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Abstract Let n > 1 be an integer. We prove that holomorphic maps from Stein manifolds
X of dimension <n to the complement C

n\L of a compact convex set L ⊂ C
n satisfy the

basic Oka property with approximation and interpolation. If L is polynomially convex then
the same holds when 2 dim X ≤ n. We also construct proper holomorphic maps, immersions
and embeddings X → C

n with additional control of the range, thereby extending classical
results of Remmert, Bishop and Narasimhan.
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326 F. Forstnerič, T. Ritter

1 Introduction

The results in the present paper were motivated by the question whether the complement
of a compact convex set L in a Euclidean space C

n for n > 1 is an Oka manifold; that is,
whether maps X → C

n\L from Stein manifolds X satisfy the Oka principle. (See [18, §5.4]
or [19] for these notions.) In particular, what is the answer when L is the closed ball B ⊂ C

n?
Using the characterization of Oka manifolds by the Convex Approximation Property (cf. [18,
Theorem 5.4.4]) the question can be phrased as follows. We adopt the convention that a map
is holomorphic on a compact set K in a complex manifold X if it is holomorphic on an
unspecified open neighborhood of K in X .

(∗) Let K be a compact convex set in C
N . Is every holomorphic map K → C

n\B a uniform
limit on K of entire maps C

N → C
n\B?

This fundamental problem of Oka theory seems out of reach with the current methods
when N ≥ n. However, we give positive results for source Stein manifolds of dimension
< n. Specifically, we prove the following result.

Theorem 1 Let L be a compact convex set in C
n for some n > 1. Assume that X is a Stein

manifold of dimension< n, K is a compact O(X)-convex set in X, and X ′ is a closed complex
subvariety of X. For any holomorphic map f : K ∪ X ′ → C

n\L and number ε > 0 there
exists a holomorphic map F : X → C

n\L satisfying

(i) ||F − f ||K < ε and (i i) F |X ′ = f |X ′ .

The same is true if L is polynomially convex and 2 dim X ≤ n. If the map f |X ′ : X ′ → C
n is

proper or X ′ = ∅ then F can also be chosen proper. If 2 dim X ≤ n then F can be chosen
an immersion (an embedding if 2 dim X + 1 ≤ n) provided that f |X ′ is such.

The precise assumption on f in the theorem is that it is holomorphic on an open neigh-
borhood of K and the restriction f |X ′ is holomorphic on the subvariety X ′.

Theorem 1 is proved in §4 as a part of Theorem 15. The latter result pertains to the
more general situation when the initial map f : K ∪ X ′ → C

n may intersect the compact
set L (only) in the interior of K ; in this case we construct a (proper) holomorphic map
F : X → C

n satisfying the conclusion of Theorem 1 and also the condition F(X\K ) ⊂
C

n\L . As explained in Remark 16 in §4, there are no topological obstructions to extending
a continuous map K ∪ X ′ → C

n , which sends bK ∪ (X ′\K ) to C
n\L , to a continuous map

X → C
n sending X\K̊ to C

n\L .
Two new ideas are introduced here for the first time. One of them, which depends on

the Andersén-Lempert theory, provides the separation of certain pairs of disjoint compact
sets in C

n by Fatou-Bieberbach domains (Proposition 9 in §2). The other one concerns the
separation of a compact convex set L ⊂ C

n from certain big pieces of a non-closed Stein
variety in C

n\L by Fatou-Bieberbach domains (Lemma 12 in §3). This combines Proposition
9 with a result of Dor [9] and of Drinovec Drnovšek and Forstnerič [12] (see Theorem 6 in
§2). The latter result enables us to perturb the variety so that the union of a big compact piece
of the new variety and the set L is polynomially convex.

Granted these new techniques, the proof of Theorem 1 proceeds as in the Oka theory by
inductively enlarging the domain on which the map is holomorphic. Here is a brief description
of the main step. Assume that B ⊂ X is a compact convex bump attached to a compact
strongly pseudoconvex domain A ⊂ X . Let C = A ∩ B, and assume that f0 : A → C

n is a
holomorphic map such that f0(C)∩ L = ∅. We show that f0 can be approximated uniformly
on C by a holomorphic map f : C → C

n\L whose image f (C) can be separated from L by
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Oka properties of ball complements 327

a Fatou-Bieberbach domain � ⊂ C
n , in the sense that f (C) ⊂ � ⊂ C

n\L (see Lemma 12
in §3). Since � is biholomorphic to C

n , the Oka-Weil theorem allows us to approximate the
map f |C , uniformly on C , by a holomorphic map g : B → �. Finally we glue f0 and g into
a holomorphic map f̃ : A∪ B → C

n such that f̃ (B) ⊂ C
n\L . The last statement concerning

immersions and embeddings is an immediate consequence of the general position arguments.
Applying Theorem 1 with X ′ a countable discrete set gives the following corollary.

Corollary 2 Let L be a compact convex set in C
n for some n > 1. Assume that X is a Stein

manifold of dimension < n and {a j } j∈N ⊂ X is a discrete sequence without repetition. For
every sequence {b j } j∈N ⊂ C

n\L there exists a holomorphic map F : X → C
n\L satisfying

F(a j ) = b j for all j = 1, 2, . . .. In particular, there exists a holomorphic map X → C
n\L

with everywhere dense image. If L ⊂ C
n is polynomially convex then the above statements

hold for Stein manifolds X with 2 dim X ≤ n.
In particular, if L is a compact polynomially convex set in C

n for some n > 1 then there
exists a holomorphic map C → C

n\L with a dense image.

