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Every bordered Riemann surface is a complete conformal
minimal surface bounded by Jordan curves

A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič and F. J. López

Abstract

In this paper, we find approximate solutions of certain Riemann–Hilbert boundary value
problems for minimal surfaces in Rn and null holomorphic curves in Cn for any n � 3. With
this tool in hand, we construct complete conformally immersed minimal surfaces in Rn which
are normalized by any given bordered Riemann surface and have Jordan boundaries. We also
furnish complete conformal proper minimal immersions from any given bordered Riemann surface
to any smoothly bounded, strictly convex domain of Rn which extend continuously up to the
boundary; for n � 5, we find embeddings with these properties.

1. Introduction

In this paper, we introduce a new tool, the Riemann–Hilbert method, into the study of minimal
surfaces in the real Euclidean space Rn, and null curves in the complex Euclidean space Cn,
for any n � 3, and we obtain several applications. A special case of this technique is already
available for n = 3 (cf. [6]), but the general case treated here, especially for n > 3, is more
subtle and requires a novel approach.

Our first aim is to delve into the analysis of global geometric properties of minimal surfaces
in Rn bounded by Jordan curves. The classical Plateau problem amounts to finding a minimal
surface spanning a given contour. In 1931, Douglas [17] and Radó [33] independently solved this
problem for any Jordan curve in Rn. A major topic in global theory is the study of geometry
of complete minimal surfaces, that is, minimal surfaces which are complete in the intrinsic
distance. The analysis of the asymptotic behavior, the conformal structure, and the influence
of topological embeddedness are central questions in this field; see [28, 29] for recent surveys.
By the isoperimetric inequality, minimal surfaces in Rn spanning rectifiable Jordan curves are
not complete. Our first main result provides complete minimal surfaces with (nonrectifiable)
Jordan boundaries in Rn for n � 3 which are normalized by any given bordered Riemann
surface.

Theorem 1.1. Let M be a compact bordered Riemann surface. Every conformal minimal
immersion F : M → Rn (n � 3) of class C 1(M) can be approximated arbitrarily closely in the
C 0(M) topology by a continuous map F̃ : M → Rn such that F̃ |M\bM : M \ bM → Rn is a

conformal complete minimal immersion, F̃ |bM : bM → Rn is a topological embedding, and the
flux of F̃ equals the one of F . In particular, F̃ (bM) consists of finitely many Jordan curves. If
n � 5, then there exist embeddings F̃ : M ↪→ Rn with these properties.
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Theorem 1.1 shows that every finite collection of smooth Jordan curves in Rn spanning a
connected minimal surface can be approximated in the C 0 topology by families of Jordan curves
spanning complete connected minimal surfaces; hence it can be viewed as an approximate
solution of the Plateau problem by complete minimal surfaces.

Recall that a compact bordered Riemann surface is a compact connected surfaceM , endowed
with a complex (equivalently, a conformal) structure, whose boundary bM �= ∅ consists of
finitely many smooth Jordan curves. The interior M̊ = M \ bM of suchM is an (open) bordered
Riemann surface. A conformal minimal immersion F : M → Rn is an immersion which is angle
preserving and harmonic; every such map parameterizes a minimal surface in Rn (see Section 2).
The flux of F is the group homomorphism Flux(F ) : H1(M,Z) → Rn given on any closed curve
γ ⊂M by Flux(F )(γ) =

∫
γ
�(∂F ), where ∂F is the complex differential of F (see (2.4)) and

� denotes the imaginary part.
Theorem 1.1 generalizes pioneering results of Mart́ın and Nadirashvili [27] who dealt

with immersed minimal disks in R3. Their method relies on a refinement of Nadirashvili’s
construction of a complete bounded minimal disk in R3 (see [30]) and is based on a recursive
application of classical Runge’s approximation theorem. By using the same technique, Alarcón
[2] constructed compact complete minimal immersions in R3 with arbitrary finite topology;
that is, continuous maps F : Ω → R3 such that F |Ω : Ω → R3 is a conformal complete minimal
immersion, where Ω is a relatively compact domain in an open Riemann surface. However,
neither the conformal structure of Ω, nor the topology of its boundary, can be controlled by
this method; in particular, it cannot be ensured that F (Ω \ Ω) ⊂ R3 consists of Jordan curves.
Indeed, the use of Runge’s theorem in Nadirashvili’s technique does not enable one to control
the placement in R3 of the entire surface, and hence one must cut away pieces of the surface
in order to keep it suitably bounded; this surgery causes the aforementioned problems. By
a different technique, relying on Runge–Mergelyan-type theorems (cf. [8, 12]), Alarcón and
López obtained analogous results for nonorientable minimal surfaces in R3 (see [11]), null
holomorphic curves in C3, and complex curves in C2 (see [10]). (Recall that a null curve in
Cn, n � 3, is a complex curve whose real and imaginary parts are minimal surfaces in Rn.)
Their technique still does not suffice to control the conformal structure of the surface or the
topology of its boundary.

By introducing the Riemann–Hilbert method into the picture, Alarcón and Forstnerič
[6] recently constructed complete bounded minimal surfaces in R3, and null curves in C3,
normalized by any given bordered Riemann surface. The principal advantage of the Riemann–
Hilbert method over Runge’s theorem in this problem is that it enables one to work on a fixed
bordered Riemann surface, controlling its global placement in Rn or Cn at all stages of the
construction.

The main novelty of Theorem 1.1 is that we prescribe both the complex structure (any
bordered Riemann surface) and the asymptotic behavior (bounded by Jordan curves) of
complete bounded minimal surfaces; furthermore, we obtain results in any dimension n � 3.
This is achieved by developing the Riemann–Hilbert technique, first used in [6] for n = 3, in
any dimension n � 3, and by further improving its implementation in the recursive process.
Theorem 1.1 is new even in the case n = 3. Furthermore, for n > 3 this seems to be the first
known approximation result by complete bounded minimal surfaces, even if one does not take
care of the conformal structure of the surface and the asymptotic behavior of its boundary.
Previous results in this line are known for complex curves in Cn, n � 2, and null curves in Cn,
n � 3; cf. [4, 6, 9].

The Riemann–Hilbert method developed in this paper also allows us to establish essen-
tially optimal results concerning proper complete minimal surfaces in convex domains; see
Theorems 1.2 and 1.4. These results, and the methods used in their proof, will hopefully
provide a step towards the more ambitious goal of finding optimal geometric conditions on
a domain D ⊂ Rn for n � 3 which guarantee that D admits plenty of proper (possibly also
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complete) conformal minimal immersions from any given bordered Riemann surface. An explicit
motivation comes from the paper [18] on proper holomorphic images of bordered Riemann
surfaces in complex manifolds endowed with an exhaustion function whose Levi form has at
least two positive eigenvalues at every point.

We shall say that a domain D ⊂ Rn is smoothly bounded if it is bounded and its boundary
bD = D \ D is smooth (at least of class C 2).

Theorem 1.2. Let D ⊂ Rn (n � 3) be a bounded strictly convex domain with C 2 smooth
boundary, let M be a compact bordered Riemann surface, and let F : M → D be a conformal
minimal immersion of class C 1(M). Then the following assertions hold.

(a) If F (M) ⊂ D , then F can be approximated uniformly on compacts in M̊ = M \ bM by
continuous maps F̃ : M → D such that F̃ |M̊ : M̊ → D is a conformal complete proper minimal

immersion with Flux(F̃ ) = Flux(F ).
(b) If F (bM) ⊂ bD , then F can be approximated in the C 0(M) topology by continuous

maps F̃ : M → D such that F̃ |M̊ : M̊ → D is a conformal complete proper minimal immersion.

In either case, the frontier F̃ (bM) ⊂ bD consists of finitely many closed curves. If n � 5, then
the approximation can be achieved by maps F̃ which are embeddings on M̊ .

Theorem 1.2 is proved in Section 6. It may be viewed as a version of Theorem 1.1 in which
we additionally ensure that the boundary curves of a minimal surface are contained in the
boundary of the domain, at the cost of losing topological embeddedness of these curves. A
partial result in this direction can be found in [3] where the first-named author constructed
compact complete proper minimal immersions of surfaces with arbitrary finite topology into
smoothly bounded strictly convex domains in R3, but without control of the conformal structure
on the surface or the flux of the immersion.

In part (a) of Theorem 1.2, it is clearly impossible to ensure approximation in the C 0(M)
topology; however, a nontrivial upper bound for the maximum norm ‖F̃ − F‖0,M , depending
on the placement of the boundary F (bM) ⊂ D , is provided by Theorem 5.1. In part (b), the
flux can be changed by an arbitrarily small amount. Unlike in Theorem 1.1, we are unable to
guarantee that the boundary F̃ (bM) ⊂ bD consists of Jordan curves; see Remark 5.4. Hence
the following remains an open problem.

Problem 1.3. Let D be a smoothly bounded, strictly convex domain in Rn for some n � 3.
Does there exist a complete proper minimal surface in D bounded by finitely many Jordan
curves in the boundary bD of D? What is the answer if D is the unit ball of Rn?

Theorem 1.2 fails in general for weakly convex domains. For instance, no polyhedral region
of R3 admits a complete proper minimal disk that is continuous up to the boundary [14, 31];
it is easily seen that such a disk would violate Bourgain’s theorem on the radial variation of
bounded analytic functions [15]. (See also [25] for the case of complex disks in a bidisk of C2.)
Our next result shows that the situation is rather different if we do not insist on continuity up
to the boundary.

Theorem 1.4. Let D be a convex domain in Rn for some n � 3.

(a) If M is a compact bordered Riemann surface and F : M → D is a conformal minimal
immersion of class C 1(M), then F can be approximated uniformly on compacts in M̊ by
conformal complete proper minimal immersions F̃ : M̊ → D with Flux(F̃ ) = Flux(F ). If n � 5,
then F̃ can be chosen an embedding.
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(b) Every open orientable smooth surface S carries a full complete proper minimal
immersion S → D (embedding if n � 5) with arbitrary flux.

Recall that a minimal surface in Rn is said to be full if it is not contained in any affine
hyperplane. In part (b), the flux is meant with respect to the conformal structure induced on
the surface S by the Euclidean metric of Rn via the immersion S → Rn.

Theorem 1.4 is proved in Section 6. The case D = Rn was already established in [7, 8]
where conformal complete proper minimal immersions R → Rn (embeddings if n � 5) with
arbitrary flux are constructed for every open Riemann surface R. However, since the existence
of a nonconstant positive harmonic function is a nontrivial condition on an open Riemann
surface, it is clearly impossible to prescribe the conformal type of a full minimal surface in any
either convex or smoothly bounded domain D different from Rn. Ferrer, Mart́ın, and Meeks
[21] proved Theorem 1.4(b) for n = 3 but without the control of the flux, whereas the cases
n ∈ {3, 4, 6} and vanishing flux follow from the results in [5, 9].

If one is merely interested in the existence of proper minimal surfaces (without approxima-
tion), then it suffices to assume that the domain D ⊂ Rn admits a smooth strongly convex
boundary point p ∈ bD. Indeed, by using the approximation statement in Theorem 5.1 one can
find proper conformal minimal immersions into D with boundaries in a small neighborhood of
p in bD, thereby proving the following corollary (see Section 6).

