→ zk is such. Looking at maps to higher dimensional manifolds,
Green’s theorem [51] says that every holomorphic map C → CP

n whose
range omits 2n+ 1 hyperplanes in general position is a constant map.

The quantitative version of holomorphic rigidity of the disc D is ex-
pressed by the classical Schwarz-Pick lemma: Every holomorphic map f :D→
D satisfies

|df(z)|
1− |f(z)|2 �

|dz|
1− |z|2 , z ∈ D.

In particular, |f ′(0)| � 1 − |f(0)|2. This inequality says that holomorphic
self-mappings of the disc D are distance decreasing in the Poincaré met-
ric on D; orientation preserving isometries are precisely the holomorphic
automorphisms of D.

These and other classical holomorphic rigidity theorems lead to the no-
tion of a hyperbolic manifold. A complex manifold Y is said to be

– Brody hyperbolic [8] if every holomorphic map C→ Y is constant;

– Brody volume hyperbolic if every holomorphic map Cn → Y (n =
dimY ) has rank < n at each point (a degenerate map);

– Kobayashi (complete) hyperbolic [65, 66] if the Kobayashi pseudomet-
ric kY is a (complete) metric on Y .
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Recall that kY is the integrated form of the infinitesimal pseudometric

|v| = inf
{

1
|λ| : f :D→ Y holomorphic, f(0) = y, f ′(0) = λv

}
, v ∈ TyY.

A Kobayashi hyperbolic manifold is also Brody hyperbolic; the converse
holds for compact manifolds (Brody [8]). Furthermore, for every integer k ∈
{1, . . . ,dimY } there is a quantitative notion of Eisenman k-hyperbolicity
(Eisenman [19]); for k = 1 it coincides with Kobayashi hyperbolicity.

Most complex manifolds have at least some amount of rigidity. In par-
ticular, every compact complex manifold Y of general type (i.e., of Kodaira
dimension κY = dimY ) is volume hyperbolic (Kobayashi and Ochiai [67,
Theorem 2]), and it is believed to be almost Kobayashi hyperbolic, in the
sense that it admits a proper complex subvariety Y ′ which contains the
image of any nonconstant entire map C→ Y .

Contrary to hyperbolicity, holomorphic flexibility properties should sig-
nify the existence of many holomorphic maps C → Y and, more generally,
C
n → Y for any n � 1.

The key is to specify the precise meaning of the word many in this
context.

For example, taking n = 1, one can ask that for every point y ∈ Y
and tangent vector v ∈ TyY there exist an entire map f :C → Y with
f(0) = y and f ′(y) = v. Not much seems known about this particular
notion of anti-hyperbolicity. One can also demand that any pair of points
in Y can be connected by a complex line C→ Y ; such a manifold is said to
be strongly C-connected. A weaker version of C-connectedness is that any
pair of points is connected by a finite chain of entire lines, in analogy with
rational connectedness where C is replaced by CP1.

A stronger flexibility property, which is opposite to Brody volume hy-
perbolicity, is dominability. A connected complex manifold Y is said to be
dominable if there exists a holomorphic map f :Cn → Y (n = dimY ) such
that rankzf = n at some point z ∈ Cn (and hence at most points). If f
can be chosen so that f(0) = y ∈ Y and rank0f = n, then Y is said to be
dominable at y; it is strongly dominable if it is dominable at each point. The
theorem of Kobayashi and Ochiai [67] then says that a compact complex
manifold Y of general type is not dominable.

If we strengthen dominability even further by demanding the existence of
a holomorphically varying family of dominating maps fy:Cn → Y (y ∈ Y )
with fy(0) = y, we arrive at Gromov’s notion of a dominating holomorphic
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spray on Y (see §2.4 below). A complex manifold which admits a dominating
spray is said to be elliptic. In particular, every complex Lie group and every
complex homogeneous manifold is elliptic; a dominating spray is provided
by the exponential map.

Another source of motivation to study flexibility properties comes from
the classical theory of holomorphic functions on Stein spaces X, which we
treat as holomorphic mappings X → C. The Oka-Weil theorem extends
the classical Runge theorem: given a compact holomorphically convex set
K in a Stein space X, every holomorphic function on a neighborhood of
K can be approximated, uniformly on K, by entire functions X → C.
Similarly, given a closed complex (hence Stein) subvariety X ′ ⊂ X, every
holomorphic function X ′ → C extends to a holomorphic function X → C;
this is the Cartan extension theorem. These two results may be combined:
given a function f :K ∪X ′ → C that is holomorphic on a subvariety X ′ and
on a neighborhood of a compact holomorphically convex set K in a Stein
space X, there is a holomorphic function F :X → C which agrees with f on
X ′ and approximates f uniformly on K.

It is now the time to turn the tables — replacing the target C by an
arbitrary complex manifold Y , these classical theorems of complex analysis
define various Oka properties which Y may or may not have. However, due
to possibly nontrivial topology of both the source and the target manifold,
the question must now be asked differently: whether the extension or the
approximation of holomorphic maps X → Y is possible in the absence of
topological obstructions.

The most basic Oka property of a complex manifold Y is that every
continuous map X → Y from a Stein space X is homotopic to a holomorphic
map. This always holds when Y is contractible; for example, for the unit
disc. Winkelmann [98] completely classified this propery for maps X →
Y between Riemann surfaces, even when the source X is compact (i.e.,
non-Stein). Recently this property was studied under the name h-principle,
abbreviated hP (Y ), by Campana and Winkelmann [13]. Their main result,
Theorem 6.1, says that a complex projective manifold which satisfies the
h-principle is special in the sense of Campana [11, 12]. Being special is an
anti-hyperbolicity or anti-general type notion defined for compact Kähler
manifolds. Campana has proved that Y is special if Y is either dominable,
rationally connected, or has Kodaira dimension 0; on the other hand, no
compact manifold of general type is special. Campana has conjectured that
a complex manifold is special if and only if it is C-connected if and only if
its Kobayashi pseudo-metric vanishes identically.
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We now consider stronger Oka properties; see [32, §5.15] for precise def-
initions.

By adding the approximation condition, we ask that any continuous map
f : X → Y from a Stein space X that is holomorphic on a neighborhood of
a compact O(X)-convex set K ⊂ X be homotopic to a holomorphic map
X → Y by a homotopy that is holomorphic near K and uniformly as close as
desired to f on K. A manifold Y which satisfies this property for any triple
(X,K, f) is said to enjoy the basic Oka property with approximation, BOPA.
Similarly one defines the basic Oka property with interpolation, BOPI, and
the combination of the two, BOPAI. A restricted version of BOPI is CIP,
the convex interpolation property, introduced by F. Lárusson [72]. One can
strengthen the interpolation condition along a subvariety to include jet in-
terpolation; this gives properties BOPJI and BOPAJI.

The corresponding properties for families of maps, depending continu-
ously on a parameter, are called parametric Oka properties; so we speak
of POPA, POPI, POPAI, etc. More precisely, assume that P is a compact
Hausdorff space (the parameter space) and P0 is a closed subset of P . A com-
plex manifold Y enjoys the parametric Oka property (POP) if for every Stein
space X, any continuous map f :P → C(X,Y ) such that f(P0) ⊂ O(X,Y )
can be deformed to a continuous map f1:P → O(X,Y ) by a homotopy that
is fixed on P0:

P0

incl

O(X,Y )

incl

P
f

f1

C(X Y ),

In some theorems (in particular, in Theorem 2.2) we restrict POP to pa-
rameter spaces which are Euclidean compacta; this restriction is inessential
in most applications. By purely homotopy-theoretic arguments, the validity
of POP for all pairs P0 ⊂ P of Euclidean compacta (for a given manifold
Y ) implies POP also when P0 is a subcomplex of a possibly infinite CW
complex P [69, §16]. Approximation (on a compact holomorphically con-
vex set) and interpolation (on a closed complex subvariety) can naturally
be included in this picture. The basic (non-parametric) case corresponds
to P = {p} a singleton and P0 = ∅. The 1-parametric Oka property refers
to the case P = [0, 1] and P0 = {0, 1}; the conclusion is that any pair of
holomorphic maps f0, f1:X → Y which are homotopic through continuous
maps are also homotopic through holomorphic maps.
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This is all very well, but are there any nontrivial examples of complex
manifolds that satisfy these Oka properties?

Indeed, Grauert proved back in 1958 [46, 47, 48] that every complex Lie
group and, more generally, every complex homogeneous manifold, enjoys
all of the properties described above. (See Theorem 2.6 below.) Grauert’s
results can be considered as the true beginning of Oka theory. Thirty years
later, Gromov [52] introduced the class of elliptic manifolds and proved that
they also satisfy all Oka properties (see §2.4 below).

The continuation is an ongoing story. Reader, follow me to the main
results of modern Oka theory.

2.2. The convex approximation property and Oka manifolds

The simplest of several equivalent characterizations of Oka manifolds
is the following Runge approximation property for maps from Euclidean
spaces which was introduced in [26].

Definition 2.1. — A complex manifold Y is said to enjoy the convex
approximation property, CAP, if every holomorphic map f :K → Y from
(a neighborhood of) a compact convex set K ⊂ C

n can be approximated,
uniformly on K, by entire maps Cn → Y .

By fixing the integer n ∈ N in the above definition we get the n-
dimensional convex approximation property, CAPn. Clearly CAPn+1 ⇒
CAPn for every n = 1, 2, . . .; a manifold satisfies CAP if and only if it satis-
fies CAPn for every n. (In [26] the testing class of convex sets K ⊂ Cn was
restricted to a certain subclass consisting of special convex sets, mainly to
facilitate the verification of CAP in concrete examples. We shall not bother
here with this minor technical distinction.) We notice that, to verify CAP,
it suffices to prove that for any pair of compact convex sets K ⊂ Q ⊂ Cn,
holomorphic maps K → Y can be approximated by holomorphic maps
Q→ Y .

The following can be considered as one of the main results of modern
Oka theory. For a more precise statement see [32, Theorem 5.4.4, p. 193].
The parametric Oka property (POP) now refers to parameter spaces that
are Euclidean compacta.

Theorem 2.2 (The main theorem). — If a complex manifold Y enjoys
CAP, then maps X → Y from any reduced Stein space X satisfy all forms
of the Oka principle (with approximation, (jet-) interpolation, parametric).
The same is true for sections X → Z of any stratified holomorphic fiber
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bundle π:Z → X over a Stein base X all of whose fibers over different
strata enjoy CAP.

Recall that a holomorphic map π:Z → X of complex spaces is said to
be a holomorphic submersion if locally near each point z ∈ Z it is fiberwise
isomorphic to a projection map U × V → U , where U ⊂ X is an open
neighborhood of the projected point x = π(z) ∈ X and V is smooth (non-
singular). It follows that the fibers Zx = π−1(x) (x ∈ X) of a holomorphic
submersion π:Z → X are complex manifolds.

A surjective holomorphic submersion π:Z → X is said to be a stratified
holomorphic fiber bundle if X admits a stratification X = X0 ⊃ X1 ⊃
· · · ⊃ Xm = ∅ by closed complex subvarieties such that every difference
Sj = Xj \ Xj+1 is smooth (nonsingular), and the restriction π:Z|S → S
to any connected component S (stratum) of any Sj is a holomorphic fiber
bundle. The fibers over different strata may be different.

Since CAP is clearly a special case of the basic Oka property with ap-
proximation, applied with the pair X = Cn and K a compact convex set in
C
n, CAP is also necessary in Theorem 2.2. Furthermore, it turns out that all

individual Oka properties introduced in the previous section (such as BOPA,
BOPI, BOPAI, and their parametric analogues) are pairwise equivalent; see
[25] and especially [32, §5.15].

Definition 2.3 (Oka manifolds). — A complex manifold Y is said to
be an Oka manifold if it satisfies any (and hence all) of the pairwise equiv-
alent Oka properties in Theorem 2.2. In particular, a complex manifold is
Oka if and only if it enjoys CAP.

The following is a corollary to Theorem 2.2 (cf. [32, Corollary 5.4.8]).

Corollary 2.4 (The weak homotopy equivalence principle). — If π:
Z → X is a reduced Stein space and is a stratified holomorphic fiber bundle
whose fibers are Oka manifolds, then the inclusion

ι: ΓO(X,Z) ↪→ ΓC(X,Z) (2.1)

of the space of holomorphic sections of π into the space of continuous
sections is a weak homotopy equivalence, i.e., the induced map πk(ι):
πk(ΓO(X,Z)) → πk(ΓC(X,Z)) of homotopy groups is an isomorphism for
every k = 0, 1, 2, . . ..

Proof. — Denote by Dk+1 the closed unit ball in Rk+1 and by Sk =
bDk+1 the k-dimensional sphere. Applying the parametric Oka property

– 757 –



Franc Forstnerič

(Theorem 2.2) with the parameter spaces P0 = ∅ ⊂ Sk = P we see that
every continuous map Sk → ΓC(X,Z) can be deformed to a continuous
map Sk → ΓO(X,Z); this says that the homomorphism πk(ι) is surjective.
On the other hand, applying Theorem 2.2 with the parameter spaces P0 =
Sk ⊂ Dk+1 = P we conclude that every map f :Dk+1 → ΓC(X,Z) satisfying
f(Sk) ⊂ ΓO(X,Z) can be deformed to a map Dk+1 → ΓO(X,Z) by a
homotopy that is fixed on Sk; this means that πk(ι) is injective. �

Theorem 2.2 implies a homotopy principle for liftings of holomorphic
maps. Given a map π:E → B, we say that a map F :X → E is a lifting of
a map f :X → B if π ◦ F = f . Similarly one defines homotopies of liftings.

Corollary 2.5 (The Oka principle for liftings) [32, Corollary 5.4.11].
Assume that π:E → B is a stratified holomorphic fiber bundle all of whose
fibers are Oka manifolds. If X is a Stein space and f :X → B is a holomor-
phic map, then any continuous lifting F0:X → Z of f admits a homotopy
of liftings Ft:X → E (t ∈ [0, 1]) such that F1 is holomorphic. The corre-
sponding result holds with approximation and interpolation.

Proof. — Assume that π:E → B is a holomorphic fiber bundle with
Oka fiber Y . Let π′: f∗E → X denote the pull-back bundle whose fiber over
a point x ∈ X is Ef(x) ∼= Y .

f E E Y

X
f

Ft

B

ππ'

*

Sections X → f∗E are in bijective correspondence with liftings F :X → E
of f . Since the fiber Y of π′: f∗E → X is Oka, the conclusion follows from
Theorem 2.2. In the general case we stratify X so that the strata are mapped
by f to the strata of B; then f∗E is also a stratified fiber bundle over X
and we conclude the proof as before. �

2.3. Examples and functorial properties of Oka manifolds

The examples in this subsection are mainly taken from [32, §5.5] and [34,
74]. Those sources contain a wealth of additional information and references
to the original papers. In particular, the results in [34] answer some of the
questions left open in [32].
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2.3.1. Complex homogeneous manifolds

Theorem 2.6 (Grauert [46]). — Every complex Lie group and, more
generally, every complex homogeneous manifold is an Oka manifold.

Proof. — Let G be a complex Lie group with the identity element 1 ∈ G.
In view of Theorem 2.2 it suffices to show that G enjoys CAP. Denote
by g = T1G the Lie algebra of G and by exp: g → G the exponential
map. Assume that K is a compact convex set in Cn and f :K → G is a
holomorphic map in an open neighborhood of K.

