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1 On Null Curves in C3 and Minimal Surfaces in R3

An open connected Riemann surface M is said to be a bordered Riemann surface
if it is the interior of a compact one dimensional complex manifold M with smooth
boundary bM ¤ ; consisting of finitely many closed Jordan curves. The closure
M D M[bM of such M is a compact bordered Riemann surface. By classical results
every compact bordered Riemann surface is conformally equivalent to a smoothly
bounded domain in an open (or compact) Riemann surface R by a map smoothly
extending to the boundary.

Let M be an open Riemann surface. A holomorphic immersion F D
.F1;F2;F3/WM ! C3 is said to be a null curve if it is directed by the conical
quadric subvariety
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in the sense that the derivative F0 D .F0
1;F

0
2;F

0
3/WM ! C3 with respect to any

local holomorphic coordinate on M takes values in A n f0g. If M is a bordered
Riemann surface, then the same definition applies to smooth maps M ! C3 which
are holomorphic in M.

The real and the imaginary part of a null curve M ! C3 are conformal (angle
preserving) minimal immersions M! R3; that is, having mean curvature identically
zero. Conversely, every conformal minimal immersion M ! R3 is locally (on any
simply-connected domain in M) the real part of a null curve; this fails on non-simply
connected Riemann surfaces due to the periods of the harmonic conjugate. This
connection enables the use of complex analytic tools in minimal surface theory, a
major topic of differential geometry since the times of Euler and Lagrange. One of
the quintessential examples of this statement is the use of Runge’s approximation
theorem for holomorphic functions on open Riemann surfaces in the study of the
Calabi-Yau problem for surfaces.

In 1965, Calabi [24] conjectured the nonexistence of complete minimal surfaces
in R3 with bounded projection into a straight line; this would imply in particular the
nonexistence of bounded complete minimal surfaces in R3. Recall that an immersion
FWM ! Rn, n 2 N, is said to be complete if the pullback F�ds2 by F of the
Riemannian metric on Rn is a complete metric on M. Calabi’s conjecture turned out
to be false by the groundbreaking counterexample by Jorge and Xavier [59] in 1980
who constructed a complete conformal minimal immersion F D .F1;F2;F3/WD !
R3 of the disc D D fz D x C {y 2 CW jzj < 1g with F3.z/ D <.z/ D x.
(Here { D p�1.) Their method consists of applying the classical Runge theorem
on a labyrinth of compact sets in D in order to construct a suitable harmonic
function .F1;F2/WD ! R2. Refinements of Jorge and Xavier’s technique have
given rise to a number of examples of complete minimal surfaces in R3 with a
bounded coordinate function (see [65, 66, 83]); in particular it was recently proven
by Alarcón, Fernández, and López [1–3] that every open Riemann surface carrying
non-constant bounded harmonic functions is the underlying conformal structure of
such a surface.

As pointed out by S.-T. Yau in his 1982 problem list [98, Problem 91], the
question of whether there exist complete bounded minimal surfaces in R3 (which
became known in the literature as the Calabi-Yau problem) remained open. (See
also Yau’s Millenium Lecture 2000 [99].) It was Nadirashvili [74] who in 1996
answered this question in the affirmative by constructing a conformal complete
bounded minimal immersion of the disc D into R3. Nadirashvili’s method relies on
a recursive use of Runge’s approximation theorem on labyrinths of compact subsets
of D, and it has been the seed of several construction techniques, leading to a variety
of examples. In particular, in 2012 Ferrer et al. [38] constructed complete properly
immersed minimal surfaces with arbitrary topology in any given either convex or
bounded and smooth domain of R3; see also Alarcón et al. [4] for the case of finite
topology.

A question that appeared early in the history of the Calabi-Yau problem was
whether there exist complete bounded minimal surfaces in R3 whose conjugate
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surfaces also exist and are bounded; that is, whether there exist complete bounded
null curves in C3. The first such examples were provided only very recently
by Alarcón and López [9] who constructed complete null curves with arbitrary
topology properly immersed in any given convex domain of C3; this answers a
question by Martín, Umehara, and Yamada [68, Problem 1]. Their method, which
is different from Nadirashvili’s one, relies on a Runge-Mergelyan type theorem
for null curves in C3 [8], a new and powerful tool that gave rise to a number of
constructions of both minimal surfaces in R3 and null curves in C3 (see [2, 8–
10, 12]). Very recently, Ferrer, Martín, Umehara, and Yamada [39] showed that
Nadirashvili’s method can be adapted to null curves, giving an alternative proof
of the existence of complete bounded null discs in C3.

In the opposite direction, Colding and Minicozzi [28] proved in 2005 that every
complete embedded minimal surface of finite topology in R3 is proper in R3, hence
unbounded. This result was extended by Meeks, Pérez, and Ros [71] to surfaces with
finite genus and countably many ends. It follows that the original Calabi’s conjecture
is true for embedded surfaces of finite topology. Although being embedded is a
strong constraint for a complete minimal surface in R3, it is no constraint for null
curves in C3 as the following result shows.

Theorem 1.1 ([6, Corollary 6.2]) There exist complete null curves with arbitrary
topology properly embedded in any given convex domain of C3.

This answers a question by Martín, Umehara, and Yamada [68, Problem 2].
The key to the proof is that the general position of null curves in C

3 is
embedded. In fact, Theorem 1.1 easily follows from the existence of complete
properly immersed null curves in convex domains of C

3 [9] and the following
desingularization result from [6].

Theorem 1.2 ([6, Theorem 2.4 and Theorem 2.5]) Let M be a bordered Riemann
surface. Then every null immersion M ! C3 can be approximated in the C 1-
topology on M by null embeddings M ,! C3. Similarly, if M is any open Riemann
surface then any null immersion M ! C3 can be approximated uniformly on
compacts by null embeddings M ,! C3.