Theorem 1 extends classical theorems of Remmert [26], Bishop [7] and Narasimhan [25]
concerning the existence of proper holomorphic maps of Stein manifolds of dimension < n
into C

n ; here we provide additional control on the range of the map. When 2 dim X ≤ n, we
get similar improvements in theorems of Acquistapace et al. [1] concerning the interpolation
of proper holomorphic immersions X → C

n (embeddings when 2 dim X + 1 ≤ n) on
closed complex subvarieties of X . Our proof is conceptually different from those in the
mentioned papers, mainly because of our novel use of Fatou-Bieberbach domains and the
gluing techniques.

Two other lines of related results deserve to be mentioned. One of them was developed
by Dor [10] and Drinovec Drnovšek and Forstnerič [11,12], and it pertains to the following
situation. Let X be a smoothly bounded, relatively compact, strongly pseudoconvex Stein
domain in another complex manifold ˜X . Let Z be a complex manifold with dim Z > dim X ,
and assume that f : X → Z is a continuous map that is holomorphic on X . Under suit-
able geometric conditions on Z (depending on dim X ) that can be expressed in terms of
q-convexity and Morse indices of a Morse exhaustion function, f can be approximated uni-
formly on compact subsets of X by proper holomorphic maps X → Z . A simplified version
of the main result from [12], which is stated as Theorem 6 in §2 below, is an important
ingredient in the proof of our main theorem. The novelty of the results in the present paper
is that X can be an arbitrary Stein manifold of dimension < n (not just a strongly pseudo-
convex domain), and we construct global holomorphic maps X → Z with approximation
on compact O(X)-convex sets. The latter condition necessitates that Z be ‘holomorphically
flexible’ in a suitable sense; for example, an Oka manifold. Of course the Euclidean space
C

n is such, but the problem becomes nontrivial when trying to avoid a compact subset of C
n

as we do here.
Another recent line of results concerns maps to Stein manifolds satisfying Varolin’s density

property (see [31,32] or [18, §4.10]). Recall that a complex manifold Z has the (holomorphic)
density property if the Lie algebra of all holomorphic vector fields on Z is densely generated
by the Lie subalgebra generated by all the C-complete holomorphic vector fields on Z . On
a Stein manifold this condition implies the Andersén-Lempert-Forstnerič-Rosay theorem
on approximation of isotopies of injective holomorphic maps on Runge domains in X by
holomorphic automorphisms of X . (See [2,3,20] for the case X = C

n and Theorem 4.10.6 in
[18, p. 132] or [27, Appendix] for the general case.) By using this approach, Andrist and Wold
[5] constructed immersions and embeddings of open Riemann surfaces to any Stein manifold
Z of dimension dim Z ≥ 2 (dim Z ≥ 3 for embeddings) enjoying the density property. Any
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328 F. Forstnerič, T. Ritter

such manifold Z is Oka (see [18, p. 206]). This line of work has been extended recently in [4]
where the authors constructed proper holomorphic embeddings of any Stein manifold X to
an arbitrary Stein manifold Z with the density property, provided that 2 dim X + 1 ≤ dim Z .
The techniques in [4], which differ from those in the present paper in certain main aspects,
do not apply when dim X > 1 and 2 dim X ≥ dim Z . In particular, we do not see how to use
them to obtain the main results of this paper.

We do not know whether Theorem 1 still holds for Stein manifolds X of dimension
dim X ≥ n. In particular, the following remains an open problem.

Problem 3 Is the complement of a compact convex set in C
n an Oka manifold?

The most useful geometric sufficient conditions for being Oka are ellipticity in the sense
of Gromov [22] and subellipticity [18, p. 203]. We have the following inclusions of the
respective classes of complex manifolds (see [18, p. 237] for a more complete picture):

elliptic ⊂ subelliptic ⊂ Oka ⊂ strongly dominable ⊂ dominable.

Recall that a connected complex manifold Z of dimension n is dominable if it admits an
entire map f : C

n → Z which has maximal rank n at 0 ∈ C
n (and hence at a generic point

z ∈ C
n), and is strongly dominable if for every point z ∈ Z there exists an f as above with

f (0) = z.
It is not known which of the above inclusions are proper. The following result follows

directly from Proposition 9 below by taking L to be polynomially convex and M to be a point
p ∈ C

n\L . The special case when L is convex is due to Rosay and Rudin ([28], Theorem
8.5 on p. 72).

Proposition 4 If L is a compact polynomially convex set in C
n for n > 1, then for every point

p ∈ C
n\L there exists an injective holomorphic map f : C

n → C
n\L (a Fatou-Bieberbach

map) such that f (0) = p. In particular, C
n\L is strongly dominable.

On the other hand, it has been recently shown by Andrist and Wold [6] that C
n\B

for n ≥ 3 fails to be subelliptic, so at least one of the inclusions subelliptic ⊂ Oka ⊂
strongly dominable is a proper inclusion.

We also wish to mention a connection between our Corollary 2 and the universal domina-
tion property of a complex manifold Z which has been introduced recently by Chen and Wang
[8] (and was inspired by the work of Winkelmann [34]). Assuming that Z is connected, this
property boils down to the existence of a holomorphic map C → Z with everywhere dense
image. It is immediate that any Oka manifold Z is universally dominable: simply choose a
countable dense set {b j } j∈N in Z and apply the Oka property with interpolation to find a
holomorphic map f : C → Z with f ( j) = b j for all j = 1, 2, . . . (cf. [18, Theorem 5.4.4]).
The last statement in Corollary 2 above says that the complement C

n\L of any compact
polynomially convex set L in C

n for n > 1 is universally dominable in the sense of Chen
and Wang [8].

