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Fatou–Bieberbach domains in C
n\Rk

Franc Forstnerič and Erlend F. Wold

Abstract. We construct Fatou–Bieberbach domains in Cn for n>1 which contain a given

compact set K and at the same time avoid a totally real affine subspace L of dimension <n,

provided that K∪L is polynomially convex. By using this result, we show that the domain

Cn\Rk for 1≤k<n enjoys the basic Oka property with approximation for maps from any Stein

manifold of dimension <n.

1. Introduction

A proper subdomain Ω of a complex Euclidean space C
n is called a Fatou–

Bieberbach domain if Ω is biholomorphic to C
n. Such domains abound in C

n for

any n>1; a survey can be found in [8, Chapter 4]. For example, an attracting basin

of a holomorphic automorphism of Cn is either all of Cn or a Fatou–Bieberbach

domain (cf. [23, Appendix] or [8, Theorem 4.3.2]). Fatou–Bieberbach domains also

arise as regions of convergence of sequences of compositions Φk=φk◦φk−1◦...◦φ1,

where each φj∈AutCn is sufficiently close to the identity map on a certain compact

set Kj⊂C
n and the sets Kj⊂

◦
Kj+1 exhaust C

n; this is the so-called push-out method

(cf. [8, Corollary 4.4.2, p. 115]).

Besides their intrinsic interest, Fatou–Bieberbach domains are very useful in

constructions of holomorphic maps. An important question is which pairs of dis-

joint closed subsets K,L⊂C
n of a Euclidean space of dimension n>1 can be sep-

arated by a Fatou–Bieberbach domain Ω, in the sense that Ω contains one of the

sets and is disjoint from the other one. Recently it was shown by Forstnerič and

Ritter [13] that this holds if the union K∪L is a compact polynomially convex

set and one of the two sets is convex or, more generally, holomorphically con-

tractible. They applied this to the construction of proper holomorphic maps of

Stein manifolds of dimension <n to C
n whose images avoid a given compact con-

vex set.
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In this paper we prove the following similar result in the case when L is an

affine totally real subspace of Cn of dimension <n.

Theorem 1.1. Let n>1. Assume that L is a totally real affine subspace of

C
n of dimension dimR L<n and K is a compact subset of C

n\L. If K∪L is poly-

nomially convex, then there exists a Fatou–Bieberbach domain Ω⊂C
n with K⊂Ω⊂

Cn\L.

Theorem 1.1 is proved in Section 2.

Concerning the hypotheses on K∪L in the theorem, recall that if L is a closed

unbounded subset of Cn (for example, a totally real affine subspace) and K is a

compact subset of Cn, we say that K∪L is polynomially convex if K∪L′ is such for

every compact subset L′ of L. For results on such totally real sets see for example

the paper [21].

Let z=(z1, ..., zn), with zj=xj+iyj and imaginary unit i, denote the complex

coordinates on C
n. Any totally real affine subspace L⊂C

n of dimension k∈{1, ..., n}
can be mapped by an affine holomorphic automorphism of Cn onto the standard

totally real subspace

R
k = {(z1, ..., zn)∈C

n : y1 = ...= yk = zk+1 = ...= zn =0}.(1)

The conclusion of Theorem 1.1 is false in general if dimL=n (the maximal

possible dimension of a totally real submanifold of Cn). An example is obtained by

taking L=R
2⊂C

2 and K to be the unit circle in the imaginary subspace iR2⊂C
2.

The reason for the failure in this example is topological: the circle links the real

subspace R
2⊂C

2 (in the sense that it represents a nontrivial element of the fun-

damental group π1(C
2\R2)=π1(S

1)=Z), but it would be contractible to a point

in any Fatou–Bieberbach domain containing it; hence such a domain cannot exist.