Corollary 1.5. IfD ⊂ Rn (n � 3) is a domain with a C 2 smooth strictly convex boundary
point, then the following hold.

(a) Every compact bordered Riemann surface M admits a continuous map F̃ : M → D such
that F̃ (M̊) ⊂ D and F̃ |M̊ : M̊ → D is a conformal full complete proper minimal immersion. If

n � 5, then F̃ can be taken to be an embedding on M̊ .
(b) Every open orientable smooth surface S carries a full complete proper minimal

immersion S → D (embedding if n � 5) with arbitrary flux.

Note that every smoothly bounded relatively compact domain in Rn admits a strictly convex
boundary point, so Corollary 1.5 applies to such domains.

To the best of our knowledge, Theorems 1.1, 1.2, and 1.4, and Corollary 1.5 provide the first
examples of complete bounded embedded minimal surfaces in R5 with controlled topology;
furthermore, they solve the conformal Calabi–Yau problem for embedded bordered Riemann
surfaces in convex domains of Rn for any n � 5.

Recall that the Calabi–Yau problem deals with the existence and geometric properties of
complete bounded minimal surfaces; see, for instance, [6, 9] and the references therein for
the state of the art of this subject. Regarding the embedded Calabi–Yau problem, it is still
unknown whether there exist complete bounded embedded minimal surfaces in R3. By results
of Colding and Minicozzi [16] and Meeks, Pérez, and Ros (see the forthcoming paper ‘The
embedded Calabi–Yau conjectures for finite genus’), there is no such surface with finite genus
and at most countably many ends. Recently, Alarcón and López [13] and Globevnik [24, 26]
constructed complete bounded embedded complex curves (hence minimal surfaces) in C2 ≡ R4;
however, their method does not provide any information on the topology and the conformal
structure of their examples. Globevnik actually constructed a holomorphic function f on the
unit ball of Cn for any n � 2 (see [24]) and, more generally, on any pseudoconvex domain
D ⊂ Cn for n � 2 (see [26]), such that every divergent curve in D on which f is bounded has
infinite length. It follows that every level set {f = c} of such a function is a complete closed
complex hypersurface in D.

By applying the Riemann–Hilbert technique, developed in Section 3, it is straightforward to
extend all main results of the paper [20] to null hulls of compact sets in Cn and minimal hulls
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of compact sets in Rn for any n > 3. As pointed out in [20], the only reason for restricting to
n = 3 was that a Riemann–Hilbert lemma for null curves in dimension n > 3 was not available
at that time. We postpone this to a subsequent publication.

The proofs of our results depend in an essential way on a new tool that we obtain in this
paper, namely the Riemann–Hilbert boundary value problem for null curves in Cn and minimal
surfaces in Rn for any n � 3 (cf. Theorems 3.5 and 3.6), generalizing the one developed in
[6] in dimension n = 3. We also use a number of other recent ideas and techniques: gluing
holomorphic sprays on Cartan pairs (cf. [18, 22]), the Mergelyan approximation theorem for
conformal minimal immersions in Rn (cf. [7, 8]), the general position theorem for minimal
surfaces in Rn for n � 5 (cf. [7]), the method of exposing boundary points on a bordered
Riemann surface (Forstnerič and Wold [23]), and the circle of ideas around the construction of
compact complete minimal immersions in R3 (cf. [10] and Mart́ın and Nadirashvili [27]) and
complete bounded minimal surfaces in R3 normalized by bordered Riemann surfaces (cf. [6]
and also [4]).

Our methods easily adapt to give results analogous to Theorems 1.1, 1.2, and 1.4 in the
context of complex curves in Cn, n � 2, and holomorphic null curves in Cn, n � 3. Indeed, all
tools used in the proof are available for these families of curves: the Riemann–Hilbert method
for holomorphic null curves in arbitrary dimension is provided in this paper (see Theorem 3.5),
while Runge–Mergelyan-type theorems for null curves are proved in [5, 8]. For example, by
following the proof of Theorem 1.1 one can show the following result.

Theorem 1.6. Every bordered Riemann surface M admits a continuous map F : M → Cn,
n � 2, such that F |M̊ : M̊ → Cn is a complete holomorphic immersion and F (bM) is a finite
union of Jordan curves. If n � 3, then there is a topological embedding F : M ↪→ Cn with these
properties.

A similar result can be established for null curves F : M → C3, n � 3; recall that the general
position of null curves in Cn is embedded for any n � 3 (cf. [5, Theorem 2.4]).

Outline of the paper. In Section 2, we introduce the notation and preliminaries. In Section 3,
we develop the Riemann–Hilbert method for null curves (Lemmas 3.1, 3.3, and Theorem 3.5)
and minimal surfaces (Theorem 3.6) in arbitrary dimension n � 3. Section 4 is devoted to
the proof of Theorem 1.1. The main technical part is contained in Lemma 4.1, asserting
that any conformal minimal immersion M → Rn of a compact bordered Riemann surface can
be approximated in the C 0(M) topology by conformal minimal immersions M → Rn whose
boundary distance from a fixed interior point is as big as desired. In Section 4, we also prove
that the general position of the boundary curves bM → Rn of a conformal minimal immersion
M → Rn is embedded for n � 3; see Theorem 4.5. Lemma 4.1 is also exploited in the proof of
Theorem 5.1 in Section 5. The latter result is the key to the proof of Theorems 1.2, 1.4, and
Corollary 1.5 given in Section 6.

2. Notation and preliminaries

We denote by 〈·, ·〉, ‖ · ‖, and dist(·, ·) the Euclidean scalar product, norm, and distance in Rn,
n ∈ N. Given a vector x ∈ Rn \ {0}, we denote by 〈x〉⊥ = {w ∈ Rn : 〈w,x〉 = 0} its orthogonal
complement. If K is a compact topological space and f : K → Rn is a continuous function,
then we denote by ‖f‖0,K the maximum norm of f .

Set D = {ζ ∈ C : |ζ| < 1} and T = bD = {ζ ∈ C : |ζ| = 1}.
As usual, we will identify Cn ≡ R2n. We shall write i =

√−1. By (z) and �(z), we denote
the real and the imaginary parts of a point z ∈ Cn. Let z = (z1, . . . , zn) be complex coordinates
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on Cn. Denote by Θ the holomorphic bilinear form on Cn given by

Θ(z,w) =
n∑

j=1

zjwj . (2.1)

Let A = An−1 ⊂ Cn denote the null quadric

An−1 = {z = (z1, . . . , zn) ∈ Cn : Θ(z, z) = z2
1 + · · · + z2

n = 0}. (2.2)

This is a conical algebraic subvariety of Cn that is not contained in any hyperplane of Cn and
is nonsingular except at the origin. We also write An−1

∗ = An−1 \ {0}. In the sequel, we shall
omit the superscript when the dimension is clear from the context.

Let us recall the basic facts concerning minimal surfaces (see, for example, Osserman [32]).
Let M be an open Riemann surface, and let θ a nowhere vanishing holomorphic 1-form on
M (such exists by the Oka–Grauert principle, cf. [22, Theorem 5.3.1, p. 190]). The exterior
derivative on M splits into the sum d = ∂ + ∂ of the (1, 0)-part ∂ and the (0, 1)-part ∂. An
immersion F = (F1, . . . , Fn) : M → Rn (n � 3) is conformal (angle preserving) if and only if
its Hopf differential

∑n
j=1(∂Fj)2 vanishes everywhere on M , that is to say, if ∂F/θ ∈ A (2.2).

A conformal immersion F : M → Rn is minimal if and only if it is harmonic, and in this case
Φ := ∂F is a Cn-valued holomorphic 1-form vanishing nowhere on M . Given a base point
p0 ∈M , F can be written in the form

F (p) = F (p0) + 
(∫p

p0

Φ
)
, p ∈M. (2.3)

This is called the Weierstrass representation of F . Conversely, if an n-dimensional holomorphic
1-form Φ on M has vanishing real periods (that is, its real part (Φ) is exact) and satisfies
Φ/θ : M → A∗, then the map F : M → Rn given by (2.3) is a conformal minimal immersion.

Let H1(M ; Z) denote the first homology group of M with integer coefficients. The
flux map of a conformal minimal immersion F : M → Rn is the group homomorphism
Flux(F ) : H1(M ; Z) → Rn given by

Flux(F )(γ) = �
(∫

γ

∂F

)
for every closed curve γ ⊂M. (2.4)

Since the 1-form ∂F on M is holomorphic and therefore closed, the integral on the right-hand
side is independent of the choice of a path in a given homology class.

Next we introduce the mapping spaces that will be used in the paper.
If M is an open Riemann surface, then CMI(M,Rn) denotes the set of all conformal minimal

immersions M → Rn.
Assume now that M is a compact bordered Riemann surface, that is, a compact connected

Riemann surface with smooth boundary ∅ �= bM ⊂M and interior M̊ = M \ bM . For any
r ∈ Z+, we denote by A r(M) the space of all functions M → C of class C r(M) that are
holomorphic in M̊ . We write A 0(M) = A (M). It is classical that every compact bordered
Riemann surface M can be considered as a smoothly bounded compact domain in an
open Riemann surface M̃ and, by Mergelyan’s theorem, each function in A r(M) can be
approximated in the C r(M) topology by holomorphic functions on a neighborhood of M .

For any r ∈ N, we denote by CMIr(M,Rn) the set of all conformal minimal immersions
M → Rn of class C r(M). More precisely, an immersion F : M → Rn of class C r belongs to
CMIr(M,Rn) if and only if ∂F is a (1, 0)-form of class C r−1(M) which is holomorphic in the
interior M̊ = M \ ∂M and has range in the punctured null quadric A∗ (2.2). For r = 0, we
define CMI0(M,Rn) as the class of all continuous maps F : M → Rn such that F : M̊ → Rn is
a conformal minimal immersion.

By the local Mergelyan theorem for conformal minimal immersions [7, Theorem 3.1(a)],
every F ∈ CMIr(M,Rn) for r � 1 can be approximated in the C r(M) topology by conformal
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minimal immersions on an open neighborhood of M in the ambient surface M̃ . If M is Runge in
M̃, then every such F can also be approximated in the C r(M) topology by conformal minimal
immersions M̃ → Rn (cf. [7, Theorem 5.3]).

We say that a holomorphic map f : M → A∗ is nondegenerate if the image f(M) ⊂ A∗ is
not contained in any complex hyperplane of Cn. Clearly, nondegenerate implies nonflat, where
the latter condition means that f(M) is not contained in a (complex) ray of the null cone A.
If f is nonflat, then the linear span of the tangent spaces Tf(p)A over all points p ∈M equals
Cn (cf. [7, Lemma 2.3]). The latter condition implies the existence of a dominating and period
dominating holomorphic spray of maps fw : M → A∗, with the parameter w in a ball in some
CN and with the core map f0 = f (see [5, Lemma 5.1] or [7, Lemma 3.2]). This will be used
in the proof of Theorems 3.5 and 3.6.

A conformal minimal immersion F : M → Rn is said to be nondegenerate if the map f =
∂F/θ : M → A∗ is nondegenerate, and is said to be full if F (M) is not contained in a hyperplane
of Rn. Nondegenerate conformal minimal immersions M → Rn are full, but the converse is true
only in the case n = 3 (see [32]).