Since complex submanifolds of complex Euclidean spaces are area minimizing
[37], the Calabi-Yau problem is closely related to a question, posed by Yang [96, 97]
in 1977, whether there exist complete bounded complex submanifolds of Cn for
n > 1. The first result in this subject was obtained by Jones [58] who constructed
holomorphic immersions D ! C2 and embeddings D ,! C3 with bounded image
and complete induced metric. His method is based on the BMO duality theorem.
In 2009, Martín, Umehara, and Yamada [69] extended Jones’ result to complete
bounded complex curves in C2 with arbitrary finite genus. Finally, Alarcón and
López [9] constructed complete complex curves with arbitrary topology properly
immersed in any given convex domain of C2, as well as the first example of a
complete bounded embedded complex curve in C2 [13].

The use of Runge’s theorem in the recursive procedure of Nadirashvili’s method
for constructing complete bounded minimal surfaces does not enable one to control
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the placement in R3 of the entire surface at each step. Therefore one is forced to
cut away some small pieces of the surface in order to keep it suitably bounded, so
it is impossible to control the conformal structure on the surface when applying
this technique to non-simply connected Riemann surfaces (the simply-connected
ones are of course conformally equivalent to the disc D). This phenomenon has
been present in every construction of complete bounded minimal surfaces in R3 and
null curves in C3 (see [9] and references therein), and also in every construction of
complete bounded complex curves in C2 with non-trivial topology up to this point
(cf. [9, 13, 69]).

This constraint has recently been overcome by the authors [5] in the case of
bordered Riemann surfaces in Cn, n � 2.

Theorem 1.3 ([5, Theorem 1]) Every bordered Riemann surface carries a com-
plete proper holomorphic immersion to the unit ball of Cn, n � 2, which can be
chosen an embedding for n � 3.

The construction in the proof of Theorem 1.3 is inspired by that of Alarcón
and López [9], but it requires additional complex analytic tools. The key point is
to replace Runge’s theorem by approximate solutions of certain Riemann-Hilbert
boundary value problems in Cn (see Sect. 3 below for an exposition of this subject).
This gives sufficient control of the placement of the whole curve in the space to
avoid shrinking, thereby enabling one to control its conformal structure. Another
important tool is the method of Forstnerič and Wold [45] for exposing boundary
points of a complex curve. This method, together with a local version of the
Mergelyan theorem, enables one to incorporate suitable arcs to a compact bordered
Riemann surface in Cn without modifying its conformal structure.

However, the case of minimal surfaces in R3 and null curves in C3 is still much
harder and requires more refined complex analytic tools. The following version of
the Riemann-Hilbert problem for null curves has been obtained recently in [7].

Theorem 1.4 ([7, Theorem 3.4]) Let M be a bordered Riemann surface, and let I
be a compact subarc of bM which is not a connected component of bM. Choose a
small annular neighborhood A � M of bM and a smooth retraction �WA! bM. Let
FWM ! C3 be a null holomorphic immersion, let # 2 A n f0g be a null vector, let
�W bM ! RC be a continuous function supported on I, and consider the continuous
map

~W bM � D! C
3; ~.x; �/ D F.x/C �.x/ � #:

Then for any number � > 0 there exist an arbitrarily small open neighborhood �
of I in A and a null holomorphic immersion GWM ! C3 satisfying the following
properties:

(a) dist.G.x/; ~.x; bD// < � for all x 2 bM.
(b) dist.G.x/; ~.�.x/;D// < � for all x 2 �.
(c) G is �-close to F in the C 1 topology on M n�.
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The authors gave a direct proof by explicit calculation in the special case when
M is the disc D, using the so called spinor representation of the null quadric
(1). This can be used locally on small discs abutting the boundary of M. The
proof of the general case depends on the technique of gluing holomorphic sprays
(which amounts to a nonlinear version of the @-problem in complex analysis, see
[42, Chapter 5]) applied to the derivatives of null curves. To use the method of
gluing sprays in the present setting, one must control the periods of some maps in
the amalgamated spray in order to get well defined null curves by integration; in
addition, delicate estimates are needed to ensure that the resulting null curves have
the desired properties. A more precise outline of the proof is given in Sect. 4.

The following result, whose proof uses the techniques described above, is the
authors’ main contribution to the Calabi-Yau problem.

Theorem 1.5 ([7, Theorem 1.1]) Every bordered Riemann surface carries a com-
plete proper null embedding into the unit ball of C3.

If FWM ! C
3 is a null curve, then the Riemannian metric F�ds2 induced by the

Euclidean metric of C3 via F is twice the one induced by the Euclidean metric of
R
3 via the real part <F (cf. [75]). Indeed, write F D .F1;F2;F3/WM ! C

3 and let
� D xC {y be a local holomorphic coordinate on M. Then

0 D
3X

jD1
.Fj

�/
2 D

3X

jD1
.Fj

x/
2 D

3X

jD1

�
.<Fj/x C {.=Fj/x

	2

D
3X

jD1

�
..<Fj/x/

2 � ..=Fj/x/
2
	C 2{

3X

jD1
.<Fj/x.=Fj/x:

Since .=F/y D �.<F/x by the Cauchy-Riemann equations, the above is equivalent
to j.<F/xj D j.=F/yj and h.<F/x; .=F/yi D 0. It follows that the minimal
immersion <FWM! R3 is conformal, harmonic, and

F�ds2 D jFxj2.dx2 C dy2/ D 2j.<F/xj2.dx2 C dy2/ D 2.<F/�ds2:

In particular, the real part of a complete null curve in C3 is a complete conformal
minimal immersion in R3. In view of Theorem 1.5, we obtain the following result
on the so-called conformal Calabi-Yau problem for surfaces.

