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1 Introduction

This paper was motivated by open problems in a classical field of geometry—
null curves in C

3 and in SL2(C). The former are holomorphic immersions
F = (F1,F2,F3) : M → C

3 of an open Riemann surface M into C
3 which

are directed by the quadric subvariety

A = {
z = (z1, z2, z3) ∈ C

3 : z2
1 + z2

2 + z2
3 = 0

}
, (1.1)

in the sense that the derivative F ′ = (F ′
1,F

′
2,F

′
3) with respect to any lo-

cal holomorphic coordinate on M has range in A \ {0}. The real and the
imaginary part of a null curve are minimal surfaces in R

3; conversely, ev-
ery simply connected, conformally immersed minimal surface in R

3 is the
real part of a null curve in C

3. This connection has strongly influenced the
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Institute of Mathematics, Physics and Mechanics, Jadranska 19, 1000 Ljubljana, Slovenia

mailto:alarcon@ugr.es
mailto:franc.forstneric@fmf.uni-lj.si


734 A. Alarcón, F. Forstnerič

theory of minimal surfaces, supplying this field with powerful tools coming
from complex analysis and Riemann surfaces theory. (See [43] for a classi-
cal survey of this subject and [38, 39] for recent ones.) Similarly, null curves
in SL2(C) are holomorphic immersions M → SL2(C) directed by the vari-
ety

{
z =

(
z11 z12
z21 z22

)
: det z = z11z22 − z12z21 = 0

}
⊂C

4. (1.2)

The projection of a null curve in SL2(C) to the hyperbolic 3-space H3 =
SL2(C)/SU(2) is a Bryant surface (mean curvature 1 surface); conversely, a
simply connected Bryant surface in H3 lifts to a null curve in SL2(C) [9]. See
for instance [12, 44, 45] for the background on this topic.

In spite of the rich literature on null curves, many basic problems remain
open. In this paper we invent new methods to solve several of them, not only
for null curves, but also for immersions with derivative in an arbitrary conical
subvariety A of C

n which is smooth away from the origin; such directed
immersions will be called A-immersions (Definition 2.1). For convenience
we also assume that A is irreducible and is not contained in any hyperplane.
We point out that null curves in C

3, and in C
n for any n ≥ 3, are a particular

case of all our results. Unlike in many papers where results hold only after a
deformation of the complex structure on the Riemann surface M , usually due
to cutting away pieces of the surface (see among others [6, 8], and [3, 4, 15]
for the corresponding problems on minimal surfaces), we always work with
a fixed complex structure.

Our results can be divided in two classes; lacking a better term, we call
them local and global ones. The local results pertain to compact bordered
Riemann surfaces. We show that the set of all A-immersions M → C

n con-
tains an open everywhere dense subset consisting of so called nondegen-
erate A-immersions (Definition 2.2), and this subset is an infinite dimen-
sional complex Banach manifold; see Theorem 2.3. We also prove that ev-
ery A-immersion can be approximated by A-embeddings (i.e., injective A-
immersions); see Theorem 2.4 and Corollary 2.8.

The global results pertain to all open Riemann surfaces, but we assume in
addition that A \ {0} is an Oka manifold in the sense of [20]. (See Sect. 4
below.) This condition is completely natural, and its 1-dimensional version,
Property CAP1 (see [21, Definition 5.4.3]), is even necessary. This holds in
particular for the varieties (1.1), (1.2) controlling null curves, and for any
other quadric conical hypersurface in C

n which is smooth away from the
origin. We prove that A-immersions can be approximated by A-embeddings
(Theorem 2.5), and they satisfy the Oka principle (Theorem 2.6), includ-
ing the Runge and the Mergelyan approximation property (Theorems 7.2
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and 7.7). For such A, we use these tools to construct proper A-embeddings of
an arbitrary open Riemann surface into C

n; see Theorem 8.1.
Directed immersions have been studied in many classical geometries (sym-

plectic, contact, totally real, Lagrangian, etc.); surveys can be found in the
monographs by Gromov [29] and Eliashberg and Mishachev [14] (see in par-
ticular Chap. 19 in the latter). Apart from specific examples such as null
curves, ours seems to be the first systematic investigation of this subject in
the holomorphic case. Interesting new problems open up, and we point out
some of them at the end of the following section.

2 Main results

In this section we present our main results, indicate the methods used in the
proof, and mention some interesting problems that our work opens. The or-
ganization of the paper is explained along the way.

Definition 2.1 Let A be a (topologically) closed conical complex subvariety
of C

n. (A subvariety A is conical if tA = A for every t ∈ C
∗ = C \ {0}.)

A holomorphic immersion F = (F1, . . . ,Fn) : M → C
n of an open Riemann

surface M to C
n is said to be directed by A, or an A-immersion, if its complex

derivative F ′ with respect to any local holomorphic coordinate on M assumes
values in A\{0}. Likewise, F is said to be an A-embedding if it is an injective
A-immersion.

By Chow’s theorem, every closed conical complex subvariety of Cn is al-
gebraic and is the common zero set of finitely many homogeneous holomor-
phic polynomials; see e.g. [10, p. 73].

Definition 2.1 also applies if M is a bordered Riemann surface with smooth
boundary bM ⊂ M and F : M → C

n is a map of class C1(M) (i.e., continu-
ously differentiable on M) which is holomorphic in the interior M̊ = M \bM .

Pick a nowhere vanishing holomorphic 1-form θ on M . (Such a 1-form
exists by the Oka-Grauert principle, see [25–27] or Theorem 5.3.1 in [21,
p. 190]. If M is a compact bordered Riemann surface, we can choose θ to be
smooth on M and holomorphic in the interior.) Then we can write dF = f θ ,
where f = (f1, . . . , fn) : M → C

n is a holomorphic map. Clearly F is an A-
immersion if and only if f = dF/θ maps M to A \ {0}. The specific choice
of the 1-form θ does not matter since A is conical.

We shall always assume that A \ {0} is smooth (non-singular). Without
loss of generality we also assume that M , and the submanifold A \ {0} ⊂C

n,
are connected (so the variety A is irreducible), and that A is not contained
in any hyperplane of Cn. These conditions imply that n ≥ 3 (since the only
irreducible complex cones in C

2 are complex lines).
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We denote by IA(M) the set of all A-immersions of an open Riemann sur-
face M to C

n. If M is a compact bordered Riemann surface with smooth
boundary ∅ 	= bM ⊂ M , we denote by Ar (M,Cn) the set of all maps
M → C

n of class Cr (r ∈ Z+) that are holomorphic on M̊ , and by IA(M) ⊂
A1(M,Cn) the set of all A-immersions M → C

n of class C1 that are holo-
morphic on M̊ . The space IA(M) is naturally endowed with the topology
associated to the C1 maximum norm on M (see Sect. 3).

The following notion will play an important role in our analysis.

Definition 2.2 An A-immersion F : M → C
n is said to be nondegenerate if

the linear span of the tangent spaces Tf (x)A, x ∈ M , equals Cn; otherwise F

is said to be degenerate. (Here dF = f θ as above.)

It is immediate that nondegenerate A-immersions of a compact bordered
Riemann surface M form an open subset of the space IA(M). Our first result
concerns the local structure of IA(M).

Theorem 2.3 Let M be a compact bordered Riemann surface, and let A be
an irreducible closed conical subvariety of Cn (n ≥ 3) which is not contained
in any hyperplane and such that A \ {0} is smooth. Then the following hold:

(a) Every A-immersion F ∈ IA(M) can be approximated in the C1(M)

topology by nondegenerate A-immersions.
(b) The set of all nondegenerate A-immersions M → C

n is a complex Ba-
nach manifold.

(c) If M is a smoothly bounded compact domain in a Riemann surface R,
then every F ∈ IA(M) can be approximated in the C1(M) topology by
A-immersions defined on small open neighborhoods of M in R.

Observe that IA(M) is always nonempty as it contains immersions of the
form M 
 x �→ zg(x) ∈ C

n, where z ∈ A\{0} and g is a holomorphic function
without critical points on M (see Gunning and Narasimhan [31]). Immersions
of this form are obviously degenerate.

Theorem 2.3 is proved in Sect. 5. In relation to part (b), we can add that the
set of all nondegenerate A-immersions is a split complex Banach submanifold
of the Banach space A1(M,Cn); see Remark 5.3.

The following desingularization result is new even for null curves in C
3.

Theorem 2.4 Let M be a compact bordered Riemann surface. If A ⊂ C
n

(n ≥ 3) is a subvariety as in Theorem 2.3, then every A-immersion M → C
n

can be approximated in the C1(M) topology by A-embeddings.

Theorem 2.4 is proved in Sect. 6 by using the transversality theorem. To
construct a submersive family of A-immersions to which Sard’s lemma ap-
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plies, we use methods developed in the proof of Theorem 2.3, but with rather
precise estimates.

Theorem 2.4 and the results of [6] immediately give complete properly em-
bedded null curves in any convex domain of C3; see Corollary 6.2 in Sect. 6
for a brief discussion of this result.

We now pass on to the global results, assuming in addition that A \ {0}
is an Oka manifold. (See Definition 4.1 in Sect. 4 below, where we also re-
call some sufficient geometric conditions for this property.) The quadric (1.1)
controlling null curves is Oka. We mention in particular that A \ {0} is Oka if
and only if the projection A∞ ⊂ CP

n−1 of A to the hyperplane at infinity is
Oka; see Proposition 4.5.

The following analogue of Theorem 2.4 is proved in Sect. 6.

Theorem 2.5 Let M be an open Riemann surface, and let A ⊂ C
n be a closed

conical subvariety as in Theorem 2.3. If A \ {0} is an Oka manifold, then
every A-immersion M → C

n can be approximated uniformly on compacts by
A-embeddings.

In particular, every immersed null curve in C
n, n ≥ 3, can be approximated

by embedded null curves.

Next we describe the Oka principle for directed immersions.
Recall that a compact set K in a complex manifold M is said to be O(M)-

convex if K equals its holomorphically convex hull

K̂ =
{
x ∈ M : ∣∣f (x)

∣∣ ≤ sup
K

|f | ∀f ∈ O(M)
}
.

If M is a Stein manifold (for instance, an open Riemann surface), then K = K̂

implies the Runge theorem, also called the Oka-Weil theorem in this setting:
Every holomorphic function on a neighborhood of K can be approximated,
uniformly on K , by functions holomorphic on M . (See e.g. [32].) For this
reason we shall also call such a set K a Runge set in M .

Theorem 2.6 (The Oka principle for A-immersions) Let M be an open Rie-
mann surface, and let A ⊂ C

n (n ≥ 3) be a closed conical subvariety as in
Theorem 2.3. Assume in addition that A \ {0} is an Oka manifold (see Defini-
tion 4.1 below). Fix a nowhere vanishing holomorphic 1-form θ on M .

Every continuous map f : M → A \ {0} is homotopic to a holomorphic
map f̃ : M → A\{0} such that f̃ θ = dF̃ is the differential of an A-immersion
F̃ : M → C

n. Furthermore, if f θ = dF is the differential of an A-immersion
F on an open neighborhood of a compact Runge set K ⊂ M , then the A-
immersion F̃ can be chosen to approximate F uniformly on K .
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Theorem 2.6 is proved in Sect. 7. In the proof we combine the Oka princi-
ple for maps to Oka manifolds (see Theorem 4.2) with the technique of con-
trolling the periods, developed in the proof of Theorem 2.3. The Oka property
of A \ {0} allows us to deform f to a holomorphic map f̃ : M → A \ {0}. The
main nontrivial point is to show that this map can be chosen such that the
1-form f̃ θ has vanishing periods, i.e., it is exact. This is done inductively by
passing through sublevel sets of a strongly subharmonic Morse exhaustion
function. The control of the periods is provided by Lemma 7.3.

If D is a closed Jordan domain in an open Riemann surface M , then M

is obtained by successively adding 0- and 1-handles to D. It follows that any
continuous map D → X to a connected manifold X extends to a continuous
map M → X. In the context of Theorem 2.6, with X = A \ {0} and D a
suitable open neighborhood of the compact Runge set K in M , we obtain the
following corollary to Theorem 2.6.

Corollary 2.7 (Runge theorem for A-immersions) Let M and A ⊂ C
n be as

in Theorem 2.6. Assume that K is a compact Runge set in M and F : U → C
n

is an A-immersion on an open neighborhood of K . Then F can be approxi-
mated uniformly on K by A-immersions M → C

n.