If f(K) ⊂ G lies sufficiently close to 1 ∈ G, then f = exp(h) for a
unique holomorphic map h:K → g. Approximating h uniformly on K by
an entire map h̃:Cn → g and taking f̃ = exp h̃:Cn → G yields an entire
map approximating f .

In general we split f into a finite product of maps close to the identity
to which the previous argument applies. We may assume that the origin
0 ∈ Cn is contained in the interior of K. Set ft(z) = f(tz) for t ∈ [0, 1];
then f1 = f and f0 is the constant map Cn � z → f(0) ∈ G. Choose a large
integer N ∈ N and write

f = f1 = f1

(
fN−1

N

)−1· fN−1
N

(
fN−2

N

)−1 · · · f 1
N

(f0)−1· f0.

If N is large enough, then each of the quotients f k
N

(
f k−1

N

)−1 is sufficiently
close to 1 so that it admits a holomorphic logarithm hk:K → g. Approx-
imating hk by an entire map h̃k:Cn → g and taking g̃k = exp h̃k and
f̃ = g̃N g̃N−1 · · · g̃1f0:Cn → G gives an entire map approximating f .

The proof for a complex homogeneous manifold is similar; see [32, p.
198]. �

Example 2.7. — Every complex projective space CPn and, more gener-
ally, every complex Grassmannian, is an Oka manifold.

2.3.2. Holomorphic fiber bundles with Oka fibers

The class of Oka manifolds is stable under unramified holomorphic cov-
erings and quotients.

Proposition 2.8 [32, Proposition 5.5.2, p. 199]. — If Ŷ → Y is a holo-
morphic covering map of complex manifolds, then Y is an Oka manifold if
and only if Ŷ is an Oka manifold. In particular, any unramified holomor-
phic quotient of Cn is Oka; this includes all tori Cn/Γ, where Γ is a lattice
in Cn.
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The proof is immediate since any continuous map f :K → Y from a
convex set K ⊂ Cn lifts to a map K → Ŷ , and a holomorphic map lifts to a
holomorphic map. This shows that Y and Ŷ enjoy CAP at the same time.
(See [32, p. 199].)

A complex manifold is called Liouville if it carries no nonconstant nega-
tive plurisubharmonic functions, and strongly Liouville if its universal cover-
ing space is Liouville. From Proposition 2.8 and the fact that Cn is Liouville
we easily infer the following.

Corollary 2.9. — Every Oka manifold is strongly Liouville.

Corollary 2.10 [32, Corollary 5.5.3, p. 199]. — A Riemann surface Y
is an Oka manifold if and only if it is not Kobayashi hyperbolic, and this
holds if and only if Y is one of the Riemann surfaces CP1, C, C∗, or a torus
C/Γ.

Proof. — By the Riemann-Koebe uniformization theorem, the universal
covering space of any Riemann surface is one of the Riemann surfaces CP1,
C, or the disc D. The Riemann sphere CP1 is homogeneous and hence Oka;
it has no nontrivial oriented unramified quotients. The complex plane C
covers C∗ and the complex tori C/Γ, so these are Oka. The disc and its
quotients are hyperbolic. �

A covering projection is a fiber bundle with a discrete fiber. Proposition
2.8 generalizes to holomorphic fiber bundles with positive dimensional Oka
fibers.

Theorem 2.11 [32, Theorem 5.5.4, p. 205]. — If E and X are complex
manifolds and π:E → X is a holomorphic fiber bundle whose fiber Y is Oka,
then X is Oka if and only if E is Oka. In particular, if two of the manifolds
X, Y , and X × Y are Oka, then so is the third.

Sketch of proof. — Assume first that E is an Oka manifold. Let K ⊂
Q be compact convex sets in Cn, and let f :K → X be a holomorphic
map. By the homotopy lifting theorem, there exists a continuous lifting
h:K → E of f . Since the fiber Y of π:E → X is Oka, we can replace h
by a holomorphic lifting by using Corollary 2.5. Since E is Oka, we can
approximate h uniformly on K by a holomorphic map h̃:Q→ E. The map
f̃ = π ◦ h̃:Q→ X then approximates f on K. This shows that X is Oka.

Conversely, assume that X is Oka. Choose compact convex sets K ⊂
Q ⊂ C

n and a holomorphic map h:K → E. Let f = π ◦ h:K → X.
Since X is Oka, we can approximate f , uniformly on K, by a holomorphic
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map f1:Q → X. If the approximation is sufficiently close then we can also
approximate h, uniformly on K, by a holomorphic map h1:K → E that is
a lifting of f1|K , in the sense that π ◦ h1(x) = f1(x) for all x ∈ K. (See
[32, p. 199] for the details.) Since π:E → X is a fiber bundle and the sets
K ⊂ Q are convex, the map h1 extends to a continuous map h1:Q → E
satisfying π ◦h1(x) = f1(x) for all x ∈ Q. Finally, as the fiber of π is an Oka
manifold, Corollary 2.5 shows that h1 can be deformed to a holomorphic
lifting h̃:Q → E of the map f1:Q → X by a homotopy of liftings which
remains uniformly close to h1 on the set K. In particular, h̃ approximates
h uniformly on K. Hence E is an Oka manifold. �

Corollary 2.12. — If π:E → X is a holomorphic fiber bundle whose
base and fiber are one of the Riemann surfaces CP1, C, C∗, or a torus C/Γ,
then E is an Oka manifold. In particular, all minimal Hirzebruch surfaces
Hl (l = 0, 1, 2, . . .) are Oka manifolds.

Proof. — By Corollary 2.10 the list {CP1,C,C∗,C/Γ} contains all Rie-
mann surfaces which are Oka, so the first statement follows from Proposi-
tion 2.11. For the second one, note that minimal Hirzebruch surfaces are
holomorphic CP1-bundles over CP1 [5, p. 191]. �

2.3.3. Complements of algebraic subvarieties

We address the following question.

Question. — If Ŷ is an algebraic Oka manifold and A is a closed algebraic
subvariety of Ŷ , when is the complement Y = Ŷ \A an Oka manifold?

The answer is negative in general if A is a hypersurface; in such case
the complement can even be Kobayashi hyperbolic. For example, Green’s
theorem [51] says that the complement of 2n + 1 hyperplanes in CPn in
general position is hyperbolic. Kobayashi asked ([65], problem 3 on p. 132)
whether the complement of a generic hypersurface of sufficiently high degree
is hyperbolic. An affirmative answer was given for n = 2 by Siu and Yeung
[92] in 1996, and in any dimension n > 1 by Siu [91] in 2012.

Therefore it is natural to look for low degree hypersurfaces with Oka
complements, and for at algebraic subvarieties of lower codimension. The
work on the first question was started recently by A. Hanysz [54]; see §2.3.4
below. In this section we show that any algebraic subvariety of codimen-
sion > 1 in a Euclidean space, or in a complex Grassmannian, has Oka
complement.
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Proposition 2.13 [32, Proposition 5.5.8, p. 201]. — Let Ŷ denote one
of the manifolds Ck, CPk, or a complex Grassmannian. If A is an algebraic
subvariety of Ŷ of complex codimension > 1, then the complement Y = Ŷ \A
is an Oka manifold.

Sketch of proof. — We describe the main idea in the case Ŷ = C
k. Sup-

pose that K is a compact convex set in Cn and f :K → Y = C
k \ A is

a holomorphic map. Approximate f uniformly on a neighborhood of K by
a polynomial map P :Cn → C

k. For a generic choice of P , the preimage
Σ := P−1(A) is an algebraic subvariety of codimension > 1 in Cn. The
key point now is that there exists a Fatou-Bieberbach map φ:Cn → C

n \Σ
which is close to the identity map on K [32, Corollary 4.12.2, p. 144]. Hence
P ◦ φ:Cn → C

k is an entire map with range in Y = C
k \ A which approxi-

mates f on K.

A similar construction works for projective spaces and Grassmannians.
Denote by π:Ck+1

∗ → CP
k the standard quotient projection. A holomor-

phic map f :K → CP
k \ A from a compact convex set K ⊂ Cn lifts to a

holomorphic map g:K → C
k+1
∗ \ π−1(A), and by the above argument we

can find an entire approximation g̃:Cn → C
k+1
∗ \ π−1(A). The composition

π ◦ g̃:Cn → CP
k \A is then an entire map approximating f on K. �

Corollary 2.14 [32, Corollary 5.5.9, p. 202]. — Every minimal Hopf
manifold is Oka.

Proof. — A minimal Hopf manifold is an unramified holomorphic quo-
tient of Cn \ {0} for some n > 1. Since Cn \ {0} is an Oka manifold by
Proposition 2.13, the conclusion follows from Proposition 2.8. �

Proposition 2.13 fails in general for non-algebraic subvarieties of Cn irre-
spective of their dimension. Indeed, Rosay and Rudin [87] found a discrete
set in Cn whose complement is volume hyperbolic, so it fails to be Oka.
(See [32, Theorem 4.7.2]. Another example can be found on p. 202 in [32].)
However, complements of tame analytic subvarieties of codimension > 1 in
C
n are Oka; see Proposition 2.24 below.

2.3.4. Complements of hypersurfaces

We have already mentioned in §2.3.3 that the complement of a generic
algebraic hypersurface of high degree in Cn or CPn is hyperbolic. Hence it
is natural to look for hypersurfaces of low degree with Oka complements.
Examples of this type have recently been studied by A. Hanysz [54].

His first result concerns hyperplane arrangements in CPn. Let F1, . . . , FN
be nonzero homogeneous linear forms in n + 1 complex variables. We say
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that the hyperplanes in CPn defined by the equations Fj = 0, j = 1, . . . , N ,
are in general position if every subset of F1, . . . , FN of size at most n+ 1 is
linearly independent. If N � n+1, then a set of N hyperplanes is in general
position if and only if coordinates on CPn can be chosen so that these are
the coordinate hyperplanes zj = 0, j = 0, . . . , N − 1. By Green’s theorem
[51] the complement of at least 2n + 1 hyperplanes in general position is
hyperbolic, and the complement of a collection of at most 2n hyperplanes is
never hyperbolic. For hyperplanes not in general position, some necessary
conditions for hyperbolicity of the complement are known; see [66, §3.10].

Theorem 2.15 [54, Theorem 3.1]. — Let H1, . . . , HN be distinct hyper-
planes in CPn. Then the complement X = CPn\

⋃N
j=1 Hj is Oka if and only

if the hyperplanes Hj are in general position and N � n+1. Furthermore, if
such X is not Oka then it is also not dominable by Cn and not C-connected.

Hanysz’s second result, which concerns complements of certain meromor-
phic graphs, is motivated by the theorem of Buzzard and Lu [10, Proposition
5.1] that the complement in CP2 of a smooth cubic curve is dominable by
C

2. Their method was to construct a meromorphic function associated with
the cubic, and a branched covering map from the complement of the graph
of that function in C×C onto the complement of the cubic, and then show
that the graph complement is dominable. Hanysz proved that the graph
complement is in fact an Oka manifold. His result applies to meromorphic
functions on Oka manifolds other than C, subject to an additional hypoth-
esis.

Theorem 2.16 [54, Theorem 4.6]. — Let X be a complex manifold, and
let m:X → CP

1 be a holomorphic map. Denote by Gm the graph of m.
Suppose that m can be written in the form m = f + 1

g for holomorphic
functions f and g. Then (X × C) \Gm is Oka if and only if X is Oka.

Unfortunately this is not enough to settle the question of whether the
complement of a smooth cubic in CP2 is Oka, since it is not known whether
the Oka property passes down to a (finite) ramified holomorphic quotient.

As Hanysz remarked, the existence of the decomposition m = f + 1
g is

equivalent to the condition that the projection map (X ×C) \Gm → X ad-
mits a global holomorphic section. This projection is an elliptic submersion
(Def. 2.43 below). (It is easy to see that it is a stratified elliptic submersion,
but Hanysz showed that there is no need to stratify the base [54, Remark
4.12].) However, unless either m has no poles or m ≡ ∞, the projection is
not an Oka map (see §2.10) because it is not a topological fibration.

Another direction started by Hanysz in [55] is to consider Oka properties
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of the space X = O(CP1,CP1) of holomorphic self-maps of the Riemann
sphere. It is well known that X =

⋃∞
d=0 Xd, where Xd is the connected

component of X consisting of all rational maps f(z) = p(z)/q(z) of degree
precisely d. Is Xd Oka for every d? For d = 0, 1, 2, Xd is complex homoge-
neous, and hence Oka in view of Theorem 2.6. For d = 3, Hanysz proved
that X3 is strongly dominable and strongly C-connected (Theorems 1.7 and
1.8 in [55]). The question whether Xd for d � 3 is Oka remains open.

2.3.5. Toric varieties

The following result is due to F. Lárusson.

Theorem 2.17 [74, Theorem 3]. — Every smooth complex toric variety
is Oka.

Proof. — Let X be a smooth toric variety over C. If X has a torus
factor, say X is isomorphic to Y × (C∗)k, where k � 1 and Y is another
smooth toric variety, then, since (C∗)k is Oka, Theorem 2.11 shows that X
is Oka if and only if Y is Oka.

Hence we may assume that X has no torus factor, so the construction
in [15, §5.1] applies; see in particular Theorem 5.1.11. We can write X as a
geometric quotient

X = (Cm \ Z)/G,

where Z is a union of coordinate subspaces of Cm, and G is a complex
subgroup of (C∗)m acting on Cm \ Z by diagonal matrices. In fact, G is
isomorphic to the product of a torus and a finite abelian group [15, Lemma
5.1.1], so G is reductive. Furthermore, codimZ � 2 [15, Exercice 5.1.13],
so Cm \ Z is Oka by Proposition 2.13. Since X is smooth, G acts freely on
C
m \ Z [15, Exercise 5.1.11].

We claim that the projection Cm\Z → X is a holomorphic fiber bundle;
since the fiber G is Oka by Theorem 2.6, this will imply that X is Oka in
view of Theorem 2.11.

Note that Z, being a union of coordinate subspaces, is the intersection
of unions of coordinate hyperplanes. Thus Cm \ Z is the union of Zariski-
open sets of the form U = C

m \ (H1 ∪ · · · ∪ Hk), where H1, . . . , Hk are
coordinate hyperplanes. Each U is affine algebraic (hence Stein), as well as
G-invariant. By slice theory for actions of reductive groups, the quotient
map U → U/G is a holomorphic fiber bundle [93, Corollary 5.5], or, from
the algebraic point of view, a locally trivial fibration in the étale sense [76,
Corollaire 5]. It follows that Cm \ Z → X is a holomorphic fiber bundle.
�
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Remark 2.18. — (a) Every toric variety is birationally equivalent to com-
plex projective space, which is Oka. Thus, if we knew that the Oka property
was birationally invariant, Theorem 2.17 would be immediate. At present, it
is not even known how the Oka property behaves with respect to blowing up
a point, except in some special cases (see the results in [32, pp. 252–255]).

(b) It follows from [4, Theorem 2.1], which is more difficult to prove than
Theorem 2.17, that the smooth part of an affine toric variety is elliptic, and
hence Oka (cf. Examples 2.20 (B) and 2.21 below). Smooth affine toric
varieties are of the form C

n × (C∗)m, so they are obviously Oka.