If M is an open Riemann surface, then we denote by CMI∗(M,Rn) ⊂ CMI(M,Rn) the subset
consisting of all immersions which are nondegenerate on every connected component of M . The
analogous notation is used for compact bordered Riemann surfaces: CMIr∗(M,Rn) denotes the
space of all F ∈ CMIr(M,Rn) which are nondegenerate on every connected component of M .
By [7, Theorem 3.1], CMIr∗(M,Rn) is a dense subset of CMI1(M,Rn) in the C 1(M) topology
for every r ∈ N.

If M is an open Riemann surface and F ∈ CMI(M,Rn), then we denote by distF (·, ·) the
intrinsic distance in M induced by the Euclidean metric of Rn via F ; that is,

distF (p, q) = inf{lengthF (γ) : γ ⊂M arc connecting p and q},
where length denotes the Euclidean length in Rn. Likewise, we define distF on M when M is
a compact bordered Riemann surface. If M is open, then the immersion F : M → Rn is said
to be complete if distF is a complete metric on M ; equivalently, if the image F (γ) of any
divergent curve γ ⊂M (that is, a curve which eventually leaves any compact subset of M) is
a curve of infinite length in Rn.

3. Riemann–Hilbert problem for null curves in Cn

In this section, we find approximate solutions of a general Riemann–Hilbert boundary value
problem for null curves and for conformal minimal immersions.

Let n ∈ N, n � 3. Recall that An−1 ⊂ Cn is the null quadric (2.2) and An−1
∗ = An−1 \ {0}.

We shall drop the superscript when the dimension n is clear from the context.
We begin with the following essentially optimal result in dimension n = 3 in which there is

no restriction on the type of null disks attached at boundary points of the central null disk.
Lemma 3.1 generalizes [6, Lemma 3.1] which pertains to the case of linear null disks of the
form ξ �→ r(ζ) ξu in a constant null direction u ∈ A∗. The corresponding result for ordinary
holomorphic disks can be found in several sources, see, for example, [19, Lemma 3.1].

Lemma 3.1. Let F : D → C3 be a null holomorphic disk of class A 1(D). Assume that I
is a proper closed segment in the circle T = bD, r : T → R+ := [0, 1] is a continuous function
supported on I (the size function), and σ : I × D → C3 is a map of class C 1 such that for
every ζ ∈ I the map D � ξ �→ σ(ζ, ξ) is an immersed holomorphic null disk with σ(ζ, 0) = 0.
Let κ : T × D → C3 be given by

κ(ζ, ξ) = F (ζ) + σ(ζ, r(ζ)ξ), (3.1)
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where we take σ(ζ, r(ζ)ξ) = 0 for ζ ∈ T \ I. Given numbers ε > 0, 0 < ρ0 < 1, and an open
neighborhood U of I in D, there exist a number ρ′ ∈ [ρ0, 1) and a null holomorphic immersion
G : D → Cn such that G(0) = F (0) and the following conditions hold:

(i) dist(G(ζ),κ(ζ,T)) < ε for all ζ ∈ T;
(ii) dist(G(ρζ),κ(ζ,D)) < ε for all ζ ∈ T and all ρ ∈ [ρ′, 1); and
(iii) G is ε-close to F in the C 1 topology on (D \ U) ∪ ρ′D.

Moreover, given an upper semicontinuous function φ : C3 → R ∪ {−∞}, we may achieve in
addition that ∫

I

φ(G(eit))
dt

2π
�

∫2π

0

∫
I

φ(κ(eit, eis))
dt

2π
ds

2π
+ ε. (3.2)

Proof. Let π : C2 → C3 be the homogeneous quadratic map defined by

π(u, v) = (u2 − v2, 2uv,−i(u2 + v2)), (u, v) ∈ C2. (3.3)

Note that π is a two-sheeted parameterization of the null quadric A ⊂ C3 (2.2), commonly
called the spinor parameterization of A, and π is branched only at the point (0, 0) ∈ C2. In
particular, π : C2

∗ = C2 \ {0} → A∗ is a doubly sheeted holomorphic covering projection.
Set μ(ζ, ξ) = σ(ζ, r(ζ)ξ) and extend it by zero to points ζ ∈ T \ I. The conditions on σ imply

that the partial derivative

σ2(ζ, ξ) :=
∂σ

∂ξ
(ζ, ξ) ∈ A∗, (ζ, ξ) ∈ I × D

has values in A∗. Note that (∂/∂ξ)μ(ζ, ξ) = r(ζ)σ2(ζ, r(ζ)ξ). Since I × D is simply connected,
there is a lifting ς : I × D → C2

∗ such that π ◦ ς = σ2. Set

η(ζ, ξ) =
√
r(ζ)ς(ζ, r(ζ)ξ), (ζ, ξ) ∈ T × D.

Then η(ζ, ξ) is holomorphic in ξ ∈ D for every fixed ζ ∈ T, and we have that

π(η(ζ, ξ)) = r(ζ)σ2(ζ, r(ζ)ξ) =
∂

∂ξ
μ(ζ, ξ).

We can approximate η as closely as desired in the sup norm on T × D by a rational map

η̃(ζ, ξ) =
l∑

j=0

Bj(ζ)ξj , (3.4)

where every Bj(ζ) is a C2-valued Laurent polynomial with the only pole at ζ = 0. Set

μ̃(ζ, z) =
∫z

0

π(η̃(ζ, ξ)) dξ =
m∑

k=1

Ak(ζ)zk, (3.5)

where π is the projection (3.3), m = 2l + 1, and Ak(ζ) are C3-valued Laurent polynomials with
the only pole at ζ = 0. Then μ̃ is uniformly close to μ on T × D, and it suffices to prove the
lemma with μ replaced by μ̃.

To simplify the notation, we now drop the tildes and assume that the functions η and μ are
given by (3.4) and (3.5), respectively. In particular, we have

μ2(ζ, ξ) :=
∂μ

∂ξ
(ζ, ξ) = π(η(ζ, ξ)).
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Lemma 3.2. Let μ(ζ, ξ) =
∑m

k=1Ak(ζ)ξk where every Ak(ζ) is a Laurent polynomial with
the only pole at ζ = 0. Write μ2(ζ, ξ) = (∂μ/∂ξ)(ζ, ξ). Then

lim
N→∞

sup
|z|�1,|c|=1

∣∣∣∣∫z

0

cNζN−1μ2(ζ, c ζN ) dζ − μ(z, czN )
∣∣∣∣ = 0. (3.6)

Proof. We have μ2(ζ, ξ) = (∂μ/∂ξ)(ζ, ξ) =
∑m

k=1Ak(ζ)kξk−1 and hence

cNζN−1μ2(ζ, cζN ) =
m∑

k=1

ckAk(ζ)kNζkN−1.

If N ∈ N is chosen big enough, then Ak(ζ)ζN vanishes at ζ = 0 for every k = 1, . . . ,m. For
such N integration by parts gives∫z

0

Ak(ζ)kNζkN−1 dζ =
∫z

0

Ak(ζ) dζkN = Ak(z)zkN −
∫z

0

A′
k(ζ)ζkN dζ. (3.7)

Since A′
k(ζ) =

∑
|j|�mk

A′
k,jζ

j for some integer mk ∈ N, we have
∫z

0

A′
k(ζ)ζkN dζ =

∑
|j|�mk

∫z

0

A′
k,jζ

j+kN dζ =
∑

|j|�mk

A′
k,jz

j+kN+1

j + kN + 1
.

The right-hand side converges to zero uniformly on D = {|z| � 1} when N → ∞. Multiplying
equation (3.7) by ck ∈ T, summing over k = 1, . . . ,m and observing that

m∑
k=1

ckAk(z)zkN =
m∑

k=1

Ak(z)(czN )k = μ(z, czN )

we get (3.6). This proves Lemma 3.2.

For every point c = eiφ ∈ T with φ ∈ [0, 2π), we set
√
c = eiφ/2. Consider the sequence of

maps gN : C × T → C2 (N ∈ N) given by

gN (ζ, c) =
√
c
√

2N + 1ζNη(ζ, cζ2N+1). (3.8)

Note that gN is a holomorphic polynomial in ζ ∈ C for every sufficiently big N , say N � N0.
Since the projection π (3.3) is homogeneous quadratic, we have that

π(gN (ζ, c)) = c(2N + 1)ζ2Nπ(η(ζ, cζ2N+1)) = c(2N + 1)ζ2Nμ2(ζ, cζ2N+1)

and hence ∫z

0

π(gN (ζ, c)) dζ =
∫z

0

c(2N + 1)ζ2Nμ2(ζ, cζ2N+1) dζ.

By Lemma 3.2, we have

lim
N→∞

sup
|z|�1,c∈T

∣∣∣∣∫z

0

π(gN (ζ, c)) dζ − μ(z, cz2N+1)
∣∣∣∣ = 0. (3.9)

The derivative F ′ : D → A2
∗ of the given null disk F lifts to a continuous map h = (u, v) : D →

C2
∗ that is holomorphic on D. With gN as in (3.8), we consider the sequence of maps hN : D ×

T → C2 given for N � N0 by

hN (ζ, c) = h(ζ) + gN (ζ, c), ζ ∈ D, c ∈ T. (3.10)

A general position argument shows that for a generic choice of F we have hN (D × T) ⊂ C2
∗ for

all sufficiently big N ∈ N (see the proof of [6, Lemma 3.1] for the details). Assume that this is
the case. Consider the holomorphic null disks

FN (z, c) = F (0) +
∫z

0

π(hN (ζ, c)) dζ, z ∈ D, c ∈ T.
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Since π is a homogeneous quadratic map, we have

π(hN (ζ, c)) = π(h(ζ)) + π(gN (ζ, c)) +RN (ζ, c), (3.11)

where each component of the remainder term RN (ζ, c) is a linear combination with constant
coefficients of terms gN,j(ζ, c)u(ζ) and gN,j(ζ, c)v(ζ) for j = 1, 2. (Here we write gN =
(gN,1, gN,2).) We claim that

lim
N→∞

sup
|z|�1, c∈T

∣∣∣∣∫z

0

RN (ζ, c) dζ
∣∣∣∣ = 0. (3.12)

To see this, set

C1 = sup
|ζ|�1,|z|�1

|ζN0η(ζ, z)|, C2 = max

{
sup
|ζ|�1

|u(ζ)|, sup
|ζ|�1

|v(ζ)|
}
.

Then sup|ζ|�1 |ζN0η(ζ, cζ2N+1)| � C1 for N ∈ N. Given z ∈ D, c ∈ T, j ∈ {1, 2}, and N � N0,
we then have∣∣∣∣∫z

0

gN,j(ζ, c)u(ζ) dζ
∣∣∣∣ � ∫ |z|

0

√
2N + 1|ζ|N−N0 |ζN0η(ζ, cζ2N+1)| · |u(ζ)| d|ζ|

� C1C2

∫ |z|

0

√
2N + 1|ζ|N−N0 d|ζ|

� C1C2

√
2N + 1

N −N0 + 1
. (3.13)

Clearly, the right-hand side converges to zero as N → +∞. The same estimate holds with u(ζ)
replaced by v(ζ). Since RN (ζ, c) is a linear combination of finitely many such terms whose
number is independent of N , (3.12) follows.