Theorem 1.6 ([7, Corollary 1.2]) Every bordered Riemann surface M carries a
conformal complete minimal immersion M! R3 with bounded image.

We emphasize that, in Theorems 1.5 and 1.6, the conformal structure on the
source Riemann surface is not changed.

Notice that we do not control the asymptotic behavior of the surfaces in
Theorem 1.6; in particular we do not know whether there exist conformal complete
proper minimal immersions from any bordered Riemann surface into a ball of R3.
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At this point we wish to draw a certain analogy with the old problem whether
every open Riemann surface admits a proper holomorphic embedding into C2 (see
Bell and Narasimhan [17, Conjecture 3.7, p. 20]). It is classical that every open
Riemann surface properly holomorphically embeds in C3 and immerses in C2 [42,
§8.2]. By introducing the technique of exposing boundary points alluded to above,
combined with the Andersén-Lempert theory of holomorphic automorphisms of Cn

for n > 1, Forstnerič and Wold proved in 2009 that, if a compact bordered Riemann
surface M admits a (nonproper) holomorphic embedding in C2 then its interior M
admits a proper holomorphic embedding in C2 [45]. Further applications of their
technique can be found in [67] and [46]. For example, every circular domain in the
Riemann sphere admits a proper holomorphic embedding in C2 [46]. (The case of
finitely connected plane domains was established by Globevnik and Stensønes in
1995 [52].) The main novelty in [45, 46] is that, unlike in the earlier constructions,
no cutting of the surface is needed and hence the conformal structure is preserved.
It is considerably easier to show that every open oriented real surface M admits
a complex structure J such that the open Riemann surface .M; J/ admits a proper
holomorphic embedding into C2 (Alarcón and López [11]; for the case of finite
topology see [27]).

Another good example of how Runge’s theorem has been exploited in minimal
surface theory is the construction of proper minimal surfaces in R3 with hyperbolic
conformal structure. (An open Riemann surface is said to be hyperbolic if it carries
negative non-constant subharmonic functions; otherwise it is called parabolic.) An
old conjecture of Sullivan [70] asserted that every properly immersed minimal
surface in R3 with finite topology must have parabolic conformal structure. The
first counterexample was given by Morales in [72] who in 2003 constructed a proper
conformal minimal immersion D! R3.

In the same line, Schoen and Yau [84] asked in 1985 whether a minimal surface in
R3 properly projecting into a plane must be parabolic. The question was answered
by Alarcón and López [8] who showed that in fact every open Riemann surface
M carries a conformal minimal immersion X D .X1;X2;X3/WM ! R3 such that
.X1;X2/WM ! R2 is a proper map, and a null curve F D .F1;F2;F3/WM ! C3 such
that .F1;F2/WM ! C2 is proper. (See also [12].) Taking into account Theorem 1.2
we obtained the following extension of the previous results.

Theorem 1.7 ([6, Theorem 8.1]) Every open Riemann surface M carries a proper
null embedding F D .F1;F2;F3/WM ,! C3 such that .F1;F2/WM ! C2 is a proper
map.

The constructions in [8] and [6] involved particular versions of Runge’s theorem
for minimal surfaces in R

3 and null curves in C
3 that do not give any control on the

third coordinate. However, the newly developed complex analytic methods involved
in the proof of Theorem 1.5 above enable us to overcome this constraint in the case
of bordered Riemann surfaces as null curves in C

3. The following is our main result
in this line.
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Theorem 1.8 ([7, Theorem 1.4]) Every bordered Riemann surface M carries a
null holomorphic embedding F D .F1;F2;F3/WM ,! C3 such that .F1;F2/WM !
C2 is a proper map and the function F3WM ! C is bounded on M.

Joining together the methods in the proof of the above result and the Mergelyan
theorem for null curves [8] (see also [6]), we also get the following result.

Theorem 1.9 ([7, Theorem 1.8]) Every orientable noncompact smooth real sur-
face M without boundary admits a complex structure J such that the Riemann
surface .M; J/ carries a proper holomorphic null embedding .F1;F2;F3/W .M; J/!
C
3 such that F3 is a bounded function on M.

Recall that the only properly immersed minimal surfaces in R3 with a bounded
coordinate function are planes by the Half-Space theorem of Hoffman and Meeks
[57]. Therefore, if F D .F1;F2;F3/WM ,! C3 is a proper null curve as those in
Theorem 1.8, then <.e{tF/WM ! R3 is a conformal complete non-proper minimal
immersion for all t 2 R.

2 On Null Curves in SL2.C/ and Bryant Surfaces in H3

A holomorphic immersion FWM ! SL2.C/ from an open Riemann surface into the
special linear group

SL2.C/ D


z D
�

z11 z12
z21 z22

�

2 C
4W det z D z11z22 � z12z21 D 1

�

is said to be a null curve if it is directed by the quadric variety

E D


z D
�

z11 z12
z21 z22

�

W det z D z11z22 � z12z21 D 0
�

� C
4; (2)

meaning that the derivative F0WM ! C4 with respect to any local holomorphic
coordinate on M belongs to E n f0g. If M is a bordered Riemann surface, then the
same definition applies for smooth maps M ! SL2.C/ being holomorphic in M.