Such linking is impossible if dimR L<n since the complement Cn\K of any compact

polynomially convex set K⊂C
n is topologically a CW complex containing only cells

of dimension ≥n, and hence it has vanishing homotopy groups up to dimension n−1

(cf. [7], [17] or [8, §3.11]). Thus L can be removed to infinity in the complement

of K, so there is no linking. (Another argument to this effect, using the flow of a

certain vector field on C
n, is given in the proof of Theorem 1.1 in Section 2 below.)

In spite of this failure of Theorem 1.1 for k=n, Cn\Rn is known to be a union

of Fatou–Bieberbach domains for any n>1; see Rosay and Rudin [23] or [8, Example

4.3.10, p. 112]. Therefore, the following seems a natural question.

Problem 1.2. Assume that n>1 and K is a compact set in Cn\Rn such that

K∪Rn is polynomially convex and K is contractible to a point in C
n\Rn. Does

there exist a Fatou–Bieberbach domain Ω in C
n satisfying K⊂Ω⊂C

n\Rn?
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Recall that a compact set E in a complex manifold X is said to be O(X)-convex

if for every point p∈X\E there exists a holomorphic function f∈O(X) satisfying

|f(p)|>supE |f |.
We shall apply Theorem 1.1 to prove the following second main result of the

paper.

Theorem 1.3. Assume that L is an affine totally real subspace of C
n (n>1)

with dimR L<n, X is a Stein manifold with dimC X<n, E⊂X is a compact O(X)-

convex set, U⊂X is an open set containing E, and f : U→C
n is a holomorphic map

such that f(E)∩L=∅. Then f can be approximated uniformly on E by holomorphic

maps X→Cn\L.

In the language of Oka theory this means that maps X→C
n\L from Stein

manifolds of dimension <n to C
n\L enjoy the basic Oka property with approxima-

tion (cf. [8, §5.15]). For Oka theory we refer to the monograph [8], the surveys [9]

and [10], and the introductory note by Lárusson [20].

If X is a Stein manifold and k∈Z+ is an integer such that dimR X+k<2n,

then a generic holomorphic map X→Cn avoids a given smooth submanifold L⊂Cn

of real dimension k in view of the Thom transversality theorem, so in this case

Theorem 1.3 trivially follows. However, the transversality theorem does not suffice

to prove Theorem 1.3 if dimR X+dimR L≥2n. The first nontrivial case is dimC X=

dimR L=2, n=3.

Theorem 1.3 is an immediate corollary of the following proposition.

Proposition 1.4. Assume that L⊂C
n, E⊂U⊂X and f : U→C

n are as in

Theorem 1.3, with f(E)∩L=∅. Then there exist an arbitrarily small holomorphic

perturbation f̃ of f on a neighborhood of E and a Fatou–Bieberbach domain Ω=

Ωf̃⊂C
n such that

f̃(E)⊂Ω⊂C
n\L.(2)

Proposition 1.4 is proved in Section 3. The proof uses Theorem 1.1 together

with the main result of the paper [5] by Drinovec Drnovšek and Forstnerič (see

Theorem 3.1 below). Since Ω is (by definition) biholomorphic to C
n, Theorem 1.3

follows from Proposition 1.4 by applying the Oka–Weil approximation theorem for

holomorphic maps X→Ω.

In the setting of Theorem 1.3, the map f extends (without changing its values

on a neighborhood of E) to a continuous map f0 : X→Cn\L by topological rea-

sons. In fact, the complement Cn\L of an affine subspace L⊂C
n of real dimension

k is homotopy equivalent to the sphere S
2n−k−1 and we have 2n−k−1≥n by the
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hypotheses of the theorem, while E has arbitrarily small smoothly bounded neigh-

borhoods V ⊂X such that the pair (X,V ) is homotopy equivalent to a relative CW

complex of dimension at most dimC X<n (see [17] or [8, p. 96]).

Theorem 1.3 is a first step in understanding the following problem.