Since π(h(ζ)) = F ′(ζ), we get by integrating equation (3.11) and using the estimates (3.9)
and (3.12) that

FN (z, c) = F (z) + μ(z, cz2N+1) + EN (z, c) = κ(z, cz2N+1) + EN (z, c), (3.14)

where

lim
N→∞

sup
|z|�1, c∈T

|EN (z, c)| = 0. (3.15)

It is easily seen that for every c ∈ T and for all sufficiently big N ∈ N the null disk
G = FN (·, c) satisfies conditions (i)–(iii) in Lemma 3.1; a suitable choice of the constant
c ∈ T ensures that it also satisfies condition (3.2). (See the proof of [6, Lemma 3.1] and of
[19, Lemma 3.1] for the details.)

We now proceed to the case n > 3. This requires some additional preparations.
Let u,v,w ∈ A∗ be linearly independent null vectors such that

c := Θ(u,v) �= 0, b := Θ(u,w) �= 0, a := Θ(v,w) �= 0, (3.16)

where Θ is the complex bilinear form on Cn given in (2.1). Denote by A(u,v,w) the intersection
of A with the complex three-dimensional subspace L (u,v,w) of Cn spanned by the vectors
u,v,w. Condition (3.16) ensures that A(u,v,w) is biholomorphic (in fact, linearly equivalent) to
the two-dimensional null quadric A2 ⊂ C3. Indeed, a calculation shows that αu + βv + γw ∈ A
for some (α, β, γ) ∈ C3 if and only if

αβΘ(u,v) + αγΘ(u,w) + βγΘ(v,w) = 0.
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Using the notation (3.16), the above equation is equivalent to(
α

a
− i

β

b

)2

+
(
β

b
− i

γ

c

)2

+
(γ
c
− i

α

a

)2

= 0.

This is the equation of the null quadric A2 ⊂ C3 (2.2) in the coordinates

z1 =
α

a
− i

β

b
, z2 =

β

b
− i

γ

c
, z3 =

γ

c
− i

α

a
.

Note that
z = (z1, z2, z3) = (α, β, γ) ·A(a, b, c),

where A(a, b, c) is the following nonsingular 3 × 3 matrix with holomorphic coefficients:

A(a, b, c) =

⎛⎜⎝ 1/a 0 −i/a

−i/b 1/b 0
0 −i/c 1/c

⎞⎟⎠ . (3.17)

We are using row vectors and matrix product on the right for the convenience of notation.
Let π : C2 → C3 be the homogeneous quadratic map given by (3.3). Note that

π(1, 0) = (1, 0,−i), π(0, 1) = (−1, 0,−i).

Recall that the restriction π : C2
∗ = C2 \ {0} → A2

∗ is a doubly sheeted holomorphic covering
projection. We have

π

(
1√
a
, 0
)

=
(

1
a
, 0,− i

a

)
= (1, 0, 0) ·A(a, b, c),

π

(
i

√
i

2b
,−
√

i

2b

)
=
(
− i

b
,
1
b
, 0
)

= (0, 1, 0) ·A(a, b, c).

The choice of √ is fine on any simply connected subset in the domain space. Pick a
holomorphically varying family of linear automorphisms φ(a,b) of C2 such that

φ(a,b)(0, 0) = (0, 0), φ(a,b)(1, 0) =
(

1√
a
, 0
)
, φ(a,b)(0, 1) =

(
i

√
i

2b
,−
√

i

2b

)
.

This is achieved by taking φ(a,b)(s, t) = (s, t) ·B(a, b) where B is the 2 × 2 matrix

B(a, b) =

⎛⎜⎜⎝
1√
a

0

i

√
i

2b
−
√

i

2b

⎞⎟⎟⎠ . (3.18)

The map

C2 � (s, t) �−→ (α(s, t), β(s, t), γ(s, t)) = π((s, t) ·B(a, b)) ·A(a, b, c)−1 ∈ C3

is homogeneous quadratic in (s, t) and depends holomorphically on (a, b, c), and hence on the
triple (u,v,w) of null vectors satisfying (3.16). By the construction the associated map

C2 � (s, t) �−→ ψ(u,v,w)(s, t) = α(s, t)u + β(s, t)v + γ(s, t)w (3.19)

is a holomorphically varying parameterization of the quadric A(u,v,w) satisfying

ψ(u,v,w)(e1) = u, ψ(u,v,w)(e2) = v, (3.20)

where e1 = (1, 0) and e2 = (0, 1). Note that ψ(u,v,w) is well defined on the set of triples
(u,v,w) ∈ (An−1)3 satisfying condition (3.16), except for the indeterminacies caused by the
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square roots in the entries of the matrix B (3.18). These reflect the fact that π is a doubly
sheeted quadratic map, so we have four different choices providing the normalization (3.20).

In the sequel, we shall hold fixed a pair of null vectors u,v ∈ A∗, subject to the condition
c = Θ(u,v) �= 0, and will assume that w = f(ζ) where f : D → A∗ is a holomorphic map such
that the triple of null vectors (u,v, f(ζ)) satisfies (3.16) for every ζ ∈ D.

The following lemma provides an approximate solution of the Riemann–Hilbert problem for
null holomorphic disks in Cn for any n � 3 under the condition that the null disks attached at
boundary points of the (arbitrary) center null disk F have a constant direction vector u ∈ A∗.
(For n = 3, this result is subsumed by Lemma 3.1.) At this time, we are unable to prove the
exact analog of Lemma 3.1 in dimensions n > 3, but the present version is entirely sufficient
for the applications in this paper.

Lemma 3.3. Fix an integer n � 3 and let A = An−1 be the null quadric (2.2). Assume
that u,v ∈ A∗ = A \ {0} are null vectors such that Θ(u,v) �= 0. Let F : D → Cn be a null
holomorphic immersion of class A 1(D) whose derivative f = F ′ : D → A∗ satisfies the following
nondegeneracy condition:

Θ(u, f(ζ)) �= 0 and Θ(v, f(ζ)) �= 0 ∀ζ ∈ D. (3.21)

Let r : T = bD → R+ := [0,+∞) be a continuous function (the size function), and let σ : T ×
D → C be a function of class C 1 such that for every ζ ∈ T the function D � ξ �→ σ(ζ, ξ) is
holomorphic on D, σ(ζ, 0) = 0, the partial derivative ∂σ/∂ξ is nonvanishing on T × D, and
the winding number of the function T � ζ �→ (∂σ/∂ξ)(ζ, 0) ∈ C∗ equals zero. Set μ(ζ, ξ) =
r(ζ)σ(ζ, ξ) and let κ : T × D → Cn be given by

κ(ζ, ξ) = F (ζ) + μ(ζ, ξ)u = F (ζ) + r(ζ)σ(ζ, ξ)u. (3.22)

Given numbers ε > 0 and 0 < ρ0 < 1, there exist a number ρ′ ∈ [ρ0, 1) and a null holomorphic
disk G : D → Cn such that G(0) = F (0) and the following conditions hold:

(i) dist(G(ζ),κ(ζ,T)) < ε for all ζ ∈ T;
(ii) dist(G(ρζ),κ(ζ,D)) < ε for all ζ ∈ T and all ρ ∈ [ρ′, 1); and
(iii) G is ε-close to F in the C 1 topology on {ζ ∈ C : |ζ| � ρ′}.

Furthermore, if I is a compact arc in T such that the function r vanishes on T \ I and U is an
open neighborhood of I in D, then in addition to the above

(iv) one can choose G to be ε-close to F in the C 1 topology on D \ U .

Moreover, given an upper semicontinuous function φ : Cn → R ∪ {−∞} and a closed arc I ⊂ T,
we may achieve in addition that

∫
I

φ(G(eit))
dt

2π
�

∫2π

0

∫
I

φ(κ(eit, eis))
dt

2π
ds

2π
+ ε. (3.23)

Remark 3.4. For every ζ ∈ T, the map D � ξ �→ σ(ζ, ξ)u in the lemma is an immersed
holomorphic disk directed by the null vector u ∈ A∗; the nonnegative function r(ζ) � 0 is used
to rescale it. If the support of r is contained in a proper subarc I of the circle T, then it suffices
to assume that σ(ζ, ξ) is defined for ζ ∈ I, and in this case the winding number condition on
the function (∂σ/∂ξ)(ζ, ξ) �= 0 is irrelevant. Conditions (3.2) and (3.23) are not used in this
paper, but they will be used in the envisioned applications to minimal hulls.

Proof. Write A = An−1 and fix a pair of null vectors u,v ∈ A∗ as in the lemma. Given a
vector w ∈ A∗ such that the triple (u,v,w) satisfies condition (3.16), we denote by ψw : C2 → A
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the map ψ(u,v,w) (3.19); hence by (3.20) we have that

ψw(e1) = u, ψw(e2) = v.

Recall that f = F ′ : D → A∗ is a map of class A (D), and condition (3.21) implies that the triple
of null vectors (u,v, f(ζ)) satisfies condition (3.16) for every ζ ∈ D. Due to simple connectivity
of the disk, the coefficients of the matrix function B (3.18) are well-defined functions of class
A (D), and there is a holomorphic map h = (u, v) : D → C2

∗ satisfying

ψf(ζ)(h(ζ)) = f(ζ), ζ ∈ D. (3.24)

The conditions on the functions r � 0 and σ ensure that the partial derivative

μ2(ζ, ξ) :=
∂μ

∂ξ
(ζ, ξ) = r(ζ)

∂σ

∂ξ
(ζ, ξ)

admits a continuous square root

η(ζ, ξ) =
√
μ2(ζ, ξ), (ζ, ξ) ∈ T × D

that is holomorphic in ξ ∈ D for every fixed ζ ∈ T. We can approximate η as closely as desired
in the sup norm on T × D by a rational function of the form

η̃(ζ, ξ) =
l∑

j=0

Bj(ζ)ξj , (3.25)

where every Bj(ζ) is a Laurent polynomial with the only pole at ζ = 0. Set

μ̃(ζ, z) =
∫z

0

η̃(ζ, ξ)2 dξ =
m∑

k=1

Ak(ζ)zk, (3.26)

where m = 2l + 1 and Ak(ζ) are Laurent polynomials with the only pole at ζ = 0. Then μ̃ is
uniformly close to μ on T × D, and it suffices to prove the lemma with μ replaced by μ̃. We
now drop the tildes and assume that the functions η and μ are given by (3.25) and (3.26),
respectively. For every point c = eiφ ∈ T with φ ∈ [0, 2π), we set

√
c = eiφ/2 and consider the

sequence of functions

gN (ζ, c) =
√
c
√

2N + 1ζNη(ζ, cζ2N+1).

(Formally, this coincides with (3.8), except that gN is now scalar-valued.) Note that gN is a
holomorphic polynomial in ζ ∈ C for every sufficiently big N and∫z

0

gN (ζ, c)2 dζ =
∫z

0

c(2N + 1)ζ2Nμ2(ζ, cζ2N+1) dζ,

where μ2(ζ, ξ) = (∂μ/∂ξ)(ζ, ξ). By Lemma 3.2, we have

lim
N→∞

sup
|z|�1,c∈T

∣∣∣∣∫z

0

gN (ζ, c)2 dζ − μ(z, cz2N+1)
∣∣∣∣ = 0. (3.27)

For every sufficiently big N ∈ N, we define the map hN = (uN , vN ) : D × T → C2 by

hN (ζ, c) = h(ζ) + gN (ζ, c)e1 = (u(ζ) + gN (ζ, c), v(ζ)).

