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We introduce the notion of a stratified Oka manifold and prove that such a manifold

X is strongly dominable in the sense that, for every x ∈ X, there is a holomorphic map

f : C
n → X, n= dim X, such that f(0) = x and f is a local biholomorphism at 0. We deduce

that every Kummer surface is strongly dominable. We determine which minimal compact

complex surfaces of class VII are Oka, assuming the global spherical shell conjecture.

We deduce that the Oka property and several weaker holomorphic flexibility properties

are in general not closed in families of compact complex manifolds. Finally, we consider

the behavior of the Oka property under blowing up and blowing down.

1 Introduction

The class of Oka manifolds has emerged from the modern theory of the Oka principle,

initiated in 1989 in a seminal paper of Gromov [16]. They were first formally defined

by the first-named author in 2009 in the wake of his result that some dozen possible

definitions are all equivalent [12]. A complex manifold X is said to be an Oka mani-

fold if the homotopy principle holds for maps from Stein sources into X, meaning that

every continuous map from a Stein manifold (or, more generally, a reduced Stein space)
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Holomorphic Flexibility Properties of Compact Complex Surfaces 3715

S into X can be deformed to a holomorphic map, with interpolation on a closed complex

subvariety of S, uniform approximation on a holomorphically convex compact subset of

S, and with continuous dependence on a parameter. Equivalently, for every n≥ 1, every

holomorphic map from an open neighborhood of a convex compact subset K of C
n to X

can be uniformly approximated on K by entire maps C
n → X. This property, the convex

approximation property, is the weakest version of the Oka property. Looking at the Oka

property formulated this way, it is immediate that it passes up and down any holomor-

phic covering map. More generally, and this is not quite as easy to see, the Oka property

passes up and down in any holomorphic fiber bundle with Oka fibers.

The Oka property can be seen as an answer to the question: what should it mean

for a complex manifold to be “anti-hyperbolic”? Gromov’s Oka principle is about suffi-

cient geometric conditions for the Oka property to hold. The most important such con-

dition is ellipticity, that is, possessing a dominating spray, a structure that generalizes

the exponential map of a complex Lie group [16, Section 0.5]. For more background, see

the monograph [14] and the survey [15].

One of the central problems of Oka theory is to determine the place of Oka man-

ifolds in the classification of compact complex manifolds. This is well understood only

for manifolds of dimension 1: a Riemann surface (whether compact or not) is Oka if and

only if it is not Kobayashi hyperbolic, and this holds if and only if its universal covering

space is not the disk. In particular, the compact Riemann surfaces that are Oka are the

Riemann sphere and all elliptic curves. Already for complex surfaces, the problem is

difficult and to a large extent open. Whether the Oka property is preserved by blowing

up and blowing down is a closely related problem, also difficult and very much open.

In particular, we do not know whether an arbitrary Oka manifold blown up at a point is

still Oka. This paper is a contribution toward a solution to these two problems.

We will be concerned with several properties of complex manifolds that are

(at least ostensibly) weaker than the Oka property.

Definition 1. Let X be a complex manifold (here always taken to be connected).

(a) X is stratified Oka if it admits a stratification X = X0 ⊃ X1 ⊃ · · · ⊃ Xm = ∅ by

closed complex subvarieties, such that every connected component (stratum)

of each difference X j−1 \ X j, j = 1, . . . , m, is an Oka manifold.

(b) X is dominable at a point x ∈ X (by C
n, where n= dim X) if there is a

holomorphic map f : C
n → X such that f(0) = x and f is a local biholomor-

phism at 0.

(c) X is dominable if it is dominable at some point.
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3716 F. Forstnerič and F. Lárusson

(d) X is strongly dominable if it is dominable at every point.

(e) X is C-connected if any two points in X can be joined by a finite chain of

entire curves in X (this definition has several variants: see Remark 10).

(f) X is strongly Liouville if the universal covering space of X carries no non-

constant negative plurisubharmonic functions. �

Properties (a), (c), (d), and (e) are anti-hyperbolic in the sense that the only

Kobayashi hyperbolic manifold satisfying any of them is the point. (For the weakest

property (f), this fails. A simply connected, compact, Kobayashi hyperbolic manifold,

such as a smooth Kobayashi hyperbolic surface in P3, satisfies (f).) We refer to these

properties, the Oka property, ellipticity, and other similar properties, as holomorphic

flexibility properties to contrast them with the rigidity that characterizes hyperbolic-

ity. (A more specific definition of flexibility exists in the literature [14, Definition 5.5.16],

but we shall not use it here.)

An Oka manifold is obviously stratified Oka; the converse is open. The following

implications are easily verified.

(1) If X is Oka, then X is strongly dominable.

(2) If X is strongly dominable, then X is C-connected.

(3) If X is stratified Oka, then X is dominable.

(4) If X is either dominable or C-connected, then X is strongly Liouville.

The last implication depends on the well-known fact that C
n carries no noncon-

stant negative plurisubharmonic functions. It follows in particular that a manifold that

is not strongly Liouville is also not Oka, an observation that will be used in the sequel.

The first main result of the paper is the following theorem.

Theorem 2. A stratified Oka manifold is strongly dominable. �

A Kummer surface X admits a stratification X ⊃ C ⊃ ∅, where C is the union of 16

mutually disjoint, smooth, rational curves, and the difference X \ C is an Oka manifold

(Lemma 7). Thus, X is stratified Oka, and we obtain the following corollary.

Corollary 3. Every Kummer surface is strongly dominable. �

Kummer surfaces are dense in the moduli space of all K3 surfaces, but we

do not know whether it follows that all K3 surfaces are strongly dominable. In fact,

we prove that strong dominability is in general not closed in families of compact com-

plex manifolds (Corollary 5).
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Holomorphic Flexibility Properties of Compact Complex Surfaces 3717

Class VII in the Enriques–Kodaira classification comprises the nonalgebraic

compact complex surfaces of Kodaira dimension κ = −∞. Minimal surfaces of class VII

fall into several mutually disjoint classes. For second Betti number b2 = 0, we have Hopf

surfaces and Inoue surfaces. For b2 ≥ 1, there are Enoki surfaces, Inoue–Hirzebruch sur-

faces, and intermediate surfaces; together they form the class of Kato surfaces. By the

global spherical shell conjecture, currently proved only for b2 = 1 by Teleman [27], every

minimal surface of class VII with b2 ≥ 1 is a Kato surface. Assuming that the conjecture

holds, we determine which minimal surfaces of class VII are Oka.