Problem 1.5. Is Cn\Rk an Oka manifold for some (or for all) pairs of integers

1≤k≤n with n>1? Equivalently, does the conclusion of Theorem 1.3 hold for maps

X→C
n\Rk from all Stein manifolds X irrespectively of their dimension?

Since Cn\Rk is a union of Fatou–Bieberbach domains as mentioned above, it is

strongly dominable by Cn, and hence is a natural candidate to be an Oka manifold.

(A complex manifold Z of dimension n is strongly dominable by C
n if for every

point z0∈Z there exists a holomorphic map f : Cn→Z such that f(0)=z0 and f

has maximal rank n at 0.) Clearly every Oka manifold is strongly dominable, but

the converse is not known. See e.g. [10] and [11] for discussions of this topic.

Our motivation for looking at this problem comes from two directions. One

is that we currently know rather few examples of open Oka subsets of complex

Euclidean spaces Cn (n>1). A general class of such sets are complements Cn\A of

tame (in particular, of algebraic) complex subvarieties A⊂C
n of dimension dimA≤

n−2 (cf. [8, Proposition 5.5.14, p. 205]). Furthermore, complements of some special

low degree hypersurfaces are Oka. In particular, the complement C
n\

⋃k
j=1 Hj of

at most n affine hyperplanes H1, ..., Hk⊂C
n in general position is Oka (Hanysz [18,

Theorem 3.1]). Finally, basins of uniformly attracting sequences of holomorphic

automorphisms of Cn are Oka (Fornæss and Wold [6, Theorem 1.1]). On the other

hand, the only compact sets A⊂C
n whose complements C

n\A are known to be

Oka are the finite sets. Recently Andrist and Wold [3] showed that the complement

C
n\B of a closed ball fails to be elliptic in the sense of Gromov if n≥3 (cf. [8,

Definition 5.5.11, p. 203]), but it remains unclear whether Cn\B is Oka. (Ellipticity

implies the Oka property, but the converse is not known. A more complete analysis

of holomorphic extendibility of sprays across compact subsets in Stein manifolds

has been made recently by Andrist, Shcherbina and Wold [2].) A positive step in

this direction has been obtained recently in [13] by showing that maps X→C
n\B

from Stein manifolds X with dimC X<n into the complement of a ball satisfy the

Oka principle with approximation and interpolation.

Our second and more specific motivation was the question whether the set of

Oka fibers is open in any holomorphic family of compact complex manifolds. (It

was recently shown in [11, Corollary 5] that the set of Oka fibers fails to be closed

in such families; an explicit recent example is due to Dloussky [4].) To answer

this question in the negative, one could look at the example of Nakamura [22]
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of a holomorphic family of compact three-folds such that the universal covering

of the center fiber is C
3, while the other fibers have coverings biholomorphic to

(C2\R2)×C (cf. p. 98, case 3 in [22]). If C2\R2 fails to be an Oka manifold then,

since the class of Oka manifolds is closed under direct products and under unramified

holomorphic coverings and quotients, the corresponding three-fold (which is an

unramified quotient of (C2\R2)×C) also fails to be Oka; hence we would have

an example of an isolated Oka fiber in a holomorphic family of compact complex

three-folds.

2. A construction of Fatou–Bieberbach domains

In this section we prove Theorem 1.1. There is a remote analogy between

this result and Proposition 11 in [13]; the latter gives a similar separation of two

compact disjoint sets in C
n whose union is polynomially convex and one of them is

holomorphically contractible. In spite of this similarity, the proof of Theorem 1.1

is completely different and considerably more involved than the proof of the cited

result from [13].

We begin with some preliminaries. If L is a closed, unbounded, totally real sub-

manifold of Cn and K is a compact subset of Cn, we say that K∪L is polynomially

convex in C
n if L can be exhausted by compact sets L1⊂L2⊂...⊂

⋃∞
j=1 Lj=L such

that K∪Lj is polynomially convex for all j∈N. If this holds then standard results

imply that any function that is continuous on Lj and holomorphic on a neighbor-

hood of K can be approximated, uniformly on K∪Lj , by holomorphic polynomials

on Cn. It follows that K∪L′ is then polynomially convex for any compact subset

L′ of L. (See [21] for these results.)