We also obtain the Mergelyan approximation theorem for A-immersions;
see Theorems 7.2 and 7.7 in Sect. 7. In the second version (Theorem 7.7) we
assume that the directional variety A has a smooth hyperplane section which
is an Oka manifold, and we prove the Mergelyan theorem for A-immersions
with a fixed component function that is holomorphic on all of M . This enables
us to show that every open Riemann surface carries a proper A-embedding
into C

n (see Theorem 8.1), thereby solving a natural question that has been
open even for null curves in C

3.
We remark that, for null curves in C

3, Runge and Mergelyan theorems
were proved by Alarcón and López [7]. Their analysis depends on the Weier-
strass representation of a null curve, a tool that is not available in the general
situation considered here.

We end this survey of results by briefly discussing null curves in

SL2(C) =
{
z =

(
z11 z12
z21 z22

)
: det z = z11z22 − z12z21 = 1

}
⊂C

4.

Although the quadric variety (1.2) meets all our requirements, our methods
do not apply directly to null curves in SL2(C). Indeed, applying our defor-
mation procedures to a null curve M → SL2(C) ⊂ C

4, one gets holomor-
phic immersions M → C

4 directed by the variety (1.2), but the resulting
curves need not lie in SL2(C). However, some of our results can be trans-
ported to null curves in SL2(C) \ {z11 = 0} by using the biholomorphism
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T : C3 \ {z3 = 0} → SL2(C) \ {z11 = 0}, given by

T (z1, z2, z3) = 1

z3

(
1 z1 + ız2

z1 − ız2 z2
1 + z2

2 + z2
3

)
, ı = √−1, (2.1)

which maps null curves into null curves; see [37]. The following is an imme-
diate corollary to Theorem 2.4.

Corollary 2.8 If M is a compact bordered Riemann surface, then every im-
mersed null curve M → SL2(C) \ {z11 = 0} can be approximated in the
C1(M) topology by embedded null curves.

The local Mergelyan approximation theorem holds in SL2(C) \ {z11 = 0};
see Corollary 7.6. Finally, Corollary 6.2 and the correspondence T give com-
plete bounded embedded null curves in SL2(C).

On the other hand, we do not know how to derive the Oka principle and the
global approximation properties for null curves in SL2(C)\{z11 = 0} by using
the correspondence T . Furthermore, T does not seem useful for determining
whether every open Riemann surface is a properly embedded null curve in
SL2(C), in analogy to the situation in C

3 (see Theorem 8.1). This question
remains open even allowing self-intersections.

Methods used in the proof We systematically work with the derivative map
f : M → A \ {0}, where dF = f θ and θ is a nowhere vanishing holomorphic
1-form on M . Every small holomorphic deformation of f is obtained as a
composition of flows of holomorphic vector fields tangential to A, where the
respective time variables are holomorphic functions on M . The main point is
to find deformations with suitable properties and with vanishing periods over
a basis of the 1st homology group H1(M;Z); the latter property ensures that
the map integrates to an A-immersion M → C

n. For this purpose we develop
an effective method of controlling the periods (see Lemma 5.1). Although
similar technique have been used before (see e.g. [6, 31, 34, 36]), our proof
pertains to a completely general situation and only assumes that A is not
contained in any complex hypersurface. This implies that the convex hull of
A equals Cn (see Lemma 3.1). Our use of this condition, which corresponds
to ampleness in Gromov’s theory, is reminiscent of the proof of the convex
integration lemma, the basic step in Gromov’s method of convex integration
of partial differential relations [14, 28, 29].

In our global results, the method of controlling the periods is combined
with the Oka principle for maps from Stein manifolds to Oka manifolds (see
Sect. 4). Finally, to desingularize A-immersions to A-embeddings, we com-
bine all of the above techniques with Abraham’s approach [1] to transversality
theorems.
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Open problems Our results open several directions of possible further re-
search; let us mention a few of them.

First of all, one could study A-maps F : M → C
n, that is, holomorphic

maps whose derivative belongs to A, but may assume the value zero. The
analysis near singularities of an immersion may be rather delicate.

An interesting generalization would be to allow the variety A to depend on
the base point. Let A be a closed complex subvariety of TC

n ∼= C
n ×C

n with
conical fibers Az ⊂ TzC

n. (A special case with linear fibers are holomorphic
distributions.) A holomorphic immersion F : M → C

n is an A-immersion
if F ′(x) ∈ AF(x) for every x ∈ M . To what extent do our results generalize
to this setting? Since sections of the first coordinate projection π : A → C

n

define vector fields on C
n whose integral curves are A-immersions, there exist

plenty of A-immersions of the disc, but it may be difficult to deal with non-
simply connected Riemann surfaces. An example are the complex Legendrian
curves in C

3 which are directed by the distribution dz1 + z3dz2.
Finally, what could be said about directed holomorphic immersions of

Stein manifolds of dimension > 1? Due to involutivity obstructions one must
in general allow an open set of directions (an open differential relation in
Gromov’s terminology [29]) to obtain nontrivial results. We hope to return to
these interesting questions in a future work.

3 Preliminaries

In this section we establish the notation and recall some basic facts on Rie-
mann surfaces; see for example [2, 16] or any other standard source.

Let M be a compact connected bordered Riemann surface with boundary
∅ 	= bM ⊂ M . Denote by g the genus of M and by m the number of bound-
ary components of M . By gluing a disc onto M along each of its bound-
ary curves, we obtain a compact surface, R, containing M as a domain with
smooth boundary; the number g is also the genus of R.

The 1-st homology group H1(M;Z) is a free Abelian group on l =
2g + m − 1 generators. We can represent the basis of H1(M;Z) by closed,
smoothly embedded loops γ1, . . . , γl : S1 → M̊ that only meet at a chosen
base point p ∈ M̊ . Let Cj = γj (S

1) ⊂ M denote the trace of γj . Their union
C = ⋃l

j=1 Cj is a wedge of l circles meeting at p.
For any r ∈ Z+ we denote by Ar (M) = Ar (M,C) the space of all Cr

functions M → C that are holomorphic in M̊ . Similarly we define the space
Ar (M,X) of maps A → X to a complex manifold X. We write A0(M) =
A(M) and A0(M,X) = A(M,X). The space Ar (M,X) is naturally en-
dowed with the topology associated to the Cr maximum norm, measured
with respect to some smooth Riemannian metric on each of the two mani-
folds. Note that Ar (M,Cn) is a complex Banach space; furthermore, for any
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complex manifold X, Ar (M,X) is a complex Banach manifold modeled on
Ar (M,Cn) with n = dimX (see [19, Theorem 1.1]).

A function f : M → C is said to be holomorphic on M if it is holomorphic
on some unspecified open neighborhood of M in R; the space of all such
functions is denoted O(M). Holomorphic 1-forms on M are defined likewise,
as the restrictions to M of holomorphic 1-forms in open neighborhoods on
M in R. It is classical that each function in Ar (M) can be approximated in
the Cr (M) topology by functions in O(M). The same is true for maps to an
arbitrary complex manifold or complex space (see [13, Theorem 5.1]).

Let A be a closed conical complex subvariety of Cn. By Chow’s theorem,
such a variety A is algebraic. Let A ⊂ CP

n = C
n ∪ CP

n−1 be the projective
closure of A. Denoting by 0 the origin of Cn, we have a holomorphic vector
bundle projection π : CPn \ {0} → CP

n−1. Then

A∞ := π
(
A \ {0}) = π

(
A \ {0}) = A ∩CP

n−1 (3.1)

is a closed algebraic subvariety of CPn−1, and A is the cone over A∞. Note
that A \ {0} is smooth and connected if and only if A∞ is such. Furthermore,
A is not contained in any hyperplane in C

n if and only if A∞ is not contained
in any projective hyperplane in CP

n−1. If A ⊂C
3 is the quadric variety (1.1)

controlling null curves, then A∞ is a smooth rational curve in CP
2 (an em-

bedded copy of the Riemann sphere CP
1).

The following observation will be used in Sect. 7 below; lacking a precise
reference, we include a short proof. Simple examples show that the result fails
in general for non-algebraic subvarieties.

Lemma 3.1 The convex hull of an algebraic subvariety A ⊂ C
n is the small-

est affine complex subspace of Cn containing A.

Proof If the convex hull of A is not all of C
n, the Hahn-Banach theorem

tells us that A lies in the half space {u ≤ c} for some nonconstant real linear
function u on C

n. Let A ⊂ CP
n denote the projective closure of A. Since

u is bounded from above on A, it extends across the subvariety A∞ = A ∩
CP

n−1 to a bounded plurisubharmonic function u∗ : A → R ∪ {−∞}. As A

is compact, the maximum principle implies that u∗ is constant, so A lies in an
affine complex hyperplane. Now proceed inductively. �

Fix a nowhere vanishing holomorphic 1-form θ on M ; such exists since
every holomorphic vector bundle on M is trivial by the Oka-Grauert prin-
ciple [25–27]. Given a holomorphic map F = (F1, . . . ,Fn) : M → C

n,
we write dFj = fjθ and identify the differential dF with the map f =
(f1, . . . , fn) : M → C

n. Then F is an A-immersion if and only if f maps M

to A \ {0}. Conversely, a holomorphic map f = (f1, . . . , fn) : M → A \ {0}



742 A. Alarcón, F. Forstnerič

determines an A-immersion F : M → C
n if and only if the holomorphic

vector-valued 1-form f θ = (f1θ, . . . , fnθ) is exact, and in this case F is ob-
tained as the integral

F(x) = F(p) +
∫ x

p

f θ, x ∈ M (3.2)

from an arbitrary initial point p ∈ M to x. The choice of the integration curve
from p to x does not matter.

For a fixed choice of a nowhere vanishing holomorphic 1-form θ on M and
of the basis {γj }lj=1 of the homology group H1(M;Z), we denote by

P = (P1, . . . ,Pl) : A
(
M,Cn

) → (
C

n
)l

the period map whose j -th component, applied to f ∈ A(M,Cn), equals

Pj (f ) =
∫

γj

f θ =
∫ 1

0
f

(
γj (t)

)
θ
(
γj (t), γ̇j (t)

)
dt ∈C

n. (3.3)

By Stokes’ theorem, the period map does not change under homotopic defor-
mations of the loops γj : [0,1] → M , and the 1-form f θ is exact if and only
if its periods vanish: Pj (f ) = ∫

γj
f θ = 0 for j = 1, . . . , l.

4 Oka manifolds

In this section we recall the Oka principle for maps of Stein manifolds to Oka
manifolds, and we mention the geometric conditions and examples which
are most relevant for us and which illuminate the scope of our global results
on A-immersions. A comprehensive exposition of Oka theory can be found
in [21]; for a more leisurely introduction see the surveys [22, 23]. The paper
[24] contains up-to-date information of what is known about which compact
complex surfaces are Oka.

The concept of an Oka manifold evolved from the classical Oka-Grauert
principle and the seminal work of Gromov [30]. This class of manifolds was
first formally introduced in [20]; see also [21, Definition 5.4.1].

Definition 4.1 A complex manifold X is said to be an Oka manifold if every
holomorphic map from a neighborhood of a compact convex set K ⊂ C

N to
X can be approximated, uniformly on K , by entire maps CN → X.

The main result is that maps M → X from a Stein manifold M to an Oka
manifold X satisfy all forms of the Oka principle (see [21, Theorem 5.4.4]).
We shall use the following Oka property with approximation.



Null curves and directed immersions of open Riemann surfaces 743

Theorem 4.2 Assume that X is an Oka manifold, and let K be a compact
Runge set in a Stein manifold M . Then every continuous map f : M → X

which is holomorphic on a neighborhood of K can be approximated, uni-
formly on K , by holomorphic maps M → X that are homotopic to f .

By a theorem of Grauert [25], every complex homogeneous manifold is an
Oka manifold. (See also [21, Proposition 5.5.1].) The most useful geometric
conditions which are known to imply that a manifold is Oka are ellipticity in
the sense of Gromov [30], and subellipticity in the sense of Forstnerič [17].
These conditions are formulated in terms of (families of) holomorphic sprays
s : E → X on holomorphic vector bundles E → X. A spray restricts to the
identity map on the zero section of E; it is said to be dominating if its deriva-
tive ds0z : Ez → TzX in the fiber direction at any point 0z in the zero section
is surjective. A complex manifold which admits a dominating spray is said
to be elliptic. Similarly one defines dominability of a family of sprays and
subelliptic manifolds.