2.4. Elliptic and subelliptic manifolds

The notion of a dominating spray and of an elliptic manifold was in-
troduced in Oka theory by M. Gromov [52]. The main reference for this
subsection is [32, §5.15].

Definition 2.19. — A (global, holomorphic) spray on a complex mani-
fold Y is a triple (E, π, s) consisting of a holomorphic vector bundle π:E →
Y (a spray bundle) and a holomorphic map s:E → Y (a spray map) such
that for each point y ∈ Y we have s(0y) = y. The spray (E, π, s) is domi-
nating if the differential ds0y :T0yE → TyY maps the vertical subspace Ey
of T0yE surjectively onto TyY for every y ∈ Y . A complex manifold Y is
said to be elliptic if it admits a dominating holomorphic spray.

A dominating spray can be viewed as a family of dominating holomorphic
maps sy:Ey ∼= Ck → Y , sy(0) = y, depending holomorphically on the point
y ∈ Y .

A spray (E, π, s) is algebraic if π:E → Y is an algebraic vector bundle
over an algebraic manifold Y and s:E → Y is an algebraic map. An alge-
braic manifold with a dominating algebraic spray is said to be algebraically
elliptic.

A relaxation of these conditions was introduced in [24]. A finite family
of sprays (Ej , πj , sj) on Y (j = 1, . . . ,m) is dominating if for every point
y ∈ Y we have

(ds1)0y (E1,y) + (ds2)0y (E2,y) + · · ·+ (dsm)0y (Em,y) = TyY. (2.2)

A complex manifold Y is subelliptic if it admits a finite dominating family
of sprays. An algebraic manifold Y is algebraically subelliptic if it admits a
finite dominating family of algebraic sprays.
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By definition every elliptic manifold is also subelliptic, but the converse
is not known in general. In particular, it is not known whether the (alge-
braically) subelliptic manifolds furnished by Corollary 2.27 (in projective
spaces and Grassmannians) are all elliptic. The problem is that there is no
general procedure for composing a dominating family of sprays into a single
dominating spray. However, this can be done on a Stein manifold, and hence
a subelliptic Stein manifold is elliptic (see [32, Lemma 6.3.3, p. 246]).

The following examples of dominating sprays were pointed out by Gro-
mov [52].

Example 2.20 [32, Example 5.5.13]. —

(A) Every complex homogeneous manifold is elliptic. Indeed, assume that
a complex Lie group G acts on a complex manifold Y transitively by holo-
morphic automorphisms of Y . Let g ∼= C

p denote the Lie algebra of G and
exp: g→ G the exponential map. The holomorphic map s:Y×g ∼= Y ×Cp →
Y ,

s(y, v) = exp v · y ∈ Y, y ∈ Y, v ∈ g,

is a dominating holomorphic spray on Y .

(B) If the tangent bundle of a complex manifold Y is spanned by finitely
many C-complete holomorphic vector fields, then Y is elliptic. Indeed, let
V1, . . . , Vm be C-complete holomorphic vector fields on Y . Denote by φtj(y)
the flow of Vj. The map s:Y × Cm → Y , given by

s(y, t) = s(y, t1, . . . , tm) = φt11 ◦ φt22 ◦ · · · ◦ φtmm (y), (2.3)

satisfies s(y, 0) = y and ∂
∂tj

s(y, 0) = Vj(y) for all y ∈ Y and j = 1, . . . ,m.
Thus s is dominating at the point y ∈ Y precisely when the vectors V1(y), . . . ,
Vm(y) span TyY .

Example 2.21 (Holomorphically flexible manifolds). — Example 2.20
(B) initiated a substantial amount of contemporary research. In the paper
[3] by Arzhantsev et al., a complex manifold Y is said to be holomorphically
flexible at a point y ∈ Y if the values at y of C-complete holomorphic vector
fields on Y span the tangent space TyY ; the manifold Y is said to be holo-
morphically flexible if it is holomorphically flexible at every point. Clearly
a connected manifold Y is holomorphically flexible if it is holomorphically
flexible at one point y0 ∈ Y and the holomorphic automorphism group
AutY acts transitively on Y . In [3, 4] the authors also study the analogous
notion of algebraic flexibility of affine algebraic varieties. A holomorphically
flexible Stein manifold is elliptic ([64, Lemma 4.1], [3]), and hence an Oka
manifold in view of Corollary 2.23 below.
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For further results and references concerning flexible manifolds we refer
to Chap. 4 in [32] and to the recent survey paper [64] on Andersén-Lempert
theory.

The relevance of subellipticity is shown by the following homotopy ver-
sion of the Oka-Weil theorem, due (for the class of elliptic manifolds) to
Gromov [52]. (See Theorem 6.6.1 in [32, p. 263] for a more general version.)
This immediately implies that a subelliptic manifold enjoys CAP, and hence
is an Oka manifold (see Corollary 2.23 below).

Theorem 2.22. — Assume that Y is a subelliptic manifold. Let X be a
Stein space and K a compact O(X)-convex set in X. Given a homotopy of
holomorphic maps ft:K → Y (t ∈ [0, 1]) such that f0 extends to a holomor-
phic map f0:X → Y , there exists for every ε > 0 a homotopy of holomorphic
maps f̃t:X → Y (t ∈ [0, 1]) such that f̃0 = f0 and

sup
{

dist
(
f̃t(x), ft(x)

)
:x ∈ K, t ∈ [0, 1]

}
< ε.

Sketch of proof. — For simplicity we restrict attention to the case when
Y is elliptic. Let (E, π, s) be a dominating spray on Y . Set Z = X × Y and
denote by h:Z → X the projection onto the first factor; maps X → Y are
then identified with sections X → Z of h. Furthermore, the spray (E, π, s)
on Y defines a fiber-dominating spray on Z (see §2.9 below for this notion),
still denoted (E, π, s), which is independent of the base variable.

By compactness of the set
⋃
t∈[0,1] ft(K) ⊂ Z and the fiber-domination

property of the spray we can find an open set V in X, with K ⊂ V � U , and
numbers 0 = t0 < t1 < · · · < tk = 1 such that for every j = 0, 1, . . . , k − 1,
the homotopy ft for t ∈ [tj , tj+1] lifts to a homotopy of holomorphic sections
ξt of the restricted bundle E|ftj (V ) satisfying

s ◦ ξt ◦ ftj (x) = ft(x), x ∈ V, t ∈ [tj , tj+1].

In particular, the family {ξt}t∈[0,t1] consists of holomorphic sections over
f0(V ) ⊂ f0(X) of the holomorphic vector bundle E|f0(X) → f0(X). By the
Oka-Weil theorem we can approximate this family, uniformly on a neigh-
borhood of the set f0(K) in f0(X), by a homotopy of global holomorphic
sections ξ̃t: f0(X)→ E|f0(X) (t ∈ [0, t1]) such that ξ̃0 equals the zero section.
(We actually use a parametric version of the Oka-Weil theorem which fol-
lows from the standard result by applying a continuous partition of unity in
the parameter.) The holomorphic sections f̃t := s◦ξ̃t◦f0:X → Z (t ∈ [0, t1])
are then close to the respective sections ft near the set K. In particular,
we may assume that f̃t1(K) is contained in a Stein tubular neighborhood
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of ft1(V ) in Z, and hence we can connect these two sections by a homotopy
of nearby holomorphic sections over a neighborhood of K. We thus get a
homotopy of sections f̃t:X → Z (t ∈ [0, 1]), with f̃t close to ft near K, such
that f̃0 = f0, f̃t is holomorphic on X for t ∈ [0, t1], and it is holomorphic in
a neighborhood of K for t ∈ (t1, 1].

We now use f̃t1 :X → Z as the new base section and repeat the above
procedure on the next interval [t1, t2]. Assuming as we may that f̃t1 is
sufficiently close to ft1 near K, we can lift sections f̃t for t ∈ [t1, t2] to
sections ξ̃t of the restricted bundle E|

f̃t1 (X)
. Applying the Oka-Weil theorem

as before we obtain a new homotopy of sections which are holomorphic on
X for t ∈ [0, t2], and on a neighborhood of K for t ∈ [t2, 1]. The proof is
completed after k such steps. �

Corollary 2.23 [32, Corollary 5.5.12, p. 204]. — Every subelliptic man-
ifold (in particular, every elliptic manifold) is an Oka manifold.

Proof. — Let K be a compact convex set in Cn and let f :U → Y be
a holomorphic map from an open convex neighborhood U ⊂ Cn of K. We
may assume that 0 ∈ K. Let ft(z) = f(tz) for z ∈ U and t ∈ [0, 1]; this is
a homotopy from the constant map f0(z) = f(0) ∈ Y (z ∈ Cn) to the map
f = f1. If Y is subelliptic then by Theorem 2.22 f can be approximated
uniformly on K by entire maps Cn → Y , so Y enjoys CAP. �

Consider Cn as a subset of CPn. A closed analytic subvariety A ⊂ Cn is
said to be tame if its closure A ⊂ CPn does not contain the hyperplane at
infinity. A tame complex hypersurface is necessarily algebraic.

Proposition 2.24 [32, Proposition 5.5.14, p. 205]. — If A ⊂ Cn is a
tame analytic subvariety with dimA � n − 2, then Cn \ A is elliptic; if A
is algebraic, then Cn \ A is algebraically elliptic. In particular, every such
manifold is Oka.

Proof. — By Proposition 4.11.7 in [32, p. 141] there exist finitely many
C-complete holomorphic vector fields V1, . . . , Vm on Cn that vanish on A
and span the tangent space TzCn at every point z ∈ Cn \A. The associated
spray s:Cn ×Cm → C

n (2.3) satisfies s(z, t) = z for z ∈ A, s(z, t) ∈ Cn \A
for z ∈ Cn \ A and t ∈ Cm, and the restriction s: (Cn \ A)× Cm → C

n \ A
is a dominating spray over Cn \A. If A is algebraic, then this construction
gives an algebraic dominating spray on Cn \A. �

Corollary 2.25. — [32, Corollary 5.5.15, p. 205] Let X = Cn/Γ, where
Γ is a lattice in Cn (n � 2). Then the complement Y = X \ {x1, . . . , xm} of
any finite set of points in X is an Oka manifold.
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Proof. — Let π:Cn → X = C
n/Γ denote the quotient projection.

Choose points qj ∈ Cn such that π(qj) = xj for j = 1, . . . ,m. The discrete
set Γ0 = ∪mj=1(Γ + qj) ⊂ Cn is tame ([9], [10, Proposition 4.1]), so Cp \ Γ0

is elliptic (and hence Oka) by Proposition 2.24. Since π:Cp \ Γ0 → Y is an
unramified covering, Y is Oka by Proposition 2.8. �

An interesting feature of algebraic subellipticity is that it can be localized
as follows. No comparable result is known in the holomorphic category.

Proposition 2.26 [32, Proposition 6.4.2, p. 251]. — If Y is a quasi-
projective algebraic manifold such that each point y0 ∈ Y has a Zariski open
neighborhood U ⊂ Y and algebraic sprays sj :Ej → Y (j = 1, 2, . . . ,m), de-
fined on algebraic vector bundles pj :Ej → U and satisfying the domination
property (2.2) for every point y ∈ U , then Y is algebraically subelliptic.

Corollary 2.27. — If A is an algebraic subvariety of codimension > 1
in a projective space or a complex Grassmannian X, then X \ A is alge-
braically subelliptic.

If Ŷ → Y is a holomorphic covering map of complex manifolds and Y
is elliptic, then it is easily seen that Ŷ is elliptic. It is not known whether
ellipticity of Ŷ implies ellipticity of Y in general (compare with Proposition
2.8 for Oka manifolds), but the following special case was proved recently
by T. Ritter [86].

Theorem 2.28. — If Γ ⊂ Aff(Cn) is a discrete group of affine auto-
morphisms of Cn acting freely and properly discontinuously on Cn, then the
quotient Cn/Γ is elliptic.

Proof. — Each γ ∈ Γ is of the form γ(z) = Az + b where A ∈ GLn(C)
and b ∈ Cn. Define λγ = A. The map σz(w) = z +w is a dominating spray
on Cn, defined on the trivial bundle Cn × Cn over Cn. A calculation gives

σγ(z) ◦ λγ ◦ σ−1
z (w) = σγ(z) ◦ λγ(−z + w) = σγ(z)(−Az +Aw)

= −Az +Aw +Az + b = γ(w)

for every w ∈ Cn; hence σγ(z) ◦ λγ ◦ σ−1
z = γ for every z ∈ Cn. This

condition means that the spray σz(w) on Cn is Γ-equivariant. Hence σ
descends to the quotient of the trivial bundle (which is the holomorphic
tangent bundle of the quotient manifold Cn/Γ) and induces a dominating
spray on Cn/Γ. �
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2.5. Ball complements

By the discussion in the previous subsection we have the following in-
clusions:

{elliptic manifolds} ⊂ {subelliptic manifolds} ⊂ {Oka manifolds}.

It follows directly from the respective definitions that we also have inclusions

{Oka manifolds} ⊂ {strongly dominable manifolds} ⊂ {dominable manifolds}.

For the notion of a (strongly) dominable manifold see §2.1.

Problem 2.29. — Which of the above inclusions are proper? In partic-
ular, is every Oka manifold subelliptic? Is every subelliptic manifold also
elliptic?

It has recently been shown by Andrist and Wold [2] that for every n � 3
the complement Y = C

n \ B of the closed ball in Cn fails to be subelliptic.
The main reason is that every holomorphic vector bundle on Y extends as
a holomorphic vector bundle across most of the boundary points of the ball
(indeed, by Siu [89] it extends as a coherent analytic sheaf to all of Cn),
and hence any spray also extends to a neighborhood of some point p ∈ bB
in view of Hartogs’ theorem. The analysis of the subellipticity condition in
a neighborhood of any such point easily leads to a contradiction.

On the other hand, Cn \B is a union of Fatou-Bieberbach domains [87],
hence is strongly dominable. This implies the following corollary.

Corollary 2.30 [2] . — At least one of the following inclusions is proper:

{subelliptic manifolds} ⊂ {Oka manifolds} ⊂ {strongly dominable manifolds}.

Problem 2.31. — Let n > 1. Is Cn \ B an Oka manifold?

Partial positive results in in this direction have recently been found by
Forstnerič and Ritter [38] who in particular proved the following.

Theorem 2.32. — If L is a compact convex set in Cn for some n >
1 then the complement Y = C

n \ L satisfies the basic Oka property with
approximation and interpolation (BOPAI) for maps from Stein manifolds
of dimension < n to Y .
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2.6. Good manifolds

As was said above, it is not known whether every Oka manifold is elliptic
or subelliptic. We mention a few existing partial results in this direction.
The following was proved by Gromov [52] (see also [32, Proposition 5.15.2,
p. 237]).

Proposition 2.33. — [52] Every Stein Oka manifold is elliptic.