We shall also need the following stability result. If K and L are as above,

with K∩L=∅ and K∪L polynomially convex, then K∪L̃ is polynomially convex

for any totally real submanifold L̃⊂C
n that is sufficiently close to L in the fine C1

Whitney topology. (See Løw and Wold [21].)

The proof of Theorem 1.1 hinges upon the following recent result of Kutzsche-

bauch and Wold [19] concerning Carleman approximation of certain isotopies of

unbounded totally real submanifolds of Cn by holomorphic automorphisms of Cn.

Theorem 2.1. (Kutzschebauch and Wold, Theorem 1.1 in [19]) Let 1≤k<n

and consider R
k as the standard totally real subspace (1) of C

n. Let K⊂C
n be a

compact set, let Ω⊂C
n be an open set containing K, and let

φt : Ω∪Rk −→C
n, t∈ [0, 1],

be a smooth isotopy of embeddings, with φ0=Id, such that the following hold :
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(1) φt|Ω is holomorphic for all t;

(2) φt(K∪Rk) is polynomially convex for all t;

(3) there is a compact set C⊂R
k such that φt|Rk\C=Id for all t.

Then for any s∈N the map φ1 is Cs-approximable on K∪Rk, in the sense of Car-

leman, by holomorphic automorphisms of Cn.

Theorem 2.1 is a Carleman version of a theorem due to Forstnerič and Løw [12]

(a special case was already proved in [14]). The main difference is that, in Theo-

rem 2.1, the approximation takes place in the fine Whitney topology on unbounded

totally real submanifolds of Cn; a considerably more difficult result to prove. Re-

sults of this kind originate in the Andersén–Lempert–Forstnerič–Rosay theorem [1],

[14] on approximation of isotopies of biholomorphic maps between Runge domains

in C
n for n>1 by holomorphic automorphisms of Cn. (A survey can be found in

[8, Chapter 4].)

By using Theorem 2.1 we now prove the following lemma which is the induction

step in the proof of Theorem 1.1.

Lemma 2.2. Assume that L is a totally real affine subspace of C
n (n>1)

of dimension dimR L<n and K is a compact subset of C
n\L such that K∪L is

polynomially convex. Given a compact polynomially convex set M⊂C
n with K⊂

◦
M

and numbers ε>0 and s∈N, there exists a holomorphic automorphism Φ of Cn

satisfying the following conditions:

(a) Φ(L)∩M=∅;

(b) Φ(L)∪M is polynomially convex ;

(c) supz∈K |Φ(z)−z|<ε;

(d) Φ|L is arbitrarily close to the identity in the fine Cs topology near infinity.

Proof. By a complex linear change of coordinates on C
n we may assume that

L is the standard totally real subspace R
k⊂C

n given by (1).

The properties of K and L imply that there exists a strongly plurisubharmonic

Morse exhaustion function ρ on C
n which is negative on K, positive on L, and

equals |z|2 near infinity. The first two properties are obtained in a standard way

from polynomial convexity of K∪L; for the last property see [7, p. 299, proof

of Theorem 1].

Pick a closed ball B⊂C
n centered at the origin with M⊂

◦
B. Let V be the

gradient vector field of ρ, multiplied by a smooth cutoff function of the form h(|z|2)
that equals one near B and equals zero near infinity. The flow ψt of V then exists for

all t∈R and equals the identity near infinity. Apply this flow to L. Since dimR L<n
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and the Morse indices of ρ are at most n (as ρ is strongly plurisubharmonic),

a general position argument (deforming V slightly if needed) shows that the trace

of the isotopy Lt :=ψt(L) for t≥0 does not approach any of the (finitely many)

critical points of ρ. It follows that L is flown completely out of the ball B in a

finite time t0>0, fixing L all the time near infinity. Also, we have K∩Lt=∅ for all

t∈[0, 1] by the construction. Reparametrizing the time scale, we may assume that

this happens at time t0=1; so L1 is a smooth submanifold of Cn\B which agrees

with L=R
k near infinity.