Example 4.3 (Gromov [30]) If the tangent bundle T X of a complex mani-
fold X is pointwise spanned by finitely many C-complete holomorphic vec-
tor fields Vj (j = 1, . . . ,m), then the compositions of their flows φ

j
t gives a

dominating spray on X, defined on the trivial bundle of rank m over X:

s(z, t1, . . . , tm) = φ1
t1

◦ φ2
t2

◦ · · · ◦ φm
tm

(z), z ∈ X, (t1, . . . , tm) ∈ C
m. (4.1)

Hence every such manifold is elliptic and therefore Oka.

We shall apply Theorem 4.2 to the manifold X = A \ {0}, where A ⊂C
n is

a conical algebraic subvariety as in Theorem 2.3. Such A is a complex cone
over the projective manifold π(A) = A∞ ⊂CP

n−1; see (3.1).

Example 4.4 If P(z) is a homogeneous quadratic polynomial on C
n such that

the conical hypersurface A = {P = 0} is smooth away from the origin, then
the manifold A \ {0} admits a dominating spray of the form (4.1), and hence
is an Oka manifold. Indeed, the holomorphic vector fields

Vj,k = ∂P

∂zj

∂

∂zk

− ∂P

∂zk

∂

∂zj

, 1 ≤ j 	= k ≤ n,

are tangential to A, they span the tangent space TzA at each point 0 	= z ∈ A,
they are linear and hence C-complete, and their flows preserve A \ {0}.

In particular, the varieties (1.1), (1.2) determining null curves in C
3 and

SL2(C), respectively, are Oka manifolds after removing the origin.

Since the projection π : A \ {0} → A∞ ⊂ CP
n−1 is a holomorphic fiber

bundle with Oka fiber C∗, Theorem 5.5.4 in [21] implies the following.
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Proposition 4.5 Let A be a closed conical subvariety of Cn such that A \ {0}
is smooth. Then A \ {0} is an Oka manifold if any only if A∞ = A ∩ CP

n−1

(3.1) is an Oka manifold.

Example 4.6 A Riemann surface X is Oka if and only if it is not Kobayashi
hyperbolic (see [25] and [21, Corollary 5.5.3]). If such X is compact, it is
either the Riemann sphere CP

1 or a complex torus. Each of these surfaces
embeds in CP

k for any k ≥ 2; embeddings of CP1 are called rational curves,
while embeddings of tori are elliptic curves. The complex cone A \ {0} ⊂
C

k+1 over any such curve is an Oka manifold in view of Proposition 4.5.

5 Local structure of the space IA(M)

In this section we prove Theorem 2.3. We use the notation established in
Sect. 3. In particular, we fix a nowhere vanishing holomorphic 1-form θ on
M and let P denote the associated period map given by (3.3).

Proof of part (a) Assume that F : M →C
n is a degenerate A-immersion (see

Definition 2.2). Write dF = f θ , with f : M → A \ {0} and P(f ) = 0. Let
Σ(f ) denote the C-linear subspace of Cn spanned by all the tangent spaces
TzA, z ∈ f (M). Since F is degenerate, Σ(f ) is a proper subspace of Cn. To
prove part (a), it suffices to find a map f̃ : M → A of class A(M), arbitrarily
close to f , such that P(f̃ ) = 0 and dimΣ(f̃ ) > dimΣ(f ); the proof is then
finished by a finite induction.

Choose points x1, . . . , xk ∈ M such that the tangent spaces Tf (xj )A for
j = 1, . . . , k span Σ(f ). The set

A′ = {0} ∪ {
z ∈ A \ {0} : TzA ⊂ Σ(f )

}

is a proper complex subvariety of A, and we have f (M) ⊂ A′ \ {0}.
Choose a holomorphic tangential vector field V on A that vanishes at 0 and

is not everywhere tangential to A′ along f (M). Let t �→ φ(t, z) denote the
flow of V for small complex values of time t , with φ(0, z) = z ∈ A. Choose
a nonconstant function h ∈ O(M) that vanishes at the points x1, . . . , xk . For
any function g on a small open neighborhood of the zero function in A(M)

we define the map Φ(g) ∈ A(M,A \ {0}) by setting

Φ(g)(x) = φ
(
g(x)h(x), f (x)

)
, x ∈ M.

Clearly Φ(g) depends holomorphically on g. Consider the holomorphic map

A(M) 
 g �−→ P
(
Φ(g)

) ∈ (
C

n
)l

.
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Since P(Φ(0)) = P(f ) = 0 and the space A(M) is infinite dimensional,
there is a nonconstant function g ∈ A(M) arbitrarily close to 0 such that
P(Φ(g)) = 0. For such g, the map f̃ = Φ(g) : M → A \ {0} integrates to
an A-immersion F̃ ∈ IA(M) that is close to F .

Since the function gh vanishes at the points x1, . . . , xk , we have
Φ(g)(xj ) = φ(0, f (xj )) = f (xj ) for j = 1, . . . , k, so Σ(f ) ⊂ Σ(f̃ ). Fur-
thermore, as gh is nonconstant on M and the vector field V is not every-
where tangential to A′ along f (M), there is a point x0 ∈ M \ {x1, . . . , xk}
such that z0 := Φ(g)(x0) ∈ A \ A′. By the definition of A′, the tangent space
Tz0A ⊂ Σ(f̃ ) is not contained in Σ(f ), so Σ(f̃ ) is strictly larger than Σ(f ).
This concludes the proof of part (a) in Theorem 2.3.

Proof of part (b) According to [19, Theorem 1.1], A(M,A\{0}) is a complex
Banach manifold modeled on the complex Banach space A(M,Ck) with k =
dimA. The following lemma is the key to the proof of part (b).

Lemma 5.1 Let F ∈ IA(M) be a nondegenerate A-immersion, and write
dF = f θ with f : M → A \ {0}. Then there exist an open neighborhood U

of the origin in some C
N and a holomorphic map

U × M 
 (ζ, x) �−→ Φf (ζ, x) ∈ A \ {0}
such that Φf (0, · ) = f and the period map ζ �→ P(Φf (ζ, · )) ∈ (Cn)l (3.3)
has maximal rank equal to ln at ζ = 0.

Furthermore, there is a neighborhood V of f in A(M,A \ {0}) such that
the map V 
 f̃ �→ Φ

f̃
can be chosen to depend holomorphically on f̃ .

Assuming Lemma 5.1 for a moment, we explain how it implies Theo-
rem 2.3-(b). Denote by A∗(M,A \ {0}) the set of all f ∈ A(M,A \ {0})
satisfying P(f ) = 0, where P is the period map (3.3). Let us call f ∈
A(M,A\{0}) nondegenerate if it satisfies the condition in Definition 2.2, and
let A∗

reg(M,A \ {0}) denote the set of all nondegenerate maps with vanishing
periods (an open subset of A∗(M,A \ {0})). The components of the period
map P are holomorphic functions on A(M,A\{0}), and Lemma 5.1 says that
the differential of P has maximal rank at every point f0 ∈ A∗

reg(M,A \ {0}).
The implicit function theorem shows that any such f0 admits an open neigh-
borhood U ⊂ A(M,A \ {0}) such U ∩ A∗(M,A \ {0}) is a complex Banach
submanifold of U , parametrized by the kernel of the differential dPf0 of the
period map at f0 (a complex codimension ln subspace of the Banach space
A(M,Ck) with k = dimA). This shows that A∗

reg(M,A \ {0}) is a complex
Banach manifold. The integration (3.2), with an arbitrary choice of the initial
value F(p) ∈ C

n, provides an isomorphism between A∗
reg(M,A \ {0}) ×C

n

and the subset of IA(M) consisting of all nondegenerate A-immersions, so
Theorem 2.3-(b) follows.
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Proof of Lemma 5.1 Let C1, . . . ,Cl be smooth embedded loops in M forming
a basis of H1(M;Z), and set C = ⋃l

j=1 Cj ⊂ M . As explained in Sect. 3,
we may assume that the Cj ’s only meet at a common point p ∈ M and are
otherwise pairwise disjoint. Let γj : [0,1] → Cj be a parametrization of Cj .

By Cartan’s theorem A there exist holomorphic vector fields V1, . . . , Vm

on C
n that are tangential to A along A, that vanish at 0 ∈ A, and that satisfy

span(V1(z), . . . , Vm(z)) = TzA for every z ∈ A \ {0}. We may assume that
m ≥ n. Let φ

j
t denote the flow of Vj for small complex values of time t .

Since Vj is tangential to A, we have φ
j
t (x) ∈ A when x ∈ A.

For every i = 1, . . . , l let hi,1, . . . , hi,m : C → C be smooth functions that
are identically zero except on Ci ; their values on Ci will be specified later. In
particular, these functions vanish near the common point p of the Ci ’s.

Let ζ = (ζ1, . . . , ζl) ∈ C
lm = (Cm)l , where ζj = (ζj,1, . . . , ζj,m) ∈ C

m are
complex coordinates on the j -th copy of Cm in the above product. For a suf-
ficiently small open neighborhood U ⊂ C

lm of the origin we define a smooth
map Ψ : U × C → A by setting

Ψ (ζ, x) = φ1
ζ1,1h1,1(x) ◦ · · · ◦ φm

ζl,mhl,m(x)

(
f (x)

)
(5.1)

for ζ ∈ U ⊂ C
lm and x ∈ C. The composition on the right hand side of (5.1)

contains all terms φ
j

ζj,khj,k(x) (the flow of Vj for time ζj,khj,k(x)) for j =
1, . . . , l and k = 1, . . . ,m. The order of terms in Ψ is unimportant. Note that

Ψ (0, x) = f (x), x ∈ C.

Since the function hi,k vanishes on C \ Ci , it follows that

Ψ (ζ, x) = φ1
ζi,1hi,1(x) ◦ · · · ◦ φm

ζi,mhi,m(x)

(
f (x)

)
for x ∈ Ci,

and Ψ (ζ, x) is independent of ζj,k when x ∈ Ci and i 	= j . Note that Ψ is
smooth, and it is holomorphic in the variable ζ ∈ U for every fixed x ∈ C.
For any x ∈ Ci its partial derivatives at ζ = 0 equal

∂Ψ (ζ, x)

∂ζi,k

∣
∣∣∣
ζ=0

= hi,k(x)Vk

(
f (x)

)
,

∂Ψ (ζ, x)

∂ζj,k

∣
∣∣∣
ζ=0

= 0 for j 	= i.

Recall that P is the period map (3.3). Consider the map P = P(Ψ ) =
(P1, . . . ,Pl) : U → (Cn)l defined by

Pi(ζ ) =Pi

(
Ψ (ζ, · )) =

∫

Ci

Ψ (ζ, · ) θ =
∫ 1

0
Ψ

(
ζ, γi(t)

)
θ
(
γi(t), γ̇i(t)

)
dt

(5.2)
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for ζ ∈ U and i = 1, . . . , l. That is, Pi(ζ ) ∈ C
n is the period of the map Ci 


x �→ Ψ (ζ, x) ∈ A around the loop Ci . Clearly P is holomorphic. Its partial
derivatives at ζ = 0 equal

∂Pi(ζ )

∂ζi,k

∣
∣∣∣
ζ=0

=
∫ 1

0

∂Ψ (ζ, γi(t))

∂ζi,k

∣
∣∣∣
ζ=0

θ
(
γi(t), γ̇i(t)

)
dt

=
∫ 1

0
hi,k

(
γi(t)

)
Vk

(
f

(
γi(t)

))
θ
(
γi(t), γ̇i(t)

)
dt,

∂Pi(ζ )

∂ζj,k

∣
∣∣∣
ζ=0

= 0 for j 	= i.

Hence the matrix representing the differential dP (0) has a block structure,
with l × l blocks, each of them of size n × m, such that the blocks off the
main diagonal are zero, while the i-th diagonal block represents the partial
differential dζi

Pi(0). The k-th column of this block equals ∂Pi(ζ )
∂ζi,k

∣
∣
ζ=0.

