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Abstract Given a compact Riemann surface X and a point x0 ∈ X, we construct
a holomorphic function without critical points on the punctured Riemann surface
R = X\{x0} which is of finite order at x0.
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1 The Statement

Let X be a compact Riemann surface, let x0 be an arbitrary point of X, and let R =
X\{x0}. The set of holomorphic functions on R will be denoted by O(R). Let U ⊂ X

be a coordinate neighborhood of the point x0 and let z be a local coordinate on U

with z(x0) = 0. A holomorphic function f ∈ O(R) on R is said to be of finite order
(at the point x0) if there exist positive numbers λ and μ such that

|f (z)| ≤ λ exp |z|−μ holds on U\{x0}. (1)
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We denote by Of.o.(R) the set of all holomorphic functions of finite order on R. For
any f ∈ Of.o.(R), the order of f is defined as the infimum of all numbers μ > 0
such that (1) holds for some λ > 0. By using Poisson–Jensen’s formula it is easy
to see that, for any nonvanishing holomorphic function f on U\{x0} satisfying (1),
there exist a neighborhood V � x0 and a number χ > 0 such that 1

|f (z)| ≤ χ exp |z|−μ

on V \{x0} (Hadamard’s theorem; cf. [1, Chap. 5]).
In 1967 Gunning and Narasimhan proved that every open Riemann surface admits

a holomorphic function without critical points [4]. Our goal is to prove the following
result for punctured Riemann surfaces.

Theorem 1.1 If X is a compact Riemann surface and x0 ∈ X, then the punctured
Riemann surface R = X\{x0} admits a noncritical holomorphic function of finite
order; that is, {f ∈ Of.o.(R) : df �= 0 everywhere} �= ∅.

We show that this result is the best possible one, except when X = CP
1 is the

Riemann sphere, in which case R = C:

Proposition 1.2 If X is a compact Riemann surface of genus g ≥ 1 and x0 ∈ X then
every algebraic function X\{x0} → C has a critical point.

In the case when X is a torus, this was shown in [7, §4].

Proof Assume that f : R = X\{x0} → C is an algebraic function. Then f extends to
a meromorphic map X → CP

1 sending x0 to the point ∞. Let d denote the degree of
f at x0, so f equals the map z �→ zd in a certain pair of local holomorphic coordinates
at the points x0 and ∞. Since f −1(∞) = {x0}, d is also the global degree of f . By
the Riemann–Hurwitz formula (see [5]) we then have

χ(X) = dχ(CP
1) − b,

where χ(X) is the Euler number of X and b is the total branching order of f (the
sum of its local branching orders over the points of X). If we assume that f has no
critical points on R, then it only branches at x0, and its branching order at x0 is clearly
b = d −1. Hence the above equation reads 2−2g = 2d − (d −1) = d +1 ≥ 1, which
is clearly impossible if g ≥ 1. In fact, we see that any algebraic function f : R =
X\{x0} → C with degree d at x0 must have precisely (d +1)− (2−2g) = d +2g−1
branch points in R when counted with algebraic multiplicities. �

2 Preliminaries

We assume that X and R = X\{x0} are as above.

Proposition 2.1 For any effective divisor δ on X whose support does not contain the
point x0 there exists f ∈ Of.o.(R) whose zero divisor f −1(0) coincides with δ.
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Proof Since holomorphic vector bundles over noncompact Riemann surfaces are triv-
ial by Grauert’s Oka principle, there exists a holomorphic function f0 on R whose
zero divisor equals δ. Let V be a disc neighborhood of the point x0 in X, with a holo-
morphic coordinate z in which z(x0) = 0, such that f0 does not vanish on V \{x0}. Let
m ∈ Z denote the winding number of f around the point x0. Choose a meromorphic
function h on X such that h(z) = c(z)zm on z ∈ V for some nonvanishing holomor-
phic function c on V , and such that all remaining zeros and poles of h lie in X\V .
Then f0/h is a nowhere vanishing holomorphic function with winding number zero
in V \{x0}, and hence log(f0/h) has a single-valued holomorphic branch on V \{x0}.
Choose a smaller disc W � V centered at x0. By solving a Cousin-I problem we find
holomorphic functions u1 on X\W and u2 on V \{x0} such that u1 −u2 = log(f0/h)

holds on V \W , and such that x0 is a pole of the function u2. Hence, letting f = he−u2

on V \{x0} and f = f0e
−u1 on R\W , we obtain a function f ∈ Of.o.(R) satisfying

f −1(0) = δ. �

Let L → X be a holomorphic line bundle and let h be a fiber metric of L. A holo-
morphic section s of L over R is said to be of finite order if the length |s| of s with
respect to h satisfies on U\{x0}, as a function of the local coordinate z, the estimate

|s|(z) ≤ λ exp |z|−μ for some λ,μ ∈ (0,∞).

The order of s is defined similarly as in the case of holomorphic functions. Since
every holomorphic line bundle over X is associated with a divisor, Proposition 2.1
implies the following.