It is not clear whether strong dominability implies universal dominability. The answer is
negative if we omit the word strong: there exist pairs of domains � ⊂ �′ ⊂ C

n such that �
is strongly dominable by C

n but�′ is not universally dominable. An example is given by [8,
Proposition 5.7]. Another class of examples is obtained as follows.

Example 5 Let � be a Fatou-Bieberbach domain in C
n whose boundary is smooth (at least

of class C1) near some point p ∈ b�. (Such domains were constructed by Globevnik [21]
and Stensønes [29].) By bumping out � near p we obtain a domain �′ ⊂ C

n containing
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Oka properties of ball complements 329

� ∪ {p} which agrees with � outside a small neighborhood of p and contains a strongly
pseudoconvex boundary point p′ ∈ b�′ near p. By taking the maximum of a local negative
strongly plurisubharmonic peak function near p′ and a negative constant we find a negative
plurisubharmonic function ρ on�′ which is strongly plurisubharmonic near p′. Since C does
not admit any nonconstant negative subharmonic functions, the image of any holomorphic
line C → �′ must be contained in the set where ρ is constant, and hence no such line can
approach the boundary point p′ of �′.

It seems unknown whether there exists a compact complex manifold which is dominable,
but is not strongly dominable or universally dominable.

2 Preliminaries

In this section we gather some of the main tools used in the paper.
We adopt the convention that a map f is holomorphic on a compact set K in a complex

manifold X if it is holomorphic on an unspecified open neighborhood of that set. If in addition
X ′ is a closed complex subvariety of X , then saying that f is holomorphic on K ∪ X ′ will
mean that f is holomorphic on an open neighborhood of K and the restriction of f to X ′ is
holomorphic on X ′.

The following result is a special case of Theorem 1.1 in [12]; we record it here for reference.
Similar results for maps to domains of holomorphy in C

n were proved earlier by Dor [9,10].

Theorem 6 Assume that Z is a Stein manifold of dimension dim Z ≥ 2 and σ : Z → R is
a strongly plurisubharmonic Morse exhaustion function. Let X be a Stein manifold, D � X
be a smoothly bounded strongly pseudoconvex domain in X, K be a compact set contained
in D, c be a real number, and f0 : D → Z be a continuous map that is holomorphic in D
and satisfies f0

(

D\K
) ⊂ {σ > c}. Assume that one of the following two conditions holds:

(a) 2 dim X ≤ dim Z.
(b) dim X < dim Z and σ has no critical points of index > 2 in the set {σ > c}.
Given a constant c′ > c, the map f0 can be approximated uniformly on K by holomorphic
maps f : D → Z satisfying f (D\K ) ⊂ {σ > c} and f (bD) ⊂ {σ > c′}. It can also
be approximated uniformly on K by proper holomorphic maps f : D → Z satisfying the
condition f (D\K̊ ) ⊂ {σ > c}.

The second statement is obtained from the first one by a standard limiting argument.
Examples in [12] show that conditions (a) and (b) in Theorem 6 can not be relaxed. We shall
apply this theorem with different exhaustion functions on Z = C

n .

Remark 7 Given a map f0 as in Theorem 6 and a compact set L in {σ ≤ c} such that
f0(D) ∩ L = ∅, there exists a proper holomorphic map f : D → Z as in Theorem 6 such
that f (D)∩ L = ∅. Indeed, since D\K is mapped to {σ > c} while L ⊂ {σ ≤ c}, it suffices
to choose f to be close enough to f0 on K .

We recall the following well known result (see e.g. [17, Lemma 6.5]).

Lemma 8 Let L be a compact polynomially convex set in C
n and V be a closed complex

subvariety of C
n. For any compact O(V )-convex set A ⊂ V such that L ∩ V ⊂ A, the union

A ∪ L is polynomially convex. The analogous result holds if L is a compact O(Z)-convex set
in a Stein manifold Z.
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330 F. Forstnerič, T. Ritter

The following result on separating pairs of compact sets by Fatou-Bieberbach domains is
one of the new ingredients introduced in this paper to the construction of proper holomorphic
maps. It will be applied in the proof of Lemma 12 below, and we are hoping that it will be of
independent interest.

Proposition 9 Assume that L ,M ⊂ C
n (n > 1) are disjoint compact sets such that one

of them is holomorphically contractible and the union L ∪ M is polynomially convex. Then
there exists a Fatou-Bieberbach domain � ⊂ C

n satisfying

M ⊂ � ⊂ C
n\L . (2.1)

Recall that a compact set L in C
n is said to be holomorphically contractible if there exists

a smooth 1-parameter family of holomorphic maps θt : U → C
n (0 ≤ t ≤ 1) on an open

neighborhood of L such that θ0 = Id, θt is a biholomorphism of L onto a subset of L for
0 ≤ t < 1, and θ1 is a constant map L → p ∈ L . For example, every compact convex (or
starshaped) set is holomorphically contractible by a family of dilations.

Before continuing we state the following special case of Proposition 9; note that the union
of two disjoint compact convex sets in C

n is polynomially convex [30, p. 62].