Proof. — Let Y be a Stein manifold. We embed Y as the zero section
in its holomorphic tangent bundle TY . By Grauert’s tubular neighborhood
theorem there exist an open neighborhood Ω0 ⊂ TY of Y and a holomorphic
retraction s0: Ω0 → Y . In particular, the restriction of s0 to Y is the identity
map on Y . Clearly there is a continuous map s̃:TY → Y which agrees with
s0 on a smaller neighborhood Ω ⊂ Ω0 of Y in TY . Note that TY is also
a Stein manifold, so if Y is Oka then (using the jet interpolation property
for holomorphic maps from Stein manifolds to Y ) there is a holomorphic
map s:TY → Y which agrees with s0 to the second order along the zero
section Y ⊂ TY . But such s is a dominating holomorphic spray on Y , so Y
is elliptic. �

Gromov’s result has been generalized by Lárusson [70] to a much larger
class of manifolds (see also [72, §3] and [34, p. 24]). Call a complex manifold
good if it is the image of an Oka map from a Stein manifold (see §2.10 for
this notion), and very good if it carries a holomorphic affine bundle whose
total space is Stein. The simplest examples of non-Stein good manifolds
are the projective spaces. Indeed, let Qn be the complement in Pn × Pn
of the hypersurface

{
([z0, . . . , zn], [w0, . . . , wn]) : z0w0 + . . . + znwn = 0

}
.

Note that Qn is the preimage of a hyperplane by the Segre embedding
P
n×Pn → P

n2+2n, so Qn is Stein. Let π be the projection Qn → P
n onto the

first component. It is easily seen that π has the structure of a holomorphic
affine bundle with fibre Cn, so Pn is very good. (This observation is often
called the Jouanolou trick.)

Lárusson showed that the class of good manifolds contains all Stein man-
ifolds and all quasi-projective manifolds; further, it is closed under taking
submanifolds, products, covering spaces, finite branched covering spaces,
and complements of analytic hypersurfaces. The same is true of the class of
very good manifolds.

The following observation follows directly from Theorem 2.11 and Propo-
sition 2.33.
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Corollary 2.34. — A good manifold is Oka if and only if it is the
image of an Oka map from an elliptic manifold. A very good manifold is
Oka if and only if it carries an affine bundle whose total space is elliptic.

This is a purely geometric characterization of the Oka property that
holds, for example, for all quasi-projective manifolds.

Problem 2.35. — Is every complex manifold good, or even very good?

2.7. Stratified Oka manifolds

The following notion was introduced in [34].

Definition 2.36. — A complex manifold Y is a stratified Oka manifold
if it admits a stratification Y = Y0 ⊃ Y1 ⊃ · · · ⊃ Ym = ∅ by closed complex
subvarieties such that every connected component of each difference Yj−1\Yj
(j = 1, . . . ,m) is an Oka manifold.

While it is not known whether every stratified Oka manifold is actually
an Oka manifold, we have the following result which we shall not prove here.

Theorem 2.37 [34, Theorem 2]. — A stratified Oka manifold is strongly
dominable.

Example 2.38 (See [34, §3]). — We show that every Kummer surface Y
admits a stratification Y ⊃ C ⊃ ∅, where C is the union of 16 mutually
disjoint smooth rational curves and the difference Y \C is an Oka manifold
[34, Lemma 7]. Thus Y is stratified Oka, and we have the following corollary
to Theorem 2.37.

Corollary 2.39. — Every Kummer surface is strongly dominable.

Let us recall the structure of Kummer surfaces; see [5] for more infor-
mation.

Let T be a complex 2-torus, the quotient of C2 by a lattice Z4 ∼= Γ ⊂ C2

of rank 4, acting on C2 by translations. Let π:C2 → T = C
2/Γ be the

quotient map. The involution C2 → C
2, (z1, z2) �→ (−z1,−z2), descends to

an involution σ : T→ T with precisely 16 fixed points p1, . . . , p16. In fact, if
ω1, . . . , ω4 ∈ C2 are generators for Γ, then p1, . . . , p16 are the images under
π of the 16 points c1ω1 + · · ·+ c4ω4 ∈ C2, where c1, . . . , c4 ∈ {0, 1

2}; denote
these points by q1, . . . , q16. The quotient T/{1, σ} is a 2-dimensional com-
plex space with 16 singular points p′1, . . . , p

′
16 (the images of p1, . . . , p16).

– 772 –



Oka manifolds: From Oka to Stein and back

Blowing up each p′j yields a smooth compact complex surface Y contain-
ing 16 mutually disjoint smooth rational curves C1, . . . , C16. This is the
Kummer surface associated to the torus T, or to the lattice Γ.

Here is an alternative description. Let X denote the surface obtained by
blowing up the torus T at each of the 16 points p1, . . . , p16. Let Ej ∼= P1

denote the exceptional divisor over pj . The involution σ of T lifts to an
involution τ : X → X with the fixed point set E = E1 ∪ · · · ∪ E16. The
eigenvalues of the differential dτ at any point of E are 1 and −1. Hence the
quotient X/{1, τ} is smooth and contains 16 rational (−2)-curves Cj ∼= P1,
the images of the rational (−1)-curves Ej in X. The quotient is the Kummer
surface Y . Denoting by Ĉ2 the surface obtained by blowing up C2 at every

point of the discrete set Γ̃ =
16⋃
j=1

(qj+Γ), we have the following diagram (see

[5, p. 224]):

C
2 X Y

C
2 T T / {1 }π , σ

The union C = ∪16
j=1Cj is Oka by Corollary 2.10. The complement Y \C

is biholomorphic to T \ {p1, . . . , p16} which is Oka by Corollary 2.25. This
shows that the Kummer surface Y is a stratified Oka manifold.

Kummer surfaces are dense in the moduli space of all K3 surfaces, but we
do not know whether it follows that all K3 surfaces are strongly dominable.
In fact, strong dominability is in general not closed in families of compact
complex manifolds (see Corollary 2.41 below).

2.8. The Oka property for compact complex surfaces

The information in this subsection is taken from [34]; for proofs we refer
to the original source.

Here is what we know about which minimal compact complex surfaces
are Oka (see [34, p. 4]); κ ∈ {−∞, 0, 1, 2} denotes the Kodaira dimension.
For the classification of surfaces see [5].

κ = −∞: Rational surfaces are Oka. A ruled surface is Oka if and only
if its base is Oka. Theorem 2.40 belows covers surfaces of class VII if the
global spherical shell conjecture is true.
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κ = 0: Bielliptic surfaces, Kodaira surfaces, and tori are Oka. It is un-
known whether any or all K3 surfaces or Enriques surfaces are Oka.

κ = 1: Buzzard and Lu determined which properly elliptic surfaces are
dominable [10]. Nothing further is known about the Oka property for these
surfaces.

κ = 2: Surfaces of general type are not dominable (this is an easy con-
sequence of [67], Theorem 2), and hence not Oka.

Class VII in the Enriques-Kodaira classification comprises the non-alge-
braic compact complex surfaces of Kodaira dimension κ = −∞. Minimal
surfaces of class VII fall into several mutually disjoint classes. For second
Betti number b2 = 0, we have Hopf surfaces and Inoue surfaces. For b2 � 1,
there are Enoki surfaces, Inoue-Hirzebruch surfaces, and intermediate sur-
faces; together they form the class of Kato surfaces. By the global spherical
shell conjecture, currently proved only for b2 = 1 by Teleman [95], every
minimal surface of class VII with b2 � 1 is a Kato surface. Assuming that
the conjecture holds, it is possible to determine which minimal surfaces of
class VII are Oka.

Theorem 2.40 [34, Theorem 4]. — Minimal Hopf surfaces and Enoki
surfaces are Oka. Inoue surfaces, Inoue-Hirzebruch surfaces, and interme-
diate surfaces, minimal or blown up, are not strongly Liouville, and hence
not Oka.

The notion of a strongly Liouville manifold was introduced just before
Corollary 2.9.

Enoki surfaces are generic among Kato surfaces. Inoue-Hirzebruch sur-
faces and intermediate surfaces can be obtained as degenerations of Enoki
surfaces. Thus, Theorem 2.40 yields the following corollary.

Corollary 2.41 [34, Corollary 5]. — Compact complex surfaces that
are Oka can degenerate to a surface that is not strongly Liouville (and hence
is not Oka). Consequently, the following properties are in general not closed
in holomorphic families of compact complex manifolds: (a) the Oka property;
(b) the stratified Oka property; (c) strong dominability; (d) dominability; (e)
C-connectedness; (f) strong Liouvilleness.

In this context we mention the recent result by F. Lárusson [73] that, in
a holomorphic family of compact complex manifolds, the set of Oka fibers
corresponds to a Gδ subset of the base manifold. It is an open question
whether this set is always open. Corollary 2.41 says that the set of Oka fibers
is not necessarily closed. In the same paper, Lárusson gave a necessary and
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sufficient condition for the limit fiber of a sequence of Oka fibers to be Oka
in terms of a newly introduced uniform Oka property. He also considered
holomorphic submersions with noncompact fibers.

Another general problem is to understand whether an Oka surface blown
up at a point remains Oka; the corresponding question can be asked for
blow-downs. For example, a complex torus (of any dimension n > 1) blown
up at finitely many points is Oka (see [32, p. 255]). The proofs is obtained
by showing that Cn (the universal covering space of the torus), blown up

at all points of a discrete set Γ̃ =
m⋃
j=1

(qj + Γ) where qj ∈ Cn and Γ is a

lattice in Cn (cf. §2.7), is Oka. Taking Γ̃ to be the preimage of the blown-up
points in our torus and applying Proposition 2.8 we infer that the blown-up
torus is Oka. We are unable to give a similar proof for the Hopf surfaces
(quotients of C2 \ {0}).

Problem 2.42. — Is a blown-up Hopf surface an Oka manifold?

2.9. Gromov’s Oka principle for elliptic submersions

We now present the most advanced known version of the Oka principle
— for sections of stratified subelliptic submersions over Stein spaces (cf.
Theorem 2.44 below). The notions and results in this subsection generalize
those in §2.4 above. For further results and complete proofs we refer to
Chapter 6 in [32].

Let X and Z be complex spaces and let h:Z → X be a holomorphic
submersion. Given a point z ∈ Z, the subspace V TzZ = ker dhz of the
tangent space TzZ is called the vertical tangent space of Z at z (relative to
h).

A fiber-spray on Z is a triple (E, π, s), where π:E → Z is a holomorphic
vector bundle and s:E → Z is a holomorphic map, such that for each point
z ∈ Z we have

s(0z) = z, s(Ez) ⊂ Zh(z) = h−1(h(z)).

The restriction of the differential ds0z :T0zE → TzZ to the vertical subspace
Ez ⊂ T0zE maps Ez to V TzZ and is called the vertical derivative of s at
the point z ∈ Z:

V dsz = ds0z |Ez :Ez → V TzZ. (2.4)

The spray is said to be fiber-dominating if the vertical derivative V ds:E →
V TZ is surjective.
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Note that a (dominating) spray on a complex manifold Y (see Def. 2.19
above) is the same thing as a (dominating) fiber-spray on the trivial sub-
mersion Y → X = point.

Similarly one defines dominability of a finite family of fiber-sprays.

Definition 2.43. — A holomorphic submersion h:Z → X is said to be
an elliptic submersion (resp. a subelliptic submersion) if every point x0 ∈ X
admits an open neighborhood U ⊂ X such that the restricted submersion
h:Z|U → U admits a fiber-dominating spray (resp. a finite fiber-dominating
family of fiber-sprays).

The submersion h:Z → X is stratified elliptic (resp. stratified subel-
liptic) if there exists a stratification of X by closed complex subvarieties
X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅ such that every difference Sk = Xk\Xk+1

is nonsingular and the restricted submersion h:Z|Sk → Sk is elliptic (resp.
subelliptic) for every k = 0, . . . ,m− 1.

Examples of (sub-) elliptic submersions can be found in [52] and in [32,
§6.4].

The following is the most general known form of the Oka principle for
sections of stratified holomorphic submersions over Stein spaces.

Theorem 2.44 [32, Theorem 6.2.2, p. 243]. — If h:Z → X is a strat-
ified subelliptic submersion onto a Stein space X, then sections X → Z
satisfy the parametric Oka property with approximation and interpolation
(POP). In particular, the inclusion ΓO(X,Z) ↪→ ΓC(X,Z) of the space of
holomorphic sections into the space of continuous sections is a weak homo-
topy equivalence.

The basic form of Theorem 2.44 (for elliptic submersions onto Stein
manifolds) is due to Gromov [52]. The result as stated here was obtained in
a series of papers; a complete proof, with references to the original sources,
is available in [32, Chapter 6]. This version of the Oka principle has al-
ready been used in some applications where the corresponding result for
stratified fiber bundles (Theorem 2.2 in §2.2) does not suffice. In particular,
the solution of the holomorphic Vaserstein problem, due to Ivarsson and
Kutzschebauch [62], uses the Oka principle for sections of stratified elliptic
submersions.

The fiber-domination property is used in a similar way as in the proof
of Theorem 2.22 above. In the non-stratified case we use fiber-sprays on Z
over small open Stein sets U ⊂ X to prove the exact analogue of Theorem
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2.22. That is, a homotopy of holomorphic sections over a compact O(X)-
convex subset K ⊂ U , with the initial section holomorphic over U , can be
approximated by a homotopy of holomorphic sections over U . The analogous
result holds with continuous dependence on a parameter [32, §6.6]. In the
stratified case, this approximation result is used within strata. This replaces
the role of CAP (see Def. 2.1) in the construction of global holomorphic
sections.

In fact, there is an axiomatic version of the approximation property
for submersions, called the (parametric) homotopy approximation property,
(P)HAP, which allows us to prove Theorem 2.44 (cf. Theorem 6.6.6 in [32,
p. 266]).

There are other key differences between the proof of the Oka principle for
stratified fiber bundles (i.e., of Theorem 2.2) and in the stratified submersion
case. While the first result is proved by inductive application of a one-step
procedure, the proof of the latter uses an elaborate scheme of constructing
a global section from a simplicial complex of local holomorphic sections and
homotopies between them.

2.10. Oka maps

Following the philosophy of Grothendieck – that a property should not
be defined only for objects in a category, but also for morphisms – we now
extend the notion of the Oka property to holomorphic maps. This subsection
is mainly based on [32, §6.14] and on the papers [29, 31].

Assume that π:E → B is a holomorphic map of complex spaces, X is a
Stein space, P0 ⊂ P are compact Hausdorff spaces (the parameter spaces),
and f :P ×X → B is an X-holomorphic map, meaning that f(p, · ):X → B
is holomorphic on X for every fixed p ∈ P . Consider maps in the following
diagram (cf. [32, p. 287]):

P0 X

incl

f
E

P X
f

F

B

π

x

x

A map F :P ×X → E satisfying π ◦ F = f is said to be a lifting of f ; such
a map F is X-holomorphic on P0 if F (p, · ) is holomorphic for every p ∈ P0.

Definition 2.45. — A holomorphic map π:E → B enjoys the Para-
metric Oka Property (POP) if for any collection (X,X ′,K, P, P0, f, F0),
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where X is a Stein space, X ′ is a closed complex subvariety of X, P0 ⊂ P
are compact Hausdorff spaces, f :P × X → B is an X-holomorphic map,
and F0:P × X → E is a continuous map such that π ◦ F = f , F0(p, · )
is holomorphic on X for all p ∈ P0 and is holomorphic on K ∪ X ′ for all
p ∈ P , there exists a homotopy Ft:P ×X → E satisfying the following for
all t ∈ [0, 1]:

(i) π ◦ Ft = f ,

(ii) Ft = F0 on (P0 ×X) ∪ (P ×X ′),

(iii) Ft is X-holomorphic on K and uniformly close to F0 on P ×K, and

(iv) the map F1:P ×X → E is X-holomorphic.