Theorem 4. Minimal Hopf surfaces and Enoki surfaces are Oka. Inoue surfaces, Inoue–

Hirzebruch surfaces, and intermediate surfaces, minimal or blown-up, are not strongly

Liouville, and hence not Oka. �

Enoki surfaces are generic among Kato surfaces. Inoue–Hirzebruch surfaces

and intermediate surfaces can be obtained as degenerations of Enoki surfaces (explicit

examples are given in [6]). Thus, Theorem 4 yields the following corollary.

Corollary 5. Compact complex surfaces that are Oka can degenerate to a surface that is

not strongly Liouville. Consequently, the following properties are in general not closed

in families of compact complex manifolds.

(1) The Oka property.

(2) The stratified Oka property.

(3) Strong dominability.

(4) Dominability.

(5) C-connectedness.

(6) Strong Liouvilleness. �

The corollary answers a question posed in [21]. There it was shown that the

Oka fibers in a family of compact complex manifolds form a Gδ set. The corollary says

that the set need not be closed. In fact, the corollary suggests that the only interesting

closed anti-hyperbolicity property is the weakest anti-hyperbolicity property, the prop-

erty of not being Kobayashi hyperbolic. Now the open question is whether the set of

Oka fibers in a family is open, that is, whether the Oka property is stable under small

deformations.
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3718 F. Forstnerič and F. Lárusson

Here is what we know about which minimal compact complex surfaces

are Oka.

(1) κ = −∞: Rational surfaces are Oka. A ruled surface is Oka if and only if its

base is Oka. Theorem 4 covers class VII if the global spherical shell conjec-

ture is true.

(2) κ = 0: Bielliptic surfaces, Kodaira surfaces, and tori are Oka. It is unknown

whether any or all K3 surfaces or Enriques surfaces are Oka.

(3) κ = 1: Buzzard and Lu determined which properly elliptic surfaces are dom-

inable [3]. Nothing further is known about the Oka property for these sur-

faces.

(4) κ = 2: Surfaces of general type are not dominable (this is an easy consequence

of [19, Theorem 2]), and hence not Oka.

In the final section, we show that,often, something survives of the Oka property

when an Oka manifold is blown down (Theorem 11). We also establish a perhaps sur-

prising consequence of the hypothesis that the Oka property is preserved by blow-ups,

which may suggest that the hypothesis is false (Proposition 12).

2 Stratified Oka Manifolds are Strongly Dominable

In this section, we prove Theorem 2. The proof is based on the following result, which is

a special case of [14, Theorem 7.6.1].

Theorem 6. Let X be a Stein manifold, Y be a complex manifold, Y′ be a closed complex

subvariety of Y, and f : X → Y be a continuous map that is holomorphic on an open

neighborhood of the preimage X′ = f−1(Y′) in X. If Y \ Y′ is an Oka manifold, then, for

each k≥ 1, there exists a homotopy of continuous maps ft : X → Y, t ∈ [0, 1], such that

f = f0, f1 is holomorphic on X, and for each t ∈ [0, 1], ft is holomorphic near X′, agrees

with f = f0 to order k along X′, and maps X \ X′ into Y \ Y′, that is, f−1
t (Y′) = X′. �

Note that X′ = f−1(Y′) is a closed complex subvariety of X since f is assumed

to be holomorphic on a neighborhood of X′.

The special case of Theorem 6 when Y′ = {0} ⊂ C
d = Y follows from classical Oka–

Grauert theory since in this case Y \ Y′ = C
d \ {0} is complex homogeneous; it corre-

sponds to the problem of complete intersections (see [14, Section 7.5]). The general case,

similar to the one stated here, was first proved in [10, Theorem 1.3]. The proof of the

general case is explained in [14, Section 7.6], and is based on the paper [13].
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Holomorphic Flexibility Properties of Compact Complex Surfaces 3719

Proof of Theorem 2. Let Y be a stratified Oka manifold of dimension n and let Y = Y0 ⊃
Y1 ⊃ · · · ⊃ Yl = ∅ be a stratification of Y such that Sj = Yj \ Yj+1 is Oka for j = 0, . . . , l − 1.

Given a point y0 ∈ Y, we wish to find a holomorphic map F : C
n → Y such that F (0) = y0

and F is dominating at 0.

If y0 ∈ S0 = Y0 \ Y1, then the Oka property of S0 implies that there is a holomorphic

map F : C
n → S0 with F (0) = y0 and rank n at 0.

Now suppose y0 ∈ S1 = Y1 \ Y2. Let Σ be the connected component of S1 con-

taining y0. Set m = dim Σ and d= n− m. Since Σ is Oka by assumption, there is

a holomorphic map g : C
m → Σ such that g(0) = y0 and g is a local biholomorphism

at 0.

We identify C
m with the subspace C

m × {0}d of C
n. Write the coordinates on C

n as

z= (z′, z′′) with z′ = (z1, . . . , zm) and z′′ = (zm+1, . . . , zn). We shall construct a holomorphic

map F : C
n → Y such that F (z′, 0) = g(z′) for all z′ ∈ C

m, F maps C
n \ (Cm × {0}d) into S0,

and F is a local biholomorphism at 0.

Let N → Σ be the holomorphic normal bundle of Σ in Y. By Grauert’s Oka prin-

ciple, the pullback g∗N → C
m is a trivial holomorphic vector bundle over C

m (see [14,

Section 7.2]). A trivialization of this bundle is given by d linearly independent holomor-

phic vector fields V1, . . . , Vd on Y along g that are normal to Σ . More precisely, for every

point z′ ∈ C
m and its image w′ = g(z′) ∈ Σ , the vectors V1(z′), . . . , Vd(z′) ∈ Tw′Y give a basis

of the normal space Nw′ = Tw′Y/Tw′Σ .