Since L=L0 is totally real and the isotopy is fixed near infinity, Gromov’s

h-principle for totally real immersions (cf. [15] and [16]) implies that the isotopy Lt

constructed above can be C0 approximated by another isotopy L̃t⊂C
n consisting

of totally real embeddings R
k ↪→C

n, with L̃0=L and L̃t=Lt=R
k near infinity for

all t∈[0, 1]. (Gromov’s theorem gives an isotopy of totally real immersions. Since

k<n, a general position argument shows that a generic 1-parameter isotopy of

immersions Rk→Cn consists of embeddings. Since we keep L̃t fixed near infinity,

we obtain totally real embeddings provided that the approximation of the totally

real immersions furnished by Gromov’s theorem is close enough in the C1 topology.)

In particular, we may assume that the new isotopy L̃t also avoids the set K for all

t∈[0, 1] and that L̃1⊂C
n\B.

By Proposition 4.1 in [19] (see also Løw and Wold [21] for the nonparamet-

ric case) there is a small smooth perturbation L̂t⊂C
n of the isotopy L̃t from the

previous step, with L̂0=L and L̂t=L̃t=R
k near infinity for all t∈[0, 1], such that

L̂t is a totally real embedding and, what is the main new point, the union K∪L̂t

is polynomially convex for every t∈[0, 1]. Furthermore, by the same argument we

may assume that L̂t∪B is polynomially convex for values of t sufficiently close to

t=1.

To simplify the notation we now replace the initial isotopy Lt by L̂t and assume

that the isotopy Lt satisfies these properties.

Pick a smooth family of diffeomorphisms φt : L→Lt (t∈[0, 1]) such that φ0 is

the identity map on L=L0 and φt is the identity on L near infinity for every t∈[0, 1].
Also we define φt to be the identity map on a neighborhood of K for all t∈[0, 1];
this is possible since K∩Lt=∅ for all t by the construction.

Under these assumptions, Theorem 2.1 furnishes a holomorphic automorphism

Φ of Cn which is arbitrarily close to the identity map on K and whose restriction to

L is arbitrarily close to the diffeomorphism φ1 : L→L1 in the fine Cs topology on L.

In particular, as B∪L1 is polynomially convex, we can ensure (by using stability

of polynomial convexity mentioned at the beginning of this section) that B∪Φ(L)
is also polynomially convex. Since M is polynomially convex and M⊂B, it follows

that M∪Φ(L) is polynomially convex as well. �
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Proof of Theorem 1.1. We shall inductively apply Lemma 2.2 to construct a

sequence of automorphisms Ψj of Cn which pushes L to infinity and approximates

the identity map on K. The domain of convergence of this sequence will be a Fatou–

Bieberbach domain containing K and avoiding L. (This is the so-called push-out

method ; see e.g. [8, Corollary 4.4.2, p. 115].)

Pick an increasing sequence of closed balls B=B1⊂B2⊂...⊂
⋃∞

j=1 Bj=C
n sat-

isfying K⊂
◦
B1 and Bj⊂

◦
Bj+1 for every j∈N. To begin the induction, let Φ1 be an

automorphism of Cn, furnished by Lemma 2.2 applied to L, K and M=B1, which

satisfies the following conditions:

(a1) Φ1(L)∩B1=∅;

(b1) Φ1(L)∪B1 is polynomially convex;

(c1) Φ1 is close to the identity map on K and Φ1(K)⊂
◦
B1.