Lemma 5.2 The functions hj,k : C → C can be chosen such that the differ-
ential dP (0) of the period map (5.2) at the origin has maximal rank ln.

Proof Due to the block structure of dP (0) as explained above, it suffices to
ensure that each of the diagonal blocks of size n × m, representing the partial
differentials dζi

Pi(0), has maximal rank n.
Write dF = f θ as before. Since the immersion F is nondegenerate, the

tangent spaces Tf (x)A over all x ∈ M span C
n. By the identity principle for

holomorphic functions on M , the same is true if we restrict the point x to any
nontrivial curve in M ; in particular, to the loop Ci . Hence there exist points
xi,1, . . . , xi,m ∈ Ci \ {p} such that the vectors Vk(f (xi,k)) for k = 1, . . . ,m

span C
n. Let ti,1, . . . , ti,m ∈ (0,1) be such that γi(ti,k) = xi,k for k = 1, . . . ,m.

For every k we choose a smooth function ηi,k : [0,1] → R+, supported in a
small neighborhood of ti,k , such that

∫ 1
0 ηi,k dt = 1. Let hi,k : Ci → R+ be

defined by hi,k(γi(t)) = ηi,k(t) for t ∈ [0,1], and extend it to C by setting
hi,k = 0 on C \ Ci . We then have

∫ 1

0
hi,k

(
γi(t)

)
Vk

(
f

(
γi(t)

))
θ
(
γi(t), γ̇i(t)

)
dt

≈ Vk

(
f (xi,k)

)
θ
(
γi(ti,k), γ̇i(ti,k)

)

for k = 1, . . . ,m. Since θ(γi(ti,k), γ̇i(ti,k)) 	= 0, the vectors on the right hand
side span C

n, and hence the same is true for the vectors on the left hand side,
provided that all approximations are close enough. For such choices of the
hi,k’s the partial differential dζi

Pi(0) has maximal rank n. �
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By Mergelyan’s theorem we approximate each of the functions hi,k , uni-
formly on C, by holomorphic functions gi,k : M → C. Replacing the func-
tions hi,k by gi,k in the expression (5.1) we obtain a holomorphic map

Φ(ζ, x, z) = φ1
ζ1,1g1,1(x) ◦ · · · ◦ φm

ζl,mgl,m(x)(z) ∈ A, (5.3)

defined for z ∈ A, x ∈ M , and ζ in a neighborhood Ũ ⊂ C
lm of the origin.

(This neighborhood can be chosen independent of z for all points z in any
compact subset of A.) Setting z = f (x) also gives the holomorphic map

(ζ, x) �−→ Φf (ζ, x) = Φ
(
ζ, x, f (x)

) ∈ A \ {0} (5.4)

defined for ζ ∈ C
lm near the origin. Note that Φf (0, · ) = f .

If the approximations of hi,j ’s by gi,j ’s are close enough, then the cor-
responding period map ζ �→ P(Φf (ζ, · )) ∈ (Cn)l still has maximal rank at
ζ = 0. Furthermore, by varying f locally (keeping the functions gi,j fixed)
we obtain a holomorphic family of maps f �→ Φf with the desired properties.

This proves Lemma 5.1 and hence part (b) of Theorem 2.3. �

Remark 5.3 The construction in [19] shows that, if X is a complex subman-
ifold of a complex manifold Y , then A(M,X) is a split Banach submanifold
of A(M,Y ) (see [33, p. 490] for this notion). Thus A(M,A \ {0}) is a (non-
closed) split Banach submanifold of the Banach space A(M,Cn). Further-
more, Lemma 5.1 shows that A∗

reg(M,A \ {0}) is a (nonclosed) split Banach
submanifold of A(M,A \ {0}). By integration (3.2) we get the correspond-
ing statements for the inclusion IA(M) ↪→ A1(M,Cn) at any nondegenerate
A-immersion F ∈ IA(M).

Proof of part (c) Fix F ∈ IA(M). By part (a) we may assume that F is
nondegenerate. Write dF = f θ , and let Φf be the deformation map fur-
nished by Lemma 5.1. We can approximate f uniformly on M by holomor-
phic maps f̃ : V → A \ {0}, defined on small open neighborhoods V = V

f̃
of M in a larger Riemann surface R. The associated deformation map Φ

f̃

is then defined and holomorphic in a neighborhood Ũ × Ṽ ⊂ C
N × R of

{0} × M . (Recall that the functions gi,k used in the construction of Φf are
holomorphic in a neighborhood of M , and we may use the same functions
for Φ

f̃
.) If f̃ is sufficiently close to f on M , then the domain and the

range of the period map P(Φ
f̃
) are so close to those of P(Φf ) that the

range of P(Φ
f̃
) contains the origin in C

ln. This means that f̃ can be ap-
proximated by a map h ∈ O(M,A \ {0}) with vanishing periods. The integral
H(x) = F(p) + ∫ x

p
hdθ is then a holomorphic A-immersion from a neigh-

borhood of M to C
n which approximates F in C1(M,Cn). �
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6 Approximation by directed embeddings

In this section we prove Theorems 2.4 and 2.5 concerning the approximation
of A-immersions by A-embeddings.

Proof of Theorem 2.4 We may assume that M is a smoothly bounded domain
in an open Riemann surface R. Let F : M → C

n be an A-immersion. In view
of Theorem 2.3 we may assume that F is holomorphic on a neighborhood of
M in R, and is nondegenerate in the sense of Definition 2.2. We associate to
F the difference map

δF : M × M → C
n, δF (x, y) = F(y) − F(x).

Clearly F is injective if and only if (δF )−1(0) = DM = {(x, x) : x ∈ M}, the
diagonal of M × M .

Since F is an immersion, it is locally injective, and hence there is an open
neighborhood U ⊂ M × M of DM such that δF does not assume the value
0 ∈ C

n on U \DM . To prove the theorem, it suffices to find arbitrarily close to
F another A-immersion F̃ : M → C

n whose difference map δF̃ , restricted to
M × M \ U , is transverse to the origin 0 ∈ C

n. Indeed, since dimC M × M =
2 < n, this will imply that δF̃ does not assume the value zero on M ×M \U ,
so F̃ (x) 	= F̃ (y) if (x, y) ∈ M ×M \U . If on the other hand (x, y) ∈ U \DM ,
then F̃ (x) 	= F̃ (y) provided that F̃ is sufficiently close to F . Thus F̃ is an
injective immersion, hence an embedding.

A map F̃ with these properties will be constructed by the standard transver-
sality argument (see Abraham [1] or [21, Sect. 7.8]). We need to find a neigh-
borhood Ω ⊂C

N of the origin in a complex Euclidean space and a holomor-
phic map H : Ω × M → C

n such that H(0, · ) = F and the difference map
δH : Ω × M × M → C

n, defined by

δH(ζ, x, y) = H(ζ, y) − H(ζ, x), ζ ∈ Ω, x, y ∈ M, (6.1)

is a submersive family of maps, meaning that its partial differential

dζ |ζ=0δH(ζ, x, y) : CN → C
n (6.2)

is surjective for any (x, y) ∈ M × M \ U . By openess of this condition and
compactness of M × M \ U it follows that the partial differential dζ δH is
surjective for all ζ in a neighborhood Ω ′ ⊂ Ω of the origin in C

N . Hence
the map δH : M × M \ U → C

n is transverse to any submanifold of C
n,

in particular, to the origin 0 ∈ C
n. The standard argument then shows that

for a generic member H(ζ, · ) : M → C
n of this family, the difference map

δH(ζ, · ) is also transverse to 0 ∈ C
n on M × M \ U . By choosing the point

ζ sufficiently close to 0 we thus obtain a desired A-embedding F̃ = H(ζ, · ).
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We now construct a deformation family H with the above properties.
Fix a nowhere vanishing holomorphic 1-form θ on R and write dF = f θ ,

with f : M → A \ {0} a holomorphic map. Pick a neighborhood U ⊂ M ×M

of DM such that U ∩ (δF )−1(0) = DM .

Lemma 6.1 (Notation as above) For any (p, q) ∈ M × M \ DM there exists
a deformation family H = H(p,q)(ζ, · ) as above, with ζ ∈ C

n, such that the
differential dζ |ζ=0δH(ζ,p, q) : Cn → C

n is an isomorphism.

Suppose that the lemma holds. Clearly H satisfies the same property for
all pairs (p′, q ′) ∈ M × M close to (p, q). Since M × M \ U is compact,
it is covered by finitely many such neighborhoods. The superposition of the
corresponding deformation families will yield a deformation family H for
which the differential (6.2) is surjective for any (x, y) ∈ M × M \ U .

Proof Let Λ ⊂ M be a smooth embedded arc connecting p to q . Pick a point
p0 ∈ M \ Λ and closed loops C1, . . . ,Cl ⊂ M \ Λ based at p0 and forming
a basis of H1(M;Z). Set C = ⋃l

j=1 Cj . Let γj : [0,1] → Cj (j = 1, . . . , l)
and λ : [0,1] → Λ be smooth parametrizations of the respective curves.

Since F is nondegenerate (Definition 2.2), there exist tangential holomor-
phic vector fields V1, . . . , Vn on A and points x1, . . . , xn ∈ Λ \ {p,q} such
that, setting zi = f (xi) ∈ A, the vectors Vi(zi) for i = 1, . . . , n span C

n.
(Such points exist since a nontrivial arc Λ in M is a determining set for holo-
morphic functions on M , and hence the tangent spaces Tf (x)A over all points
x ∈ Λ have the same span as the tangent spaces Tf (x)A over all points x ∈ M .
Of course one could also move the curve Λ a little to ensure this property.)
Let ti ∈ (0,1) be such that λ(ti) = xi . Let φi

t denote the flow of Vi . Choose
smooth functions hi : C ∪ Λ → R+ (i = 1, . . . , n) that vanish at the end-
points p,q of Λ and on the curves C; their values on Λ will be chosen later.
Let ζ = (ζ1, . . . , ζn) ∈ C

n. As in the proof of Lemma 5.1 we consider the map

ψ(ζ, x) = φ1
ζ1h1(x) ◦ · · · ◦ φn

ζnhn(x)

(
f (x)

) ∈ A \ {0}, x ∈ C ∪ Λ,

which is holomorphic in ζ = (ζ1, . . . , ζn) ∈ C
n near the origin. Note that

ψ(0, · ) = f and ψ(ζ, x) = f (x) if x ∈ C (since hi = 0 on C). We have

∂ψ(ζ, x)

∂ζi

∣
∣∣∣
ζ=0

= hi(x)Vi

(
f (x)

)
, i = 1, . . . , n.

By choosing the function hi to have its support concentrated near the point
xi = λ(ti) ∈ Λ, we can arrange that for all i = 1, . . . , n we have

∫ 1

0
hi

(
λ(t)

)
Vi

(
f

(
λ(t)

))
θ
(
λ(t), λ̇(t)

)
dt ≈ Vi(zi)θ

(
λ(ti), λ̇(ti)

) ∈ C
n.
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Assuming that the approximations are close enough, the vectors on the left
hand side above form a basis of Cn.

Fix a number ε > 0; its precise value will be chosen later. We apply
Mergelyan’s theorem to find holomorphic functions gi : M → C such that

sup
C∪Λ

|gi − hi | < ε for i = 1, . . . , n.

In the analogy with (5.3) and (5.4) we define holomorphic maps

Ψ (ζ, x, z) = φ1
ζ1g1(x) ◦ · · · ◦ φn

ζngn(x)(z) ∈ A,

Ψf (ζ, x) = Ψ
(
ζ, x, f (x)

) ∈ A,
(6.3)

where x ∈ M , z ∈ A, and ζ is near the origin in C
n. Note that Ψf (0, · ) = f .

If the approximations of hi by gi are close enough, then the vectors

∂

∂ζi

∣
∣∣∣
ζ=0

∫ 1

0
Ψf

(
ζ, λ(t)

)
θ
(
λ(t), λ̇(t)

)
dt

=
∫ 1

0
gi

(
λ(t)

)
Vi

(
f

(
λ(t)

))
θ
(
λ(t), λ̇(t)

)
dt ∈ C

n (6.4)

are still close enough to the vectors Vi(zi) θ(λ(ti), λ̇(ti)) for i = 1, . . . , n so
that they are linearly independent.