Proposition 2.2 For any holomorphic line bundle L over X, there exists a holomor-
phic section s of the restricted bundle L|R such that s is of finite order and s(x) �= 0
for all x ∈ R.

Proof Let v be any meromorphic nonzero section of L. Let p1, . . . , pm (resp.,
q1, . . . , qn) be the poles (resp., the zeros) of v in R. By Proposition 2.1 there ex-
ist functions f,g ∈ Of.o.(R) such that p1 + p2 + · · · + pm (resp., q1 + · · · + qn) is
the zero divisor of f (resp., of g). Then the section s = f v/g satisfies the stated
properties. �

Corollary 2.3 There exists a holomorphic 1-form of finite order on R which does not
vanish anywhere.

Let ω be a nowhere vanishing holomorphic 1-form of finite order on R guaranteed
by Corollary 2.3. Then, Theorem 1.1 is equivalent to saying that there exists a func-
tion g ∈ Of.o.(R) such that g−1(0) = ∅ and

∫
γ

gω = 0 holds for any 1-cycle γ on R,
for the primitives of gω will then be without critical points and clearly of finite order,
the converse being obvious.

We shall show that such g can be found in a subset of Of.o.(R) consisting of
functions of the form exp

∫ x

x1
η, where η are meromorphic 1-forms on X which are

holomorphic on R and x1 ∈ R is an arbitrary fixed point in R.
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Let us denote by �1
alg(R) (resp., Oalg(R)) the set of meromorphic 1-forms (resp.,

meromorphic functions) on X which are holomorphic on R. The general theory of
coherent algebraic sheaves on affine algebraic varieties implies the following (cf. [8]
or [5]).

Proposition 2.4 Every element of H 1(R;C) is represented by an element of �1
alg(R)

as a de Rham cohomology class.

Let K be a compact set in R and let O(K) denote the set of all continuous func-
tions on K which are holomorphically extendible to some open neighborhoods of K

in X. Then the Runge approximation theorem says the following in our situation.

Proposition 2.5 For any compact set K ⊂ R such that R\K is connected, the image
of the restriction map Oalg(R) → O(K) is dense with respect to the topology of
uniform convergence.

The proof of Theorem 1.1 to be given below is basically a combination of Corol-
lary 2.3, Proposition 2.4, and Proposition 2.5. In order to make a shortcut argument,
we shall apply a refined version of Proposition 2.5 (Mergelyan’s theorem) below.

3 Proof of Theorem 1.1

For any C 1 curve α : [0,1] → X we denote by |α| its trace, i.e., |α| = {α(t) : 0 ≤
t ≤ 1}. If α is closed (α(0) = α(1)), we denote by [α] its homology class in
H 1(X;Z).

Let g denote the genus of X. There exist simple closed real-analytic curves
α1, . . . , α2g in R satisfying

H 1(X;Z) =
2g∑

i=1

Z[αi] (2)

such that
⋂2g

i=1 |αi | = {p} holds for some point p ∈ R and such that, putting 
 =
⋃2g

i=1 |αi |, the complement R\
 is connected.
For each curve αi there is a neighborhood Ui ⊃ |αi | in R and a biholomorphic map

ϕi from an annulus Ar = {w ∈ C : 1 − r < |w| < 1 + r} onto Ui for a sufficiently
small r > 0 such that the positively oriented unit circle {|w| = 1} is mapped by ϕi

onto the curve αi , with ϕi(1) = p. For i = 1, . . . ,2g put

φ∗
i ω = Hi(w)dw, ni = 1

2π
√−1

∫

|w|=1
d logHi ∈ Z.

By Proposition 2.4 there exists ξ ∈ �1
alg(R) such that

ni = 1

2π
√−1

∫

αi

ξ, i = 1, . . . ,2g. (3)

Author's personal copy



1082 F. Forstnerič, T. Ohsawa

Let

u(x) = exp
∫ x

p

ξ, x ∈ R.

By (2) and (3) the integral is independent of the path in R. (Note that the cycle
around the deleted point x0 is homologous to zero in R.) Hence the function u is
well defined, single valued, and nonvanishing on R, and u ∈ Of.o.(R) because ξ ∈
�1

alg(R). Replacing ω by ω/u we obtain a nowhere vanishing 1-form of finite order
on R, still denoted ω, for which the winding numbers ni equal zero. It follows that
for every i = 1, . . . ,2g we have

ϕ∗
i ω = ehi(w)+ci dw

for some constants ci ∈ C and holomorphic functions hi on the annulus Ar ⊂ C with
hi(1) = 0. Note that the functions hi ◦ϕ−1

i : |αi | → C agree at the unique intersection
point p of the curves |αi |, and hence they define a continuous function H on 
 =⋃

i |αi |. For every h ∈ Oalg(R) we have

∫

αi

e−hω = eci

∫

|w|=1
ehi−h◦ϕi dw.