Corollary 10 Any pair of disjoint compact convex sets L ,M in C
n for n > 1 can be separated

by Fatou-Bieberbach domains as in (2.1).

Proof of Proposition 9 We first consider the case when the set L is convex. We shall find
a Fatou-Bieberbach domain � satisfying (2.1) as the domain of convergence of a random
iteration of holomorphic automorphisms of C

n , applying the so called push-out method (see
[18, §4.4]).

Recall that B denotes the unit ball in C
n . Pick a number N1 ∈ N such that M ∪ L ⊂

B1 := N1B. Choose an affine linear automorphism ψ1 of C
n such that ψ1(L) ⊂ C

n\B1

and the set B1 ∪ψ1(L) is polynomially convex. (The latter property holds whenever ψ1(L)
is contained in a closed ball disjoint from B1.) By Corollary 4.12.4 in [18, p. 145] (which
uses the Andersén-Lempert theory [3,20]) there exists a holomorphic automorphism φ1 of
C

n that is uniformly close to the identity on M , and is uniformly close to the map ψ1 on L .
Set L1 = φ1(L). If the approximations are close enough then φ1(M) ⊂ B1, B1 ∩ L1 = ∅,
and B1 ∪ L1 is still polynomially convex.

Next we pick a number N2 ≥ N1 + 1 such that L1 ⊂ B2 := N2B. By repeating the
above argument (with M replaced by B1 and L replaced by L1) we can find a holomorphic
automorphism φ2 of C

n that approximates the identity map on B1 and sends L1 to a set
L2 := φ2(L1) ⊂ C

n\B2 such that B2 ∪ L2 is polynomially convex.
Continuing inductively we find a sequence of holomorphic automorphisms φk of C

n for
k = 1, 2, . . . such that the sequence of their compositions	k = φk ◦φk−1 ◦· · ·◦φ1 converges
on a domain� ⊂ C

n to a Fatou-Bieberbach map	 : � → C
n onto C

n . (See Corollary 4.4.2
in [18, p. 115].) The domain � consists precisely of the points z ∈ C

n with bounded orbits
{	k(z) : k ∈ N}. By the construction we have M ⊂ � and � ∩ L = ∅, so the proof is
complete. This also proves Corollary 10.

The general case follows by finding a holomorphic automorphismψ of C
n which separates

L and M , in the sense that their images ψ(L) and ψ(M) are contained in disjoint closed
balls B1, B2 ⊂ C

n , respectively. If ˜� is a Fatou-Bieberbach domain containing B2 and not
intersecting B1, then � = ψ−1(˜�) satisfies (2.1). To find such ψ , Corollary 4.12.4 in [18,
p. 145] applies directly if one of the sets L ,M is starshaped. However, the proof given there
also applies when one of the two sets, say L , is holomorphically contractible. 
�
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Oka properties of ball complements 331

Remark 11 The proof of Proposition 9 easily adapts to the case when one of the two sets,
say L , is a finite union of pairwise disjoint compact holomorphically contractible sets L j .
Pick a pair of disjoint closed balls B1, B2 ⊂ C

n such that M ⊂ B̊1. Choose an isotopy of
biholomorphic maps in a neighborhood of L which contracts each component L j of L almost
to a point in L j and then moves it along a path in C

n\M to a small neighborhood of a point
p j ∈ B̊2. This isotopy can be chosen such that the main result of [20] (also stated as Theorem
4.9.2 in [18, p. 125]) applies and gives an automorphismψ of C

n which is almost the identity
on M , so ψ(M) ⊂ B1, while ψ(L) ⊂ B2. At this point we may apply Corollary 10.

3 Fatou-Bieberbach domains separating a variety from a convex set

The following separation lemma is the main ingredient in the proof of Theorem 15. Its proof
combines Theorem 6 and Proposition 9 from the previous section.

Lemma 12 Let n > 1. Assume that L is a compact convex set in C
n, X is a Stein manifold

with dim X < n, and C is a compact O(X)-convex set in X. Every holomorphic map
f0 : C → C

n\L can be approximated uniformly on C by holomorphic maps f : C → C
n\L

such that there exists a Fatou-Bieberbach domain � in C
n satisfying

f (C) ⊂ � ⊂ C
n\L .

The same holds if L is polynomially convex, C is a compact convex set in some local holo-
morphic coordinates on X, and 2 dim X + 1 ≤ n.

Proof Pick an open neighborhood U ⊂ X of C such that f0 is holomorphic on U and
f0(U ) ∩ L = ∅. Since C is O(X)-convex, there exists a smooth strongly plurisubharmonic
exhaustion function ρ : X → R such that ρ < 0 on C and ρ > 0 on X\U [24, p. 116]. If
c ∈ R is a regular value of ρ chosen sufficiently close to zero, then the set D = {ρ < c} is a
smoothly bounded strongly pseudoconvex domain in X with C ⊂ D ⊂ D ⊂ U .

Assume first that the set L ⊂ C
n is compact and convex. There is a smooth strongly

convex exhaustion function σ : C
n → R with a single critical point in L such that σ < 0

on L and σ > 0 on f0(D). (Note that such σ is strongly plurisubharmonic.) Here is a brief
argument for the sake of completeness. By the Hahn-Banach theorem we can approximate
L by a polyhedron P (an intersection of finitely many closed half-spaces) so that L ⊂ P̊
and P ∩ f0(D) = ∅. Let φ denote the Minkowski functional of P with respect to some
interior point. By convolving φ with a smooth approximate identity, for example, with the
Gaussian kernel Ct exp−t |x |2 for a sufficiently large t > 0, and subtracting the constant 1, we
get a function σ with the stated properties. (We wish to thank E. L. Stout for this suggestion.
Alternatively, one can convexify the supporting hyperplanes of P and smooth the corners as
in [13] to find a smooth strongly convex domain approximating L; its Minkowski functional
can then be used to define σ .)