The map π:E → B enjoys the Basic Oka Property (BOP) if the above holds
for the case when P is a singleton and P0 = ∅.

Note that a complex manifold E enjoys a certain Oka property if and
only if the trivial map E → point does.

POP of a map π:E → B is illustrated by the following diagram.

P0

incl

O(X,E ) C(X E )

P
f

F1

F0

O(X B ) C(X B )

,

, ,

π

The problem of lifting a single holomorphic map f :X → B to a holo-
morphic map F :X → E easily reduces to the problem of finding a section
of the pull-back map. As an example, we prove the following result [32,
Corollary 6.14.2].

Corollary 2.46. — (i) Every stratified subelliptic submersion enjoys
BOP.

(ii) Every stratified holomorphic fiber bundle with Oka fibers enjoys BOP.

Proof. — Let π̃: f∗E → X denote the pull-back of a holomorphic sub-
mersion π:E → B by a holomorphic map f :X → B. If π:E → B is a
stratified subelliptic submersion, then so is π̃: f∗E → X. (Stratify X such
that each stratum is mapped by f into a stratum of B over which the
submersion π is subelliptic.) Then sections of π̃: f∗E → X are in bijective
correspondence with liftings X → E of f . Since sections of f∗E → X satisfy
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BOP by Theorem 2.2, π also satisfies BOP. The same proof applies in case
(ii). �

The above argument fails in the parametric case since we do not have a
holomorphic dependence of the pull-back f∗E → X on the map f :X → B
in a given continuous family of maps. Nevertheless, the implication BOP⇒
POP still holds.

Theorem 2.47 ([29], [32, Theorem 6.14.3]). — For every holomorphic
submersion of complex spaces we have the implication BOP =⇒ POP, pro-
vided that POP is restricted to parameter spaces P0 ⊂ P that are Euclidean
compacta.

The following consequence of Corollary 2.46 and Theorem 2.47 gives the
most general known Oka property of holomorphic maps.

Corollary 2.48. — (i) Every stratified subelliptic submersion enjoys
POP.

(ii) Every stratified holomorphic fiber bundle with Oka fibers enjoys POP.

Another interesting point is that POP is a local property in the following
sense.

Theorem 2.49 (Localization principle for POP) [31, Theorem 4.7]. —
A holomorphic submersion π:E → X of a complex space E onto a complex
space X satisfies POP if and only if every point x ∈ X admits an open
neighborhood Ux ⊂ X such that the restricted submersion π:E|Ux → Ux
satisfies POP.

The proof of this result uses the fact that POP follows from PHAP,
applied over small open subsets of the base space.

In analogy to the class of Oka manifolds, we introduce the class of Oka
maps ([69, §16], [29]).

Definition 2.50. — A holomorphic map π:E → B of complex spaces
is said to be an Oka map if it is a Serre fibration and it enjoys POP.

A holomorphic map is an Oka map precisely when it is an interme-
diate fibration in Lárusson’s model category (see §4). The following is an
immediate consequence of the definitions and of Theorem 2.2.

Corollary 2.51. — Assume that E and B are complex manifolds and
π:E → B is a surjective Oka map. Then E is an Oka manifold if and only
if B is an Oka manifold.
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Corollary 2.48 implies the following result.

Corollary 2.52 [32, Corollary 6.14.8]. — (i) A holomorphic fiber bun-
dle projection is an Oka map if and only if the fiber is an Oka manifold.

(ii) A stratified subelliptic submersion, or a stratified holomorphic fiber bun-
dle with Oka fibers, is an Oka map if and only if it is a Serre fibration.

3. Methods to prove the Oka principle

In this section we prove Theorem 2.2 in the basic case, that is, for sections
of holomorphic fiber bundles with CAP fibers over Stein manifolds, and
without parameters. The general case is treated in [32, Chap. 5].

We begin in §3.1 by recalling the properties of Stein manifolds that will
be important for us. The monographs by Grauert and Remmert [50], by
Gunning and Rossi [53], and by Hörmander [60], now considered classics,
are still excellent sources for the theory of Stein manifolds and Stein spaces.
Our exposition is influenced by [33] and [32, Chap. 2]. We also mention
a result of Eliashberg on constructing Stein structures on almost complex
manifolds with a suitable handlebody structure, and we state the soft Oka
principle (Theorem 3.2).

In §3.2–§3.4 we explain the technique of gluing holomorphic sprays of
sections, a key ingredient in the proof. This method has already found nu-
merous applications. The other main ingredient is the local analysis near
a Morse critical point of a strongly plurisubharmonic exhaustion function;
here we use the normal form furnished by Lemma 3.15, a local Mergelyan
approximation theorem for manifold-valued maps, and a device for reducing
the problem of extending a holomorphic section across a critical level to the
noncritical case. Using these tools, we prove a basic version of Theorem 2.2
in §3.5.

3.1. Stein manifolds

The central concept of classical several complex variables is that of a
domain of holomorphy — a domain in Cn with a holomorphic function that
does not extend holomorphically to any larger domain, even as a multivalued
function. By classical function theory, every domain in C is a domain of
holomorphy. One of the key discoveries that got several complex variables
started at the turn of the 20th century is that this is far from true in higher
dimensions.
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The notion of a Stein manifold, introduced by K. Stein in 1951 [94] un-
der the name of a holomorphically complete complex manifold, generalizes
domains of holomorphy to the setting of manifolds. There are at least four
fundamentally different characterizations of Stein manifolds; the equivalence
of any two of them is a nontrivial theorem. Stein’s original definition, sim-
plified by later developments, states that a complex manifold X is Stein if
it satisfies the following two axioms.

1. Holomorphic functions on X separate points: for any pair of distinct
points x, x′ ∈ X, there exists a holomorphic function f ∈ O(X) with
f(x) �= f(x′).

2. X is holomorphically convex, that is, if K ⊂ X is compact, then its
O(X)-hull

K̂ = {x ∈ X: |f(x)| � sup
K
|f |, ∀f ∈ O(X)}

is also compact. Equivalently, if E ⊂ X is not relatively compact,
then there is an f ∈ O(X) such that f |E is unbounded.

A domain in Cn is Stein if and only if it is a domain of holomorphy.
Every noncompact Riemann surface is Stein [6].

Second, a connected complex manifold is Stein if and only if it is bi-
holomorphic to a closed complex submanifold of Cm for some m. Namely,
submanifolds of Cm are clearly Stein. (The coordinate functions on Cm, re-
stricted to the submanifold, satisfy the above definition. More generally, it
is easy to see that a closed complex submanifold of a Stein manifold is itself
Stein.) Conversely, R. Remmert proved in 1956 that every connected Stein
manifold X admits a proper holomorphic embedding into Cm for some m.
In 1960–61, E. Bishop [7] and R. Narasimhan [80] independently showed
that if dimCX = n, then m can be taken to be 2n + 1. The optimal em-
bedding result is that if n � 2, then m can be taken to be [3n/2] + 1. This
was conjectured by O. Forster in 1971 [23]; he showed that for each n, no
smaller value of m works in general. Forster’s conjecture was proved in the
early 1990s by Y. Eliashberg and M. Gromov [22] (following their much ear-
lier paper [21]) and J. Schürmann [88]. The proof relies on Gromov’s Oka
principle discussed in §2.9 above. This problem is still open in dimension
one: every open Riemann surface properly embeds into C3, but relatively
few are known to embed, even non-properly, into C2. For recent results in
this direction, see [40, 42, 77].

Third, Stein manifolds are characterized by a cohomology vanishing
property. The famous Theorem B of Henri Cartan, proved in his seminar in
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the period 1951–4, states that Hk(X; F ) = 0 for every coherent analytic
sheaf F on a Stein manifold (or Stein space) X and every k � 1. The
converse is easy.

Finally, Stein manifolds can be defined in terms of plurisubharmonicity, a
notion introduced independently by P. Lelong and by K. Oka in 1942, which
plays a fundamental role in complex analysis. Recall that the Levi form Lρ
of a C2 function ρ on a complex manifold X is a quadratic Hermitian form
on the tangent bundle TX that is given in any local holomorphic coordinate
system z = (z1, . . . , zn) on X by the complex Hessian:

Lρ(z; v) =
n∑

j,k=1

∂2ρ(z)
∂zj∂z̄k

vjvk, v ∈ Cn.

The function ρ is plurisubharmonic if Lρ � 0, and is strongly plurisubhar-
monic if Lρ > 0; clearly the latter is an open condition. For an intrinsic
definition of the Levi form, associated to the (1, 1)-form ddcρ = i ∂∂ρ, see
e.g. [32, Sec. 1.8].

Every Stein manifold X admits many strongly plurisubharmonic func-
tions, for example, those of the form ρ =

∑
j |fj |2, where the holomorphic

functions fj ∈ O(X) are chosen so that their differentials span the cotan-
gent space T ∗xX at each point x ∈ X and the series converges. It is easy
to ensure in addition that ρ is an exhaustion function, in the sense that for
every c ∈ R, the sublevel set {x ∈ X: ρ(x) � c} is compact. Conversely,
H. Grauert proved in 1958 [49] that a complex manifold X with a strongly
plurisubharmonic exhaustion function ρ : X → R is Stein; this is the solu-
tion of the Levi problem for manifolds. The main point is that the existence
of a strongly plurisubharmonic exhaustion ρ on a complex manifold X im-
plies the solvability of all consistent ∂-equations on X. In particular, the
set ρ−1(−∞, c1) is Runge in ρ−1(−∞, c2) for all real numbers c1 < c2, from
which the defining properties (1) and (2) of a Stein manifold easily follow.
A quantitative treatment of the ∂-problem, using Hilbert space methods,
was given by L. Hörmander in 1965 [59, 60].

In Oka theory we need to use a sup-norm bounded solution operator to
the ∂-equation on bounded strongly pseudoconvex Stein domains. Such a
domain D � X in a complex manifold X is of the form D = {x ∈ U : ρ(x) <
0}, where ρ is a strongly plurisubharmonic function on an open set U ⊃ D̄
and dρ(x) �= 0 for each x ∈ bD = {ρ = 0}. A key geometric property of a
strongly pseudoconvex domain is that it is locally near each boundary point
biholomorphic to a convex domain in Cn.
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Denote by Cr0,1(D̄) the space of all (0, 1)-forms of class Cr on D̄; for
r = 1/2 this is the Hölder class with Hölder exponent 1/2. An operator
T in the following theorem is obtained as an integral kernel operator with
holomorphic kernel; we refer to Henkin and Leiterer [56] and Range and Siu
[84].

Theorem 3.1. — For every bounded strongly pseudoconvex Stein do-
main D with C2 boundary in a complex manifold X there exists a linear
operator T : C00,1(D) → C1/2(D) such that, if f ∈ C00,1(D̄) ∩ C10,1(D) and
∂f = 0 in D, then

∂(Tf) = f, ||Tf ||C1/2(D̄) � cD ||f ||C00,1(D̄).

The constant cD can be chosen uniform for all domains sufficiently C2-close
to D.

The definition of a complex space being Stein is the same as for mani-
folds. Theorem B of Cartan still holds. The property of having a strongly
plurisubharmonic exhaustion function is still equivalent to being Stein
(Narasimhan 1962, [81]). Finally, a Stein complex space with a bound on
the local embedding dimension is biholomorphic to a complex subspace of
a Euclidean space (Narasimhan 1960, [80]). Often the most efficient way to
show that a complex space is Stein is to find a strongly plurisubharmonic
exhaustion on it. This is how Y.-T. Siu proved in 1976 that a Stein subvari-
ety of a reduced complex space has a basis of open Stein neighborhoods [90].
Stein neighbourhood constructions often allow us to transfer a problem on
a complex space to a Euclidean space where it becomes tractable. A recent
example is the application of the Stein neighbourhood construction in [41]
to the proof in [28] that the basic Oka property implies the parametric Oka
property for manifolds; see [32, Chap. 3] for more on this subject.

The Morse index of a nondegenerate critical point of a strongly plurisub-
harmonic function on a complex manifold X is at most n = dimX. In fact,
the quadratic normal form of such a function in local coordinates is given
by Lemma 3.15 below. By Morse theory, it follows that a Stein manifold
X of complex dimension n has the homotopy type of a CW complex of
real dimension at most n. This observation has a highly nontrivial converse,
Eliashberg’s topological characterization of Stein manifolds of dimension at
least 3 [20]: If (X, J) is an almost complex manifold of complex dimension
n � 3, which admits a Morse exhaustion function ρ : X → R all of whose
Morse indices are at most n, then J is homotopic to an integrable Stein
structure J̃ on X in which the sublevel sets of ρ are strongly pseudoconvex.

Eliashberg’s result fails in dimension 2. The simplest counterexample is
the smooth 4-manifold S2×R2, which satisfies the hypotheses of the theorem
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but carries no Stein structure by Seiberg-Witten theory. Namely, S2 × R2

contains embedded homologically nontrivial spheres S2 × {c}, c ∈ R2, with
self-intersection number 0, while the adjunction inequality shows that any
homologically nontrivial smoothly embedded sphere C in a Stein surface
has C · C � −2 [32, §9.8]. Nevertheless, S2 × R2 still admits exotic Stein
structures. More precisely, R. Gompf has shown that a topological oriented
4-manifold is homeomorphic to a Stein surface if (and only if) it is the
interior of a topological handlebody with only 0-, 1-, and 2-handles [44, 45].
In particular, there are Stein surfaces homeomorphic to S2 × R2. See [32,
§9.12] for an exposition.

The Eliashberg-Gompf theorem has the following extension, due to
Forstnerič and Slapar [39, Theorem 1.1], which shows that the Oka princi-
ple holds for maps to an arbitrary complex manifold, provided that we are
allowed to deform not only the map, but also the Stein structure on the
source manifold.

Theorem 3.2 (The Soft Oka Principle). — Let (X, J) be an almost
complex manifold of dimension n which admits a Morse exhaustion function
ρ:X → R with all Morse indices � n. Let f :X → Y be a continuous map
to a complex manifold Y .

(i) If dimCX �= 2, then there exist an integrable Stein structure J̃ on
X, homotopic to J , and a J̃-holomorphic map f̃ :X → Y homotopic
to f .

(ii) If dimCX = 2, there exist an orientation preserving homeomorphism
h:X → X ′ onto a Stein surface X ′ and a holomorphic map f ′:X ′ →
Y such that the map f̃ = f ′ ◦ h:X → Y is homotopic to f .

Furthermore, a family of maps fp:X → Y , depending continuously on the
parameter p in a compact Hausdorff space, can be deformed to a family
of holomorphic maps with respect to some Stein structure J̃ on X that is
homotopic to J .

3.2. Cartan pairs and convex bumps

The main references for this subsection are sections 5.7 and 5.10 in [32].
Recall that a compact set K in a complex space X is a Stein compactum if K
admits a basis of open Stein neighborhoods in X. The following definition
combines Def. 5.7.1 and 5.10.2 in [32], suitably simplified for our present
needs.

Definition 3.3. — (I) A pair (A,B) of compact subsets in a complex
space X is said to be a Cartan pair if it satisfies the following two conditions:
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(i) the sets A, B, D = A ∪B and C = A ∩B are Stein compacta, and

(ii) A,B are separated, in the sense that A\B ∩B\A = ∅.