In 1987, Bryant [22] discovered that, if FWM ! SL2.C/ is a null curve, then

F �FT
takes values in the hyperbolic space H3 D SL2.C/=SU.2/ and is a conformal

immersion with constant mean curvature one; conversely, every simply-connected
Bryant surface (i.e., with constant mean curvature one in H3) is the projection of a
null curve in SL2.C/. As is the case of minimal surfaces in R3, the above connection
enables the use of complex analytic tools in Bryant surface theory which made this
subject a fashionable research topic in the last decade (see e.g. [29, 82, 93] for the
background). Moreover, the Lawson correspondence [63] implies that every simply
connected Bryant surface is isometric to a minimal surface in R3 and vice versa;
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hence problems on minimal surface theory are automatically natural also for Bryant
surfaces.

Some of the results described in the previous section hold not only for null curves
in C3, but also for immersions with derivative in an arbitrary conical subvariety A
of Cn (n � 3) which is smooth away from the origin; i.e., A-immersions.

Theorem 2.1 ([6, Theorem 2.5 and Corollary 2.7]) Let M be an open Riemann
surface, and let A be a closed conical subvariety of Cn, n � 3, which is not contained
in any hyperplane and such that A n f0g is a smooth Oka manifold. Then:

• (Desingularization theorem) Every A-immersion M ! C
n can be approximated

uniformly on compacts by A-embeddings M! C
n.

• (Runge theorem) Every A-immersion U ! C
n on an open neighborhood U of a

compact Runge set K � M can be approximated uniformly on K by A-immersions
M ! C

n.

Recall that a complex manifold Y is said to be an Oka manifold if every holomorphic
map from an open neighborhood of a compact convex set K � CN to Y can be
approximated, uniformly on K, by entire maps CN ! Y; see [42] for a reference on
Oka theory.

Although the variety E (2) controlling null curves in SL2.C/ meets the require-
ments of Theorem 2.1, the results do not apply directly since the E-immersions
M ! C4 furnished by the theorem need not lie in SL2.C/. In order to force the
image to lie in SL2.C/, one must add another equation expressing the condition
that the tangent vector to the curve is also tangent to SL2.C/ (as a submanifold of
C4). Unfortunately the resulting system of equations is no longer autonomous (the
second equation depends on the point in space), and hence the methods of [6] do
not apply.

However, Martín, Umehara, and Yamada [68] discovered in 2009 that the
biholomorphic map T WC3 n fz3 D 0g ! SL2.C/ n fz11 D 0g, given by

T .z1; z2; z3/ D 1

z3

�
1 z1 C {z2

z1 � {z2 z21 C z22 C z23

�

; (3)

carries null curves into null curves. This transformation allows us to obtain a
succulent list of corollaries to the results in the previous section.

In view of Theorem 1.2 we get the following result concerning the general
position of null curves in SL2.C/ n fz11 D 0g.
Theorem 2.2 ([6, Corollary 2.8]) Let M be a bordered Riemann surface. Every
immersed null curve M ! SL2.C/ n fz11 D 0g can be approximated in the C 1

topology on M by embedded null curves M ! SL2.C/ n fz11 D 0g.
Observe that for any constant c > 0 the biholomorphism T (3) maps complete

bounded null curves in C
3 n fjz3j > cg into complete bounded null curves in

SL2.C/, which in turn project to complete bounded Bryant surfaces in H
3 [68].
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From Theorems 1.1 and 1.5, we get the following results regarding Calabi-Yau type
questions.

Theorem 2.3 ([6], [7, Corollary 1.9])
• There exist complete bounded embedded null curves in SL2.C/ and immersed

Bryant surfaces in H3 with arbitrary topology.
• Every bordered Riemann surface M admits a complete null holomorphic embed-

ding M ! SL2.C/ with bounded image, and it is conformally equivalent to a
complete bounded immersed Bryant surface in H3.

The latter part of the former item in the above theorem was already proven in
[8] where also complete bounded immersed null curves in SL2.C/ with arbitrary
topology were given. Complete bounded immersed simply connected null holomor-
phic curves in SL2.C/, hence complete bounded simply-connected Bryant surfaces
in H

3, were provided in [39, 68].
Finally, observe that applying T to a proper null curve F D .F1;F2;F3/WM !

C
3 such that 0 < c1 < jF3j < c2 on M one gets a proper null curve in SL2.C/, which

in turn projects to a proper Bryant surface in H
3. Therefore, Theorems 1.8 and 1.9

provide the following examples of proper null curves in SL2.C/ and Bryant surfaces
in H

3.

Theorem 2.4 ([7, Corollaries 1.5 and 1.6 and Theorem 1.8])
• There exist properly embedded null curves in SL2.C/ and properly immersed

Bryant surfaces in H3 with arbitrary topology.
• Every bordered Riemann surface M admits a proper null holomorphic embedding

M ! SL2.C/, and it is conformally equivalent to a properly immersed Bryant
surface in H3.

Connecting to Sullivan’s conjecture for minimal surfaces [70], the ones in the
latter item of Theorem 2.4 are the first examples of proper null curves in SL2.C/
and proper Bryant surfaces in H3 with finite topology and hyperbolic conformal
structure.

3 The Riemann-Hilbert Problem and Proper Holomorphic
Maps of Bordered Riemann Surfaces

In this and the following section we explain how a certain version of the classical
Riemann-Hilbert boundary value problem is used in the construction of holomor-
phic curves satisfying various additional properties (for example, proper and/or
complete and bounded).

The linear Riemann boundary value problem on the disc D D fz 2 C W jzj < 1g
asks for holomorphic functions f .z/ D u.z/C {v.z/ on D, continuous on the closed
disc D and satisfying the following condition on the circle T D bD D fjzj D 1g:

a.z/ u.z/� b.z/ v.z/ D c.z/; z 2 T; (4)
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where a, b, and c are given real-valued continuous functions on T. This classical
problem considered by Riemann in his dissertation [81], and its extension to non-
simply connected domains and bordered Riemann surfaces, is one of the main
boundary value problems of analytic function theory. Geometrically speaking, (4)
demands that the boundary value of f at any point z 2 T lies in a certain affine real
line lz � C depending on z.