The graph

G = {(z′, g(z′)) : z′ ∈ C
m} ⊂ C

m × Y

of g is a submanifold of C
m × Y, biholomorphic to C

m, so it has a Stein open neighbor-

hood Ω in C
m × Y by Siu’s theorem [14, Theorem 3.1.1; 26]. We identify each Vj with

a vector field on C
m × Y, defined along G, that is, tangential to the fibers of the pro-

jection π1 : C
m × Y → C

m. After shrinking Ω around G if necessary, we can assume that

V1, . . . , Vd extend to holomorphic vector fields on Ω that are tangential to the fibers of π1.

(Since V1, . . . , Vd are sections of a holomorphic vector bundle, we can also appeal to Car-

tan’s Theorem B to extend them holomorphically to all of Ω.) Let φ
j
t denote the flow of Vj

for small complex values of time t (depending on the initial point). Let π2 : C
m × Y → Y

be the projection on to the second factor. The formula

f(z′, z′′) = π2 ◦ φ1
zm+1

◦ · · · ◦ φd
zn

(z′, g(z′))
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3720 F. Forstnerič and F. Lárusson

defines a holomorphic map f into Y from an open neighborhood of C
m × {0}d in C

n, such

that f(z′, 0′′) = g(z′) for z′ ∈ C
m and

∂

∂zj
f(z′, z′′)

∣
∣
∣
∣
z′′=0

= Vj−m(z′) for z′ ∈ C
m and j = m + 1, . . . , n.

Hence, the differential d f(z′,0′′) : T(z′,0′′)C
n → Tg(z′)Y is an isomorphism for every z′ ∈ C

m near

the origin. In particular, f is dominating at 0 ∈ C
n and f(0) = g(0′) = y0. Furthermore, as

the vector fields V1, . . . , Vd trivialize the normal bundle to Σ in Y, the above implies that

there is a neighborhood U of C
m × {0}d in C

n such that

f(U \ C
m × {0}d) ⊂ S0 = Y0 \ Y1.

We may contract C
n into U by a smooth contraction that equals the identity on

a smaller open neighborhood V ⊂ U of C
m × {0}d. Precomposing f with this contraction

yields a continuous map C
n → Y which agrees with f on V and maps C

n \ (Cm × {0}d)

into S0. Theorem 6 now provides an entire map F : C
n → Y which agrees with f to second

order along C
m × {0}d and maps C

n \ (Cm × {0}d) into S0. In particular, F is dominating

at 0 and F (0) = y0. This completes the proof when y0 ∈ S1.

In general, if y0 ∈ Sk = Yk \ Yk+1 for some k∈ {1, . . . , l − 1}, we choose strata Σ j ⊂ Sj

for j = 0, . . . , k such that y0 ∈ Σk and Σ j ⊂ Σ̄ j−1 for j = 1, . . . , k. Let mj = dim Σ j, so

m0 = n> m1 > · · · > mk. Set dj = mj − mj+1 for j = 0, . . . , k − 1. Since Σk is Oka, there

is an entire map gk : C
mk → Σk which sends 0 to y0 and is dominating at 0. By the

above argument and downward induction over j = 0, . . . , k − 1, there are entire maps

gj : C
mj → Σ j such that gj = gj+1 on C

mj+1 × {0}dj , and gj is dominating at 0 (as a map into

Σ j). For j = 0, we thus get an entire map F = g0 : C
n → Y which is dominating at 0 with

F (0) = y0. �

3 Kummer Surfaces are Strongly Dominable

In this section, we show that all Kummer surfaces are stratified Oka, and hence strongly

dominable by Theorem 2. We also prove a variant of the Oka property for maps of Stein

surfaces to Kummer surfaces.

Let us recall the structure of Kummer surfaces (see [1] for more information).

Let T be a complex 2-torus, the quotient of C
2 by a lattice Z

4 ∼= Γ ⊂ C
2 of rank 4, act-

ing on C
2 by translations. Let π : C

2 → T = C
2/Γ be the quotient map. The involution

C
2 → C

2, (z1, z2) �→ (−z1,−z2), descends to an involution σ : T → T with precisely 16 fixed

points p1, . . . , p16. In fact, if ω1, . . . , ω4 ∈ C
2 are generators for Γ , then p1, . . . , p16 are the
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Holomorphic Flexibility Properties of Compact Complex Surfaces 3721

images under π of the 16 points c1ω1 + · · · + c4ω4, where c1, . . . , c4 ∈ {0, 1
2 }. The quotient

space T/{1, σ } is a two-dimensional complex space with 16 singular points q1, . . . , q16.

The singularities can be resolved by blowing up q1, . . . , q16, yielding a smooth compact

surface Y containing 16 mutually disjoint smooth rational curves C1, . . . , C16. This is the

Kummer surface associated to the torus T or to the lattice Γ .

Here is an alternative description. Let X denote the surface obtained by blowing

up the torus T at each of the 16 points p1, . . . , p16. Let E j
∼= P1 denote the exceptional

divisor over pj. The involution σ of T lifts to an involution τ : X → X with the fixed point

set E = E1 ∪ · · · ∪ E16. The eigenvalues of the differential dτ at any point of E are 1 and

−1. Hence, the quotient X/{1, τ } is smooth and contains 16 rational (−2)-curves C j
∼= P1,

the images of the rational (−1)-curves E j in X. The quotient is the Kummer surface Y.

Denoting by Ĉ
2 the surface obtained by blowing up C

2 at every point of the discrete set

Γ̃ = π−1({p1, . . . , p16}), we have the following diagram (see [1, p. 224]):

Ĉ
2 ��

��

X ��

��

Y

��

C
2

π

�� T �� T/{1, σ }

Lemma 7. Let Y be a Kummer surface with the exceptional rational curves C1, . . . , C16.