Property (b1) implies that the set Φ−1
1 (Φ1(L)∩B1)=L∪Φ−1

1 (B1) is polynomially

convex, (a1) shows that L∩Φ−1
1 (B1)=∅, and (c1) implies K⊂Φ−1

1 (
◦
B1).

Next we apply Lemma 2.2 with L as above, M=Φ−1
1 (B2) and K replaced by

Φ−1
1 (B1) to find an automorphism Φ̃2 of Cn satisfying the following conditions:

(a2) Φ̃2(L)∩Φ−1
1 (B2)=∅;

(b2) Φ̃2(L)∪Φ−1
1 (B2) is polynomially convex;

(c2) Φ̃2 is close to the identity map on Φ−1
1 (B1).

Set

Ψ1 =Φ1, Φ2 =Φ1◦Φ̃2◦Φ−1
1 and Ψ2 =Φ2◦Φ1 =Φ1◦Φ̃2.

Property (a2) implies that Ψ2(L)∩B2=∅, (b2) implies that Ψ2(L)∪B2 is polyno-

mially convex, and (c2) shows that Φ2 is close to the identity on B1.

Continuing inductively we obtain a sequence of automorphisms Φj∈AutCn for

j=1, 2, ... such that, setting Ψj=Φj◦Φj−1◦...◦Φ1, we have

(αj) Ψj(L)∩Bj=∅ for each j∈N;
(βj) Ψj(L)∪Bj is polynomially convex;

(γj) Φj=Ψj◦Ψ−1
j−1 is arbitrarily close to the identity map on Bj−1 for j>1.

If Φj is chosen sufficiently close to the identity map on Bj for every j>1 (and Φ1

is sufficiently close to the identity on K) then the domain of convergence

Ω= {z ∈C
n : there is Mz > 0 such that |Ψj(z)| ≤Mz for all j ∈N}

is a Fatou–Bieberbach domain [8, Corollary 4.4.2]. Property (γj) ensures that

K⊂Ω, while property (αj) implies L∩Ω=∅. This completes the proof of Theo-

rem 1.1. �
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3. Separation of varieties from totally real affine subspaces by

Fatou–Bieberbach domains

In this section we prove Proposition 1.4 stated in Section 1. As explained there,

this will also prove Theorem 1.3.

We shall use the following result of Drinovec Drnovšek and Forstnerič which

we state here for future reference. We adjust the notation to the situation of the

present paper.

Theorem 3.1. (Theorem 1.1 in [5]) Assume that Z is an n-dimensional com-

plex manifold, Ω is an open subset of Z, ρ : Ω→(0,∞) is a smooth Morse function

whose Levi form has at least r positive eigenvalues at every point of Ω for some

integer r≤n, and for any pair of real numbers 0<c1<c2 the set

Ωc1,c2 = {z ∈Ω : c1 ≤ ρ(z)≤ c2}

is compact. Let D be a smoothly bounded, relatively compact, strongly pseudoconvex

domain in a Stein manifold X , and let f0 : D→Z be a continuous map that is

holomorphic in D and satisfies f0(bD)⊂Ω. If

(a) r≥2d, where d=dimC X ; or

(b) r≥d+1 and ρ has no critical points of index >2(n−d) in Ω;

then f0 can be approximated, uniformly on compact sets in D, by holomorphic maps

f : D→Z such that f(x)∈Ω for every x∈D sufficiently close to bD and

lim
x→bD

ρ(f(x))=∞.(3)

Moreover, given an integer k∈Z+, the map f can be chosen to agree with f0 to order

k at each point in a given finite set σ⊂D.