Writing f .z/ D fC.z/ and introducing the conjugate function on C nD by

f�.z/ D fC .Nz�1/; jzj � 1;

we have f�.z/ D fC.z/ on the circle T, and (4) can be written as

˛.z/fC.z/C ˇ.z/f�.z/ D c.z/; jzj D 1; (5)

where ˛.z/ D .a.z/C {b.z// =2 and ˇ.z/ D .a.z/� {b.z// =2. Hilbert’s gen-
eralization [55] asks for functions fC and f�, holomorphic on D and C n D,
respectively, continuous up to the circle and satisfying (5) where ˛, ˇ, and c are
arbitrary complex-valued functions on T. One may consider the same problem for
vector-valued or matrix-valued holomorphic functions. For example, the Birkhoff
factorization problem [19] amounts to finding solutions of the equation fC.z/ D
G.z/f�.z/ on jzj D 1, where the matrix-valued functions f˙ are holomorphic inside
and outside of the disc D, respectively.

Riemann’s boundary value problem was motivated by the problem of finding
a linear differential equation of Fuchsian type with given singular points and a
given monodromy group; this is Hilbert’s 21st problem on the famous list of 23
problems from his 1900 ICM lecture. In 1905, Hilbert [55] obtained some progress
on the general Riemann-Hilbert problem (5) by reducing it to an integral equation.
The homogeneous vector-valued Riemann-Hilbert problem was solved in 1908 by
Plemelj [76, 77] by using his jump formula for Cauchy integrals. This also gave a
solution of Hilbert’s 21st problem, except for a gap in some cases (see Bolibrukh
[21] and Kostov [61]). In 1909 Birkhoff [19] obtained a factorization theorem on
matrix-valued functions which implies that any holomorphic vector bundle over the
Riemann sphere is a direct sum of holomorphic line bundles. The non-homogeneous
Riemann-Hilbert problem was considered in 1934 by Privalov [80]. The Riemann-
Hilbert problem has a rich variety of applications in many fields; see in particular
the monographs by Gakhov [47], Muskhelishvili [73], Vekua [94], and Wegert [95].

We now return to Riemann’s boundary value problem (4), but replacing the
affine lines by closed Jordan curves lz � C containing the origin in the bounded
component of C n lz for every z 2 T. This nonlinear Riemann-Hilbert problem was
solved by Forstnerič in 1988 [41] who showed that the graphs of solutions fill the
polynomial hull of the torus T D f.z;w/ 2 C2 W z 2 T; w 2 lzg. (See also the papers
[14, 40, 86].) An extension to more general sets was given by Slodkowski [85].
Berndtsson and Ransford [18] used these ideas to give another proof of Carleson’s
Corona Theorem for the disc. Černe [26] found some solutions of the nonlinear
Riemann-Hilbert problem on bordered Riemann surfaces.
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A closely related direction, which offers a more geometric point of view on
Riemann’s boundary value problem, is the existence and perturbation theory of
analytic discs (and of bordered Riemann surfaces) with boundaries attached to a
certain real submanifold in a complex manifold. This point of view was pioneered
by Bishop [20] who studied local envelopes of holomorphy of real surfaces in C2

and, more generally, of real submanifolds near complex singularities, by introducing
and solving the so-called Bishop equation. His work was continued and developed
in several directions by Kenig and Webster [60], Lempert [64], Bedford and Gaveau
[15], Forstnerič [40], Trépreau [89], Tumanov [90–92], Bedford and Klingenberg
[16], Globevnik [50], Černe [25] and many others. This subject also received
considerable attention on almost complex manifolds starting with Gromov’s seminal
work in 1985 [54] on the use of pseudoholomorphic curves in symplectic geometry.
For these developments see e.g. the survey by Eliashberg [36] on the technique of
filling by holomorphic discs, the collection by Audin and Lafontaine [62], and the
papers [56, 87, 88], among others. This line of work also plays an important role
in modern topology, in particular in Floer homology. We are unable to present a
comprehensive survey of this large body of results in a short space, so we apologize
to the authors whose contributions are not mentioned in the above summary.

We wish to emphasize that these are very difficult analytic problems whose exact
solutions are typically extremely difficult or impossible to find. However, in many
applications one only needs an approximate solution, and this is usually a much
easier problem. The following version of the approximate Riemann-Hilbert problem
appears in many different constructions: of proper holomorphic maps, of bounded
complete holomorphic curves, in formulas for extremal functions in pluripotential
theory, etc.

Let X be a complex manifold (or a complex space). We are given a holomorphic
map f WD ! X, also called an analytic disc in X, and for each point z 2 T a
holomorphic map gzWD ! X such that gz.0/ D f .z/ and the discs gz depend
continuously on z 2 T. Set Tz D gz.T/ � X and Sz D gz.D/ � X for z 2 T. Fix a
distance function dist on X. Given numbers 0 < r < 1 and � > 0, the approximate
Riemann-Hilbert problem asks for a holomorphic map FWD ! X satisfying the
following properties for some r0 2 Œr; 1/:
(a) dist.F.z/;Tz/ < � for z 2 T,
(b) dist.F.�z/; Sz/ < � for z 2 T and r0 � � � 1, and
(c) dist.F.z/; f .z// < � for jzj � r0.

These conditions can be adapted to any bordered Riemann surface M instead
of the disc D as the domain of the maps f and F. (Compare with the statement of
Theorem 1.4. The domain of the maps gz is always the closed disc D.)