Then Y ⊃ C = C1 ∪ · · · ∪ C16 ⊃ ∅ is a stratification whose strata are Oka. �

Proof. Since each curve C j
∼= P1 is Oka, we only need to prove that Y \ C is Oka. To see

this, note that the involution τ : X → X acts without fixed points on X \ E , so X \ E is an

unbranched, double-sheeted, covering space of Y \ C . Now X \ E is universally covered

by C
2 \ Γ̃ . Buzzard and Lu [3, Proposition 4.1] showed that the discrete set Γ̃ is tame

in C
2 in the sense of Rosay and Rudin [25] (see also [14, Section 4.6]). Hence, C

2 \ Γ̃

is Oka [14, Proposition 5.5.14]. Since the Oka property passes down along unbranched

holomorphic covering maps [14, Proposition 5.5.2], X \ E and Y \ C are also Oka. �

The surface X obtained by blowing up a 2-torus at finitely many points is Oka

[14, Corollary 6.4.12]. We do not know whether its quotient Y is also Oka; the problem is

that the quotient map X → Y is branched, and it is unknown whether the Oka property

passes down along finite branched covering maps. However, the strong dominability of

X obviously passes down to give the dominability of Y at each point of Y \ C . Since the
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projection X → Y is branched over C , holomorphic maps C
2 → Y dominating at points of

C , which exist by Corollary 3, do not factor through X.

It would be interesting to know whether every Kummer surface Y satisfies the

Oka property restricted to maps from Stein surfaces to Y. By inspecting the proof of

Theorem 2, we see that the problem is essentially topological. Therefore, it is not sur-

prising that we have a positive result for Stein surfaces with sufficiently simple topology,

that is, for the subcritical Stein surfaces whose CW-decomposition does not contain any

cells of index 2.

Theorem 8. Let Y be a Kummer surface with the rational curves C = C1 ∪ · · · ∪ C16. Let

S be a Stein surface and Σ be a smooth, possibly disconnected, complex curve in S.

If S is obtained from Σ by adding only cells of index 0 or 1, then every holomorphic

map f : Σ → C extends to a holomorphic map F : S → Y such that F (S \ Σ) ⊂ Y \ C . If f

is dominating (of rank 1) at some point x ∈ Σ , then the extension F can be chosen to be

dominating (of rank 2) at x. �

Proof. By following the proof of Theorem 2, we can extend f to a holomorphic map

U → Y from an open tubular neighborhood U of Σ in S such that f(U \ Σ) ⊂ Y \ C . Fur-

thermore, the extension can be chosen such that its rank at any point x ∈ Σ equals the

rank of f |Σ plus 1. (It is important to observe that the normal bundle of a noncompact,

smooth, complex curve is trivial. Indeed, any holomorphic vector bundle on an open Rie-

mann surface is trivial by the Oka–Grauert principle; see [14, Theorem 5.3.1].) Since Y \ C

is connected, the topological assumption on the pair (S,Σ) implies that f extends to a

continuous map S → Y taking S \ Σ to Y \ C . Since Y \ C is Oka by Lemma 7, Theorem 6

enables us to deform f to a holomorphic map F : S → Y, which agrees with f to second

order along Σ and maps S \ Σ to Y \ C .

However, since Y \ C is not simply connected, it may be impossible to extend f

across cells of index 2 in a relative CW-complex representing the pair (S,Σ). Indeed,

if the restriction of the given map to the boundary of a cell of index 2 represents a

nontrivial loop in Y \ C , then the map cannot be extended across the cell (as a map into

Y \ C ). �

Example 9. The surface S = C
2 with Σ equal to the union of finitely many, mutually

disjoint, affine complex lines Σ1, . . . , Σm satisfies the hypothesis of Theorem 8. Hence,

there is a dominating holomorphic map C
2 → Y whose restriction to each Σ j equals
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Holomorphic Flexibility Properties of Compact Complex Surfaces 3723

any prescribed biholomorphism on to the complement of a chosen point in any of the

rational curves C1, . . . , C16. �

4 Oka Surfaces of Class VII

In this section, we prove Theorem 4 by considering each of the five classes of minimal

surfaces X of class VII in turn.

If X is Hopf, then the universal covering space of X is C
2 \ {0}, which is Oka,

so X is Oka.

If X is Inoue, then the universal covering space of X is D × C, where D denotes

the open disk, which clearly carries a nonconstant, negative, plurisubharmonic function.

Hence, an Inoue surface is not strongly Liouville.

If X is intermediate, then X is not strongly Liouville by Dloussky and Oeljeklaus

[7, Corollary 2.13].

Let X be Inoue–Hirzebruch and D be the union of the finitely many rational

curves in X. Let D̃ be the preimage of D in the universal covering space X̃ of X. The

complement X̃ \ D̃ is described in [7, Proof of Theorem 2.16], and in [28, pp. 400–401].

In the notation of [7], X̃ \ D̃ is isomorphic to the image by the map C × C → C
∗ × C

∗,

(ζ1, ζ2) �→ (eζ1 , eζ2), of the half-space in C × C defined by the inequality −dReζ1 + cReζ2 <

0, where d< 0 < c. Thus, −dlog|z1| + c log|z2| defines a nonconstant negative plurisub-

harmonic function on X̃ \ D̃, which extends across D̃ to a plurisubharmonic function on

X̃, so X is not strongly Liouville.

It is easily seen that not being strongly Liouville is preserved by blowing up.

It follows that blown-up Inoue, Inoue–Hirzebruch, and intermediate surfaces are not

strongly Liouville.

By Enoki’s original construction of the surfaces that now bear his name [8, 9,

Section 3], the universal covering space Y of an Enoki surface X is obtained as follows.

Let W0 = P1 × C and Γ = {∞} × C ⊂ W0. For each k≥ 0, Wk+1 is Wk blown up at two distinct

points pk and p−k−1, such that, when k≥ 1, pk lies in the total transform of pk−1, and p−k−1

lies in the total transform of p−k. We take p0 = (∞, 0) and p−1 = (a, 0) with a∈ C. Also,

pk lies in the proper transform Γk of Γ , but p−k−1 lies outside the total transform of

Γ . (We interpret the proper transform and the total transform of Γ in W0 as Γ itself.)

Then p−1, p−2, . . . lie in the total transforms of the line {a} × C. Let Yk = Wk \ (Γk ∪ {p−k−1}).
Then Yk may be viewed as an open subset of Yk+1 and Y is the colimit of the sequence

Y0 ⊂ Y1 ⊂ Y2 ⊂ · · · . (There is a misprint on [9, p. 459]: the total transform of p−k−1 is C−k−1,

not C−k−2.)
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3724 F. Forstnerič and F. Lárusson

If we formulate the Oka property as the convex approximation property, it is

evident that if Yk is Oka for all k≥ 0, then Y is Oka, so X is Oka [14, Proposition 5.5.6].