By general position, moving f and hence h slightly, we can ensure that hN (ζ, c) �= (0, 0) for all
(ζ, c) ∈ D × T and all sufficiently big N ∈ N. Indeed, we claim that this holds as long as v has
no zeros on T × T. Under this assumption, we have that v(ζ) �= 0 in an annulus ρ1 � |ζ| � 1 for
some ρ1 < 1, whence hN (ζ, c) �= (0, 0) for such ζ and for any N ∈ N and c ∈ T. Since hN → h
uniformly on {|ζ| � ρ1} × T as N → +∞ and h does not assume the value (0, 0), the same is
true for hN for all sufficiently big N ∈ N.
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By the definition of ψf(ζ), the map

fN (ζ, c) := ψf(ζ)(hN (ζ, c)) ∈ Cn, (ζ, c) ∈ D × T

has range in the punctured null quadric A∗, and hence the map

D � z �−→ FN (z, c) = F (0) +
∫z

0

fN (ζ, c) dζ ∈ Cn

is an immersed holomorphic null disk for every c ∈ T and for all sufficiently big N ∈ N.
We claim that if N ∈ N is chosen big enough, then the null disk G = FN (·, c) satisfies

Lemma 3.3 for a suitable choice of the constant c = cN ∈ T. Indeed, since all maps in the
definition of ψf(ζ) are either linear (given by a product with the matrices A−1 and B) or
homogeneous quadratic (the projection π given by (3.3)), we infer that

ψf(ζ)(gN (ζ, c)e1) = gN (ζ, c)2u, (ζ, c) ∈ D × T. (3.28)

As we also have ψf(ζ)(h(ζ)) = f(ζ) by (3.24), we get for (ζ, c) ∈ D × T that

fN (ζ, c) = ψf(ζ)(hN (ζ, c)) = f(ζ) + gN (ζ, c)2u +RN (ζ, c). (3.29)

In order to estimate the remainder RN (ζ, c), we observe that the terms in fN (ζ, c) are of three
different kinds as follows.

(a) Terms which contain u2, v2, or uv (where h = (u, v)); the sum of all such terms equals
f(ζ) in view of (3.24).

(b) Terms which do not contain any component u, v of h; the sum of all such terms equals
gN (ζ, c)2u in view of (3.28).

(c) Terms which contain exactly one component u, v of h and exactly one copy of the
function gN (ζ, c). All such terms are placed in the remainder RN .

The terms described above are multiplied by various elements of the matrices A−1 (3.17)
and B (3.18); those are functions in A (D) depending on f and h but not depending on N .
By integrating equation (3.29), we see that the map FN (z, c) is of the form (3.14) and the
remainder EN (z, c) satisfies (3.15) as is seen from the estimates (3.13) and (3.27).

By using Lemmas 3.1 and 3.3, we can prove the following result which gives an approximate
solution to the Riemann–Hilbert problem for bordered Riemann surfaces as null curves in Cn.
The case n = 3 corresponds to [6, Theorem 3.4]. The proof given there extends directly to the
present situation, replacing [6, Lemma 3.1] with Lemma 3.3.

Theorem 3.5 (Riemann–Hilbert problem for null curves in Cn). Fix an integer n � 3 and
let A = An−1 ⊂ Cn denote the null quadric (2.2). Let M be a compact bordered Riemann
surface with boundary bM �= ∅, and let I1, . . . , Ik be a finite collection of pairwise disjoint
compact subarcs of bM which are not connected components of bM . Choose a thin annular
neighborhood A ⊂M of bM and a smooth retraction ρ : A→ bM . Assume that

(i) F : M → Cn is a null holomorphic immersion of class A 1(M);
(ii) u1, . . . ,uk ∈ A∗ = A \ {0} are null vectors (the direction vectors);
(iii) r : bM → R+ is a continuous nonnegative function supported on I :=

⋃k
i=1 Ii;

(iv) σ : I × D → C is a function of class C 1 such that for every ζ ∈ I the function D � ξ �→
σ(ζ, ξ) is holomorphic on D, σ(ζ, 0) = 0, and the partial derivative ∂σ/∂ξ is nowhere
vanishing on I × D.

Consider the continuous map κ : bM × D → Cn given by

κ(ζ, ξ) =

{
F (ζ), ζ ∈ bM \ I,
F (ζ) + r(ζ)σ(ζ, ξ)ui, ζ ∈ Ii, i ∈ {1, . . . , k}.



COMPLETE MINIMAL SURFACES BOUNDED BY JORDAN CURVES 865

Given a number ε > 0, there exist an arbitrarily small open neighborhood Ω ⊂M of I =⋃k
i=1 Ii and a null holomorphic immersion G : M → Cn of class A 1(M) satisfying the following

properties:

(i) dist(G(ζ),κ(ζ,T)) < ε for all ζ ∈ bM ;
(ii) dist(G(ζ),κ(ρ(ζ),D)) < ε for all ζ ∈ Ω;
(iii) G is ε-close to F in the C 1 topology on M \ Ω.

Proof. Recall that Θ is the bilinear form (2.1) on Cn. For each index i ∈ {1, . . . , k}, we
choose a null vector vi ∈ A∗ such that Θ(ui,vi) �= 0. Pick a holomorphic 1-form θ without
zeros on M . Then dF = fθ where f : M → A∗ is a map of class A (M). Deforming F slightly if
needed we may assume that f is nondegenerate (see Section 2). By a small deformation of the
pairs of null vectors (ui,vi), we may also assume that the following conditions hold on each of
the arcs Ii (cf. (3.21)):

Θ(ui, f(ζ)) �= 0 and Θ(vi, f(ζ)) �= 0 for all ζ ∈ Ii.

By continuity, there is a neighborhood Ui ⊂ A ⊂M of the arc Ii such that the same conditions
hold for all ζ ∈ Ui.

By [5, Lemma 5.1], there exists a spray of maps fw : M → A∗ of class A (M), depending
holomorphically on a parameter w in a ball B ⊂ CN for some big integer N and satisfying the
following properties.

(a) The spray is dominating, that is, the partial differential ∂/∂w|w=0fw(ζ) : CN → Cn is
surjective for every ζ ∈M .

(b) The spray is period dominating in the following sense. Let C1, . . . , Cl be smooth closed
curves in M̊ which form the basis of the homology group H1(M ; Z). Then the period map
P = (P1, . . . ,Pl) : B → (Cn)l with the components

Pj(w) =
∫
Cj

fwθ ∈ Cn, w ∈ B, j = 1, . . . , l

has the property that ∂/∂w|w=0P(w) : CN → (Cn)l is surjective.

For each i = 1, . . . , l, we pick a compact, smoothly bounded, simply connected domain Di in
M (a disk) such that Di ⊂ Ui, Di contains a neighborhood of the arc Ii in M , and Di ∩Dj = ∅
for 1 � i �= j � l. Since the curves Cj lie in the interior of M , we can choose the disks Di small
enough such that

⋃l
j=1 Cj ∩

⋃k
i=1Di = ∅. For every i = 1, . . . , l, the function σ(ζ, ξ) can be

extended to (ζ, ξ) ∈ bDi × D such that conditions of Lemma 3.3 are fulfilled on the disk Di,
and the function r extends to bDi such that it vanishes on bDi \ Ii.

Under these conditions, we can apply Lemma 3.3 on each disk Di to approximate the
restricted spray fw|Di

as closely as desired, uniformly on Di \ Vi for a small neighborhood
Vi ⊂ Di of the arc Ii, by a holomorphic spray gi,w : Di → A∗ of class A (Di) such that the
integrals Gi,w(ζ) =

∫ζ
gi,wθ (ζ ∈ Di, w ∈ B) with suitably chosen initial values at some point

pi ∈ Di satisfy the conclusion of Lemma 3.3. (To be precise, we need a parametric version of
Lemma 3.3 with a holomorphic dependence on the parameter w of the spray. It is clear that
the proof of Lemma 3.3 gives this without any changes.)

Assuming that these approximations are close enough, the domination property (a) of the
spray fw allows us to glue the sprays fw and gi,w for i = 1, . . . , l into a new holomorphic
spray g̃w : M → A∗ which approximates fw very closely on M \⋃l

i=1 Vi. (The parameter ball
B ⊂ CN shrinks a little. For the details and references regarding this gluing, see [6, Theorem
3.4].) The period domination property of fw (condition (b)) implies that there exists w0 ∈ B
close to 0 such that the map g = g̃w0 : M → A∗ has vanishing periods over the curves Cj .
The holomorphic map G : M → Cn, defined by G(ζ) = F (p) +

∫ζ

p
gθ (ζ ∈M) for a fixed initial
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point p ∈M , is then a null holomorphic immersion satisfying Theorem 3.5 provided that all
approximations were sufficiently close.

By adapting Theorem 3.5 to conformal minimal immersions, we obtain the following.

Theorem 3.6 (Riemann–Hilbert problem for conformal minimal immersions in Rn).
Assume that n � 3 and the dataM, I1, . . . , Ik ⊂ bM, I =

⋃k
i=1 Ii, r : bM → R+, σ : I × D → C,

A ⊂M, and ρ : A→ bM are as in Theorem 3.5. Let F ∈ CMI1(M,Rn). For each i = 1, . . . , k, let
ui,vi ∈ Rn be a pair of orthogonal vectors satisfying ‖ui‖ = ‖vi‖ > 0. Consider the continuous
map κ : bM × D → Rn given by

κ(ζ, ξ) =

{
F (ζ), ζ ∈ bM \ I,
F (ζ) + r(ζ)(σ(ζ, ξ)ui + �σ(ζ, ξ)vi), ζ ∈ Ii, i ∈ {1, . . . , k}.

Given a number ε > 0, there exist an arbitrarily small open neighborhood Ω ⊂M of I =
⋃k

i=1 Ii
and a conformal minimal immersion G ∈ CMI1(M,Rn) satisfying the following properties:

(i) dist(G(ζ),κ(ζ,T)) < ε for all ζ ∈ bM ;
(ii) dist(G(ζ),κ(ρ(ζ),D)) < ε for all ζ ∈ Ω;
(iii) G is ε-close to F in the C 1 norm on M \ Ω;
(iv) Flux(G) = Flux(F ).

Proof. The conditions on ui,vi ∈ Rn imply that ũi = ui − ivi ∈ A∗ is a null vector for
every i = 1, . . . , k. Pick a holomorphic 1-form θ without zeros on M . Then ∂F = fθ where
f : M → A∗ is a holomorphic map of class A (M). We apply the proof of Theorem 3.5 to the
map f and the null vectors ũi, but with the following difference. At the very last step of the
proof, we can argue that we obtain a holomorphic map g = g̃w0 : M → A∗ in the new spray
(for some value of the parameter w0 ∈ CN close to 0) such that∫

Cj

gθ =
∫
Cj

fθ =
∫
Cj

∂F , j = 1, . . . , l.