When X D C
n, this approximate Riemann-Hilbert problem is easily solved as

follows (see [44] or [34] for the details). Consider the map

T � D 3 .z;w/ 7! gz.w/ � f .z/ 2 C
n
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which is continuous in z and holomorphic in w. Note that this vanishes at w D 0 for
any z 2 T since gz.0/ D f .z/. We can approximate it arbitrarily closely by a rational
map

G.z;w/ D z�m
NX

jD1
Aj.z/w

j 2 C
n;

where the Aj’s are Cn-valued holomorphic polynomials and m 2 N. Pick k 2 N and
set

F.z/ D f .z/C G.z; zk/ D f .z/C zk�m
NX

jD1
Aj.z/z

k.j�1/; z 2 D: (6)

The pole at z D 0 cancels if k > m, and one easily verifies that F satisfies the
properties (a)–(c) if the integer k is chosen big enough.

It is not clear how to solve this problem in an arbitrary complex manifold X and
with the disc D (as the domain of f ) replaced by a bordered Riemann surface M.
However, in most applications (in particular, in those related to the present survey)
it suffices to solve the problem on a small disc D � M which intersects the boundary
bM in a compact arc I � M around a given point p 2 bM. Furthermore, replacing
the disc gpWD! X by its graph in D � X which has an open Stein neighborhood in
C � X, we can reduce the local approximation problem over D to the standard case
of discs in C

n.
To enable the gluing of a local solution (on D) with the given map f (to get a new

map on M) we actually solve the following modified Riemann-Hilbert problem. Pick
a pair of smaller arcs I0; I1 � bM such that p 2 I0 � I1 � I and a cut-off function
�W bM ! Œ0; 1� such that � D 1 on I0 and � D 0 on bM n I1. Set Qgz.w/ D gz.�.z/w/
for z 2 bM and w 2 D. Note that Qgz agrees with gz for z 2 I1 and is the constant
disc w ! f .z/ for any point z 2 bM n I1. We define Qgz as the constant disc f .z/ for
points z 2 bD n I1. Let QF W D ! X be an approximate solution of the Riemann-
Hilbert problem with the data f jD and Qgz, z 2 bD. By choosing the integer k in (6)
big enough, QF satisfies condition (a) for z 2 I0, it satisfies condition (b) for z 2 bD,
and it is uniformly close to f on D n U where U � M is any given neighborhood
of the arc I1. In particular, we can write M D A [ B where A;B � M are closed
smoothly bounded domains such that A is the complement of a small neighborhood
of the arc I1, B � D contains a small neighborhood of I1, we have the separation
property A n B \ B n A D ; (any such pair .A;B/ is called a Cartan pair), and QF is
uniformly close to f on the domain C D A \ B.

At this point we wish to glue f and QF. If X D C
n, this is a Cousin-I problem with

bounds: the difference c D QF � f is holomorphic and small on C D A \ B, and by
solving the @-equation with bounds on M it can be split as the difference c D b � a
where a; b are holomorphic and small on A and B, respectively. Then QF�b D f�a on
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C D A\B and hence the two sides amalgamate into a holomorphic map FWM ! X
satisfying the appropriate analogues of the conditions (a)–(c).

This simple method does not work in the absence of a linear structure on the
manifold X. However, we can still reduce the problem to the linear case by the
method of gluing holomorphic sprays. We give an outline and refer for the details
(in this precise setting) to [34]. For the general method of gluing sprays see [42,
Chapter 5].

We begin by embedding f as the core map f D f0 in a family of holomorphic
maps ftWM ! X, depending holomorphically on a parameter t 2 U � CN in a
neighborhood of 0 2 CN for some N 2 N, such that the partial differential

@ft.z/

@t

ˇ
ˇ
ˇ
ˇ
tD0
W T0CN Š C

N ! Tf0.z/X

is surjective for every point z 2 M. Such a family fftg is called a dominating
(holomorphic) spray of maps. Next we shrink U around 0 2 CN and solve the
Riemann-Hilbert problem over D to get a holomorphic family QFtWD ! X .t 2 U/
approximating ft on C D A\ B. If the approximation is close enough, there exists a
holomorphic map C � U 3 .x; t/ 7! �.x; t/ 2 CN close to the map .x; t/ 7! t such
that

ft.x/ D QF�.x;t/.x/; x 2 C; t 2 U:

(The set U shrinks again around 0.) Now the difficult part is to split � in the form

�.x; ˛.x; t// D ˇ.x; t/; x 2 C; t 2 W;

where W � U is a neighborhood of 0 2 CN and ˛WA �W ! CN , ˇWB �W ! CN

are holomorphic maps close to the map .x; t/ 7! t. This is achieved by solving the
Cousin-I problem with bounds and using the implicit function theorem in Banach
spaces. Then

f˛.t;x/ D QFˇ.x;t/.x/; x 2 C; t 2 W;

so the two sides define a spray of maps M ! X. By taking t D 0 we get a map
FWM ! X satisfying the desired properties provided that the approximations were
sufficiently close.

Having explained the problem and the method of solving it, we now give a brief
survey of applications of this technique to the construction of proper holomorphic
maps. The use of this method in the construction of complete bounded holomorphic
immersions of bordered Riemann surfaces is discussed in the following section.