We claim that Wk \ Γk is Zariski-locally affine (affine meaning algebraically isomorphic

to C
2); then Yk is Oka [14, Proposition 6.4.6].

Being Zariski-locally affine is preserved by blowing up points [14, Proposi-

tion 6.4.7; 16, Section 3.5.D”]. Since W0 \ Γ = C × C is affine, the complement in Wk of

the total transform of Γ is Zariski-locally affine. Thus, we need to show that every point

in Wk+1 \ Γk+1, k≥ 0, that lies in the total transform of Γ has an affine Zariski-open neigh-

borhood in Wk+1 \ Γk+1.

We claim that every point in Wk, k≥ 0, that lies in the total transform of Γ has

an affine Zariski-open neighborhood U in Wk containing pk but not p−k−1, in which Γk

appears as a straight line. Namely, for k= 0, let U = (P1 \ {a}) × C. Suppose that the claim

is true for k and let w ∈ Wk+1 lie in the total transform of Γ . Let V be an affine Zariski-

open neighborhood of the image of w in Wk containing pk but not p−k−1, in which Γk

appears as a straight line. Blowing up V at pk yields a Zariski-open neighborhood V ′ of

w in Wk+1. Take a line L in V through pk different from Γk, whose proper transform L ′

contains neither w nor pk+1, and set U = V ′ \ L ′. Then U is a Zariski-open neighborhood

of w in Wk+1 containing pk+1 but not p−k−2. Moreover, U is algebraically isomorphic to

the total space of an algebraic line bundle over C, so U is affine, and Γk+1 appears as a

straight line in U .

Finally, let w ∈ Wk+1 \ Γk+1, k≥ 0, lie in the total transform of Γ . Let U be an affine

Zariski-open neighborhood of the image of w in Wk containing pk but not p−k−1, in which

Γk appears as a straight line. Blowing up U at pk and removing the proper transform of

Γk yields an affine Zariski-open neighborhood of w in Wk+1 \ Γk+1.

This shows that minimal Enoki surfaces are Oka, so Theorem 4 is proved.

5 The Oka Property is not Closed in Families

Corollary 5 follows from Theorem 4 because there is a family π : Y → D of compact

complex manifolds, that is, a proper holomorphic submersion and thus a smooth fiber

bundle, such that the central fiber π−1(0) is an Inoue–Hirzebruch surface or an inter-

mediate surface, and the other fibers π−1(t), t ∈ D \ {0}, are minimal Enoki surfaces. See,

for instance, the explicit examples on [6, pp. 34–35].

Corollary 5 implies that the Brody reparameterization lemma that is used to

show that Kobayashi hyperbolicity is open in families of compact complex manifolds

[2] has no higher-dimensional version that could be used to similarly prove that being
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Holomorphic Flexibility Properties of Compact Complex Surfaces 3725

the target of a nondegenerate holomorphic map from C
2 is closed in families. (A weaker

higher-dimensional version of the reparameterization lemma was proved in [23].)

Remark 10. A remark on the definition of C-connectedness is in order. It is not a

well-known or much-studied property. Gromov defined a complex manifold X to be C-

connected if any two points of X lie in the image of a holomorphic map C → X, that is,

in an entire curve [16, Section 3.4]. We chose a weaker property in Definition 1. There are

obvious alternatives, ranging from requiring every finite subset of X to lie in an entire

curve (this holds if X is connected and Oka) to requiring that any two general points

can be joined by a chain of entire curves. We do not know whether these definitions

are equivalent, but Corollary 5 clearly holds for all of them. It is of interest to compare

C-connectedness with rational connectedness, a well-understood property introduced

in [4, 20]. For a smooth proper algebraic variety, the four definitions we have mentioned,

with entire curves replaced by rational curves, are equivalent [20, 2.1, 2.2]. Rational con-

nectedness is deformation-invariant [20, 2.4], but by Corollary 5, the C-connectedness of

compact complex manifolds is not.

In the context of C-connectedness, we mention that Campana has introduced the

notion of a compact Kähler manifold X being special [5]. It is an anti-hyperbolicity or

anti-general type notion. Campana has proved that X is special if X is either dominable,

rationally connected, or has Kodaira dimension 0. On the other hand, if X is of general

type, then X is not special. Campana has conjectured that X is special if and only if X is

C-connected if and only if the Kobayashi pseudo-metric of X vanishes identically. �

6 Blowing an Oka Manifold Up or Down

It is an open problem whether a blow-down of an Oka manifold is still Oka. In this

section, we prove the following partial result in this direction.

Theorem 11. Let E be a discrete subset of a complex manifold X and let X̃ be X blown

up at each point of E . Suppose that X̃ has one of the following properties:

(a) X̃ is an Oka manifold, and global holomorphic vector fields on X̃ span the

tangent space of X̃ at each point;

(b) X̃ is elliptic in the sense of Gromov (see [16, Section 0.5]).

Then X has the basic Oka property with approximation for maps S → X from Stein man-

ifolds S with dim S ≤ dim X. �
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The conclusion of the theorem means the following. Given a Stein manifold S

of dimension at most n= dim X, a holomorphically convex compact set K in S, and a

continuous map f : S → X that is holomorphic on an open neighborhood U of K in S,

it is possible to deform f to a holomorphic map f1 : S → X through continuous maps

ft : S → X, t ∈ [0, 1], that are holomorphic on an open set containing K and are uniformly

as close as desired to the initial map f = f0 on K.

We recall that every elliptic manifold is Oka [14, Corollary 5.5.12]. Note that we

take a discrete subset to be closed by definition.