Since
∫

Cj
2(∂F ) =

∫
Cj
dF = 0, the real periods of g vanish and the imaginary periods equal

those of f . Hence the map G : M → Rn, given by G(ζ) = F (p0) +
∫ζ

p0
(gθ) for some fixed

p0 ∈M , is a conformal minimal immersion with Flux(G) = Flux(F ) (property (iv)). Properties
(i)–(iii) of G follow from the corresponding properties of the map

∫ζ
gθ on each disk Di ⊂M

constructed in the proof of Theorem 3.5. (In fact, with a correct choice of initial values we have
G(ζ) =

∫ζ (gθ) for ζ ∈ Di, i = 1, . . . , k.)

4. Complete minimal surfaces bounded by Jordan curves

In this section, we prove Theorem 1.1. The key in the proof is the following lemma which
asserts that every conformal minimal immersion M → Rn of a compact bordered Riemann
surface can be approximated as close as desired in the C 0(M) topology by conformal minimal
immersions with arbitrarily large intrinsic diameter.

Lemma 4.1. LetM be a compact bordered Riemann surface, let n � 3 be a natural number,
and let G ∈ CMI1∗(M,Rn). Given a point p0 ∈ M̊ and a number λ > 0, we can approximate G
arbitrarily closely in the C 0(M) topology by a conformal minimal immersion Ĝ ∈ CMI1∗(M,Rn)
such that distĜ(p0, bM) > λ and Flux(Ĝ) = Flux(G).
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The notation CMI1∗(M) has been introduced in Section 2. Since conformal minimal
immersions are harmonic, the approximation in the above lemma takes place in the C r topology
on compact subsets of M̊ for all r ∈ Z+. However, if λ > distG(p0, bM), then the approximation
in the C 1(M) topology is clearly impossible.

Lemma 4.1 will follow by a standard recursive application of the following result.

Lemma 4.2. Let M be a compact bordered Riemann surface and let n � 3. Consider F ∈
CMI1(M,Rn), a smooth map Y : bM → Rn, and a number δ > 0 such that

‖F − Y‖0,bM < δ. (4.1)

Fix a point p0 ∈ M̊ and choose a number d > 0 such that

0 < d < distF (p0, bM). (4.2)

Then for each η > 0 the map F can be approximated uniformly on compacts in M̊ by
nondegenerate conformal minimal immersions F̂ ∈ CMI1∗(M,Rn) satisfying the following
properties:

(a) ‖F̂ − Y‖0,bM <
√
δ2 + η2;

(b) distF̂ (p0, bM) > d+ η;
(c) Flux(F̂ ) = Flux(F ).

The key idea in the proof of Lemma 4.2 is to push the F -image of each point p ∈ bM
a distance approximately η in a direction approximately orthogonal to F (p) − Y(p) ∈ Rn.
Conditions (a) and (b) will then follow from (4.1), (4.2), and Pythagoras’ Theorem.

The main improvement of Lemmas 4.1 and 4.2 with respect to previous related results in the
literature is that we do not change the conformal structure on the source bordered Riemann
surface M . This particular point is the key that allows us to ensure that the complete minimal
surfaces constructed in Theorem 1.1 are bounded by Jordan curves.

Proof of Lemma 4.2. We assume that M is a smoothly bounded compact Runge domain
in an open Riemann surface M̃ . Furthermore, in view of the Mergelyan theorem for conformal
minimal immersions into Rn (see [7, Theorems 3.1 and 5.3]) we may also assume that F extends
to M̃ as a conformal minimal immersion in CMI∗(M̃,Rn).

Fix a number ε > 0 and a compact set K � M . To prove the lemma, we will construct a
nondegenerate conformal minimal immersion F̂ ∈ CMI1∗(M,Rn) which is ε-close to F in the
C 1(K) norm and satisfies conditions (a)–(c).

Enlarging K if necessary we assume that K is a smoothly bounded compact domain in M̊
which is a strong deformation retract of M , that p0 ∈ K̊, and (see (4.2)) that

distF (p0, bK) > d. (4.3)

By general position, we may also assume that

the map F − Y does not vanish anywhere on bM . (4.4)

Denote by α1, . . . , αk the connected components of bM and recall that every αi is a smooth
Jordan curve in M̃ .

Fix a number ε0 > 0 which will be specified later.
By (4.1) and the continuity of F and Y, there exist a natural number l � 3 and compact

connected subarcs {αi,j ⊂ αi : (i, j) ∈ I := {1, . . . , k} × Zl} (here Zl = Z/lZ) such that⋃
j∈Zl

αi,j = αi, i ∈ {1, . . . , k}, (4.5)
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and, for every (i, j) ∈ I, the arcs αi,j and αi,j+1 have a common endpoint pi,j and are otherwise
disjoint, αi,j ∩ αi,a = ∅ for all a ∈ Zl \ {j − 1, j, j + 1},

‖Y(p) − Y(q)‖ < ε0 for all {p, q} ⊂ αi,j (4.6)

and
‖F (p) − Y(q)‖ < δ and ‖F (p) − F (q)‖ < ε0 for all {p, q} ⊂ αi,j . (4.7)

For every (i, j) ∈ I, we denote by

πi,j : Rn → span{F (pi,j) − Y(pi,j)} ⊂ Rn (4.8)

the orthogonal projection onto the affine real line span{F (pi,j) − Y(pi,j)}; cf. (4.4).
The first main step in the proof consists of perturbing F near the points {pi,j : (i, j) ∈ I} in

order to find a conformal minimal immersion in CMI1∗(M,Rn) which is close to F in the C 1(K)
topology and the distance between p0 and {pi,j : (i, j) ∈ I} in the induced metric is large in a
suitable way. This deformation procedure is enclosed in the following result.

Lemma 4.3. Given a number ε1 > 0, there exists a nondegenerate conformal minimal
immersion F0 ∈ CMI1∗(M,Rn) satisfying the following properties:

(P1) F0 is ε1-close to F in the C 1(K) topology;
(P2) ‖F0(p) − Y(q)‖ < δ and ‖F0(p) − F (q)‖ < ε0 for all {p, q} ⊂ αi,j , for all (i, j) ∈ I;
(P3) Flux(F0) = Flux(F );
(P4) for every (i, j) ∈ I, there exists a small open neighborhood Ui,j of pi,j in M, with

U i,j ∩K = ∅, fulfilling the following condition: If γ ⊂M is an arc with initial point in
K and final point in U i,j , and if {Ja,b}(a,b)∈I is any partition of γ by Borel measurable
subsets, then ∑

(a,b)∈I
lengthπa,b(F0(Ja,b)) > η,

where η > 0 is the real number given in the statement of Lemma 4.2 and πa,b are the
projections in (4.8), (a, b) ∈ I.

Proof. Choose a family of pairwise disjoint Jordan arcs {γi,j ⊂ M̃ : (i, j) ∈ I} such that
each γi,j contains pi,j as an endpoint, is attached transversely to M at pi,j , and is otherwise
disjoint from M . The set

S := M ∪
⋃

(i,j)∈I
γi,j ⊂ M̃ (4.9)

is admissible in M̃ the sense of [7, Definition 5.1]. Take a smooth map u : S → Rn satisfying
the following properties:

(i) u = F on a neighborhood of M ;
(ii) ‖u(x) − Y(q)‖ < δ and ‖u(x) − F (q)‖ < ε0 for all (x, q) ∈ (γi,j−1 ∪ αi,j ∪ γi,j) × αi,j ,

for all (i, j) ∈ I;
(iii) if {Ja,b}(a,b)∈I is a partition of γi,j by Borel measurable subsets, then∑

(a,b)∈I
lengthπa,b(u(Ja,b)) > 2η.

Note that condition (4.7) allows one to choose a map u satisfying (i) and (ii). To ensure also
(iii), one can simply choose u over each arc γi,j to be highly oscillating in the direction of
F (pa,b) − Y(pa,b) for all (a, b) ∈ I, but with sufficiently small extrinsic diameter so that (ii)
remains to hold. (Recall (4.4) and (4.8) and take into account that I is finite.)

Let θ be a nowhere vanishing holomorphic 1-form on M̃ (such exists by the Oka–Grauert
principle; cf. [22, Theorem 5.3.1, p. 190]). It is then easy to find a smooth function
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f : S → An−1
∗ , holomorphic in a neighborhood of M , such that the pair (u, fθ) is a generalized

conformal minimal immersion on the set S (4.9) in the sense of [7, Definition 5.2].
Fix a number ε2 > 0 which will be specified later.
Since M is a strong deformation retract of S (4.9) and taking (i) into account, the Mergelyan

theorem for conformal minimal immersions into Rn (see [7, Theorem 5.3]) furnishes a conformal
minimal immersion G ∈ CMI1∗(M̃,Rn) such that

(iv) G is ε2-close to u in the C 0(S) and the C 1(M) topologies and
(v) Flux(G) = Flux(F ).
Let V ⊂ M̃ be a small open neighborhood of S. For every (i, j) ∈ I, let qi,j denote the

endpoint of γi,j different from pi,j . If ε2 > 0 is small enough, then properties (ii) and (iii)
guarantee the existence of small open neighborhoods W ′

i,j � Wi,j of pi,j and Vi,j of γi,j in
V \K, (i, j) ∈ I, satisfying the following conditions:

(vi) Vi,j ∩M � W ′
i,j � Wi,j � V \K;

(vii) ‖G(x) − Y(q)‖ < δ and ‖G(x) − F (q)‖ < ε0 for all (x, q) ∈ (Wi,j−1 ∪ Vi,j−1 ∪ αi,j ∪
Wi,j ∪ Vi,j) × αi,j , for all (i, j) ∈ I;

(viii) if γ′i,j ⊂Wi,j ∪ Vi,j is an arc with initial point in Wi,j and final point qi,j , and if
{Ja,b}(a,b)∈I is a partition of γ′i,j by Borel measurable subsets, then∑

(a,b)∈I
lengthπa,b(G(Ja,b)) > 2η.

Without loss of generality, we assume in addition that the compact sets W i,j ∪ V i,j , (i, j) ∈ I,
are pairwise disjoint.

By [23, Theorem 2.3] (see also [22, Theorem 8.8.1]), there exists a smooth diffeomorphism
φ : M → φ(M) ⊂ V satisfying the following properties:

(ix) φ : M̊ → φ(M̊) is a biholomorphism;
(x) φ is as close as desired to the identity in the C 1 topology on M \⋃(i,j)∈IW

′
i,j ;

(xi) φ(pi,j) = qi,j ∈ bφ(M) and φ(M ∩W ′
i,j) ⊂Wi,j ∪ Vi,j for all (i, j) ∈ I.

Let us check that, if ε2 > 0 is sufficiently small and if the approximation in (x) is close
enough, then the conformal minimal immersion

F0 := G ◦ φ ∈ CMI1∗(M,Rn) (4.10)

satisfies the conclusion of Lemma 4.3.
Indeed, property (vi) gives that

K � M \
⋃

(i,j)∈I
Wi,j � M \

⋃
(i,j)∈I

W ′
i,j . (4.11)

Therefore, (i), (iv), and (x) ensure that F0 is ε1-close to F in the C 1(K) topology provided
that ε2 is small enough, thereby proving (P1).

In order to check (P2), fix (i, j) ∈ I and take {p, q} ∈ αi,j . If p ∈ αi,j \ (W ′
i,j−1 ∪W ′

i,j),
then F0(p) ≈ G(p) by (4.10) and (x), hence (vii) gives that ‖F0(p) − Y(q)‖ < δ and ‖F0(p) −
F (q)‖ < ε0. If p ∈W ′

i,j−1 ∪W ′
i,j , then (xi) gives that φ(p) ∈Wi,j−1 ∪ Vi,j−1 ∪Wi,j ∪ Vi,j , and

so (4.10) and (vii) imply that ‖F0(p) − Y(q)‖ < δ and ‖F0(p) − F (q)‖ < ε0 as well. This
proves (P2).