Theorem 6-(b) and Remark 7 give a proper holomorphic map f : D → C
n that approx-

imates f0 as closely as desired on C and satisfies f (D) ∩ L = ∅. By Remmert’s proper
mapping theorem, the image V = f (D) is a closed complex subvariety of C

n , and we have
V ⊂ C

n\L by the construction.
Let L ′ be a closed ball in C

n containing f (C) ∪ L , and set C ′ = f −1(L ′ ∩ V ) ⊂ X . The
compact set f (C ′) = L ′ ∩ V is then disjoint from L and is O(V )-convex, hence the union
f (C ′) ∪ L is polynomially convex by Lemma 8. Proposition 9, applied with M = f (C ′),
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332 F. Forstnerič, T. Ritter

furnishes a Fatou-Bieberbach domain � in C
n such that f (C) ⊂ f (C ′) ⊂ � ⊂ C

n\L . This
completes the proof when the set L is convex.

It remains to prove the second case. Now C is a compact convex set in some holomorphic
coordinate system on a neighborhood U ⊂ X of C . By shrinking U we may assume that f0

is holomorphic on U and f0(U )∩ L = ∅. Pick an open, smoothly bounded, strongly convex
domain D � U with C ⊂ D. As L is polynomially convex, there is a smooth strongly
plurisubharmonic exhaustion function σ : C

n → R such that σ < 0 on L and σ > 0 on
f0(D). Since 2 dim X + 1 ≤ n, Theorem 6-(a) furnishes a proper holomorphic embedding
f : D ↪→ C

n which approximates f0 uniformly on C and such that V = f (D) ⊂ {ρ > 0};
hence V ∩ L = ∅. Clearly f (C) is O(V )-convex, and hence f (C) ∪ L is polynomially
convex by Lemma 8. Since C is convex and f is an embedding, f (C) is holomorphically
contractible in C

n , so Proposition 9 applies.

Example 13 Lemma 12 is false if dim X ≥ n, and this is one of the principal reasons why our
technique does not apply in that case. Indeed, the image of a holomorphic map C → C

n\L
from a compact convex set C ⊂ C

n need not be contained in any pseudoconvex domain (and
hence in any Fatou-Bieberbach domain) in C

n\L . To give an example, recall that Fornæss
and Stout proved that every complex manifold of dimension n is the image of a locally
biholomorphic map f from the polydisc P ⊂ C

n [14] or the ball B ⊂ C
n [15]. Choose a

ball B ⊂ C
n containing L . Let f : P → C

n\L be a surjective holomorphic map furnished
by [14]. There is a slightly smaller closed polydisc C ⊂ P such that bB ⊂ f (C̊). By the
Hartogs extension theorem any pseudoconvex domain containing f (C) must also contain
the ball B, and hence the set L .

Remark 14 The proof of Lemma 12 exposes the following interesting question. Assume that
L is a compact convex set in C

n , V ⊂ C
n\L is a non-closed Stein variety of dimension< n,

and K ⊂ V is a compact O(V )-convex subset. Can we make K and K ∪ L polynomially
convex after a small deformation of K and V ? When V is a closed subvariety of C

n , the answer
is affirmative by Lemma 8, and in this case no perturbation is necessary. The problem seems
nontrivial for non-closed subvarieties. In our case V is the image of a strongly pseudoconvex
domain, so it is rather special and we can apply Theorem 6 to make it proper. Examples of
non-polynomially convex complex curves in C

n , and Wermer’s famous example [33] of an
embedded holomorphic bidisc in C

3 which fails to be polynomially convex, show that one
must consider generic varieties.

4 The main result

We are now ready to prove the following main result of this paper which clearly includes
Theorem 1; the latter concerns maps avoiding the set L .

Theorem 15 Let L be a compact set in C
n for some n > 1. Let X be a Stein manifold,

K ⊂ X be a compact O(X)-convex set, U ⊂ X be an open set containing K , X ′ ⊂ X
be a closed complex subvariety, and f : U ∪ X ′ → C

n be a holomorphic map such that
f (bK ∪ (X ′\K )) ∩ L = ∅. Suppose also that either

(i) L is convex and dim X < n, or
(ii) L is polynomially convex and 2 dim X ≤ n.

Then for every ε > 0 there exists a holomorphic map F : X → C
n satisfying

(a) F(X\K ) ⊂ C
n\L , (b) ||F − f ||K < ε, (c) F |X ′ = f |X ′ .
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If the map f |X ′ : X ′ → C
n is proper (in particular, if X ′ = ∅) then F can also be chosen

proper. If 2 dim X ≤ n then F can be chosen an immersion (an embedding if 2 dim X +1 ≤ n)
provided that f |X ′ is such.