Proof. Assume first that dim S < n. Pick a compact, holomorphically convex set K in S

and a continuous map f : S → X that is holomorphic on an open neighborhood U of K

in S. Choose a smaller open neighborhood U1 � U of K. By the transversality theorem

of Kaliman and Zaidenberg [18] (see also [14, Section 7.8]), there exists a holomorphic

map f̃ : U1 → X, close to f |U1, that is, transverse to the discrete set E ⊂ X, and hence

by dimension reasons it avoids E . Assuming as we may that f̃ is close enough to f on

U1, and shrinking U1 around K if necessary, we conclude that f̃ |U1 is also homotopic

to f |U1 through a homotopy of holomorphic maps. By using a cut-off function in the

parameter of the homotopy and the usual transversality theorem for smooth maps, we

can extend f̃ , without changing its values on a smaller neighborhood U2 � U1 of K, to a

smooth map f̃ : S → X \ E that is holomorphic in a neighborhood U2 of K. Hence, f̃ lifts

to a continuous map g : S → X̃ that is holomorphic near K. Since X̃ is Oka, we can deform

g to a holomorphic map S → X̃ which approximates g uniformly on K. By pushing the

homotopy down to X, we get a deformation of f̃ , and hence of f , to a holomorphic map

f1 : S → X.

Suppose now that dim S = n. By the same perturbation argument as above, we

may assume that the restriction f |U : U → X to an open neighborhood U of K in S is

transverse to the discrete set E ⊂ X. Equivalently, every point of E is a regular value

of f |U . This implies that the set U ∩ f−1(E) is discrete, and after shrinking U slightly

around K, we may assume that it is finite.

Choose a strongly plurisubharmonic Morse exhaustion function ρ : S → R such

that K ⊂ {ρ < 0} � U and 0 is a regular value of ρ. Then S is a cellular extension of the

compact set L = {ρ ≤ 0}, obtained by attaching to L cells of index at most n.

Write f−1(E) ∩ L = {p1, p2, . . . , pm}. By standard topological arguments, we

can deform f , keeping it fixed on L, to a new map f̃ : S → X such that f̃−1(E) =
{p1, p2, . . . , pm} ⊂ L. In fact, suppose that such a deformation has already been found

over the sublevel set {ρ ≤ t} for some t ≥ 0, and we wish to extend it to {ρ ≤ t′} for some
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t′ > t. We may assume that t and t′ are regular values of ρ. If ρ has no critical values

in [t, t′], there is no change of topology, so the extension obviously exists. At a critical

point of ρ, we need to choose the extension of the deformation across a totally real disk

of dimension equal to the Morse index of ρ such that the range of the new map avoids

E . Since the real dimension of any such disk is at most n, the desired property can be

achieved by a general position argument. Thus, replacing f by f̃ , we may assume that

f−1(E) = {p1, p2, . . . , pm} ⊂ L.

Let S̃ be obtained by blowing up S at each of the points p1, . . . , pm, and let τ : S̃ →
S be the blow-down map. Then S̃ is a 1-convex manifold with the exceptional divisors

Λ j
∼= Pn−1 over the points pj, and the map τ is the Remmert reduction of S̃. Similarly,

we denote by π : X̃ → X the blow-down map which collapses each of the exceptional

divisors over the points of E . Note that the restrictions π : X̃ \ π−1(E) → X \ E and τ :

S̃ \ Λ → S \ {p1, . . . , pm}, where Λ = Λ1 ∪ · · · ∪ Λm, are biholomorphic.

Since f is locally biholomorphic near each of the points p1, . . . , pm, it induces a

holomorphic map g : S̃ → X̃ such that the following diagram commutes:

S̃

τ

��

g
�� X̃

π

��

S
f

�� X

The map g is holomorphic on a neighborhood of L̃ = τ−1(L) in S̃ and maps each divisor

Λ j biholomorphically on to the exceptional divisor E j = π−1( f(pj)) ⊂ X̃ over the image

point f(pj) ∈ E . Furthermore, since f maps S \ {p1, . . . , pm} to X \ E , its lifting g maps

S̃ \ Λ to X̃ \ π−1(E).

Since the manifold S̃ is 1-convex, Theorem A.1 in the Appendix shows that the

Oka principle applies to maps S̃ → X̃ that are holomorphic near the exceptional subvari-

ety Λ of S̃, with interpolation to any given finite order along Λ, and with approximation

on the holomorphically convex compact set L̃ = τ−1(L) ⊂ S̃. We thus obtain a holomor-

phic map g1 : S̃ → X̃, homotopic to g, that agrees with g to second order along Λ. Hence,

g1 descends to a holomorphic map f1 : S → X: this is nontrivial only over a neighbor-

hood of the finite set {p1, . . . , pm} in S that was blown up; elsewhere, we get f1 simply by

noting that the restriction τ : S̃ \ Λ → S \ {p1, . . . , pm} is biholomorphic. �

Our next result presents a consequence of the hypothesis that the Oka property

is preserved by blow-ups. It may point to the hypothesis being false. The first question
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to consider would be whether every embedded disk in C
3 is a holomorphic retract of an

embedded surface.

Proposition 12. Let A be a submanifold of C
n, contractible and not Oka. If the blow-up

of C
n along A is Oka, then A is a holomorphic retract of a hypersurface in C

n. �

Proof. Let B be the blow-up of C
n along Awith the projection π : B → C

n. The restriction

π : L = π−1(A) → A is the projectivized normal bundle of A and L is a smooth hypersur-

face in B.

Since A is contractible and Stein, its normal bundle is holomorphically trivial by

the Oka–Grauert principle [14, Section 5.3], so the restriction π : L → A admits a holo-

morphic section σ : A→ L. Since A and C
n are both contractible, the inclusion A ↪→ C

n is

an acyclic cofibration, so A
σ→ L ↪→ B extends to a continuous map τ : C

n → B. (Readers

unfamiliar with the basic homotopy theory result invoked here may consult [22]: it fol-

lows from the proposition on p. 44 that A is a continuous retract of C
n.) Furthermore,

as B is Oka by assumption, we can choose the extension τ to be holomorphic. (Note that

in the case of interest, when dim A≤ n− 2, τ is not a section of π : B → C
n, as π has no

continuous sections at all.)