These numbers can be made arbitrarily small by choosing h to approximate H uni-
formly on 
 (which is equivalent to requiring that hi −h◦ϕi is small on {|w| = 1} for
every i = 1, . . . ,2g). Such h exist by Mergelyan’s theorem: Since R\
 is connected,
every continuous function on 
 is a uniform limit of functions in Oalg(R) (cf. [3,
Chap. 3]).

We assert that there exist functions fi ∈ Oalg(R) for i = 1, . . . ,2g and a number
ε > 0 such that, for any h ∈ Oalg(R) satisfying

sup
|αi |

|hi ◦ ϕ−1
i − h| < ε, i = 1, . . . ,2g, (4)

there exist numbers ζi ∈ C (i = 1, . . . ,2g) such that

∫

αj

exp

⎛

⎝
2g∑

i=1

ζifi − h

⎞

⎠ω = 0, j = 1, . . . ,2g. (5)

To prove this assertion, which clearly implies Theorem 1.1 (the potential of the
1-form under the integral in (5) is a holomorphic function of finite order and without
critical points on R), choose functions fi ∈ Oalg(R) for i = 1, . . . ,2g satisfying

ecj

∫

|w|=1
fi ◦ ϕj (w)dw = δij , (6)

where δij denotes Kronecker’s delta. Such fi exist by Proposition 2.5 applied with
K = 
. After fixing the fi ’s, let us choose numbers 0 < ε0 < 1 and C0 > 1 in such a
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way that

sup



∣
∣
∣
∣
∣
∣
exp

⎛

⎝
2g∑

i=1

τifi

⎞

⎠ − 1 −
2g∑

i=1

τifi

∣
∣
∣
∣
∣
∣
≤ C0 max

i
|τi |2 (7)

holds if τi ∈ C and maxi |τi | ≤ ε0.
Let c = maxi |ci |. By decreasing the number ε0 > 0 if necessary we can assume

that

8πC0e
1+cε0 < 1.

Choose a constant C1 > 0 such that

|et − 1| < C1|t | if |t | < ε0.

Then, by (6) and (7), it is easy to see that, for any positive number ε > 0 satisfying

8πC1

⎛

⎝1 + sup



2g∑

i=1

|fi |
⎞

⎠ < ε0

and for any h ∈ Oalg(R) satisfying (4), the inequality
∣
∣
∣
∣
∣
τj −

∫

αj

exp
(∑

τifi − h
)

ω

∣
∣
∣
∣
∣
≤ ε0

2

holds for every j = 1, . . . ,2g whenever maxi |τi | = ε0. Hence, for such a choice of h,
the map

C
2g � τ = (τ1, . . . , τ2g)

�−→ (
�1(τ ), . . . ,�2g(τ )

) ∈ C
2g,

whose j -th component is defined by

�j(τ) =
∫

αj

exp

⎛

⎝
2g∑

i=1

τifi − h

⎞

⎠ω,

maps the polydisc P = {τ ∈ C
2g : max |τi | < ε0} onto a neighborhood of the origin

in C
2g . In particular, we have �(ζ) = 0 for some point ζ = (ζ1, . . . , ζ2g) ∈ P , and

for this ζ (5) hold. This concludes the proof of Theorem 1.1.

4 Concluding Remarks

By a minor adjustment of the proof of Theorem 1.1 one can construct a nowhere
vanishing holomorphic 1-form of finite order, ω, on R whose periods

∫
αj

ω over the
basis curves [αj ] of H1(R;Z) are arbitrary given complex numbers. In other words,
one can prove the following result. (See Kusunoki and Sainouchi [6] and Majcen [7]
for the corresponding result on an open Riemann surface and without the finite order
condition.)
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Theorem 4.1 Let X be a compact Riemann surface and x0 ∈ X. Every element of
the de Rham cohomology group H 1(X;C) is represented by a nowhere vanishing
holomorphic 1-form of finite order on R = X\{x0}.

Since every affine algebraic curve A ⊂ C
N is obtained by deleting finitely many

points from a compact Riemann surface, Theorem 1.1 implies that every affine alge-
braic curve admits a noncritical holomorphic function of finite order. One may ask
whether the same result also holds on higher dimensional algebraic manifolds:

Problem 4.2 Does every affine algebraic manifold A ⊂ CN of dimension dimA > 1
admit a noncritical holomorphic function f : A → C of finite order?

Here we say that f is of finite order if |f (z)| ≤ λ exp |z|μ holds for all z ∈ A and
for some pair of constants λ,μ > 0.

Since such A is a Stein manifold, it admits a noncritical holomorphic function ac-
cording to [2]. The construction in that paper is quite different from the one presented
here even for Riemann surfaces, and it does not necessarily give a function of finite
order when A is algebraic. The main difficulty is that the closedness equation dω = 0
for a holomorphic 1-form, which is automatically satisfied on a Riemann surface,
becomes a nontrivial condition when dimA > 1. In particular, this condition is not
preserved under multiplication by holomorphic functions, and hence one cannot hope
to adjust the periods in the same way as was done above.
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