Property (P3) is directly implied by (v) and (4.10).
Finally, in order to check (P4) fix (i, j) ∈ I, let γ ⊂M be an arc with the initial point in K

and the final point pi,j , and let {Ja,b}(a,b)∈I be a partition of γ by Borel measurable subsets.
Properties (4.11) and (x) give that φ(K) � V \⋃(i,j)∈IWi,j . Properties (vi), (x), and (xi)
guarantee that φ(γ) has a connected subarc contained in Wi,j ∪ Vi,j with the initial point in
Wi,j and the final point qi,j . Therefore, (4.10) and condition (viii) trivially implies the existence
of neighborhoods Ui,j of pi,j satisfying (P4). This proves Lemma 4.3.
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We continue with the proof of Lemma 4.2.
Let F0 ∈ CMI1∗(M,Rn) and {Ui,j : (i, j) ∈ I} be furnished by Lemma 4.3 for a given number

ε1 > 0 that will be specified later. Up to a shrinking, we may assume that the sets U i,j , (i, j) ∈ I,
are simply connected, smoothly bounded, and pairwise disjoint. Roughly speaking, F0 meets
conditions (a) and (c) in Lemma 4.2 (cf. properties (P2) and (P3)), but it satisfies condition
(b) only on the sets bM ∩ U i,j , (i, j) ∈ I (cf. (P4)). To conclude the proof, we now perturb F0

near the points of bM where it does not meet (b) (that is, outside
⋃

(i,j)∈I Ui,j), preserving
what has already been achieved so far. It is at this stage where the Riemann–Hilbert problem
for minimal surfaces in Rn (see Theorem 3.6) will be exploited.

Let ε3 > 0 be a positive number that will be specified later.
Take an annular neighborhood A ⊂M \K of bM and a smooth retraction ρ : A→ bM . In

view of condition (P2), we may choose a family of pairwise disjoint, smoothly bounded closed
disks Di,j in M \K, (i, j) ∈ I, satisfying

‖F0(p) − Y(q)‖ < δ for all (p, q) ∈ Di,j × αi,j (4.12)

and the following properties:

(i)
⋃

(i,j)∈IDi,j ⊂ A;
(ii) Di,j ∩ bM is a compact connected Jordan arc in αi,j \ {pi,j−1, pi,j} with an endpoint in

Ui,j−1 and the other endpoint in Ui,j ;
(iii) ρ(Di,j) ⊂ αi,j \ {pi,j−1, pi,j} and ‖F0(ρ(x)) − F0(x)‖ < ε3 for all x ∈ Di,j and all (i, j) ∈

I.

For each (i, j) ∈ I, we also choose a pair of compact connected Jordan arcs βi,j � Ii,j �
Di,j ∩ αi,j with an endpoint in Ui,j−1 and the other endpoint in Ui,j , and a pair of vectors ui,j ,
vi,j ∈ Rn, such that

‖ui,j‖ = 1 = ‖vi,j‖; ui,j , vi,j , and F (pi,j) − Y(pi,j) are pairwise orthogonal. (4.13)

Let μ : bM → R+ be a continuous function such that

0 � μ � η, μ = η on
⋃

(i,j)∈I

βi,j , μ = 0 on bM \
⋃

(i,j)∈I
Ii,j . (4.14)

Consider the continuous map κ : bM × D → Rn given by

κ(x, ξ) =

{
F0(x), x ∈ bM \⋃(i,j)∈I Ii,j ,

F0(x) + μ(x) (ξui,j + �ξvi,j), x ∈ Ii,j , (i, j) ∈ I.
(4.15)

In this setting, Theorem 3.6 provides for every (i, j) ∈ I an arbitrarily small open neigh-
borhood Ωi,j ⊂ Di,j of Ii,j in M and a nondegenerate conformal minimal immersion F̂ ∈
CMI1∗(M,Rn) satisfying the following properties:

(P5) dist(F̂ (x),κ(x,T)) < ε3 for all x ∈ bM ;
(P6) dist(F̂ (x),κ(ρ(x),D)) < ε3 for all x ∈ Ω :=

⋃
(i,j)∈I Ωi,j ;

(P7) F̂ is ε3-close to F0 in the C 1 topology on M \ Ω;
(P8) Flux(F̂ ) = Flux(F0).

Recall that πi,j is the projection (4.8). Note that (P6), (4.15), and property (iii) ensure that

(P9) πi,j ◦ F̂ is 2ε3-close to πi,j ◦ F0 in the C 0(Ωi,j) topology for all (i, j) ∈ I.

Let us check that F̂ satisfies the conclusion of Lemma 4.2 provided that the positive numbers
ε0, ε1, and ε3 are chosen sufficiently small.

Note that properties (P1) and (P7) imply that

F̂ is (ε1 + ε3)-close to F in the C 1(K) topology, (4.16)
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and hence F̂ and F are ε-close in C 1(K) provided that ε1 + ε3 < ε; take into account that
Ω ⊂ ⋃(i,j)∈I Di,j ⊂ A ⊂M \K.

Let us now check property (a) in Lemma 4.2. Fix a point p ∈ bM . If p ∈ bM \ Ω, then by
(P7) we have ‖F̂ (p) − F0(p)‖ < ε3, and hence (P2) ensures that ‖F̂ (p) − Y(p)‖ <

√
δ2 + η2

provided that ε3 > 0 is small enough.
Assume now that p ∈ bM ∩ Ω; then p ∈ bM ∩ Ωi,j for some (i, j) ∈ I. In view of (P5), (4.14),

and (4.15), we have that

‖F̂ (p) − (F0(p) + μ(p)(ξui,j + �ξvi,j))‖ < ε3 for some ξ ∈ T. (4.17)

On the other hand, taking into account (4.13), we obtain

‖(F0(p) + μ(p)(ξui,j + �ξvi,j)) − Y(p)‖
� ‖F0(p) − F (pi,j)‖ +

√
‖F (pi,j) − Y(pi,j)‖2 + μ(p)2 + ‖Y(pi,j) − Y(p)‖

(P2),(4.6)
<

√
‖F (pi,j) − Y(pi,j)‖2 + μ(p)2 + 2ε0.

Together with (4.1), (4.14), and (4.17), we get

‖F̂ (p) − Y(p)‖ <
√
‖F (pi,j) − Y(pi,j)‖2 + μ(p)2 + 2ε0 + ε3 <

√
δ2 + η2,

where the latter inequality holds provided that ε0 and ε3 are chosen small enough from the
beginning. This proves property (a) in Lemma 4.2.

Let us now verify property (b). Recall that p0 ∈ K̊. If ε1 and ε3 are small enough, then (4.3)
and (4.16) ensure that

distF̂ (p0, bK) > d. (4.18)

We now estimate distF̂ (bK, bM). Properties (P4), (P7), and (P9) guarantee the following claim.

Claim 4.4. If ε3 > 0 is chosen small enough, then for every arc γ ⊂M \ K̊ with the initial
point in bK and the final point in

⋃
(i,j)∈I U i,j , and for any partition {Ja,b}(a,b)∈I of γ by Borel

measurable subsets satisfying γ ∩ Ωa,b ⊂ Ja,b for all (a, b) ∈ I, we have

length F̂ (γ) �
∑

(a,b)∈I
lengthπa,b(F̂ (Ja,b)) > η.

Consider now an arc γ ⊂M \⋃(i,j)∈I U i,j with the initial point in bK, the final point in
bM , and otherwise disjoint from K. Then there exist (i, j) ∈ I and a subarc γ̂ of γ with the
endpoints q ∈M \ Ω and p ∈ βi,j satisfying γ̂ ⊂ Ωi,j \ (U i,j−1 ∪ U i,j). In view of (4.13), (4.14),
and (4.17), there exists ξ ∈ T such that

‖F̂ (p) − F0(p)‖ > μ(p)‖ξui,j + �ξvi,j‖ − ε3 = η − ε3. (4.19)

On the other hand, we have

length F̂ (γ) � length F̂ (γ̂) � ‖F̂ (q) − F̂ (p)‖
� ‖F̂ (p) − F0(p)‖
− ‖F̂ (q) − F0(q)‖ − ‖F0(q) − F0(ρ(q))‖ − ‖F0(ρ(q)) − F0(p)‖

> ‖F̂ (p) − F0(p)‖ − ε0 − 2ε3,

where in the last inequality we used (P2), (iii), and (P7). Combining this inequality and
(4.19), we get that length F̂ (γ) > η − ε0 − 3ε3. Together with Claim 4.4, we obtain that
distF̂ (bK, bM) > η − ε0 − 3ε3 and, taking into account (4.18), distF̂ (p0, bM) > d+ η provided
that ε0 and ε3 are small enough. This shows property (b).
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Finally, condition (c) is trivially implied by (P3) (cf. Lemma 4.3) and (P8), thereby
concluding the proof of Lemma 4.2.

Proof of Lemma 4.1. Let ε > 0. We shall find Ĝ ∈ CMI1∗(M,Rn) which is ε-close to G in
the C 0(M) topology and satisfies distĜ(p0, bM) > λ and Flux(Ĝ) = Flux(G).

Choose numbers d0 and δ0 such that 0 < d0 < distG(p0, bM) and 0 < δ0 < ε. Set

c :=

√
6(ε2 − δ20)

π
> 0.

Consider the following sequences defined recursively:

dj := dj−1 +
c

j
> 0, δj :=

√
δ2j−1 +

c2

j2
> 0, j ∈ N.

Observe that
{dj}j∈Z+ ↗ +∞, {δj}j∈Z+ ↗ ε. (4.20)

We claim that there exists a sequence Gj ∈ CMI1∗(M,Rn) (j ∈ Z+) of conformal minimal
immersions enjoying the following properties:

(aj) ‖Gj −G‖0,bM < δj ;
(bj) distGj

(p0, bM) > dj ;
(cj) Flux(Gj) = Flux(G).

We proceed by induction, beginning with the immersion G0 := G. For the inductive step, we
assume the existence of Gj ∈ CMI1∗(M,Rn) satisfying (aj), (bj), and (cj) for some j ∈ Z+.
Applying Lemma 4.2 to the data

F = Gj , Y = G|bM , δ = δj , p0, η =
c

j + 1
, d = dj ,

we obtain a conformal minimal immersion Gj+1 ∈ CMI1∗(M,Rn) satisfying (aj+1), (bj+1), and
(cj+1), hence closing the induction step.

By (aj), the Maximum Principle, and the latter assertion in (4.20), Gj is ε-close to G in the
C 0(M) topology for all j ∈ Z+. On the other hand, (bj) and the former assertion in (4.20)
ensure that distGj

(p0, bM) > dj > λ for any large enough j ∈ Z+. In view of (cj), to conclude
the proof it suffices to choose Ĝ := Gj for a sufficiently large j ∈ N.