The preimage H = τ−1(L) ⊂ C
n is either all of C

n or a (possibly singular) hypersur-

face in C
n. Let ρ = π ◦ τ : H → A. Then A⊂ H and ρ|A= π ◦ σ = idA, so ρ is a holomorphic

retraction of H on to A. Now a holomorphic retract of an Oka manifold is Oka, and so

since A is not Oka, H is not C
n. �

Remark 13. By a more involved construction, it is possible to insure that the hypersur-

face in Proposition 12 is smooth (and drop the hypothesis that A is not Oka). Here is an

outline; we leave the details to the reader.

Using the notation in the proof of the proposition, let N be the normal (line) bun-

dle of the smooth hypersurface L = π−1(A) in B. Choose a holomorphic section σ : A→ L

as in the proof. Since A is contractible, the restriction of the line bundle N to the

submanifold σ(A) ⊂ L is holomorphically trivial, and thus admits a nowhere-vanishing

holomorphic section W. The normal bundle of A in C
n is also trivial, so it admits a

nowhere-vanishing holomorphic section V . We can view V as a holomorphic vector field

on C
n along A. Using the techniques in [14, Section 3.4], we can extend σ : A→ L to a

holomorphic map σ̃ : U → B on an open neighborhood U of A in C
n, such that its dif-

ferential dσ̃ at any point of A maps V to W. This implies that σ̃ is transverse to L in

some open neighborhood U ′ ⊂ U of A. By the same argument as above, using the Oka
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principle for maps C
n → B, we can interpolate σ̃ to second order along A by a holomor-

phic map τ : C
n → B that is everywhere transverse to the hypersurface L (see [14, Section

7.8]). It follows that the preimage H = τ−1(L) is a smooth hypersurface in C
n, and A is a

holomorphic retract of H . �

Finally, in case the reader is wondering what happens to Proposition 12 when A

is Oka, we offer the following result.

Proposition 14. A contractible complex submanifold A of C
n is Oka if and only if A is a

holomorphic deformation retract of C
n itself. �

It is immaterial here whether or not the blow-up of C
n along A is Oka.

It follows that every holomorphically embedded complex line L in C
n, n≥ 2, is a

holomorphic deformation retract of C
n, although L need not be straightenable. It is even

possible that C
n \ L is Kobayashi hyperbolic (see [14, Section 4.18]).

Proof. First, if A is a holomorphic retract of C
n, then A is Oka. Now suppose that A is

Oka. Since A is also contractible, the identity map of A extends by the inclusion A ↪→ C
n

to a holomorphic retraction ρ : C
n → A.

Let W = (Cn × {0, 1}) ∪ (A× [0, 1]) and define a continuous map f : W → C
n by

f(x, 0) = x and f(x, 1) = ρ(x) if x ∈ C
n, and f(a, t) = a if a∈ A and t ∈ [0, 1]. Since W ↪→

C
n × [0, 1] is a cofibration and C

n is contractible, f extends to a continuous map

g : C
n × [0, 1] → C

n. Since C
n is Oka, we can use the parametric Oka principle [14, Theorem

5.4.4] to deform g, keeping it fixed on W, to a continuous map h such that h(·, t) : C
n → C

n

is holomorphic for all t ∈ [0, 1]. This shows that A is a holomorphic deformation retract

of C
n. �
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Appendix: The Oka principle for maps from 1-convex manifolds

In this appendix, we sketch the proof of the following result which was used in the proof

of Theorem 11.

Recall that a complex manifold S is said to be 1-convex if S admits an exhaus-

tion function that is strongly plurisubharmonic outside a compact subset of S. Such a
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manifold S contains a maximal compact complex subvariety Λ of positive dimension

(possibly empty). The Remmert reduction of S, which is obtained by blowing down each

connected component of Λ to a point, is a (possibly singular) Stein space.

Theorem A.1. Let X be a complex manifold with one of the following properties:

(a) X is an Oka manifold, and holomorphic vector fields on X span the tangent

space of X at each point;

(b) X is elliptic in the sense of Gromov (see [16, Section 0.5]).

Given a 1-convex manifold S with the exceptional variety Λ, a compact holomorphically

convex subset L of S, and a continuous map f : S → X which is holomorphic in a neigh-

borhood of Λ ∪ L, there is a holomorphic map f̃ : S → X that agrees with f to a given

finite order along Λ and uniformly approximates f as closely as desired on L. The map

f̃ can be chosen to be homotopic to f through a homotopy of maps that are holomorphic

near Λ ∪ L, agree with f to a given finite order along Λ, and uniformly approximate f

on L. �

This relative Oka principle is due to Henkin and Leiterer [17] in the classical case

when X is complex homogeneous.

In [24], Prezelj stated a much more general Oka principle for sections of

holomorphic submersions Z → S on to 1-convex manifolds S. A map S → X can be iden-

tified with a section of the trivial submersion Z = S × X → S, and in this case the only

hypothesis in her result [24, Theorem 1.1] is that the fiber X of the submersion is an

Oka manifold. However, there is a gap in the proof given in [24], and it is not clear

at this time whether the proof can be repaired. The (only) problem lies in the con-

struction of a local dominating holomorphic spray around a given holomorphic section

f : S → Z (see [24, Section 4.2]). We lack a proof that there exist vertical holomorphic

vector fields in certain conical Stein neighborhoods of the graph f(S \ Λ) ⊂ Z that are

bounded near f(Λ) (here, Λ ⊂ S is the exceptional variety) and that generate the vertical

tangent bundle of Z . In the special case of interest to us, the proof in [24] is correct

and complete provided, that X is an Oka manifold satisfying the following additional

property.

Property ELS (existence of local sprays). A complex manifold X satisfies ELS if, for every

holomorphic map f : S → X from a 1-convex manifold S and every relatively compact

open set U � S containing the exceptional variety Λ of S, there exist an integer N ∈ N,
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an open set V ⊂ C
N with 0 ∈ V , and a holomorphic map F : U × V → X satisfying the

following properties:

(a) F (s, 0) = f(s) for all s ∈ U ;

(b) F (s, t) = f(s) for all s ∈ Λ and t ∈ V ;

(c) the partial differential

∂

∂t

∣
∣
∣
∣
t=0

F (s, t) : C
N −→ Tf(s) X

is surjective for every s ∈ U \ Λ.