The C
n-valued 1-form Ψf (ζ, · ) θ on M need not be exact. We shall now

correct its periods to zero by using the tools from Sect. 5.
From the Taylor expansion of the flow of a vector field we see that

Ψf (ζ, x) = f (x) +
n∑

i=1

ζigi(x)Vi

(
f (x)

) + o
(|ζ |).

Since |g| < ε on C, the periods over the loops Cj can be estimated by

∣∣∣
∣

∫

Cj

Ψf (ζ, · ) θ

∣∣∣
∣ ≤ η0ε|ζ | (6.5)

for some constant η0 > 0 and for sufficiently small |ζ |.
Lemma 5.1 gives holomorphic maps Φ(̃ζ , x, z) and Φf (̃ζ , x) =

Φ(̃ζ , x, f (x)) (see (5.3) and (5.4)), with the parameter ζ̃ near 0 ∈ C
Ñ for

some Ñ ∈ N and x ∈ M , such that Φ(0, x, z) = z and the differential of
the associated period map ζ̃ �→ P(Φf (̃ζ , · )) ∈ C

ln (see (3.3)) at the point
ζ̃ = 0 has maximal rank equal to ln. The same is true if we let the map
f ∈ A(M,A \ {0}) vary locally near the given initial map. In particular, we
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can replace f by the deformation family Ψf (ζ, · ) and consider the composed
map

C
Ñ ×C

n × M 
 (̃ζ , ζ, x) �−→ Φ
(
ζ̃ , x,Ψf (ζ, x)

) ∈ A \ {0}

which is defined and holomorphic for (̃ζ , ζ ) near the origin in C
Ñ ×C

n and
for x ∈ M . The implicit function theorem furnishes a holomorphic map ζ̃ =
ρ(ζ ) near ζ = 0 ∈ C

n, with ρ(0) = 0 ∈ C
Ñ , such that the C

n-valued 1-form
on M , defined by

Θf (ζ, x, v) = Φ
(
ρ(ζ ), x,Ψf (ζ, x)

)
θ(x, v), x ∈ M, v ∈ TxM,

has vanishing periods over the curves Cj for every fixed ζ ∈ C
n near 0. (The

map ρ = (ρ1, . . . , ρn) also depends on f , but we shall suppress this depen-
dence in our notation.) It follows that the integral

HF (ζ, x) = F(p0)+
∫ x

p0

Θf (ζ, · , · ) = F(p0)+
∫ 1

0
Θf

(
ζ, γ (t), γ̇ (t)

)
(6.6)

is independent of the choice of the path γ from p0 to x ∈ M . Clearly
HF (0, · ) = F , and HF (ζ, · ) : M → C

n is an A-immersion for every ζ ∈ C
n

sufficiently close to 0. Furthermore, in view of (6.5) we have the estimate

∣∣ρ(ζ )
∣∣ ≤ η1ε|ζ |

for some η1 > 0. The map Φ(̃ζ , x, z) is of the form (5.3), i.e., it is obtained
by composing the flows of certain holomorphic vector fields Wj on A for the
times ζ̃j g̃j (x), where g̃j ∈ O(M). The Taylor expansion of the flow, together
with the above estimate on ρ(ζ ), give

∣∣Φ
(
ρ(ζ ), x,Ψf (ζ, x)

) − Ψf (ζ, x)
∣∣

=
∣∣
∣∣
∑

ρj (ζ )g̃j (x)Wj

(
Ψf (ζ, x)

) + o
(|ζ |)

∣∣
∣∣

≤ η2ε|ζ |

for some η2 > 0 and for all x ∈ M and all ζ near the origin in C
n. By applying

this estimate on the curve Λ (with the endpoints p and q) we get

∣∣∣
∣

∫ 1

0
Θf

(
ζ, λ(t), λ̇(t)

) −
∫ 1

0
Ψf

(
ζ, λ(t)

)
θ
(
λ(t), λ̇(t)

)
dt

∣∣∣
∣ ≤ η3ε|ζ |
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for some η3 > 0. If ε > 0 is chosen small enough, it follows that the deriva-
tives

∂

∂ζi

∣∣
∣∣
ζ=0

∫ 1

0
Θf

(
ζ, λ(t), λ̇(t)

) ∈ C
n, i = 1, . . . , n,

are so close to the vectors (6.4) that they are C-linearly independent. In view
of (6.6) we have

∫ 1

0
Θf

(
ζ, λ(t), λ̇(t)

) = HF (ζ, q) − HF (ζ,p) = δHF (ζ,p, q),

where δHF is the difference map (6.1). Hence the above says that the partial
differential

∂

∂ζ

∣∣∣
∣
ζ=0

δHF (ζ,p, q) : Cn → C
n

is an isomorphism. This proves Lemma 6.1. �

The family HF obtained above is holomorphically dependent also on
F on a neighborhood of a given initial A-immersion F0. In particular, if
F(η, · ) : M → C

n is a family of holomorphic A-immersions depending holo-
morphically on a complex parameter η, then HF(η,·)(ζ, · ) depends holomor-
phically on (ζ, η). This allows us to compose any finite number of such de-
formation families. We explain this operation for two families. Suppose that
H = HF (ζ, · ) and G = GF (η, · ) are deformation families with HF (0, · ) =
GF (0, · ) = F . We define the composed deformation family by

(H�G)F (ζ, η, x) = GHF (ζ,·)(η, x), x ∈ M.

Clearly we have

(H�G)F (0, η, · ) = GF (η, · ), (H�G)F (ζ,0, · ) = HF (ζ, · ).
The operation � extends by induction to finitely many factors; it is associative,
but not commutative. (This operation is similar to the composition of sprays
that was introduced by Gromov [30]; see also [21, p. 246].)

We can now complete the proof of Theorem 2.4. The above construction
gives a finite open covering U = {Ui}mi=1 of the compact set M × M \ U and
deformation families Hi = Hi(ζ i, · ) : M → C

n, with Hi(0, · ) = F , where
ζ i = (ζ i

1, . . . , ζ
i
ki
) ∈ Ωi ⊂ C

ki , so that the difference map δH i(ζ i,p, q) is

submersive at ζ i = 0 for all (p, q) ∈ Ui . By taking ζ = (ζ 1, . . . , ζm) ∈ C
N ,

with N = ∑m
i=1 ki , and setting

H(ζ, x) = (
H 1�H 2� · · · �Hm

)(
ζ 1, . . . , ζm, x

)
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we obtain a deformation family such that H(0, · ) = F and δH is submersive
everywhere on M ×M \U for all ζ ∈ C

N sufficiently close to the origin. This
completes the proof of Theorem 2.4. �

Proof of Theorem 2.5 Let F : M → C
n be an A-immersion of an open Rie-

mann surface to C
n. Fix a number ε > 0 and a compact set K ⊂ M . Write

F0 = F and ε0 = ε. Choose an exhaustion of M by an increasing sequence
M0 ⊂ M1 ⊂ · · ·⋃∞

j=0 Mj = M of smoothly bounded compact domains such
that every Mj is holomorphically convex in M and K ⊂ M0. By Theorem 2.4
we can find an A-embedding F̃1 : M1 → C

n such that

‖F̃1 − F0‖M1 := sup
x∈M1

∣
∣F̃1(x) − F0(x)

∣
∣ < ε/4.

Since A \ {0} is assumed to be an Oka manifold, Corollary 2.7 gives an
A-immersion F1 : M → C

n such that F1 is an embedding on M1, ‖F1 −
F̃1‖M1 < ε/4, and hence ‖F1 − F0‖M1 < ε/2. (Although Corollary 2.7 is
proved in Sect. 7 below, its proof is independent of the results in this section.)

Pick a number ε1 with 0 < ε1 < ε/4 such that every immersion G : M →
C

n satisfying ‖G − F1‖M1 < ε1 is an embedding on M0. (Such ε1 exists
by the Cauchy estimates.) By applying the above argument to F1 we find
an A-immersion F2 : M → C

n which is an embedding on M2 and satisfies
‖F2 − F1‖M2 < ε1/2. Pick a number ε2 with 0 < ε2 < ε1/4 such that every
holomorphic map G : M → C

n satisfying ‖G − F2‖M2 < ε2 is an embed-
ding on M1. Continuing inductively, we find a sequence of A-immersions
Fj : M → C

n and a sequence of numbers εj > 0 such that the following hold
for every j = 1,2 . . .:

(a) Fj is an embedding on Mj ,
(b) ‖Fj − Fj−1‖Mj

< εj−1/2,
(c) 0 < εj < εj−1/4, and
(d) every holomorphic map G : M → C

n satisfying ‖G − Fj‖Mj
< εj is an

embedding on Mj−1.

Property (c) implies that
∑∞

k=j+1 εk < εj/2 for every j = 0,1, . . . . By prop-

erty (b) we see that the limit F̃ = limj→∞ Fj : M → C
n exists and satisfies

‖F̃ − F‖K < ε. Furthermore, we have

‖F̃ − Fj‖Mj
≤

∞∑

k=j

‖Fk+1 − Fk‖Mj
<

εj

2
+

∞∑

k=j+1

εk < εj ,

and hence F̃ restricted to Mj−1 is an A-embedding by properties (a) and (d).
Since this holds for every j , we see that F̃ : M → C

n is an A-embedding. �
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Theorems 2.4 and 2.5 allow us to extend the known existence theorems
for immersed null curves to the embedded case. The following corollary is of
particular interest.

Corollary 6.2 Let N be an orientable noncompact smooth real surface with-
out boundary, and let Ω ⊂ C

3 be a convex domain. Then there exists a com-
plex structure J on N such that (N,J ) embeds as a complete proper null
curve in Ω .

If one takes Ω to be a bounded convex domain contained in C
3 \ {z3 = 0},

then the correspondence T (2.1) applies and embeds (N,J ) as a complete
bounded null curve in SL2(C) \ {z11 = 0}.

Proof Let M be an open Riemann surface diffeomorphic to N . It is shown
in [6] that there exist an increasing sequence of smoothly bounded Runge
domains M1 ⊂ M2 ⊂ · · · ⊂ M and null curves Fj : Mj → C

3, j ∈ N, such
that the limit map F = limj→∞ Fj : ⋃

j∈N Mj → C
3 exists and is a com-

plete null curve mapping the domain D = ⋃
j∈N Mj ⊂ M properly into Ω .

Furthermore, we can arrange that D is homeomorphic (and hence diffeomor-
phic) to M , and hence to N . Let J be the complex structure on N obtained
from the complex structure on D via this diffeomorphism.

Now Theorem 2.4 ensures that such Fj ’s can be chosen to be embeddings.
If Fj is close enough to Fj−1 on Mj−1 for all j > 1 (see [6, Lemma 3]), then
the limit null curve F : D → Ω is embedded as well. �

Corollary 6.2 is motivated by the question whether there exist complete
bounded minimal surfaces in R

3; a classical problem in the theory of mini-
mal surfaces, known as the Calabi-Yau problem. The answer to this question
strongly depends on whether self-intersections are allowed or not. In the im-
mersed case, such surfaces exist and may have arbitrary topological type [6,
15, 41]. On the other hand, complete embedded minimal surfaces with finite
genus and countably many ends are necessarily proper in R

3 [11, 40], hence
unbounded. The general problem remains open for embedded surfaces. The
corresponding question for immersed null curves in C

3 was answered affir-
matively in [6]; however, the methods in [6] do not enable one to avoid self-
intersections, nor to control the complex structure on the curve. The former
question (see [37, Problem 2]) is solved by Corollary 6.2. For the latter, a
technique for constructing complete bounded complex curves in C

2 that are
normalized by any given bordered Riemann surface has been developed re-
cently in [5]. The analogous problems for minimal surfaces in R

3 and null
curves in C

3 remain open (see [5, Question 2]).
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7 The Oka principle and Mergelyan’s theorem for A-immersions

In this section we prove Theorem 2.6—the Oka principle for A-immersions.
The same proof also gives the Mergelyan approximation theorem for A-
immersions; see Theorem 7.2 below.

We begin by introducing a suitable type of sets for the Mergelyan theorem.
We shall not strive for the most general possible situation; the type of sets in
the following definition suffice in most applications.