The most important special case of this result, and the one that we shall use

here, is when ρ : Z→R is an exhaustion function on Z; the condition (3) then means

that the map f : D→Z is proper. In this case the proof of Theorem 3.1 in [5] also

ensures that for every number δ>0 we can pick f as in the theorem such that

ρ(f(x))>ρ(f0(x))−δ for all x∈D.(4)

Proof of Proposition 1.4. We may assume that L=Rk is the standard totally

real subspace (1). Choose a number R>0 such that the set f(E)⊂C
n is contained in

the ball BR={z∈Cn :|z|<R}. Pick a smooth increasing convex function h : R→R+
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such that h(t)=0 for t≤0 and h is strongly convex and strongly increasing on t>0.

The nonnegative function on C
n given by

ρ(z1, ..., zn)=

k∑

j=1

y2j+

n∑

j=k+1

|zj |2+h
(
|z|2−R2

)
(5)

is then a strongly plurisubharmonic exhaustion on C
n that vanishes precisely on

the set BR∩L. It is easily seen that ρ has no critical points on C
n\(BR∩L)=

{z :ρ(z)>0}.
Since the compact set E⊂X is O(X)-convex and U⊂X is an open set con-

taining E, we can pick a smoothly bounded strongly pseudoconvex domain D with

E⊂D�U . As f(E)⊂BR\L, we can ensure by choosing D sufficiently small around

E that f(D)⊂BR\L, and hence c:=minD ρ◦f>0.

By Theorem 3.1, applied with the function ρ from (5) on Z=C
n, we can

approximate the map f uniformly on E by a proper holomorphic map f̃ : D→C
n

satisfying

ρ◦f̃(x)≥ c/2> 0 for all x∈D.(6)

(Use case (b) of Theorem 3.1 and recall that ρ is noncritical outside of its zero set.

Condition (6) follows from (4) applied with δ=c/2>0.) Assuming that f̃ is close

enough to f on E, we have f̃(E)⊂BR\L. The image A:=f̃(D) is then a closed

complex subvariety of Cn which is disjoint from the set BR∩L=ρ−1(0).

Set K=A∩BR. We claim that K∪L is polynomially convex. Since BR∪L
is polynomially convex (see [24, Theorem 8.1.26]), we only need to consider points

p∈BR\(A∪L). As A is a closed complex subvariety of Cn and p /∈A, there is a

function g∈O(Cn) such that g(p)=1 and g|A=0. Also, since p /∈L, there exists

a function h∈O(Cn) satisfying h(p)=1 and |h|< 1
2 on L. (We use the Carleman

approximation of the function that equals 1 at p and zero on L.) The entire function

ξ=ghN (N∈N) then satisfies ξ(p)=1 and ξ=0 on A, and it also satisfies |ξ|<1 on a

given compact set L′⊂L provided that the integer N is chosen big enough. Hence p

does not belong to the polynomial hull of K∪L, so this set is polynomially convex.

Since f̃(E)⊂K by the construction, the existence of a Fatou–Bieberbach do-

main Ω satisfying f̃(E)⊂Ω⊂C
n\L (i.e. (2)) now follows from Theorem 1.1 applied

to the sets K and L. This completes the proof of Proposition 1.4. �
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ematics Department of the University of Oslo. He wishes to thank this institution

for its hospitality and excellent working conditions.

References

1. Andersén, E. and Lempert, L., On the group of holomorphic automorphisms of Cn,
Invent. Math. 110 (1992), 371–388.

2. Andrist, R., Shcherbina, N. and Wold, E. F., The Hartogs extension theorem for
holomorphic vector bundles and sprays, Preprint, 2014. arXiv:1410.2578.

3. Andrist, R. and Wold, E. F., The complement of the closed unit ball in C
3 is not

subelliptic, Preprint, 2013. arXiv:1303.1804.
4. Dloussky, G., From non-Kählerian surfaces to Cremona group of P2(C), Preprint,

2012. arXiv:1206.2518.
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8. Forstnerič, F., Stein Manifolds and Holomorphic Mappings, Ergebnisse der Mathe-

matik und ihrer Grenzgebiete 56, Springer, Berlin–Heidelberg, 2011.
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