Under the additional hypotheses that an Oka manifold X satisfies ELS, the proof

of the Oka principle for maps S → X from 1-convex manifolds requires only minor mod-

ifications of the proof in the standard case when S is a Stein manifold; see [14, Chap-

ter 5; 24]. In fact, it suffices to postulate the existence of a holomorphic spray as in

the definition of ELS merely in a small open neighborhood of the exceptional variety

Λ; using standard tools (see, e.g., [11]) we can then construct a spray with the stated

properties over any relatively compact open subset of S.

Therefore, to complete the proof of Theorem A.1, we need the following lemma.

Lemma A.2. (i) If global holomorphic vector fields on a complex manifold X span the

tangent space of X at each point, then X satisfies ELS.

(ii) Every elliptic manifold satisfies ELS. �

Proof of (i). Fix a 1-convex manifold S, a holomorphic map f : S → X, and an open rel-

atively compact subset U � S containing the exceptional subvariety Λ of S. Since the set

f(Ū ) ⊂ X is compact, the condition on X gives finitely many, holomorphic vector fields

V1, . . . , VN whose values at any point x ∈ f(Ū ) span the tangent space TxX. Let φ
j
t denote

the flow of Vj. The formula

F (s, t1, . . . , tN) = φ1
t1 ◦ · · · ◦ φN

tN
( f(s)) ∈ X, s ∈ S, (A.1)

defines a holomorphic map in an open neighborhood of S × {0} in S × C
N . Clearly, we

have F (s, 0) = f(s) for every s ∈ S, and

∂

∂tj

∣
∣
∣
∣
t=0

F (s, t) = Vj( f(s)) ∈ Tf(s)X,
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for every s ∈ S and j = 1, . . . , N. Our choice of the vector fields Vj implies that F is a

dominating holomorphic spray over U .

To get sprays that are independent of the parameter t over the points s ∈ Λ (see

property (b) in the definition of ELS), we choose finitely many holomorphic functions

g1, . . . , gl on U with {g1, . . . , gl = 0} = Λ, and replace each term φ
j
tj

in (A.1) by the com-

position of l terms φ
j
tj,kgk(s)

, k= 1, . . . , l, where tj = (tj,1, . . . , tj,l) ∈ C
l is near the origin.

(There is no misprint here: the function gk(s) appears as a multiplicative factor in the

time variable of the flow.) Since gk(s) = 0 for s ∈ Λ, each of the maps φ
j
tj,kgk(s)

agrees with

the identity when s ∈ Λ. If, on the other hand, s ∈ U \ Λ, then gk(s) �= 0 for some k, and

the composition of flows φ
j
tj,kgk(s)

for j = 1, . . . , N (and with fixed k) is a spray which is

dominating at s. �

Proof of (ii). Let (E, π, σ ) be a dominating spray on X; that is, π : E → X is a holomor-

phic vector bundle and σ : E → X is a holomorphic map such that σ(0x) = x and the dif-

ferential dσ0x : T0x E → TxX maps the subspace Ex of T0x E surjectively on to TxX for every

x ∈ X. (Here, 0x is the zero element of the fiber Ex.) We may consider (E, π, σ ) as a fiber-

dominating spray on the product submersion S × X → S which is independent of the

base variable s ∈ S. Let f : S → X be a holomorphic map. We associate to f the section

f̃(s) = (s, f(s)) of S × X → S. The restriction of E to the graph S̃ = f̃(S) ⊂ S × X of f is a

holomorphic vector bundle over the 1-convex manifold S̃. By a standard result (see, e.g.,

[24, Theorem 2.4]), such a bundle admits finitely many holomorphic sections V1, . . . , VN

that vanish on the exceptional variety Λ̃ = f̃(Λ) and generate the fiber Ez over each point

z= f̃(s) ∈ S̃ \ Λ̃. The holomorphic map F : S × C
N → X, defined by

F (s, t1, . . . , tN) = σ(t1V1( f̃(s)) + · · · + tN VN( f̃(s))),

is then a globally defined, dominating holomorphic spray of maps S → X with the core

map f = F (· , 0). As in the proof of (i) above, we can also construct sprays that are fixed

over the exceptional variety. This shows that X satisfies ELS. �

Acknowledgements

We are grateful to the late Marco Brunella for drawing our attention to the relevance of surfaces

of class VII to the question of whether the Oka property is closed in families. We thank Georges

Dloussky for help with the theory of surfaces of class VII.

 by guest on D
ecem

ber 22, 2014
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


Holomorphic Flexibility Properties of Compact Complex Surfaces 3733

References
[1] Barth, W. P., K. Hulek, C. A. M. Peters, and A. Van de Ven. Compact Complex Surfaces,

2nd ed. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge, 4. Berlin: Springer,

2004.

[2] Brody, R. “Compact manifolds and hyperbolicity.” Transactions of the American Mathemat-

ical Society 235 (1978): 213–9.

[3] Buzzard, G. T. and S. S. Y. Lu. “Algebraic surfaces holomorphically dominable by C
2.” Inven-

tiones Mathematicae 139, no. 3 (2000): 617–59.
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[15] Forstnerič, F. and F. Lárusson. “Survey of Oka theory.” New York Journal of Mathematics

17a (2011): 11–38.

[16] Gromov, M. “Oka’s principle for holomorphic sections of elliptic bundles.” Journal of the

American Mathematical Society 2, no. 4 (1989): 851–97.

[17] Henkin, G. M. and J. Leiterer. “The Oka–Grauert principle without induction over the base

dimension.” Mathematische Annalen 311, no. 1 (1998): 71–93.

[18] Kaliman, S. and M. Zaidenberg. “A transversality theorem for holomorphic mappings and

stability of Eisenman–Kobayashi measures.” Transactions of the American Mathematical

Society 348, no. 2 (1996): 661–72.

[19] Kobayashi, S. and T. Ochiai. “Meromorphic mappings onto compact complex spaces of gen-

eral type.” Inventiones Mathematicae 31, no. 1 (1975): 7–16.

 by guest on D
ecem

ber 22, 2014
http://im

rn.oxfordjournals.org/
D

ow
nloaded from

 

http://imrn.oxfordjournals.org/


3734 F. Forstnerič and F. Lárusson
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