Remark 16 There are no topological obstructions to extending a continuous map K ∪ X ′ →
C

n , which sends bK ∪ (X ′\K ) to C
n\L , to a continuous map X → C

n sending X\K to
C

n\L . This is because the complement C
n\L of a compact convex set is homotopy equivalent

to the sphere S2n−1, while the pair (X, K ∪ X ′) is a relative CW complex of dimension at
most dim X < n (see [23] or [18, p. 96]). Similarly, if L is polynomially convex, then C

n\L
admits a CW decomposition containing only cells of dimension ≥ n (see [16] or [18, p. 98]),
so again there are no obstructions if dim X < n. The stronger inequality 2 dim X ≤ n is used
in Theorem 6 which is one of the main ingredients in the proof of Theorem 1.

Proof of Theorem 15 We shall follow the general scheme used in Oka theory (see Chapter 5
in [18] for further details), applying also Lemma 12 at each step of the inductive construction.

We consider three cases: (1) X ′ = ∅; (2) X ′ �= ∅ and the restricted map f : X ′ → C
n is

proper; (3) X ′ �= ∅ and the restricted map f : X ′ → C
n is not proper.

Case 1: X ′ = ∅. We shall construct a proper holomorphic map F : X → C
n satisfying

conditions (a) and (b) in Theorem 15.
The initial map f : K → C

n is holomorphic on an open set U ⊂ X containing K . Since
f (bK ) ∩ L = ∅ by assumption, we can shrink U around K if necessary to ensure that
{x ∈ U : f (x) ∈ L} ⊂ K̊ .

Since the set K is O(X)-convex, there is a smooth strongly plurisubharmonic Morse
exhaustion function ρ : X → R such that ρ < 0 on K and ρ > 0 on X\U [24, p. 116]. We
may assume that 0 is a regular value of ρ. Let p1, p2, p3, . . . be the critical points of ρ in
{ρ > 0}, ordered so that 0 < ρ(p1) < ρ(p2) < ρ(p3) < · · · (the case in which ρ has finitely
many critical points also follows easily from the following argument). Choose a sequence of
numbers 0 = c0 < c1 < c2 < · · · with lim j→∞ c j = +∞ such that c2 j−1 < ρ(p j ) < c2 j ,
and such that c2 j−1 and c2 j are sufficiently close to ρ(p j ), for every j = 1, 2, . . . (this
condition will be specified later). Each of the sets

D j = {x ∈ X : ρ(x) ≤ c j }, j = 0, 1, 2, . . .

is a smoothly bounded compact strongly pseudoconvex domain in X , and these domains
exhaust X . Note that K ⊂ D̊0 ⊂ D0 ⊂ U and f (D0\K̊ ) ⊂ C

n\L .
On the target side we pick an increasing sequence of closed balls

L1 ⊂ L2 ⊂ · · · ⊂
∞
⋃

k=1

Lk = C
n, (4.1)

where L1 is chosen such that f (K ) ∪ L ⊂ L1.
If the set L is convex, there exists a smooth strongly convex exhaustion function σ : C

n →
R such that

L ⊂ {σ < 0}, f (D0\K̊ ) ⊂ {σ > 0}, (4.2)

and such that σ has no critical points in the set {σ > 0}. (See the proof of Lemma 12.)
Theorem 6 furnishes a holomorphic map f0 : D0 → C

n that approximates f as closely as
desired uniformly on K and satisfies

f0(D0\K̊ ) ⊂ C
n\L , f0(bD0) ⊂ C

n\L1. (4.3)
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Similarly, if L is polynomially convex, there exists a smooth strongly plurisubharmonic
exhaustion function σ : C

n → R satisfying (4.2). If 2 dim X ≤ n then Theorem 6 gives a
holomorphic map f0 : D0 → C

n that approximates f as closely as desired uniformly on K
and satisfies (4.3). We replace f by f0 as our initial map.

We shall now inductively construct a sequence of holomorphic maps f j : D j → C
n

( j = 1, 2, . . .) such that f j approximates f j−1 uniformly on D j−1 and satisfies

f j (D j\D̊ j−1) ⊂ C
n\L j , j = 1, 2, . . . . (4.4)

Assuming as we may that the approximations are close enough, the sequence f j converges
uniformly on compact subsets of X to a holomorphic map F = lim j→∞ f j : X → C

n that
satisfies condition (b) of Theorem 15. Condition (4.4) guarantees that F is proper and also
satisfies condition (a).

We begin by explaining how to approximate the map f0 : D0 → C
n by a holomorphic

map f1 : D1 → C
n satisfying (4.4) for j = 1. This is the so called noncritical case (cf. [18,

p. 222]). In fact, every step from f2 j : D2 j → C
n to f2 j+1 : D2 j+1 → C

n in the inductive
construction will be of this kind.

Since D1 is a noncritical strongly pseudoconvex extension of D0, it is obtained from D0

by attaching finitely many convex bumps (see [18, §5.10] for the details). More precisely,
there exists a finite sequence of compact strongly pseudoconvex domains

D0 = A0 ⊂ A1 ⊂ A2 ⊂ · · · ⊂ Am = D1

such that for every j = 0, . . . ,m −1 we have A j+1 = A j ∪ B j , where B j and C j = A j ∩ B j

are smoothly bounded strongly convex domains in some local holomorphic coordinates on
X in a neighborhood of B j , and A j\B j ∩ B j\A j = ∅. (Such a pair (A j , B j ) is called a
special Cartan pair.) Furthermore, in view of (4.3), we may assume that for every attaching
set C j we have

f0(D0 ∩ C j ) ⊂ C
n\L1, j = 0, . . . ,m − 1. (4.5)

Of course we may have D0 ∩ C j = ∅ for some of the attaching sets.
We now successively extend our map to each bump in the sequence, always approximating

the previous map on its domain. All steps are of the same kind, so it suffices to explain how
to approximately extend f0 from A0 = D0 to A1 = A0 ∪ B0.