Suppose that M is a bordered Riemann surface and f WM ! Cn is a holomorphic
map where n > 1. Assume that 0 … f .bM/, a condition which holds for a generic f .
In order to push the boundary f .bM/ further towards infinity, we choose for every
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z 2 bM a unit vector V.z/ 2 Cn orthogonal to f .z/ and consider the linear disc
gzWD! Cn defined by gz.w/ D f .z/CwV.z/. Furthermore, to localize the problem
as explained above, we introduce a cut-off function �W bM ! Œ0; 1� with support on
a small arc I � bM and consider instead the maps

gz.w/ D f .z/C wı�.z/V.z/; z 2 bM; w 2 DI

here ı > 0 is a constant. If the arc I is short enough (so that the image f .z/ for
z 2 I does not vary very much), we can use a fixed vector V orthogonal to the
point f .p/ for some p 2 I. A solution FWM ! Cn of the Riemann-Hilbert problem
with this data then approximates f on most of M, but on the arc I0 � I where
� D 1 we have F.z/  f .z/ C ıV.z/, so jF.z/j � jf .z/j C cı2 for some constant
c 2 .0; 1/ close to 1. We have thus increased the distance from the origin by a
fixed amount on the arc I0 � bM. By systematically repeating this construction on
finitely many arcs which cover bM we increase the distance by a fixed amount on
all of bM, while at the same time approximating the map as closely as desired on a
given compact subset of M. We can perform this operation inductively so that the
resulting sequence FkWM ! Cn converges uniformly on compacta in M to a proper
holomorphic map F D limk!1 FkWM ! Cn.

This method easily adapts to the case when Cn is replaced by an arbitrary
complex manifold X of dimension n > 1which admits a smooth exhaustion function
�WX ! R whose Levi form (which equals the complex Hessian in any system of
local holomorphic coordinates on X) has at least two positive eigenvalues at every
point of X. (Such a manifold is said to be .n�1/-complete; it is .n�1/-convex if the
condition holds outside some compact subset of X. See Grauert [53] for the theory
of q-convexity.) In this case one uses small holomorphic discs gz in X .z 2 bM/ lying
in the zero locus of the Levi polynomial of the function � at the point f .z/ 2 X in
the direction of a positive eigenvalue. Along this zero set the quadratic holomorphic
term in the Taylor expansion of � at f .z/ vanishes, so � equals the Levi form plus
terms of higher order, and therefore it increases quadratically along the image of gz.
(Taking the exhaustion function � D jz1j2 C : : : C jznj2 on Cn gives linear discs
orthogonal to the given point of Cn.)

For applications of this method to the construction of proper holomorphic
mappings from open Riemann surfaces see the papers [31–33, 43, 44, 48, 49, 51],
listed chronologically. The paper [33] contains the most general results in this
direction and also includes a survey of the previous work. This list does not include
papers on embedding Riemann surfaces in C2 where different techniques are used;
see e.g. [45, 46, 52, 67]. Some work has also been done on almost complex Stein
manifolds of real dimension 4 [30].

A similar technique is employed in the Poletsky theory of discs to obtain formulas
expressing the envelopes of various disc functionals as pointwise minima over a
family of analytic discs through a given point. This gives fairly explicit formulas
for several extremal functions in pluripotential theory. The initial point was the
remarkable discovery of Poletsky [78, 79] and Bu and Schachermayer [23] of
the formula for computing the biggest plurisubharmonic minorant of an upper
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semicontinuous function as the envelope of the Poisson functional. This also gives
Poletsky’s characterization of polynomially convex hulls by sequences of analytic
discs. For recent developments on this subject see the papers [34, 35] and the
references therein.

4 The Riemann-Hilbert Problem for Null Holomorphic
Curves

Approximate solutions of Riemann-Hilbert boundary value problems, described in
the previous section, have recently been used by the authors [5] in the construction of
proper complete holomorphic immersions of any bordered Riemann surface M into
the ball of C2 (see Theorem 1.3 above). Furthermore, in [7] the Riemann-Hilbert
technique was applied for the first time to the construction of complete bounded
null curves (see Theorem 1.5) and of proper null curves in C3 with a bounded
coordinate function (Theorem 1.9). We now describe the main ideas behind these
developments.

Let f WM ! Cn be a holomorphic map such that 0 … f .bM/. Fix a point p 2 bM.
By pushing in the direction orthogonal to f .p/ 2 Cn for the amount ı > 0 (using the
Riemann-Hilbert method) we increase the length of curves in M ending near p by
approximately ı, while the outer radius only increases by the order of ı2. Performing
this construction recursively with a sequence ık > 0 such that

P
k ık D 1 whileP

k ı
2
k < 1 one therefore expects to get a bounded complete immersion (proper

in a ball if one controls the procedure sufficiently carefully). However, there is a
difficulty in controlling the distance estimate for divergent curves in M on long
boundary segments of M; undesired shortcuts may appear as is seen in the sliding
curtain model. (Imagine that a curtain is held fixed at the lower end and is pulled
horizontally at the upper end; this stretches each thread of the curtain, but the vertical
distance between the edges remains the same.)

To eliminate this problem, the authors in [5] adjusted to this purpose the method
of exposing boundary points, originally developed by Forstnerič and Wold [45] in
the construction of proper holomorphic embeddings of bordered Riemann surfaces
into C2. One divides each of the boundary curves of M into finitely many adjacent
arcs I1; : : : ; Im which are short enough so that the distance estimates for divergent
curves in M terminating on any of these arcs (and approaching the arc sufficiently
‘radially’) can be controlled. Let p1; : : : ; pm be the endpoints of this collection of
arcs. Fix a small number ı > 0. In order to eliminate any shortcuts (after the
deformation) which could be formed by curves in M wandering almost horizontally
in the vicinity of bM, we first attach to f .M/ at the point f .pk/ an embedded arc
�k � Cn of length > ı which stays very close to f .pk/. It is now possible to deform
the image f .M/ so that the deformation is arbitrarily small away from the points
pk, while at f .pk/ the image of M is stretched within a thin tube around �k so that
f .pk/ goes to the other endpoint of �k. The effect of this deformation is that curves
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in M which come sufficiently close to one of the points pk get elongated by at least
ı (this happens in particular to curves ending on bM near pk), while the outer radius
of the image almost does not increase. Now we complete the picture by applying
the Riemann-Hilbert method on each of the arcs Ik without destroying the effect
of the first step. The cumulative effect of both deformations is that the length of
any divergent curve in M increases by at least ı > 0 while the outer radius only
increases by O.ı2/. The proof is finished by a recursive procedure. The details are
considerable (cf. [5]).