(II) A pair (D0, D1) of open relatively compact subsets of a complex manifold
X is said to be a strongly pseudoconvex Cartan pair of class C! (A � 2) if
(D̄0, D̄1) is a Cartan pair in X, and each of the sets D0, D1, D = D0 ∪
D1, and D0,1 = D0 ∩D1 is a strongly pseudoconvex Stein domain with C!
boundary.

(III) A Cartan pair (A,B) in a complex space X is said to be a special
Cartan pair, and the set B is a convex bump on A, if B ⊂ Xreg and there
exist holomorphic coordinates in a neighborhood U ⊂ Xreg of B in which
the sets B, A ∩B, and U ∩ (A ∪B) are strongly convex with C2 boundaries
in U . (See Fig. 5.2 in [32, p. 219].)

Every Cartan pair in a complex manifold can be approximated from the
outside by smooth strongly pseudoconvex Cartan pairs as in the following
proposition.

Proposition 3.4 [32, Proposition 5.7.3, p. 210]. — Let (A,B) be a Car-
tan pair in a complex manifold X. Given open sets U ⊃ A, V ⊃ B in X,
there exists a strongly pseudoconvex Cartan pair (D0, D1) of class C∞ sat-
isfying A ⊂ D0 � U and B ⊂ D1 � V .

We also need to recall the following notion.

Definition 3.5. — Assume that A ⊂ A′ are compact strongly pseudo-
convex domains in a complex manifold X. We say that A′ is a noncritical
strongly pseudoconvex extension of A if there exist a strongly plurisubhar-
monic function ρ in an open set V ⊃ A′\A in X, with dρ �= 0 on V , and
real numbers c < c′ such that

A ∩ V = {x ∈ V : ρ(x) � c}, A′ ∩ V = {x ∈ V : ρ(x) � c′}.

The sets At := A ∪ {x ∈ V : ρ(x) � t} for t ∈ [c, c′] are an increasing
family of strongly pseudoconvex domains with Ac = A and Ac′ = A′. If A
is Stein, then ρ extends to A as a strongly plurisubharmonic function, and
all domains At for t ∈ [c, c′] are Stein.

The following result is a simple consequence of the fact that a strongly
pseudoconvex hypersurface is locally near each point strongly convex in
an appropriately chosen system of local holomorphic coordinates. Similar
results have been used before, in particular by Grauert and in the Andreotti-
Grauert theory.

– 785 –



Franc Forstnerič

Lemma 3.6 [32, Lemma 5.10.3, p. 218]. — Assume that A ⊂ A′ are
compact strongly pseudoconvex domains in a complex manifold X and A′

is a noncritical strongly pseudoconvex extension of A. There exists a finite
sequence of compact strongly pseudoconvex domains A = A0 ⊂ A1 ⊂ · · · ⊂
Am = A′ such that for every k = 0, 1, . . . ,m − 1 we have Ak+1 = Ak ∪
Bk, where Bk is a convex bump on Ak. In addition, given an open cover
U = {Uj} of A′\A, we can choose the above sequence such that each Bk is
contained in some Uj(k).

3.3. A splitting lemma

The classical Cartan lemma (see e.g. [50, p. 88]) states that, given a
special configuration of compact sets (A,B) in Cn (for example, a pair of
cubes whose union and intersection are also cubes), every holomorphic map
γ:A ∩ B → G to a complex Lie group G splits as a product γ = β · α−1

of holomorphic maps α:A → G, β:B → G. Cartan considered the case
G = GLk(C), but the same proof applies in general. The original application
of Cartan’s lemma was to glue a pair of syzygies (resolutions of a coherent
analytic sheaf) over A and B, thereby obtaining a syzygy over A∪B. This
is one if the main steps in the proof of Cartan’s Theorems A and B for
coherent analytic sheaves on Stein spaces.

Later on, Grauert used Cartan’s lemma to develop his Oka-Grauert the-
ory. If a holomorphic principal fiber bundle over A∪B is trivial over both A
and B individually, then by splitting the transition map over A ∩B by us-
ing Cartan’s lemma, we can precompose the trivialization maps over A and
B by α and β, respectively. In this way we obtain new trivializations that
match over A ∩ B, so they amalgamate into a trivialization of the bundle
over the union A ∪B.

Cartan’s lemma no longer suffices in the nonlinear setting of general Oka
theory, in the absence of any special structure on the fibers. Instead we use
a method of gluing local holomorphic sprays, which may for obvious reasons
also be called thick holomorphic sections. In this section we present the
relevant splitting lemma. It was first used in [26] and was later improved
in [16, 27]; the version presented here is taken from [32, §5.8]. The main
point is that the product splitting in Cartan’s lemma is replaced by the
compositional splitting in (3.2) below.

Given a compact subset K in a complex manifold X and an open set
W ⊂ CN , we consider maps γ:K ×W → K × CN of the form

γ(x,w) =
(
x, ψ(x,w)

)
, x ∈ K, w ∈W. (3.1)
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We say that γ ∈ A(K ×W ) if γ is continuous on K ×W and holomorphic
in the interior of K ×W . Let Id denote the identity map; then

distK×W (γ, Id) = sup{|ψ(x,w)− w|:x ∈ K, w ∈W}.

Proposition 3.7 [32, Proposition 5.8.1, p. 211]. — Let (D0, D1) be a
strongly pseudoconvex Cartan pair of class C2 in a complex manifold X
(Def. 3.3). Set D0,1 = D0 ∩D1 and D = D0 ∪D1. Given a bounded open
convex set 0 ∈W ⊂ CN and a number r ∈ (0, 1), there is a δ > 0 satisfying
the following. For every map γ: D̄0,1 ×W → D̄0,1 × CN of the form (3.1)
and of class A(D0,1 ×W ), with distD̄0,1×W (γ, Id) < δ, there exist maps

αγ : D̄0 × rW → D̄0 × CN , βγ : D̄1 × rW → D̄1 × CN

of the form (3.1) and of class A(D0 × rW ) and A(D1 × rW ), respectively,
depending smoothly on γ, such that αId = Id, βId = Id, and

γ ◦ αγ = βγ on D̄0,1 × rW. (3.2)

The proof gives a number of additions at no extra cost. For example,
if γ agrees with the identity to order m ∈ N along w = 0, then so do αγ
and βγ . Furthermore, if X ′ is a closed complex subvariety of X such that
X ′∩ D̄0,1 = ∅, then αγ and βγ can be chosen tangent to the identity to any
given finite order along (X ′ ∩ D̄0)× rW and (X ′ ∩ D̄1)× rW , respectively.

Proof. — Denote by Cr and Γr the Banach spaces of all continuous
maps D̄0,1 × rW → C

N which are holomorphic in D0,1 × rW and satisfy

||φ||Cr = sup{|φ(x,w)|:x ∈ D̄0,1, w ∈ rW} < +∞,

||φ||Γr = sup{
(
|φ(x,w)|+ |∂wφ(x,w)|

)
:x ∈ D̄0,1, w ∈ rW} < +∞.

Similarly we denote by Ar, Br the Banach space of all continuous maps
D̄0× rW → C

N , D̄1× rW → C
N , respectively, that are holomorphic in the

interior.

By the hypothesis we have γ(x,w) = (x, ψ(x,w)) with ψ ∈ C1. Set
ψ0(x,w) = w. Choose a number r1 ∈ (r, 1). By the Cauchy estimates,
the restriction map C1 → Γr1 is continuous; hence ψ|D̄0,1×r1W ∈ Γr1 and
||ψ − ψ0||Γr1 � const||ψ − ψ0||C1 .

Lemma 3.8. — There are bounded linear operators A:Cr → Ar, B:Cr →
Br, satisfying

c = Ac−Bc, c ∈ Cr. (3.3)
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If c vanishes to order m ∈ N at w = 0 then so do Ac and Bc. If X ′ is a
closed complex subvariety of X such that X ′ ∩ D̄0,1 = ∅, then Ac and Bc
can be chosen to vanish to any given finite order along (X ′ ∩ D̄0)× rW and
(X ′ ∩ D̄1)× rW , respectively.

Proof. — By condition (ii) in Def. 3.3 there is a smooth function χ:X →
[0, 1] such that χ = 0 in a neighborhood of D0\D1, and χ = 1 in a neighbor-
hood of D1\D0. For any c ∈ Cr, the product χ(x)c(x,w) extends to a contin-
uous function on D̄0×W that vanishes on D0\D1×W , and (χ(x)−1)c(x,w)
extends to a continuous function on D̄1 ×W that vanishes on D1\D0 ×W .
Furthermore, ∂(χc) = ∂((χ− 1)c) = c∂χ is a (0, 1)-form on D̄ with contin-
uous coefficients, with support in D̄0,1×W and depending holomorphically
on w ∈W .

Choose functions f1, . . . , fm ∈ O(X) that vanish to order k along the
subvariety X ′ and have no common zeros on D̄0,1. Since D0,1 is strongly
pseudoconvex, Cartan’s division theorem gives holomorphic functions g1, . . . ,
gm in a neighborhood of D̄0,1 such that

∑m
j=1 fjgj = 1. Let T : C00,1(D) →

C0(D) be a bounded linear solution operator furnished by Theorem 3.1. For
any c ∈ Cr and w ∈ rW we set

(Ac)(x,w) = χ(x) c(x,w)−
m∑
j=1

fj(x)T
(
gj c(· , w) ∂χ

)
(x), x ∈ D̄0,

(Bc)(x,w) =
(
χ(x)− 1

)
c(x,w)−

m∑
j=1

fj(x)T
(
gj c(· , w) ∂χ

)
(x), x ∈ D̄1.

Then Ac−Bc = c on D̄0,1×rW , and ∂x(Ac) = 0, ∂x(Bc) = 0 in the interior
of their respective domains. Since ∂w

(
c(x,w) ∂χ(x)

)
= 0 and T commutes

with ∂w, we also have ∂w(Ac) = 0 and ∂w(Bc) = 0. The estimates follow
from boundedness of T . �

Consider the following operator, defined for ψ ∈ Γr1 near ψ0 and c ∈ Cr
near 0:

Φ(ψ, c)(x,w) = ψ
(
x,w+(Ac)(x,w)

)
−

(
w+(Bc)(x,w)

)
, x ∈ D̄0,1, w ∈ rW.

Then (ψ, c) �→ Φ(ψ, c) is a smooth map from an open neighborhood of
(ψ0, 0) in the Banach space Γr1 × Cr to the Banach space Cr. Indeed, Φ is
linear in ψ, and we have

∂cΦ(ψ, c0)c(x,w) = ∂c ψ
(
x,w + (Ac0)(x,w)

)
· (Ac)(x,w)− (Bc)(x,w);

this is again linear in ψ and continuous in all variables. A similar argument
applies to the higher order differentials of Φ. By (3.3) we have

Φ(ψ0, c) = A(c)−B(c) = c, c ∈ Cr,
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so ∂cΦ(ψ0, 0) is the identity map on Cr. By the implicit function theorem
there exists a smooth map ψ �→ C(ψ) ∈ Cr in an open neighborhood of ψ0

in Γr1 such that Φ(ψ,C(ψ)) = 0 and C(ψ0) = 0. The maps

aψ(x,w) = w + A ◦ C(ψ)(x,w), bψ(x,w) = w + B ◦ C(ψ)(x,w)

then satisfy aψ ∈ Ar, aψ0 = ψ0, bψ ∈ Br, bψ0 = ψ0 and

ψ
(
x, aψ(x,w)

)
= bψ(x,w), (x,w) ∈ D̄0,1 × rW.

The associated holomorphic maps

αγ(x,w) =
(
x, aψ(x,w)

)
, βγ(x,w) =

(
x, bψ(x,w)

)
depend smoothly on γ and satisfy Proposition 3.7. �

3.4. Gluing holomorphic sprays of sections

We now apply Proposition 3.7 to glue local holomorphic sprays over a
Cartan pair. Our main reference is [32, §5.9].

Assume that h:Z → X is a holomorphic submersion of complex spaces.
For each point z ∈ Z we let V TzZ = ker dhz denote the vertical tangent
space of Z (i.e., the tangent space to the fiber h−1(h(z))) at z.

Definition 3.9 [32, Def. 5.9.1, p. 215]. — Let D be a domain in X. A
holomorphic spray of sections over D is a holomorphic map f :D×P → Z,
where P is an open set in some Euclidean space CN containing the origin,
such that h(f(x,w)) = x for every x ∈ D and w ∈ P . The spray is said to
be dominating on a set K ⊂ D if the partial differential

∂w|w=0f(x,w): T0C
N ∼= CN −→ V Tf(x,0)Z (3.4)

is surjective for all x ∈ K; f is dominating if this holds for K = D. We
call f0 = f(· , 0) the central (core) section of the spray f .

If D � Xreg is a relatively compact domain with C1 boundary then a
spray of sections of class Al(D) (with the parameter set P ⊂ CN ) is a Cl
map f : D̄×P → Z that is holomorphic on D×P and satisfies the condition
(3.4).

The following lemma shows that every holomorphic section over a Stein
domain can be embedded into a dominating spray of sections on a slightly
smaller domain.
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Lemma 3.10 [32, Lemma 5.10.4]. — Assume that h:Z → X is a holo-
morphic submersion onto a complex space X, X ′ is a closed complex sub-
variety of X, and A0 ⊂ A are Stein compacta in X such that A0 ∩X ′ = ∅.
Given open Stein sets V � V0 ⊂ X containing A, a holomorphic section
f :V0 → Z and an integer r ∈ N, there is a holomorphic spray of sections
F :V × P → Z for some open set 0 ∈ P ⊂ CN such that

(i) Fw = F (· , w) is a section of Z|V for every fixed w ∈ P , with F0 = f ,

(ii) Fw agrees with f to order r along V ∩X ′ for every w ∈ P , and

(iii) ∂wF (x,w)|w=0:CN → V Tf(x)Z is surjective for every x ∈ A0.

If A0 is O(A)-convex and it admits a contractible Stein neighborhood in
V0\X ′ then the above conclusion holds with N = dimh−1(x) (x ∈ A0).

Proof. — The image f(V0) is a closed Stein subvariety of Z|V0 , and
hence it admits an open Stein neighborhood Ω ⊂ Z. By Cartan’s Theorem
A there exist finitely many holomorphic vector fields v1, . . . , vN on Ω that
are tangent to the fibers of h, that span the vertical tangent bundle V TZ at
every point of f(A0), and that vanish to order r on the subvariety h−1(X ′)∩
Ω. Let θtj denote the flow of vj . The map

F (x,w1, . . . , wN ) = θw1
1 ◦ · · · ◦ θwNN ◦ f(x)

is defined and holomorphic for all x ∈ V and for all w = (w1, . . . , wN )
in an open neighborhood of the origin in C

N . Since ∂wjF (x,w)|w=0 =
vj(f(x)) and the vector fields vj span V TZ along f(A0), the differential
∂wF (x,w)|w=0:CN → V Tf(x)Z is surjective at every point x ∈ A0.