Definition 7.1 A compact subset S of an open Riemann surface M is said to
be admissible if S = K ∪C, where K = ⋃

Dj is a union of finitely many pair-
wise disjoint, compact, smoothly bounded domains Dj in M and C = ⋃

Ci

is a union of finitely many pairwise disjoint smooth arcs or closed curves that
intersect K only in their endpoints (or not at all), and such that their intersec-
tions with the boundary bK are transverse.

An admissible set S ⊂ M is Runge in M if and only if the inclusion map
S ↪→ M induces an injective homomorphism H1(S;Z) ↪→ H1(M;Z) of the
first homology groups. If this holds, then we have the classical Mergelyan
approximation theorem: Every continuous function f : S → C that is holo-
morphic in the interior K̊ of K can be approximated, uniformly on S, by
functions holomorphic on M . If in addition f is of class C1 on S, then the
approximation can be made in the C1(S) topology.

The notion of an A-immersion extends in an obvious way to maps F : S →
C

n of class C1(S). On the set K this is the standard notion, while on the
curves C we ask that the derivative F ′(t) with respect to any local real pa-
rameter t on C belongs to A \ {0}.

Theorem 7.2 (Mergelyan’s theorem for A-immersions) Let A ⊂ C
n be a

closed irreducible conical subvariety which is smooth away from 0. Assume
that M is an open Riemann surface and that S = K ∪ C is a compact admis-
sible set in M (see Definition 7.1). Then the following hold:

(a) Every A-immersion S → C
n can be approximated in the C1(S) topology

by A-immersions U → C
n in open neighborhoods of S in M .

(b) If in addition S is Runge in M and A \ {0} is an Oka manifold (Defini-
tion 4.1), then every A-immersion S → C

n can be approximated in the
C1(S) topology by A-immersions M → C

n.

Theorem 7.2 also holds when M is a compact bordered Riemann surface
since every such is a smoothly bounded domain in an open Riemann surface.

We shall need the following lemma which is analogous to Gromov’s con-
vex integration lemma (see [28] or [14]).
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Lemma 7.3 Let A ⊂ C
n be an irreducible conical subvariety which is not

contained in any hypersurface. Given continuous maps h : [0,1] → A \ {0}
and g : [0,1] → C \ {0}, a vector v ∈ C

n, and a number ε > 0, there exists a
homotopy hs : [0,1] → A \ {0} (0 ≤ s ≤ 1) such that h0 = h, the homotopy is
fixed near the endpoints 0 and 1, and we have

∣∣
∣∣

∫ 1

0
h1(t)g(t) dt − v

∣∣
∣∣ < ε. (7.1)

Proof Replacing the map h by hg (which also has range in A\{0}) we reduce
to the case when g ≡ 1. Since A is conical and its convex hull equals Cn (see
Lemma 3.1), we can find an integer N and vectors v1, . . . , vN ∈ A \ {0} such
that 1

N

∑N
j=1 vj = v. Set v0 = h(0) and vN+1 = h(1). Choose a small number

δ > 0 and let Ij ⊂ [0,1] be the pairwise disjoint segments

Ij =
[
j − 1 + δ

N
,
j − δ

N

]
, j = 1, . . . ,N.

Their complement J = [0,1] \ ⋃N
j=1 Ij has total length 2δ. Let h1 : [0,1] →

A\{0} be chosen such that h1 = h near 0 and 1, and h1(t) = vj for t ∈ Ij (j =
1, . . . ,N ). On the remaining segments contained in J we choose h1 so that
it is continuous and homotopic to h, and so that |h1| ≤ R for some constant
R > 0 independent of δ. This is achieved by first going from v0 = h(0) to v1
along a path in A \ {0} in time [0, δ/N], then staying at v1 for time t ∈ I1,
then going from v1 to v2 along an arc in A \ {0} in time (1 − δ)/N ≤ t ≤
(1 + δ)/N , then staying at v2 for time t ∈ I2, etc. By a suitable choice of the
arcs connecting the consecutive points vj , vj+1, we can ensure that the new
path h1 is homotopic to h and that it remains in a fixed ball {z ∈ C

n : |z| < R}
independent of δ. We then have

∫ 1

0
h1(t) dt = 1 − 2δ

N

N∑

j=1

vj +
∫

J

h1(t) dt = (1 − 2δ)v +
∫

J

h1(t) dt.

Choosing δ < ε/4R we get

∣∣∣∣

∫ 1

0
h1(t) dt − v

∣∣∣∣ ≤ 2δ|v| +
∫

J

∣∣h1(t)
∣∣dt < 4δR < ε.

This proves Lemma 7.3. �

Remark 7.4 We expect that one can always reach the equality in (7.1), but this
will not be needed. The assumption that A is conical was used to reduce to
the case g = 1. Lemma 7.3 still holds without this assumption which is seen
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as follows. We subdivide [0,1] into a large number N of sufficiently small
subintervals Ij such that g is very close to a constant gj on each of them. Then
we repeat the above argument on Ij to find h so that

∫
Ij

h(t)gj dt ≈ N−1v.

Summing up, we get
∫ 1

0 hg ≈ v.

Proof of Theorems 7.2 and 2.6 We begin by proving part (a) of Theorem 7.2.
We may assume that S is connected since the same argument applies sepa-
rately to each connected component.

We begin by perturbing the given A-immersion F : S → C
n so as to make

it nondegenerate in the sense of Definition 2.2; this can be done as in the proof
of Theorem 2.3-(a). By the proof of Theorem 2.3-(c), but using Mergelyan
approximation, we can approximate the map f = dF/θ : S → A \ {0}, uni-
formly on S, by a holomorphic map f̃ : U → A \ {0} on an open connected
neighborhood U ⊂ M of S such that f̃ θ has vanishing periods over all non-
trivial loops in S. We may assume that S is a strong deformation retract of U .
We then get an A-immersion F̃ : U → C

n by setting F̃ (x) = F(p) + ∫ x

p
f̃ θ

(x ∈ U) for any chosen point p ∈ S. By the construction, F̃ |S approximates
F in C1(S) since the integral from p to any point x ∈ S can be calculated
over a path in S and |f̃ − f | is small on S.

This proves part (a) of Theorem 7.2.
We now turn to the proof of Theorem 7.2-(b). At the same time we shall

prove Theorem 2.6 (the Oka principle for A-immersions). In fact, since every
compact Runge set K ⊂ M has a basis of compact smoothly bounded Runge
neighborhoods, the only addition in Theorem 2.6 over Theorem 7.2 is that
one can prescribe the homotopy class of f = dF/θ : M → A \ {0}.

By the already proved part (a) we may fix an A-immersion F0 : U → C
n

from an open set U ⊂ M containing S such that F0 is C1 close to F on S.
Write dF0 = f0θ where f0 : U → A \ {0}. After shrinking U around S we
may assume that f0 extends to a continuous map f0 : M → A \ {0}.

Since the set S is Runge in M , there exists a smooth strongly subharmonic
Morse exhaustion function τ : M → R with nondegenerate (Morse) critical
points such that S ⊂ {τ < 0} and {τ ≤ 0} ⊂ U . We may assume that 0 is a
regular value of τ , so D0 = {τ ≤ 0} is a smoothly bounded compact domain.
Let p1,p2, . . . be the critical points of τ in M \ D0. We may assume that
0 < τ(p1) < τ(p2) < · · · . Choose a strictly increasing divergent sequence
a1 < a2 < a3 < · · · such that τ(pj ) < aj < τ(pj+1) holds for j = 1,2, . . . .
If there are only finitely many pj ’s, then we choose the remainder of the
sequence aj arbitrarily. Set Dj = {τ ≤ aj }. To conclude the proof we shall
inductively construct a sequence of A-immersions

Fj : Dj → C
n, j = 1,2, . . . (7.2)
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such that ‖Fj − Fj−1‖Dj−1 < εj for a certain sequence εj > 0 which de-
creases to zero sufficiently fast, and such that the map dFj/θ = fj : Dj →
A \ {0} is homotopic to f0|Dj

through maps Dj → A \ {0}.
We begin the induction with the given A-immersion F0. For the inductive

step, assume that we have an A-immersion Fj−1 for some j > 0. The con-
struction of Fj from Fj−1 is made in two steps: the noncritical case when
there is no change of topology of the sublevel set, and the critical case when
the topology of the sublevel set changes at one point. If there are only finitely
many pi ’s and there exists no value τ(pi) between aj−1 and aj , then only the
noncritical step is required; otherwise both steps are needed.

The noncritical case is accomplished by the following lemma; it is at this
point that the Oka property of A \ {0} is invoked.

Lemma 7.5 Let M be an open Riemann surface and D ⊂ D′ be com-
pact domains with smooth boundaries in M . Assume that there is a smooth
function σ on a neighborhood U ⊃ D′ \ D̊, with dσ 	= 0 on U , such that
D ∩ U = {σ ≤ a} and D′ ∩ U = {σ ≤ b} for some real numbers a < b.
If A ⊂ C

n is as in Theorem 2.6 (so A \ {0} is an Oka manifold), then ev-
ery A-immersion F : D → C

n can be approximated, uniformly on D, by A-
immersions F̃ : D′ → C

n.

Proof It suffices to consider the case when D (and hence D′) is con-
nected. By Theorem 2.3 we may assume that F : D → C

n is a nondegen-
erate A-immersion defined on an open neighborhood V ⊂ M of D. Write
f = dF/θ : V → A \ {0}. By Lemma 5.1 there exist an open ball W around
the origin in some C

N and a holomorphic map

W × V 
 (ζ, x) �−→ Φ(ζ, x) ∈ A \ {0}
such that Φ(0, · ) = f and the period map ζ �→ P(Φf (ζ, · )) ∈ (Cn)l (3.3) has
maximal rank at ζ = 0. (The period map is now calculated on closed curves
C1, . . . ,Cl in D which form a basis of H1(D;Z).)

Choose an open set V ′ ⊂ M containing D′ such that D′ is a strong de-
formation retract of V ′. Pick closed balls B0 ⊂ B ⊂ W around 0 ∈ C

N . The
compact set B ×D is then Runge in the Stein manifold W ×V ′ and is a strong
deformation retract of W × V ′. Since A \ {0} is an Oka manifold, we can ap-
ply Theorem 4.2 to approximate Φ , uniformly on B × D, by a holomorphic
map Ψ : W ×V ′ → A\ {0}. If the approximation is sufficiently close then the
range of the period map B0 
 ζ �→ P(Ψ (ζ, · )) ∈ (Cn)l still contains the ori-
gin, so there is a point ζ0 ∈ B0 such that the map V ′ 
 x �→ Ψ (ζ0, x) ∈ A\ {0}
has vanishing periods. Since B0 can be chosen arbitrarily small, the integral of
Ψ (ζ0, · ) θ is an A-immersion F̃ : D′ →C

n which approximates F uniformly
on D as close as desired. �
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The critical case We now have compact domains D ⊂ D′ with smooth
boundaries in M and a smooth strongly subharmonic function τ on a neigh-
borhood of D′, with D = {τ ≤ a} and D′ = {τ ≤ b}, such that τ has a unique
(Morse) critical point p on D′ \ D̊. Let F : D → C

n be an A-immersion and
write f = dF/θ .

Since τ is strongly subharmonic, the Morse index of p is either 0 or 1.
If the Morse index of p equals 0, a new connected component of the sub-

level set {τ ≤ t} appears at p when t passes the value τ(p). In this case we
can extend f by choosing an arbitrary holomorphic map from this new com-
ponent to A \ {0}. This also provides an extension of F .

If the Morse index of p equals 1, then the change of topology of the sub-
level set {τ ≤ t} at p is described by attaching to D = {τ ≤ a} a smooth arc
C (the stable manifold of p for the gradient flow of τ ). Let q1, q2 denote the
endpoints of C. By applying Lemma 7.3 and perturbing F slightly on D we
can extend the map f = dF/θ : D → A \ {0} smoothly to the arc C so that
the extended maps still has range in A \ {0} and satisfies

∫

C

f θ = F(q2) − F(q1). (7.3)

Indeed, Lemma 7.3 provides an extension of f to C for which (7.3) holds
approximately. If the endpoints q1 and q2 of C belong to different connected
components of D, we adjust the value of F on one of these two components
by adding a suitable constant vector so as to make (7.3) hold. If on the other
hand the endpoints belong to the same component of D, then we perturb the
difference F(q2) − F(q1) by using Lemma 6.1 to make (7.3) hold.