Note that C0 = A0 ∩ B0 = D0 ∩ B0 and f0(C0) ⊂ C
n\L1 by our choice of the bumps.

Since the set f0(C0) is compact, we can choose a slightly larger closed ball L ′
1 ⊂ C

n ,
containing L1 in its interior, such that f0(C0) ⊂ C

n\L ′
1.

By Lemma 12, applied with the compact sets C = C0 ⊂ X and L = L ′
1 ⊂ C

n , we can
approximate the map f0|C0 as close as desired by a holomorphic map f̃0 : C0 → C

n\L ′
1

such that f̃0(C0) ⊂ � ⊂ C
n\L ′

1 for some Fatou-Bieberbach domain �. (By Example 13
this is false if dim X ≥ n, and this is the main reason why our proof fails in this case.)

Since � is biholomorphic to C
n , we can use the Oka-Weil theorem to approximate f̃0

as close as desired on C0 by a holomorphic map g0 : B0 → �. The holomorphic maps
f0 : A0 → C

n and g0 : B0 → � ⊂ C
n are then uniformly close to each other on C0 =

A0 ∩ B0. Since (A0, B0) is a Cartan pair, we can glue f0 and g0 into a holomorphic map
h1 : A1 = A0 ∪ B0 → C

n that is close to f0 on A0 and to g0 on B0. This amounts to solving
an additive Cousin problem with bounds, a classical problem whose solution uses a sup-norm
bounded linear solution operator for the ∂-equation at the level of (0, 1)-forms on a strongly
pseudoconvex Stein domain. (See e.g. Lemma 5.8.2 in [18, p. 212]. Since we are gluing
maps to Euclidean spaces, we do not need the more advanced gluing lemma furnished by
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Proposition 5.8.1 in [18, p. 211].) Recall that g0(B0) ⊂ � ⊂ C
n\L ′

1. Assuming as we may
that the approximation of f0 by g0 was close enough on C0, the map h1 is so close to g0 on
B0 that it satisfies h1(B0) ⊂ C

n\L1. Furthermore, in view of (4.5) we may assume that h1

is so close to f0 on A0 = D0 that

h1(A0 ∩ C j ) ⊂ C
n\L1, j = 1, . . . ,m − 1.

As C1 ⊂ A1 = A0 ∪ B0, it follows that h(C1) ⊂ C
n\L1. By applying the same construction

to the map h1 : A1 → C
n we find a holomorphic map h2 : A2 → C

n that approximates h1

uniformly on A1 and satisfies

h2(B1) ⊂ C
n\L1 and h2(A1 ∩ C j ) ⊂ C

n\L1, j = 2, . . . ,m − 1.

After m steps of this kind we find a holomorphic map f1 = hm : D1 → C
n that approximates

f0 as close as desired on D0 and satisfies (4.4) for j = 1.
Before proceeding, we apply Theorem 6 to approximate f1 uniformly on D0 by a holo-

morphic map f̃1 : D1 → C
n such that

f̃1(D1\D̊0) ⊂ C
n\L1, f̃1(bD1) ⊂ C

n\L2.

To simplify the notation we now replace f1 by f̃1.
The next task is to approximate f1 on D1 by a holomorphic map f2 : D2 → C

n satisfying
(4.4) for j = 2. On D̊2\D1 the function ρ has a unique critical point p1 where the topology
of the sublevel set changes. To find f2 we follow the critical case explained in [18, §5.11],
proceeding in three substeps as follows:

(i) Extend f1|D1 smoothly across the stable manifold E of the critical point p1 of ρ, with
values in C

n\L2. (By Remark 16 there are no topological obstructions.)
(ii) Approximate the extended map f1 : D1 ∪ E → C

n by a holomorphic map in a neigh-
borhood of D1 ∪ E . (For this we use a version of Mergelyan’s theorem; see Theorem
3.7.2 in [18, p. 81].)

(iii) Reduce to the noncritical case for a different strongly plurisubharmonic function. (Here
we must assume that the number c1 is close enough to ρ(p1).)

All substeps can be accomplished exactly as in the cited source. In this way we obtain
a constant c2 > ρ(p1) close to ρ(p1) and a holomorphic map f2 : D2 = {ρ ≤ c2} → C

n

satisfying the required properties. Applying again Theorem 6 we approximate f2 uniformly
on D1 by a holomorphic map f̃2 : D2 → C

n satisfying f̃2(D2\D̊1) ⊂ C
n\L2 and f̃2(bD2) ⊂

C
n\L3. To simplify the notation we replace f2 by f̃2.

Next we construct a holomorphic map f3 : D3 → C
n that approximates f2 on D2 and

satisfies (4.4) for j = 3. This is exactly the same as the construction of the map f1 from f0 (the
noncritical case). Similarly, the construction of f4 from f3 is analogous to the construction
of f2 from f1 (the critical case). The induction may proceed. If ρ has only finitely many
critical points, then at some point all subsequent steps are noncritical.