For the proof of the last claim (which will not be important here) see
[32, p. 220]. �

Remark 3.11. — Similarly it can be shown that, given a holomorphic
submersion Z → X, a strongly pseudoconvex Stein domain D � X and a
section f : D̄ → Z of class Ar(D) for some r ∈ Z+, there exists a dominating
spray F : D̄ × P → Z of class Ar(D) with F (· , 0) = f (see [16, 27]). This is
used in the proof of an up-to-the-boundary version of Theorem 2.2 [17], in
the construction of open Stein neighborhoods of the image f(D̄) ⊂ Z [27,
Theorem 1.2], and in many other applications.

The following result is our main gluing lemma for holomorphic sprays.
This result can be viewed as a solution of a nonlinear Cousin-I problem.

Proposition 3.12 [32, Proposition 5.9.2, p. 216]. — Assume that h:Z →
X is a holomorphic submersion and (D0, D1) is a strongly pseudoconvex
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Cartan pair of class C! (A � 2) in X (Def. 3.3). Set D = D0 ∪ D1 and
D0,1 = D0 ∩D1. Let l ∈ {0, 1, . . . , A}.

Given a holomorphic spray of sections f : D̄0 × P0 → X (P0 ⊂ CN ) of
class Al(D0) which is dominating on D̄0,1, there is an open set P ⊂ CN with
0 ∈ P ⊂ P0 satisfying the following property. For every holomorphic spray
of sections g: D̄1×P0 → X of class Al(D1) which is sufficiently close to f in
Cl(D̄0,1×P0) there exists a holomorphic spray of sections f ′: D̄×P → X of
class Al(D), close to f in Cl(D̄0×P ) (depending on the Cl-distance between
f and g on D̄0,1×P0), whose core section f ′0 is homotopic to f0 on D̄0 and
is homotopic to g0 on D̄1.

If f and g agree to order m ∈ Z+ along D̄0,1×{0}, then f ′ can be chosen
to agree to order m with f along D̄0 × {0}, and with g along D̄1 × {0}.

If σ is the zero set of finitely many Al(D0) functions and σ ∩ D̄0,1 = ∅,
then f ′ can be chosen so that f ′0 agrees with f0 to a finite order on σ.

Proof. — By Lemma 5.9.3 in [32, p. 216] there exist a domain P1 � P0

containing the origin and a transition map γ: D̄0,1×P1 → D̄0,1×CN of the
form

γ(x,w) = (x, ψ(x,w)), x ∈ D̄0,1, w ∈ P1

and of class Al(D0,1 × P1), close to the identity map Id(x,w) = (x,w) in
the Cl topology (the closeness depending on the Cl distance between f and
g on D̄0,1 × P0), satisfying

f = g ◦ γ on D̄0,1 × P1.

(The cited result follows from the implicit function theorem and the fact
that every complex vector subbundle of class Al(D0,1) of the trivial bundle
D̄0,1 × CN admits a complementary subbundle of the same class.)

Let P � P1 be a domain containing the origin 0 ∈ CN . If γ is sufficiently
Cl-close to the identity on D̄0,1×P1 then by Proposition 3.7 there exist maps

α: D̄0 × P → D̄0 × CN , β: D̄1 × P → D̄1 × CN ,

of class Al on their respective domains and satisfying

γ ◦ α = β on D̄0,1 × P.

From this and f = g ◦ γ it follows that

f ◦ α = g ◦ β on D̄0,1 × P.
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Hence f ◦α and g ◦ β amalgamate into a holomorphic spray f ′: D̄×P → Z
with the stated properties.

The additions concerning interpolation are easily achieved by using the
corresponding version of Proposition 3.7; see the paragraph following it.
�

Using these tools we now prove the main building block for our Theorem
2.2.

Lemma 3.13 (Approximate extension to a special convex bump). —
Assume that X is a complex space, X ′ ⊂ X is a closed complex subvariety
containing Xsing, and (A,B) is a special Cartan pair in X. Let π:Z → X be
a holomorphic submersion. Assume that there is an open set U ⊂ Xreg with
B ⊂ U such that the restriction Z|U is isomorphic to a trivial bundle U ×Y
whose fiber Y enjoys CAP. Then every holomorphic section f :V0 → Z on
an open set V0 ⊃ A can be approximated uniformly on A by sections f ′ that
are holomorphic over an open neighborhood of A ∪B and agree with f to a
given order m ∈ N along the subvariety X ′.

Proof. — We proceed in three steps.

Step 1: Thickening. Lemma 3.10 furnishes an open set V in X with
A ⊂ V ⊂ V0, an open set 0 ∈W ⊂ CN , and a holomorphic spray of sections
F :V ×W → Z with the core f = F (· , 0) on V . Using the trivialization
Z|U ∼= U × Y we can write F (x,w) = (x, F ′(x,w)) ∈ X × Y for x ∈ U ∩ V
and w ∈W . Thus F ′ is a holomorphic map (U ∩ V )×W → Y with values
in Y .

Step 2: Approximation. By shrinking the set U around B if necessary, we
may assume that it satisfies the definition of a special Cartan pair (Def. 3.3
(III)). In particular, we have a holomorphic coordinate map φ:U → U ′ ⊂ Cn
such that the sets φ(B), φ(A ∩B) and φ(U ∩ (A ∪B)) are strongly convex
with C2 boundaries in U ′. (The last set may have corners in Cn, but this is
unimportant.)

Choose a compact cube Q ⊂ W containing 0 ∈ CN in its interior. The
product φ(A ∩ B) × Q is then a compact convex set in Cn+N . Since the
manifold Y enjoys CAP, we can approximate the map F ′ with values in Y ,
uniformly on a neighborhood of (A ∩ B) × Q in Cn+N , by a holomorphic
map G′:U ′ ×Q→ Y , where U ′ is an open set in X satisfying B ⊂ U ′ ⊂ U .

It may be worth emphasizing that this is the unique place in the proof
of Theorem 2.2 where CAP of the fiber is invoked!
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Step 3: Gluing. Choose a number 0 < r < 1. If the approximation in
Step 2 is sufficiently close then by Proposition 3.12 we can glue F and G
into a holomorphic spray of sections F̃ :V ′ × rQ → Z, where V ′ ⊂ X is an
open neighborhood of A ∪ B. The core section f̃ = F̃ (· , 0):V ′ → Z then
satisfies the conclusion of Lemma 3.13.

Note that Proposition 3.12 applies verbatim if (A,B) is a strongly pseu-
doconvex Cartan pair in a Stein manifold X; this will be the case in our ap-
plication of this lemma in the following subsection. The general case when X
is a complex space reduces to the special case by embedding a neighborhood
of A∪B in X as a subvariety Σ in a Euclidean space Cn and approximating
(A,B) in the embedded picture from the outside by a strongly pseudocon-
vex Cartan pair in Cn. The transition map between the two sprays, initially
defined over a neighborhood of A ∩ B in X, extends holomorphically to a
neighborhood of A ∩ B in Cn, for example by using a holomorphic retrac-
tion onto a neighborhood of A ∩ B in Σ, or by using a bounded extension
operator. (See the proof of Proposition 5.8.4 in [32, p. 214].) �

3.5. Proof of the Oka principle

We are now ready to prove the following basic case of Theorem 2.2.
The more advanced versions (including interpolation on a subvariety, the
parametric case, for sections of stratified fiber bundles, etc.) are obtained
by similar analytic tools, but adapting the geometric construction to the
case at hand. The proof given here and its generalizations can be found in
§5.10–§5.13 of [32].

Theorem 3.14 (The Basic Oka Property with Approximation). — Let
π:Z → X be a holomorphic fiber bundle over a Stein manifold X whose
fiber Y enjoys CAP. Then every continuous section f0:X → Z is homotopic
to a holomorphic section f1:X → Z; if f0 is holomorphic in a neighborhood
of a compact O(X)-convex subset K ⊂ X then the homotopy ft:X → Z
(t ∈ [0, 1]) from f0 to f1 can be chosen so that ft is holomorphic near K
and uniformly close to f0 on K for each t.

Proof. — Pick an open neighborhood U ⊂ X of the set K such that
f0 is holomorphic on U . Choose a smooth strongly plurisubharmonic Morse
exhaustion function ρ:X → R such that ρ < 0 on K and ρ > 0 on X \ U .
Let p1, p2, p3, . . . be the critical points of ρ in {ρ > 0}, ordered so that
0 < ρ(p1) < ρ(p2) < ρ(p3) < · · ·. Choose a sequence of numbers 0 =
c0 < c1 < c2 < · · · with limj→∞ cj = +∞ such that c2j−1 < ρ(pj) < c2j
for every j = 1, 2, . . ., and these two values are sufficiently close to ρ(pj)
(this condition will be specified later). If there are only finitely many pj ’s,
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we choose the remainder of the sequence cj arbitrarily. We subdivide the
parameter interval [0, 1] of the homotopy into subintervals Ij = [tj , tj+1]
with tj = 1 − 2−j (j = 0, 1, 2, . . .). Choose a distance function dist on Z
induced by a complete Riemannian metric. Fix a number ε > 0.

We shall inductively construct a homotopy of sections ft:X → Z (0 �
t < 1) such that for every j ∈ Z+ and t ∈ [tj , tj+1] the section ft is
holomorphic in a neighborhood of the set Kj = {x ∈ X: ρ(x) � cj} and
satisfies

sup
{
dist(ft(x), ftj (x)):x ∈ Kj , t ∈ [tj , tj+1]

}
< 2−j−1ε.

The limit section f1 = limt→1 ft:X → Z is then holomorphic on X and
satisfies

sup{dist(f1(x), f0(x)):x ∈ K0} < ε.

Assuming inductively that a homotopy {ft} with the stated properties has
been constructed for t ∈ [0, tj ], we explain how to find it for t ∈ [tj , tj+1].

The noncritical case: If j is even then ρ has no critical points in the set

Kj+1 \
◦
Kj = {x ∈ X: cj � ρ(x) � cj+1}.

By Lemma 3.6 there are compact sets Kj = A0 ⊂ A1 ⊂ · · · ⊂ Am = Kj+1

such that for every k = 0, 1, . . . ,m− 1 we have Ak+1 = Ak ∪Bk, where Bk
is a convex bump on Ak. In addition, we may choose the bumps Bk small
enough such that the bundle Z → X is trivial in an open neighborhood
of any Bk. By Lemma 3.13 we can successively extend the section across
each bump Bk, approximating the previous section on Ak. In finitely many
steps we thus obtain a holomorphic section ftj+1 in a neighborhood of Kj+1

which approximates ftj as closely as desired on Kj . By the construction,
the two sections are homotopic to each other over a neighborhood of Kj so
that the entire homotopy remains close to ftj . (In fact this is always true
if these sections are close enough over a neighborhood of Kj .) Since there
is no change of topology from Kj to Kj+1, this homotopy can be extended
continuously, first to a neighborhood of Kj+1, and then to all of X, by
applying a cut-off function in the parameter of the homotopy.

The critical case: Now j is odd, j = 2l − 1, and ρ has a unique critical
point p = pl in

◦
Kj+1 \Kj .

We begin with some geometric considerations. The following well-known
lemma gives the quadratic normal form for strongly plurisubharmonic func-
tions at Morse critical points; see [32, Lemma 3.9.1, p. 88] and the references
therein.
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Lemma 3.15. — Let ρ be a strongly plurisubharmonic function of class
C2 in a neighborhood of the origin in Cn, with a Morse critical point of index
k at 0 ∈ Cn. Then k ∈ {0, 1, . . . , n}. Write z = (z′, z′′) = (x′ + iy′, x′′ +
iy′′) ∈ Ck × Cn−k. After a C-linear change of coordinates on Cn we have

ρ(z) = ρ(0)− |x′|2 + |x′′|2 +
n∑
i=1

λiy
2
i + o(|z|2) (3.5)

where λi > 1 for i ∈ {1, . . . , k} and λi � 1 for i ∈ {k + 1, . . . , n}.

Choose an open neighborhood U ⊂ X of the point p = pl and a co-
ordinate map φ:U → P onto a polydisc P ⊂ Cn such that the function
ρ̃ = ρ ◦ φ−1:P → R is given by (3.5). By a small modification of ρ sup-
ported in a neighborhood of p we may also assume that the remainder term
vanishes identically.

If k = 0 then ρ has a local minimum at p. In this case the set {ρ � cj+1}
is the disjoint union of {ρ � cj} and another connected component Wj
which appears around the point p. Assuming as we may that cj − cj−1 > 0
is small enough, the bundle Z → X is trivial over Wj , and we may extend
the section ftj in an arbitrary way to Wj (for example, as a constant section
in some local trivialization of the bundle). This gives a holomorphic section
ftj+1 of Z over Kj+1 and the induction may proceed.

In the sequel we assume that k � 1. Pick a number α > 0 such that the
set

Xα = {x ∈ X: ρ(p)− α < ρ(x) < ρ(p) + 3α}

does not contain any critical point of ρ other than p, and we have

{
(x′ + iy′, x′′ + iy′′) ∈ Ck × Cn−k: |x′|2 � α, |x′′|2 +

n∑
i=1

λiy
2
i � 4α

}
⊂ P.

The stable manifold of the critical point at 0 is the totally real subspace
R
k ⊂ Cn given by y′ = 0, z′′ = 0. Let

E′ = {(x′ + iy′, z′′) ∈ Cn: y′ = 0, z′′ = 0, |x′|2 � α}; (3.6)

this is a k-dimensional totally real disc whose boundary sphere bE′ is con-
tained in the level set {ρ̃ = −α}. The preimage E = φ−1(E′) ⊂ X is a local
stable manifold at p with bE ⊂ {ρ = ρ(p) − α}. By the noncritical case
we may assume that the number cj (with the property that a holomorphic
section already exists on {ρ � cj}) is so close to ρ(p) that ρ(p)− α < cj .
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Figure 1. — The level sets of τ . ([32, p. 94, Fig. 3.5])

For a sufficiently small δ > 0 there exists a smooth strongly plurisub-
harmonic function τ : {x ∈ X: ρ(x) < ρ(p) + 3δ} → R with the following
properties:

(i) {ρ � cj} ∪ E ⊂ {τ � 0} ⊂ {ρ � ρ(p)− δ} ∪ E,

(ii) {ρ � ρ(p) + δ} ⊂ {τ � 2δ} ⊂ {ρ < ρ(p) + 3δ}, and

(iii) τ has no critical values in (0, 3δ).

A typical level set {τ = δ′} for small δ′ > 0 is shown in Fig.1. Outside a
neighborhood of p the level set {τ = δ′} coincides with a certain level set
{ρ = c(δ′)} of ρ.

We outline the construction of τ and refer for the details to [32, §3.10].

Set λ = min{λ1, . . . , λk} > 1. Pick a number µ ∈ (1, λ) and set

t0 = t0(α, µ) = α
(
1− 1/µ

)2 ∈ (0, α).

It is easy to find a smooth convex increasing function h:R → [0,+∞) sat-
isfying the following conditions (see [32, p. 92]):

(i) h(t) = 0 for t � t0,

(ii) for t � α we have h(t) = t− t1 with t1 = α− h(α) ∈ (t0, α),

(iii) for t0 � t � α we have t− t1 � h(t) � t− t0, and

(iv) for all t ∈ R we have 0 � ḣ(t) � 1 and 2tḧ(t) + ḣ(t) < λ.