A similar construction can be done for null curves, except that the estimates
become even more subtle (cf. [7, §3]). We now give a brief outline of this method.

Sketch of proof of Theorem 1.4 The special case M D D is done by an explicit
calculation (cf. [7, Lemma 3.1]), using the so called spinor representation of the
null quadric A:

�WC2 ! A; �.u; v/ D �u2 � v2; {.u2 C v2/; 2uv
	
:

The restriction �WC2 n f0g ! A� D A n f0g is an unbranched two-sheeted covering
map, so the derivative F0WD ! A� of any null disc FWD ! C3 lifts to a map
.u; v/ W D! C2 n f0g. One applies the Riemann-Hilbert problem to the map .u; v/
with a suitably chosen boundary data, projects the result by � to the null quadric
A�, and integrates to get a null disc GWD ! C3 satisfying properties (a), (b), and
(c) in Theorem 1.4, and also the following:

(d) G is �-close to F in the C 1 topology on D n U, where U � D is an arbitrarily
small neighborhood of the arc I � T.

To prove Theorem 1.4 in the general case we proceed as follows. Choose
closed oriented Jordan curves C1; : : : ;Cm � M which determine a basis of the 1st
homology group H1.MIZ/. Pick a nowhere vanishing holomorphic 1-form � on M
(such exists by the Oka-Grauert principle). Given a map f WM ! C3, we denote by
Pj.f / 2 C3 for j D 1; : : : ;m the period vector

R
Cj

f� , and by P.f / 2 C3m the period

matrix with columns Pj.f / 2 C3. Observe that we have a bijective correspondence
(up to constants)

fFWM! C
3 null curveg  ! ff WM ! A� holomorphic; f� exactg

F.x/ D F.p/C
Z x

p
f�; dF D f�:

Let FWM ! C3 be a holomorphic null curve. Set f D dF=� W M ! A� and
embed it as the core map f D f0 in a dominating holomorphic spray of maps ftWM !
A�, where the parameter t belongs to an open ball B � CN around the origin.
Furthermore, we ensure that the associated period map B 3 t 7! P.ft/ 2 C3m is
submersive at t D 0.
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Choose a small disc D � M whose closure D � M intersects bM along a compact
arc J � bM which contains the given arc I (containing the support of the function
� in Theorem 1.4) in its relative interior. Fix a point p 2 D and apply the special
case of Theorem 1.4 to the family of maps FtWD ! C3 given by Ft.z/ D F.p/CR z

p ft� .t 2 B/ and the Riemann-Hilbert boundary data from Theorem 1.4. (The

integral is calculated along any path in D from p to z; note that F0 D FjD.) This
gives a new spray of null discs QGtWD ! C3 satisfying the properties (a)–(c) in
Theorem 1.4 and also property (d) above (with G replaced by QGt and F replaced
by Ft). The spray of maps Qgt D d QGt=� W M ! A� then approximates the initial
spray ftWD ! A� in the C 1 topology on D n U. If the approximations are close
enough, we can glue these two sprays by the method described in Sect. 3 to get a
new holomorphic spray gtWM ! A� for t in a smaller ball 0 2 B0 � CN . The spray
gt approximates ft on M nU. Since we can choose the loops generating H1.MIZ/ in
this set, the period map t 7! P.gt/ approximates the map t 7! P.ft/. Since the latter
map was chosen submersive at t D 0, there exists a t0 2 B0 close to the origin such
that the map g D gt0 WM ! A� has vanishing periods. Hence g integrates to a null
curve G.z/ D F.p/C R z

p g� .z 2 M/. It can be verified that G satisfies Theorem 1.4
provided that all approximations were close enough.

The approximate solutions of the Riemann-Hilbert problem for null curves,
established in [7, §3], have an additional feature which is the basis of the proof
of Theorem 1.8, and hence of the results in Sect. 2. When deforming a null disc
FWD ! C

3 in the direction of a null vector V 2 A� near a certain boundary point
p 2 T (see Theorem 1.4), the component in the direction orthogonal to the 2-plane
spanned by the vectors F0.p/ 2 A� and V changes arbitrarily little in the C 0.D/

sense. To see how this is used, let us give

Sketch of proof of Theorem 1.8 We outline the main idea in the simplest case when
M is the disc D. Choose a couple of orthogonal null vectors in C2 � f0g � C3;
for example, V1 D .1; {; 0/ and V2 D .1;�{; 0/. We begin with the linear null
embedding D 3 z 7! zV1. Using Theorem 1.4 with M D D we deform this
embedding near the boundary in the direction of the vector V2. Ignoring the nullity
condition, one could simply take D 3 z 7! zV1 C zNV2 for a big integer N. To get a
null curve, the third component must be involved, but it can be chosen arbitrarily C 0

small if N is big enough. Next we deform the map from the previous step again in the
direction of the vector V1, changing the third component only slightly in the C 0.D/

norm. Repeating this alternating procedure gives a sequence of holomorphic null
maps which converges to a proper null curve in C3 with a bounded third component.

For a general bordered Riemann surface M this construction is performed
locally on small discs abutting the boundary bM, using also the method of
exposed arcs in order to prevent any shorts. The local modifications are assembled
together by the method of gluing sprays as described in the above sketch of proof
of Theorem 1.4. �
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