When proving Theorem 2.6 (the Oka principle), we must also ensure that
the extended map f : D ∪ C → A \ {0} constructed above is homotopic to
the given continuous map M → A \ {0}. This is easily achieved by a suitable
choice of the connecting paths used in the proof of Lemma 7.3.

It follows from (7.3) that the extended map f integrates to an A-immer-
sion F0 : D ∪C → C

n which agrees with F on D. (If D ∪C is disconnected,
we integrate separately in each connected component.) By part (a) we can
approximate F0 by an A-immersion F1 : U → C

n on a neighborhood U ⊂ M

of D ∪ C. Now there is a smoothly bounded compact neighborhood B ⊂ U

of D ∪C such that D′ is a noncritical extension of B as in Lemma 7.5. Hence
that lemma furnishes an A-immersion F̃ : D′ → C

n approximating F1 on B .
This completes the critical step, closes the induction, and concludes the

construction of the sequence (7.2) with the desired properties. Indeed, just
set D = Dj−1, D′ = Dj , and F = Fj−1, and define Fj := F̃ given either by
the critical or the noncritical step (depending on the topology of Dj \ D̊j−1),
such that ‖Fj − Fj−1‖Dj−1 < εj .

Finally, if the εj ’s are chosen small enough, then the limit A-immersion
limj→∞ Fj : M = ⋃

j Dj → C
n is as close to F in the C1(S) topology as
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desired; recall that S ⊂ D0 and that F0 is C1 close to F on S. This proves
Theorem 7.2-(b) and Theorem 2.6. �

The following immediate corollary to Theorem 7.2-(a) is obtained by using
the correspondence T (2.1).

Corollary 7.6 Let A, M , and S be as in Theorem 7.2-(a). Then every null
curve S → SL2(C)\{z11 = 0} (in the sense described just above Theorem 7.2)
can be approximated in the C1(S) topology by null curves U → SL2(C) in
open neighborhoods U of S in M .

By a minor modification of the proof of Theorem 7.2 we now obtain
Mergelyan’s theorem for A-immersions with a fixed component function.
This result will be used in an essential way in the construction of proper
A-embeddings, given in the following section.

Theorem 7.7 (Mergelyan’s theorem for A-immersions, second version) Let
A ⊂ C

n be as in Theorem 7.2. Assume that A ∩ {z1 = 1} is an Oka manifold
(Definition 4.1), and that the coordinate projection π1 : A → C onto the z1-
axis admits a local holomorphic section h near z1 = 0 with h(0) 	= 0. Let S

be a compact admissible Runge set in an open Riemann surface M . Given
an A-immersion F = (F1,F2, . . . ,Fn) : S → C

n such that F1 extends to a
nonconstant holomorphic function F1 : M → C, there exists for every ε > 0 a
holomorphic A-immersion F̃ = (F1, F̃2, . . . , F̃n) : M → C

n such that ‖F̃j −
Fj‖C1(S) < ε for j = 2, . . . , n.

The condition F̃1 = F1 in the above theorem is not a misprint: the first
component of F is kept fixed. This is the key addition over Theorem 7.2.

Proof of Theorem 7.7 Set A′ := A ∩ {z1 = 1}. By using dilations we see that
A \ {z1 = 0} is biholomorphic to A′ × C

∗ (and hence is Oka), and the pro-
jection π1 : A → C is a trivial fiber bundle with Oka fiber A′ except over the
origin 0 ∈C.

Write dF = f θ , where f = (f1, . . . , fn) = (f1, f
′) : S → A \ {0}. We

are using the notation f ′ = (f2, . . . , fn). As in the proof of Theorem 7.2-(a)
we can approximate F by an A-immersion in a neighborhood U ⊂ M of S,
without changing the first coordinate; the only difference is that we apply the
correction of periods technique (see Sect. 5) only to the component f ′. To this
end we use holomorphic vector fields on A that are tangential to the fibers of
the projection π1 : A → C.

Since the function f1 = dF1/θ is holomorphic and nonconstant on M , its
zero set f −1

1 (0) = {a1, a2, . . .} is discrete in M . The pullback f ∗
1 π1 : E =

f ∗A → M of the projection π1 : A → C to M is a trivial holomorphic fiber
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bundle with fiber A′ over M \ {aj }, but it may be singular over the points aj .
The map f ′ : U → C

n−1 satisfies f ′(x) ∈ π−1
1 (f1(x)) for x ∈ U , so f ′ cor-

responds to a section of E → M over the set U .
The problem now is to approximate f ′, uniformly on a compact Runge

neighborhood of S, by a section of E → M whose periods over all loops in M

are zero. Except for the period condition, a solution is provided by the Oka
principle for sections of ramified holomorphic maps with Oka fibers (see [18]
or [21, Sect. 6.13]). The proof in our situation, when we must pay attention
to the periods, is quite similar. We begin by choosing a local holomorphic
solution on a small neighborhood of any point aj ∈ M \ S so that f ′(aj ) 	= 0,
and we add these neighborhoods to the domain of f ′. We then follow the
proof of Theorem 7.2 to enlarge the domain of holomorphicity of f ′.

The noncritical case (see Lemma 7.5) amounts to approximating a holo-
morphic solution f ′ on a compact smoothly bounded domain D ⊂ M by a
holomorphic solution on a larger such domain D′ ⊂ M , assuming that there
is no change of topology and that D′ \D̊ does not contain any of the points aj .
This is done by applying the Oka principle for maps to the Oka fiber A′ of
π1 : A → C over the set C∗ where the bundle is trivial.

In the critical case we attach a smooth arc C to a domain D ⊂ M such
that C does not contain any of the points aj , and we extend f ′ smoothly over
C so that the integral

∫
C

f ′θ has the correct value (see the condition (7.3)).
This is accomplished by a suitable analogue of Lemma 7.3 (cf. Remark 7.4).
The extended map f ′ integrates to a holomorphic map F ′ : D ∪ C → C

n−1

such that (F1,F
′) : D ∪ S → C

n is an A-immersion. The proof is finished as
before by applying the noncritical case for another pair of domains. �

Example 7.8 Let A ⊂ C
3 be the quadric variety (1.1) controlling null curves.

Then A ∩ {z1 = 1} = {z2
2 + z2

3 = −1} is an embedded copy of the Oka mani-
fold C

∗ = C \ {0}. (Besides C, this is the only manifold for which Oka him-
self established the Oka principle in his pioneering paper [42] from 1939.) In
fact, any hyperplane section of A which does not contain the origin is biholo-
morphic to C

∗. In this particular case, Theorem 7.7 was proved by Alarcón
and López [6] by using the Weierstrass representation of null curves and the
López-Ros transformation, a tool that was originally invented to prove a clas-
sification result for minimal surfaces in R

3 [35]. Neither of these tools is
available in the general setting of the present paper.

8 Proper A-embeddings

The aim of this final section is to prove the following existence result for
proper directed embeddings of open Riemann surfaces in C

n.
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Theorem 8.1 Let A ⊂ C
n (n ≥ 3) be a conical subvariety as in Theorem 2.3.

Assume in addition that A \ {0} is an Oka manifold (Definition 4.1), and that
for k ∈ {1,2} the hyperplane section A∩ {zk = 1} is an Oka manifold and the
coordinate projection πk : A → C onto the zk-axis admits a local holomor-
phic section hk near zk = 0, with hk(0) 	= 0.

Let M be an open Riemann surface, and let K ⊂ M be a compact Runge
set. Then every A-immersion from an open neighborhood of K in M into
C

n can be approximated in the C1(K) topology by proper A-embeddings
M → C

n. Furthermore, these A-embeddings can be chosen such that their
first two coordinates determine a proper map of M into C

2.

Properly immersed null curves in C
3 parametrized by any given open Rie-

mann surface were constructed in [7]. The methods developed in the present
paper allow us to substantially simplify the construction in [7] and, what is
the main point, to avoid self-intersections.

The proof of Theorem 8.1 will be a recursive application of the following
approximation result.

Lemma 8.2 Let A and M be as in Theorem 8.1. Let U and V be smoothly
bounded compact domains such that U ⊂ V̊ ⊂ V ⊂ M and U is Runge in V .
Let F = (F1,F2, . . . ,Fn) ∈ IA(U), let ρ > 0, and assume that

max
{∣∣F1(x)

∣∣,
∣∣F2(x)

∣∣} > ρ for all x ∈ bU. (8.1)

Then there exists an F̃ = (F̃1, F̃2, . . . , F̃n) ∈ IA(V ) such that

(i) F̃ is as close as desired to F in the C1(U) topology,
(ii) max{|F̃1(x)|, |F̃2(x)|} > ρ for all x ∈ V \ Ů , and

(iii) max{|F̃1(x)|, |F̃2(x)|} > ρ + 1 for all x ∈ bV .

Proof The conditions on U and V imply that these are sublevel sets of a
strongly subharmonic Morse function τ defined on a neighborhood of V

in M . As in the proof of Theorem 7.2, we obtain Lemma 8.2 by a finite appli-
cation of two special cases: the noncritical case when there is no change of
topology (i.e., τ has no critical points in V \ U ), and the critical case when τ

has a single critical point in V \ U .

The noncritical case By Theorem 7.2 we may assume that F extends to an
A-immersion of an open neighborhood of U in M . Denote by i the number
of boundary components of U . Our conditions imply that V \ Ů = ⋃i

i=1 Ai ,
where the Ai’s are pairwise disjoint compact annuli. For every i ∈ {1, . . . , i}
we denote by αi the connected component of bAi contained in bU , and by
βi the connected component of bAi contained in bV . Note that αi and βi are
smooth closed Jordan curves.
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Fig. 1 The annulus Ai

It follows from (8.1) that there exist j ∈ N, subsets I1 and I2 of I :=
{1, . . . , i} × Zj (here Zj = {0, . . . , j − 1} denotes the additive cyclic group of
integers modulus j), and a family of compact connected subarcs {αi,j : (i, j) ∈
I }, satisfying the following conditions:

(a1)
⋃j

j=1 αi,j = αi .
(a2) αi,j and αi,j+1 have a common endpoint pi,j and are otherwise disjoint.
(a3) I1 ∪ I2 = I and I1 ∩ I2 = ∅.
(a4) |Fk(x)| > ρ for all x ∈ αi,j and all (i, j) ∈ Ik , k = 1,2.

From (a4) one also has that

(a5) if (i, j) ∈ Ih and (i, j + 1) ∈ Il , h 	= l, then |Fk(pi,j )| > ρ for k ∈ {1,2}.
For convenience we assume that j ≥ 3. Next, for every (i, j) ∈ I we choose

a smooth embedded arc γi,j ⊂ Ai with the following properties (see Fig. 1):

• γi,j is attached to U at the endpoint pi,j , it intersects the arc αi transversely
at that point, and γi,j ∩ αi = {pi,j }.

• The other endpoint qi,j of the arc γi,j lies in βi , γi,j intersects βi trans-
versely at that point, and γi,j ∩ βi = {qi,j }.

• The arcs γi,j , j ∈ Zj, are pairwise disjoint.

Let z = (z1, . . . , zn) be the coordinates on C
n. Recall that πk : Cn → C is

the k-th coordinate projection πk(z) = zk . Choose compact smooth embedded
arcs λi,j in C

n, (i, j) ∈ I , meeting the following requirements:

(b1) λi,j agrees with F(γi,j ) near the endpoint F(pi,j ).
(b2) |πk(z)| > ρ for all z ∈ λi,j−1 ∪ λi,j , (i, j) ∈ Ik , k = 1,2.
(b3) |πk(z)| > ρ + 1 for all z ∈ {vi,j−1, vi,j }, (i, j) ∈ Ik , k = 1,2, where

vi,l ∈C
n denotes the other endpoint of the arc λi,l .

(b4) The unit tangent vector field to λi,j assumes values in A \ {0}.
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To find such arcs λi,j , recall that the convex hull of A \ {0} equals C
n

(cf. Lemma 3.1) and use similar arguments as in the proof of Lemma 7.3.
Since pi,j−1 and pi,j are the endpoints of αi,j , properties (b1) and (b2) are
compatible thanks to (a4). On the other hand, (b3) is always possible.

As above, conditions (b2) and (b3) imply that,

(b5) if (i, j) ∈ Ih and (i, j + 1) ∈ Il , h 	= l, then

• |πk(z)| > ρ for all z ∈ λi,j , and
• |πk(vi,j )| > ρ + 1 for k ∈ {1,2}.