These properties of h imply that the smooth function τ̃ :Cn → R defined by

τ̃(z) = −h(|x′|2) + |x′′|2 +
n∑
j=1

λjy
2
j

– 796 –



Oka manifolds: From Oka to Stein and back

is strongly plurisubharmonic (see [32, p. 93]). Obviously τ̃ has no critical
values in (0,+∞). Set U ′ = {q ∈ U : |x′(q)|2 < α} ⊂ X and V = {ρ <
ρ(p) + 3α} ⊂ X. We define a function τ :V → R as follows:

τ(x) =
{
ρ(p) + τ̃(z(x)), x ∈ U ∩ V ;
ρ(x) + t1, x ∈ V \ U .

Here t1 = α − h(α) is as in (ii) above. The properties of h ensure that the
two definitions agree on (U \U ′)∩V . It is easily verified that τ satisfies the
stated conditions.

We now explain how to find the next holomorphic section ftj+1 . We
proceed in four steps, hence dividing the parameter interval [tj , tj+1] into
four subintervals. The number δ > 0 is as above (see the properties of τ).

Step 1: By the noncritical case we may assume that the section ftj :X →
Z is holomorphic on a neighborhood of the set {ρ � ρ(p)− δ} ⊂ X.

Step 2: By Theorem 3.7.2 in [32, p. 81] we can approximate ftj , uniformly
on the set {ρ � ρ(p) − δ} ∪ E, by sections that are holomorphic in small
open neighborhoods of this set in X. The cited theorem is a local Mergelyan
approximation theorem for manifold-valued maps on a union of a compact
strongly pseudoconvex Stein domain D ⊂ X and a smooth totally real
submanifold E ⊂ X \

◦
D which is attached to the domain J-orthogonally

along a Legendrian submanifold bE ⊂ bD.

Step 3: By property (i) of τ there is a δ′ > 0 such that the set {τ � δ′}
is contained in the neighborhood of {ρ � ρ(p)− δ}∪E on which the section
from Step 2 is holomorphic. Applying the noncritical case with the function
τ we deform the section from Step 2 to a section that is holomorphic on a
neighborhood of {τ � 2δ}.

Step 4: By property (ii), the section from Step 3 is holomorphic on {ρ �
ρ(p) + δ}. Applying the noncritical case, this time again with the function
ρ, we deform it to a holomorphic section on the set Kj+1 = {ρ � cj+1}.

These four steps together complete the construction of ftj+1 , so the
induction may proceed. This completes the proof of Theorem 3.14. �
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4. Appendix: The homotopy-theoretic viewpoint
(by Finnur Lárusson)

4.1. The connection with abstract homotopy theory

Oka manifolds and Oka maps naturally fit into an abstract homotopy-
theoretic framework, not merely by way of analogy, but in precise, rigorous
terms. This appendix, which is essentially Section 7 of the survey [33] ex-
panded by a factor of two, provides an overview of how this comes about.
The papers in which the connection between abstract homotopy theory and
Oka theory was developed are [68, 69, 70, 71].

Abstract homotopy theory, also known as homotopical algebra, was
founded by D. Quillen in his 1967 monograph [83]. The fundamental no-
tion of the theory is the concept of a model category, or a model structure
on a category. A model structure is an abstraction of the essential features
of the category of topological spaces that make ordinary homotopy theory
possible. Model structures are good for many things. They have been in-
troduced and applied in various areas of mathematics outside of homotopy
theory, for example in homological algebra, algebraic geometry, category
theory, and theoretical computer science. Here we view them as a tool for
studying lifting and extension properties of holomorphic maps. Model struc-
tures provide a framework for investigating two classes of maps such that
the first has the right lifting property with respect to the second and the
second has the left lifting property with respect to the first in the absence
of topological obstructions. It is more natural, in fact, to consider homo-
topy lifting properties rather than plain lifting properties, that is, liftings of
families of maps varying continuously with respect to a parameter in a nice
parameter space rather than liftings of individual maps.

One of the main results of Gromov in his seminal paper [52, §2.9] suggests
a link with homotopical algebra. Let T ↪→ S be the inclusion into a Stein
manifold S of a closed complex submanifold T (we call such an inclusion a
Stein inclusion), and let X → Y be a holomorphic fibre bundle whose fibre
is an elliptic manifold (let us call such a map an elliptic bundle). Consider
a commuting square
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T X

S Y

where T → X and S → Y are otherwise arbitrary holomorphic maps. A
basic version of Gromov’s Oka principle states that every continuous lifting
in the square, that is, every continuous map S → X such that the diagram

T X

S Y

commutes, can be deformed through such liftings to a holomorphic lifting.
Since T ↪→ S is a topological cofibration and X → Y a topological fibration,
by elementary homotopy theory there is a continuous lifting in the square,
and hence by Gromov’s theorem a holomorphic lifting, if one of the two
vertical maps is a homotopy equivalence (let us call a homotopy equivalence
an acyclic map). Thus, elliptic bundles have the right lifting property with
respect to acyclic Stein inclusions, and acyclic elliptic bundles have the right
lifting property with respect to Stein inclusions.

Compare this with one of Quillen’s axioms for a model category (see
§4.2): A lifting S → X exists in every commuting square

T X

S Y

in which T → S is a cofibration, X → Y is a fibration, and one of them
is acyclic. It is now natural to ask whether there is a model category con-
taining the category of complex manifolds (it is too small to carry a model
structure itself) in which Stein inclusions are cofibrations, elliptic bundles
are fibrations, and weak equivalences are defined topologically.

The answer is affirmative. There is a natural, explicit way to embed the
category of complex manifolds into a model category such that Gromov’s
theorem becomes an instance of Quillen’s axiom. In fact, a holomorphic
map is a fibration in this model structure if and only if it is an Oka map
[69, Corollary 20]. In particular, a complex manifold is fibrant as an object
in the model category (meaning that the map to the terminal object is a
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fibration) if and only if it is Oka. Also, a complex manifold is cofibrant if
and only if it is Stein [70, Theorem 6].

4.2. Model categories and simplicial sets

A model category is a category with all small limits and colimits and
three distinguished classes of maps, called weak equivalences or acyclic
maps, fibrations, and cofibrations, such that the following axioms hold.

(A1) If f and g are composable maps, and two of f , g, f ◦ g are acyclic,
then so is the third.

(A2) The classes of weak equivalences, fibrations, and cofibrations are
closed under retraction. (Also, it follows from the axioms that the
composition of fibrations is a fibration, and the pullback of a fibra-
tion by an arbitrary map is a fibration.)

(A3) A lifting S → X exists in every commuting square

T X

S Y

in which T → S is a cofibration, X → Y is a fibration, and one of
them is acyclic.

(A4) Every map can be functorially factored as

acyclic fibration ◦ cofibration

and as
fibration ◦ acyclic cofibration.

For the theory of model categories, we refer the reader to [18, 58, 61, 79].

There are many examples of model categories. A fundamental exam-
ple, closely related to the category of topological spaces, is the category of
simplicial sets. Simplicial sets are combinatorial objects that have a ho-
motopy theory equivalent to that of topological spaces, but tend to be
more useful or at least more convenient than topological spaces for various
homotopy-theoretic purposes. In homotopy-theoretic parlance, the distinc-
tion between topological spaces and simplical sets is blurred and the latter
are often referred to as spaces. The prototypical example of a simplicial set
is the singular set sX of a topological space X. It consists of a sequence
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sX0, sX1, sX2, . . . of sets, where sXn is the set of n-simplices in X, that is,
the set of all continuous maps into X from the standard n-simplex

Tn = {(t0, . . . , tn) ∈ Rn+1 : t0 + · · ·+ tn = 1, t0, . . . , tn � 0},

along with face maps sXn → sXn−1 and degeneracy maps sXn → sXn+1.
The weak homotopy type of X is encoded in sX. For an introduction to
simplicial sets, we refer the reader to [43, 78].

4.3. Complex manifolds as prestacks on the Stein site

We have claimed that the embedding of the category of complex man-
ifolds into a model category that realizes the Oka property as fibrancy is
natural and explicit, but it is still quite technical. We shall give a sketch
here; the details may be found in [69].

First of all, how could we expect to be able to do homotopy theory with
complex manifolds in a way that takes not only their topology but also
their complex structure into account? The answer lies in the following key
observations, which vastly expand the scope of homotopical algebra.

• Not only can we do homotopy theory with individual spaces, but also
with diagrams or sheaves of them.

• Manifolds and varieties can be thought of as sheaves of spaces, so we
can do homotopy theory with them too. The general idea is known
as the Yoneda lemma.

This line of thought has found a spectacular application in V. Voevodsky’s
homotopy theory of schemes and the resulting proof of the Milnor conjecture
[97].

The gist of the Yoneda lemma, sometimes called the most basic theorem
in mathematics, is that an object is determined up to isomorphism by its
relationships with other objects, that is, by the system of arrows into it
from all other objects. More precisely, there is a full embedding of each
small category M into the category of presheaves of sets on itself, taking
an object X to the presheaf M (·, X).

In our case, Stein manifolds play a special role as sources of maps, so we
think of a complex manifold X as defining a presheaf O (·, X) on the full sub-
category S of Stein manifolds of the category M of complex manifolds. The
presheaf consists of the set O (S,X) of holomorphic maps S → X for each
Stein manifold S, along with the precomposition map O (S2, X)→ O (S1, X)
induced by each holomorphic map S1 → S2 between Stein manifolds. Even
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though S is much smaller than M , it may be shown that the presheaf
O (·, X) determines X, so we have an embedding, in fact a full embedding,
of M into the category of presheaves of sets on S .

Each set O (S,X) carries the compact-open topology. A map between
such sets defined by pre- or postcomposition by a holomorphic map is con-
tinuous. We may therefore consider a complex manifold X as a presheaf of
topological spaces on S . This presheaf has the property that as a holo-
morphic map S1 → S2 between Stein manifolds is varied continuously in
O (S1, S2), the induced precomposition map O (S2, X) → O (S1, X) varies
continuously as well. We would like to do homotopy theory with complex
manifolds viewed as presheaves with this property.

Somewhat unexpectedly, as explained in [69, §3], there are solid reasons,
beyond mere convenience, to rephrase the above entirely in terms of sim-
plicial sets. For the technical terms that follow, we refer the reader to [69]
and the references cited there. To summarize, we turn S into a simplicial
site and obtain an embedding of M into the category S of prestacks on
S . The basic homotopy theory of prestacks on a simplicial site was devel-
oped by B. Toën and G. Vezzosi for use in algebraic geometry [96]. A new
model structure on S, called the intermediate structure and based on ideas
of J. F. Jardine, later published in [63], was constructed in [69]. It is in this
model structure that Gromov’s Oka principle finds a natural home.

The main results of [69] along with Theorem 6 of [70] can be summarized
as follows.

Theorem 4.1. — The category of complex manifolds and holomorphic
maps can be embedded into a model category such that:

• a holomorphic map is acyclic when viewed as a map in the ambient
model category if and only if it is a homotopy equivalence in the usual
topological sense.

• a holomorphic map is a fibration if and only if it is an Oka map. In
particular, a complex manifold is fibrant if and only if it is Oka.

• a complex manifold is cofibrant if and only if it is Stein.

• a Stein inclusion is a cofibration.

A characterization of those holomorphic maps that are cofibrations is
missing from this result. It may be that Stein inclusions and biholomor-
phisms are the only ones.

Knowing that Oka maps are fibrations in a model structure helps us
understand and predict their behaviour. For example, it is immediate by
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abstract nonsense that the composition of Oka maps is Oka, that a retract
of an Oka map is Oka, and that the pullback of an Oka map by an arbitrary
holomorphic map is Oka (it is easily seen that the pullback exists in M and
agrees with the pullback in S). Also, in any model category, the source of
a fibration with a fibrant target is fibrant. It follows that the source of an
Oka map with an Oka target is Oka. On the other hand, the fact that the
image of an Oka map with an Oka source is Oka is a somewhat surprising
feature of Oka theory not predicted by abstract nonsense, the reason being
that the Oka property can be detected using Stein inclusions of the special
kind T ↪→ C

n, where T is contractible.

4.4. Fibrant and cofibrant models

It is a familiar process in mathematics to associate to an object a closely
related but better behaved object, with a good map between the two. For
example, to a topological space we can associate a CW approximation, to a
simplicial set a Kan complex, and to a module over a ring a projective res-
olution. These are examples of fibrant and cofibrant models (also known as
approximations or resolutions). A fibrant model for an object X in a model
category is a fibrant object Z with an acyclic cofibration (or sometimes only
an acyclic map) X → Z. Factoring the map from X to the terminal object
as an acyclic cofibration followed by a fibration using axiom A4 above, we
see that X has a fibrant model, and by axioms A1 and A3, any two fibrant
models for X are weakly equivalent. The dual notion is that of a cofibrant
model.

Thinking about fibrant and cofibrant models for complex manifolds in
the model structure described above leads to interesting questions. As far
as we know, these concepts had not been considered previously. A cofibrant
model for a complex manifold X that lives in the category of complex mani-
folds (and not merely in the ambient model category) is a cofibrant complex
manifold S, that is, a Stein manifold, with an acyclic fibration S → X, that
is, a surjective Oka map with contractible fibres. We call S a Stein model
for X. Note that X is Oka if and only if S is elliptic. The definitions of good
and very good complex manifolds (see §2.6) were motivated by the notion
of a cofibrant model. A very good manifold has a Stein model. It is an open
question whether all complex manifolds do.

An example of a fibrant model for a Stein manifold S is an acyclic Stein
inclusion S ↪→ X such that the Stein manifold X is Oka, that is, elliptic. It
is an open question whether every Stein manifold has such a fibrant model.
We are asking for a variant of the Remmert-Bishop-Narasimhan embedding
theorem with a proper holomorphic embedding that preserves the homotopy
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type of S and whose target retains the key properties of affine space of being
Stein and elliptic. T. Ritter has proved that every open Riemann surface
acyclically embeds into an elliptic manifold, and that when the surface is an
annulus, the target may be taken to be C×C∗ [85, 86]. The latter statement
is a special case of Ritter’s result, proved using the embedding techniques
of E. F. Wold, that every continuous map from a circular domain in C to
C × C∗ is homotopic to an embedding. More general results, for finitely
connected planar domains, are proved in [75].

4.5. Affine simplices in Oka manifolds

Motivated by Gromov’s comments in [52, §3.5.G, §3.5.G’], the affine
singular set eX of a complex manifold X was defined in [71] as the simplicial
set whose n-simplices for each n � 0 are the holomorphic maps into X from
the affine n-simplex

An = {(t0, . . . , tn) ∈ Cn+1 : t0 + . . .+ tn = 1},

viewed as a complex manifold biholomorphic to Cn, with the obvious face
maps and degeneracy maps. If X is Brody hyperbolic, then eX is discrete
and carries no topological information about X. On the other hand, when
X is Oka, eX is “large”.

A holomorphic map An → X is determined by its restriction to Tn ⊂ An,
so we have a monomorphism, that is, a cofibration eX ↪→ sX of simplical
sets. When X is Oka, eX, which is of course much smaller than sX, carries
the weak homotopy type of X. More precisely, the cofibration eX ↪→ sX
is the inclusion of a strong deformation retract ([71], Theorem 1). Even for
complex Lie groups, this result appears not to have been previously known.
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[41] Forstnerič (F.), Wold (E.F.). — Fibrations and Stein neighborhoods, Proc.
Amer. Math. Soc. 138, p. 2037-2042 (2010).
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