This completes the proof of Theorem 15 in Case 1 when X ′ = ∅.
Case 2: X ′ �= ∅ and the restricted map f : X ′ → C

n is proper. We shall find a proper
holomorphic map F : X → C

n satisfying conditions (a), (b) and (c) in Theorem 15.
Choose an exhausting sequence of closed balls (4.1) in C

n . The initial map f is now
defined and holomorphic on an open neighborhood of K and on the subvariety X ′. By standard
techniques of Cartan theory (see e.g. Theorem 3.4.1 in [18, p. 68]) we can approximate f
uniformly on K by a holomorphic map on an open set U ⊃ K ∪ X ′ that agrees with f on
the subvariety X ′; we still denote the new map by f . After shrinking U we may assume that
{x ∈ U : f (x) ∈ L} ⊂ K̊ .
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Since the map f |X ′ : X ′ → C
n is proper, we can find a compact O(X)-convex set K ′ ⊂ X

such that K ⊂ K ′ and f (X ′\K̊ ′) ⊂ C
n\L1. (For instance, K ′ could be a sublevel set of a

strongly plurisubharmonic exhaustion function on X .) The set S := K ∪ (K ′ ∩ X ′) ⊂ U is
then O(X)-convex by Lemma 8. Hence there is a smooth strongly plurisubharmonic Morse
exhaustion function ρ : X → R such that ρ < 0 on S and ρ > 0 on X\U . We may
assume that 0 is a regular value of ρ. Let D0 = {ρ ≤ 0}; then S ⊂ D̊0 ⊂ D0 ⊂ U and
f (bD0 ∩ X ′) ⊂ C

n\L1. By applying a minor extension of Theorem 6 we can approximate
f uniformly on S by a holomorphic map f0 : D0 → C

n satisfying (4.3) such that f0 agrees
with f on the subvariety X ′. (This is obtained by a straightforward modification of the
construction in [12]: we need not do anything near the set bD0 ∩ X ′ which is already mapped
to the complement of the ball L1, while the rest of the boundary of D0 can be pushed out of L1

by the lifting procedure described in [12].) This gives a new holomorphic map f0 : D0 → C
n

such that f0(bD0) ⊂ C
n\L1 and {x ∈ D0 : f0(x) ∈ L} ⊂ K̊ . We take f0 as our new initial

map. As before, we may assume that f0 is holomorphic in an open neighborhood V of
D0 ∪ X ′.

Pick a sequence 0 = c0 < c1 < c2 . . . with lim j→∞ c j = +∞ such that every c j is a
regular value of ρ and, setting D j = {ρ ≤ c j } � X , we have

f0(X
′\D̊ j ) ⊂ C

n\L j+1, j = 0, 1, 2, . . . .

We now inductively construct a sequence of holomorphic maps f j : D j → C
n such that f j+1

both approximates f j on D j and agrees with f j (and hence with f ) on X ′, and such that
(4.4) holds for every j = 1, 2, . . .. The limit map F = lim j→∞ f j : X → C

n then satisfies
the stated properties provided that all approximations were close enough.

Since the inductive steps are all of the same kind, it suffices to explain the construction
of the map f1 : D1 → C

n . We follow the proof of Proposition 5.12.1 in [18, p. 224]; see in
particular Fig. 5.4 in [18, p. 226] which explains the underlying geometry. We reproduce it
here with the appropriate notation adapted to our situation.

The compact set K1 := D0 ∪ (D1 ∩ X ′) ⊂ V ⊂ X is O(X)-convex by Lemma 8. Hence
there exists a smooth strongly plurisubharmonic exhaustion function τ : X → R such that
τ < 0 on K1 and τ > 0 on X\V . By a general position argument we may assume that 0
is a regular value of τ and that the hypersurfaces {ρ = c1} = bD1 and {τ = 0} intersect
transversely along the submanifold
 = {ρ = c1}∩{τ = 0}. (See Fig. 1.) For each s ∈ [0, 1]
we set

τs = (1 − s)τ + s(ρ − c1), �s = {τs ≤ 0}.

Fig. 1 The sets �s
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Since τs is a convex linear combination of two strongly plurisubharmonic functions, it is
strongly plurisubharmonic. As the parameter s ∈ [0, 1] increases from 0 to 1, the pseudocon-
vex domains �s ∩ D1 monotonically increase from {τ ≤ 0} ∩ D1 to �1 = {ρ ≤ c1} = D1.
All hypersurfaces {τs = 0} intersect along
. The hypersurface b�s ∩ D1 = {τs = 0}∩ D1 is
strongly pseudoconvex at every point where dτs �= 0. As explained in [18, §5.12], a generic
choice of the function τ ensures that the topology of the sublevel set {τs ≤ 0} changes at only
finitely many points of D1 ∩ {τ > 0}, and at any of those points the change corresponds to
passing a Morse critical point of index ≤ n of a strongly plurisubharmonic function. It is then
possible to use the techniques explained in the first part of the proof (extension to convex
bumps, reduction of the critical case to the noncritical case) to approximately extend f0 to a
map f1 on D1 ∪ X ′ with the stated properties. For further details we refer to [18, §5.11].

Case 3: X ′ �= ∅ and the restricted map f : X ′ → C
n is not proper. We need to find a

holomorphic map F : X → C
n satisfying properties (a) and (b) in Theorem 15.

The construction is the same as above, but is even simpler since we do not need to worry
about properness. We always work in the complement C

n\L of the initial compact set L , and
we just need to ensure that our sequence of maps f j satisfies condition (4.4) with L j = L for
all j ∈ Z+. Interpolation on X ′ (condition (c) in Theorem 15) is obtained just as in Case 2;
we only need to observe that none of the attaching sets for our bumps intersect the subvariety
X ′, so the existing proof applies without changes. 
�
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