Taking into account (b1), we can find a smooth map Ĝ : V → C
n that

agrees with F in an open neighborhood of U and maps the arc γi,j diffeo-
morphically onto λi,j for every (i, j) ∈ I . The set

S := U ∪
( ⋃

(i,j)∈I

γi,j

)
⊂ M

is admissible in the sense of Definition 7.1. Condition (b4) shows that the
map Ĝ|S is an A-immersion in the sense used in Theorem 7.2. Hence Theo-
rem 7.2(b) furnishes an A-immersion G = (G1, . . . ,Gn) ∈ IA(V ) such that

(c1) G is as close as desired to F in the C1(U) topology,
(c2) |Gk(x)| > ρ for all x ∈ γi,j−1 ∪ αi,j ∪ γi,j , (i, j) ∈ Ik , k = 1,2, and
(c3) |Gk(x)| > ρ + 1 for all x ∈ {qi,j−1, qi,j }, (i, j) ∈ Ik , and k = 1,2.

To obtain (c2) we take into account (a4) and (b2), whereas (c3) follows
from (b3). Furthermore, (c2) and (c3) give

(c4) if (i, j) ∈ Ih and (i, j + 1) ∈ Il , h 	= l, then for k ∈ {1,2} we have

• |Gk(x)| > ρ for all x ∈ γi,j , and
• |Gk(qi,j )| > ρ + 1.

Notice that G satisfies condition (i) in Lemma 8.2, whereas it satisfies (ii)
only on the arcs γi,j , and (iii) only at the points qi,j , (i, j) ∈ I . Therefore, G

meets all the requirements in Lemma 8.2 on the admissible set S.
Let βi,j be the compact connected Jordan arc in βi which connects the

points qi,j−1 and qi,j and does not intersect the set {qi,h : h ∈ Zj \ {j − 1, j}};
recall that j ≥ 3. For every (i, j) ∈ I we denote by Di,j the closed disc in Ai

bounded by the arcs αi,j , γi,j−1, γi,j , and βi,j . (See Fig. 1.) It is clear that
Ai = ⋃j

j=1 Di,j for every i = 1, . . . , i.
Since G is continuous, properties (c2) and (c3) extend to small open neigh-

borhoods of the compact sets γi,j−1 ∪ αi,j ∪ γi,j and {qi,j−1, qi,j }, respec-
tively. Therefore, we can choose for every k ∈ {1,2} and every (i, j) ∈ Ik a
closed disc Ki,j ⊂ Di,j \ (γi,j−1 ∪ αi,j ∪ γi,j ) such that
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(d1) Ki,j ∩ βi,j is a compact connected Jordan arc,
(d2) |Gk(x)| > ρ for all x ∈ Di,j \ Ki,j , and
(d3) |Gk(x)| > ρ + 1 for all x ∈ βi,j \ Ki,j .

(See Fig. 1.) Obviously we have

V \ Ů =
⋃

(i,j)∈I

(Ki,j ∪ Di,j \ Ki,j ) (8.2)

and

bV =
⋃

(i,j)∈I

(
(βi,j ∩ Ki,j ) ∪ βi,j \ Ki,j

)
. (8.3)

Assume without loss of generality that I1 	= ∅; otherwise I2 = I 	= ∅ and we
would reason in a symmetric way.

We now deform G into another A-immersion H : V → C
n satisfying

Lemma 8.2 on the set U ∪ (
⋃

(i,j)∈I1
Di,j ). We will apply to G a perturbation

that is large in Ki,j for all (i, j) ∈ I1, small on U , and controlled elsewhere.
Such control will be insured by demanding that H1 = G1; see (8.5) below.

Observe that the compact set

S1 := U ∪
⋃

(i,j)∈I2

Di,j ∪
⋃

(i,j)∈I1

Ki,j ⊂ M

is admissible (Definition 7.1). Note that the compact sets U ∪ (
⋃

(i,j)∈I2
Di,j )

and
⋃

(i,j)∈I1
Ki,j are disjoint. Choose a point ξ1 ∈ C

n ∩ {z1 = 0} such that

∣
∣π2(ξ1) + G2(x)

∣
∣ > ρ + 1 for all x ∈

⋃

(i,j)∈I1

Ki,j . (8.4)

In fact, any ξ1 with |π2(ξ1)| large enough satisfies this condition. The map
Ĥ = (Ĥ1, . . . , Ĥn) : S1 → C

n, given by

(e1) Ĥ (x) = G(x) for all x ∈ U ∪ (
⋃

(i,j)∈I2
Di,j ), and

(e2) Ĥ (x) = ξ1 +G(x) = (G1(x),G2(x)+π2(ξ1), . . . ,Gn(x)+πn(ξ1)) for
all x ∈ ⋃

(i,j)∈I1
Ki,j ,

is an A-immersion, and Ĥ1 agrees with G1|S1 .Therefore Theorem 7.7 applies
and provides an A-immersion H = (H1, . . . ,Hn) ∈ IA(V ) such that

H1 = G1 (8.5)

and the following properties hold:

(f1) H is as close to Ĥ as desired in the C1(S1) topology.
(f2) |Hk(x)| > ρ for all x ∈ Di,j \ Ki,j , (i, j) ∈ Ik , k = 1,2.
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(f3) |Hk(x)| > ρ + 1 for all x ∈ βi,j \ Ki,j , (i, j) ∈ Ik , k = 1,2.
(f4) |H2(x)| > ρ + 1 for all x ∈ Ki,j and all (i, j) ∈ I1 = I \ I2.

Indeed, for k = 1, properties (f2) and (f3) follow from (d2), (d3), and (8.5);
whereas for k = 2 they are guaranteed by (d2), (d3), and (e1), provided that
H is sufficiently close to Ĥ on S1. Likewise, (f4) is implied by (e2) and (8.4)
provided that the approximation is sufficiently close.

If I2 = ∅, then the proof of Lemma 8.2 is already done. Indeed, in such case
I = I1; hence, taking into account (8.2), properties (f2) and (f4) imply item
(ii) in the lemma. Likewise, (iii) follows from (f3), (f4), and (8.3). Finally,
item (i) is ensured by (f1) and (c1).

Assume now that I2 	= ∅. In the next step we deform H to obtain the
A-immersion F̃ ∈ IA(V ) satisfying Lemma 8.2. The deformation is big on⋃

(i,j)∈I2
Di,j and small elsewhere. The deformation procedure will be sym-

metric to the one in the previous step of the proof. Consider the set

S2 := U ∪
⋃

(i,j)∈I1

Di,j ∪
⋃

(i,j)∈I2

Ki,j ,

and choose a point ξ2 ∈C
n ∩ {z2 = 0} such that

∣∣π1(ξ2) + H1(x)
∣∣ > ρ + 1 for all x ∈

⋃

(i,j)∈I2

Ki,j . (8.6)

Consider the A-immersion Y = (Y1, . . . , Yn) : S2 → C
n given by

(g1) Y(x) = H(x) for all x ∈ U ∪ (
⋃

(i,j)∈I1
Di,j ), and

(g2) Y(x) = ξ2 + H(x) = (H1(x) + π1(ξ2),H2(x), . . . ,Hn(x) + πn(ξ2)) for
all x ∈ ⋃

(i,j)∈I2
Ki,j .

Apply Theorem 7.7 to get F̃ = (F̃1, . . . , F̃n) ∈ IA(V ), with

F̃2 = H2 (8.7)

and such that the following conditions hold:

(h1) F̃ is as close to Y as desired in the C1(S2) topology.
(h2) |F̃k(x)| > ρ for all x ∈ Di,j \ Ki,j , for all (i, j) ∈ Ik , k = 1,2.
(h3) |F̃k(x)| > ρ + 1 for all x ∈ βi,j \ Ki,j , for all (i, j) ∈ Ik , k = 1,2.
(h4) |F̃k(x)| > ρ + 1 for all x ∈ Ki,j , for all (i, j) ∈ I \ Ik , k = 1,2.

Indeed, for k = 2, properties (h2) and (h3) follow from (f2), (f3), and (8.7);
whereas for k = 1 they are ensured by (f2), (f3), and (h1), provided that the
approximation of Y by F̃ is close enough on the set S2. Likewise, for k = 2,
(h4) is implied by (f4) and (8.7); whereas for k = 1 it follows from (g2) and
(8.6), if the approximation is sufficiently close.
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To see that F̃ satisfies Lemma 8.2, notice that (i) is ensured by (h1), (f1),
and (c1); condition (ii) follows from (8.2), (h2), and (h4); whereas (8.3), (h3),
and (h4) guarantee the condition (iii).

This concludes the proof in the noncritical case.

The critical case We assume that τ has a unique (Morse) critical point p in
V \ U . This point has Morse index 0 or 1.

If the Morse index of p equals 0, a new connected component of the sub-
level set {τ ≤ t} appears at p when t passes the value τ(p), and it is trivial to
find a map F̃ satisfying the Lemma on this new component.

If the Morse index of p equals 1, there is a compact Jordan arc γ ⊂ V̊ \ Ů ,
attached with both endpoints to U , such that S := U ∪ γ is an admissible
Runge set in V (Definition 7.1) and a strong deformation retract of V . Clearly
F extends to an A-immersion F : S →C

n satisfying max{|F1(x)|, |F2(x)|} >

ρ for all x ∈ γ ; see (8.1). Theorem 7.2-(a) furnishes a smoothly bounded
compact domain, W , and an A-immersion G = (G1, . . . ,Gn) ∈ IA(W), such
that U ⊂ W̊ ⊂ W ⊂ V̊ , V is a noncritical extension of W , G is as close
as desired to F in the C1(S) topology, and max{|G1(x)|, |G2(x)|} > ρ for
x ∈ bW . This reduces the proof to the noncritical case. �

Proof of Theorem 8.1 Let F = (F1,F2, . . . ,Fn) : M0 → C
n be an A-

immersion, where M0 is a smoothly bounded compact Runge domain in M

containing K in its interior. By general position we may assume that the set
(F1,F2)(bM0) ⊂ C

2 does not contain the origin of C
2. Choose a number

ξ > 0 such that

max
{∣∣F1(x)

∣∣,
∣∣F2(x)

∣∣} > ξ for all x ∈ bM0. (8.8)

Pick a number ε > 0 and set F 0 := F and ε0 := ε. Choose an exhaustion of
M by a sequence M0 ⊂ M1 ⊂ M2 ⊂ · · ·⋃∞

j=0 Mj = M of smoothly bounded
compact Runge domains. A recursive application of Lemma 8.2 gives num-
bers εj > 0 and A-immersions Fj = (F

j

1 ,F
j

2 , . . . ,F
j
n ) : Mj → C

n such that
the following conditions hold for every j ∈ N:

(a) ‖Fj − Fj−1‖Mj−1 := maxx∈Mj−1 |Fj (x) − Fj−1(x)| < εj−1/2,

(b) max{|Fj

1 (x)|, |Fj

2 (x)|} > j − 1 for all x ∈ Mj \ M̊j−1,

(c) max{|Fj

1 (x)|, |Fj

2 (x)|} > j for all x ∈ bMj , and
(d) 0 < εj < εj−1/4.

The induction begins thanks to (8.8), and the inductive step is guaranteed by
property (c). Furthermore, by Theorem 2.4 we may assume that each Fj is
actually an A-embedding and

(e) every holomorphic map G : M → C
n satisfying ‖G − Fj‖Mj

< εj is an
embedding on Mj−1.
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As in the proof of Theorem 2.5, properties (a), (d), and (e) ensure that the
limit map F̃ = (F̃1, F̃2, . . . , F̃n) = limj→∞ Fj : M → C

n exists, is an A-
embedding, and satisfies ‖F̃ − Fj‖Mj

< ε for all j = 0,1, . . . . In particular
we have ‖F̃ − F‖M0 < ε. Together with property (b) we get

max
{∣∣F̃1(x)

∣∣,
∣∣F̃2(x)

∣∣} > j − 1 − ε for all x ∈ Mj \ M̊j−1, j ∈N.

This shows that the map (F̃1, F̃2) : M → C
2 is proper. �
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18. Forstnerič, F.: The Oka principle for multivalued sections of ramified mappings. Forum
Math. 15, 309–328 (2003)
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