Another important point in the proof of Theorem 1.1 is that the general position of conformal
minimal immersions M → Rn is embedded if n � 5 (cf. [7, Theorem 1.1]). Moreover, it is easy
to derive from the proof in [7] that the general position of the boundary curves of conformal
minimal immersions M → Rn is also embedded for any n � 3. The following is the precise
result that will be used in the proof of Theorem 1.1.

Theorem 4.5. Let M be a compact bordered Riemann surface and let n � 3 and r � 1
be natural numbers.

(a) Every conformal minimal immersion F ∈ CMIr(M,Rn) can be approximated in the
C r(M) topology by nondegenerate conformal minimal immersions F̃ ∈ CMIr∗(M,Rn) such that
F̃ |bM : bM → Rn is an embedding and Flux(F̃ ) = Flux(F ).

(b) If n � 5, then every nondegenerate conformal minimal immersion F ∈ CMIr∗(M,Rn)
can be approximated in the C r(M) topology by nondegenerate conformal minimal embeddings
F̃ ∈ CMIr∗(M,Rn) satisfying Flux(F̃ ) = Flux(F ).

As already said, assertion (b) in this theorem is proved in [7, Theorem 4.1].
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Proof of (a). By [7, Theorem 3.1(a)], we may assume that F ∈ CMIr∗(M,Rn) is nondegen-
erate. We consider the difference map δF : M ×M → Rn, defined by

δF (x, y) = F (y) − F (x), x, y ∈M.

Clearly, F is injective if and only if (δF )−1(0) = DM := {(x, x) : x ∈M}, the diagonal of M ×
M . Since F is an immersion, it is locally injective, and hence there is an open neighborhood
U ⊂M ×M of DM such that δF does not vanish anywhere on U \DM .

In this setting, the construction in [7, Section 4] furnishes a neighborhood Ω ⊂ RN of the
origin in a Euclidean space and a real analytic map H : Ω ×M → Rn satisfying the following
conditions:

(i) H(0, ·) = F ;
(ii) H(ξ, ·) ∈ CMIr∗(M) and Flux(H(ξ, ·)) = Flux(F ) for every ξ ∈ Ω;
(iii) the difference map δH : Ω ×M ×M → Rn, defined by

δH(ξ, x, y) = H(ξ, y) −H(ξ, x), ξ ∈ Ω, x, y ∈M

is a submersive family on (M ×M) \ U , in the sense that the partial differential

∂ξ|ξ=0δH(ξ, x, y) : RN −→ Rn

is surjective for every (x, y) ∈ (M ×M) \ U .

Set ψH := H|Ω×bM and δψH := (δH)|Ω×bM×bM . From (iii) and the compactness of (bM ×
bM) \ U, we obtain that the partial differential ∂ξ(δψH(ξ, x, y)) : RN → Rn is surjective for all
ξ in a neighborhood Ω′ ⊂ Ω of 0 ∈ RN , for every (x, y) ∈ (bM × bM) \ U . This implies that the
map δψH : Ω′ × (bM × bM) \ U → Rn is transverse to any submanifold of Rn, in particular,
to the origin 0 ∈ Rn. The standard transversality argument due to Abraham [1] (see also
[22, Section 7.8]) ensures that for a generic choice of ξ ∈ Ω′ the difference map δψH(ξ, ·, · ) is
transverse to 0 ∈ Rn on (bM × bM) \ U . Since n � 3 and (bM × bM) \ U is of real dimension
2, it follows that

δψH(ξ, · , · ) does not vanish anywhere on (bM × bM) \ U . (4.21)

If we choose ξ = ξ0 close enough to 0 ∈ RN and such that (4.21) holds, then the conformal
minimal immersion F̃ = H(ξ0, · ) ∈ CMIr∗(M,Rn) satisfies the conclusion of Theorem 4.5 and
is arbitrarily close to F in the C r(M) topology. (See the proof of [7, Theorem 4.1] for further
details.)

Proof of Theorem 1.1. We may assume that M is a smoothly bounded compact domain in
an open Riemann surface M̃ . By [7, Theorem 3.1(a)], we can assume that F is nondegenerate,
F ∈ CMI1∗(M,Rn). By Theorem 4.5, we may also assume that F |bM is an embedding and, if
n � 5, that F : M → Rn is an embedding.

Choose a compact domain M0 ⊂ M̊ , a point p0 ∈ M̊0, and set F0 := F . Let θ be a
holomorphic 1-form in M̃ vanishing nowhere on M and denote by d : M ×M → R the distance
function on the Riemannian surface (M, |θ|2).

Pick a number ε0 > 0.
By applying Lemma 4.1 and Theorem 4.5, we shall inductively construct a sequence

{Ξj = (Mj , εj , Fj)}j∈N, where Mj is a compact domain in M̊ , εj > 0, and Fj ∈ CMI1∗(M,Rn),
satisfying the following properties for all j ∈ N:

(1j) Mj−1 � M̊j and max{d(p, bM) : p ∈ bMj} < 1/j;
(2j) max{‖Fj − Fj−1‖0,M , ‖(∂Fj − ∂Fj−1)/θ‖0,Mj−1} < εj ;
(3j) distFj

(p0, bMk) > k for all k ∈ {0, . . . , j};
(4j) Flux(Fj) = Flux(F );
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(5j) Fj |bM is an embedding and, if n � 5, Fj is an embedding;
(6j) εj < min{εj−1/2, τj , ςj}, where the numbers τj and ςj are defined as follows:

τj =
1
2j

min
k∈{0,...,j−1}

min
p∈M

∥∥∥∥∂Fk

θ
(p)
∥∥∥∥ , (4.22)

ςj =

⎧⎪⎪⎨⎪⎪⎩
1

2j2
inf
{
‖Fj−1(p) − Fj−1(q)‖ : p, q ∈ bM, d(p, q) >

1
j

}
if n ∈ {3, 4},

1
2j2

inf
{
‖Fj−1(p) − Fj−1(q)‖ : p, q ∈M, d(p, q) >

1
j

}
if n � 5.

(4.23)

Note that Ξ0 = (M0, ε0, F0) meets conditions (30), (40), and (50), whereas (10), (20), and (60)
are void. Let j ∈ N and assume inductively the existence of triples Ξ0, . . . ,Ξj−1 satisfying the
above conditions. Since F0, . . . , Fj−1 are immersions, the number τj (4.22) is positive. Moreover,
(5j−1) ensures that the number ςj (4.23) is positive as well. Therefore, there exists εj > 0
satisfying (6j). Lemma 4.1 ensures that Fj−1 can be approximated in the C 0(M) topology (and
hence also in the C 1(Mj−1) topology) by a conformal minimal immersion Fj ∈ CMI1∗(M,Rn)
satisfying distFj

(p0, bM) > j and (4j). Taking into account (3j−1), we may choose an Fj with
these properties and a compact regionMj ⊂ M̊ satisfying also (1j), (2j), and (3j). Furthermore,
in view of Theorem 4.5, we may also assume that Fj meets condition (5j). This concludes the
inductive step and hence the construction of the sequence {Ξj}j∈N.

By properties (1j) and (6j), which hold for all j ∈ N, we have
⋃∞

j=1Mj = M and the sequence
{Fj}j∈N converges uniformly on M to a continuous map

F̃ := lim
j→∞

Fj : M → Rn,

which is ε0-close to F in the C 0(M) topology and whose restriction to M̊ is conformal and
harmonic. To finish the proof, it remains to show that

(a) F̃ |M̊ : M̊ → Rn is a complete immersion;
(b) Flux(F̃ ) = Flux(F );
(c) F̃ |bM : bM → Rn is injective; and
(d) if n � 5, then F̃ : M → Rn is injective.

Indeed, take a point p ∈ M̊ . From
⋃∞

j=1Mj = M and (1j), we see that there exists a number
j0 ∈ N such that p ∈Mj for all j � j0. We have∥∥∥∥∥∂F̃θ (p)

∥∥∥∥∥ �
∥∥∥∥∂Fj0

θ
(p)
∥∥∥∥− ∑

j>j0

∥∥∥∥∂Fj

θ
(p) − ∂Fj−1

θ
(p)
∥∥∥∥

(2j), (6j)
>

∥∥∥∥∂Fj0

θ
(p)
∥∥∥∥− ∑

j>j0

τj

(4.22)

�
∥∥∥∥∂Fj0

θ
(p)
∥∥∥∥
⎛⎝1 −

∑
j>j0

1
2j

⎞⎠
>

1
2

∥∥∥∥∂Fj0

θ
(p)
∥∥∥∥ > 0.

Since this holds for each point p ∈ M̊ , F̃ |M̊ is an immersion. As F̃ is a uniform limit on M

of conformal harmonic immersions, it is a conformal harmonic immersion on M̊ , and hence
F̃ ∈ CMI0∗(M,Rn).
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Property (3j) says that for every k ∈ N and all j � k, we have distFj
(p0, bMk) > k. Property

(2j) ensures that the sequence Fj converges to F̃ in the C 1(Mk) topology, and hence in the limit
we get that distF̃ (p0, bMk) � k. Since this holds for all k ∈ N, we see that F̃ |M̊ is complete,
thereby proving (a).

Property (b) is a trivial consequence of (4j), j ∈ N.
In order to check properties (c) and (d), pick a pair of distinct points p, q ∈M . If n ∈ {3, 4},

then assume that {p, q} ⊂ bM . Choose j0 ∈ N such that d(p, q) > 1/j for all j � j0. Given
j > j0, we have

‖Fj−1(p) − Fj−1(q)‖ � ‖Fj(p) − Fj−1(p)‖ + ‖Fj(q) − Fj−1(q)‖ + ‖Fj(p) − Fj(q)‖
(2j),(6j)
< 2ςj + ‖Fj(p) − Fj(q)‖

(4.23)
<

1
j2

‖Fj−1(p) − Fj−1(q)‖ + ‖Fj(p) − Fj(q)‖.

Therefore,

‖Fj(p) − Fj(q)‖ >
(

1 − 1
j2

)
‖Fj−1(p) − Fj−1(q)‖, j > j0,

and hence

‖Fj0+k(p) − Fj0+k(q)‖ > ‖Fj0(p) − Fj0(q)‖
j0+k∏

j=j0+1

(
1 − 1

j2

)
, k ∈ N.

Taking limits in the above inequality as k goes to infinity, we conclude that

‖F̃ (p) − F̃ (q)‖ � 1
2‖Fj0(p) − Fj0(q)‖ > 0,

where the latter inequality in ensured by (5j0).
This completes the proof of Theorem 1.1.

5. Complete proper minimal surfaces in convex domains

In this section, we prove a technical result, Theorem 5.1, which will be used in the following
section to prove Theorems 1.2, 1.4, and Corollary 1.5.

Assume that D is a smoothly bounded, strictly convex domain in Rn, n � 3. We denote
by νD the inner normal to bD and by κmax

D and κmin
D the maximum and the minimum of the

principal curvatures of points in bD with respect to νD . Obviously, 0 < κmin
D � κmax

D . For any
real number −∞ < t < 1/κmax

D , we denote by Dt the smoothly bounded, strictly convex domain
bounded by bDt = {p+ tνD(p) : p ∈ bD}. Clearly, t1 < t2 < 1/κmax

D implies Dt2 � Dt1 , and

1
κmax

Dt

=
1

κmax
D

− t,
1

κmin
Dt

=
1

κmin
D

− t for all t <
1

κmax
D

. (5.1)

By the classical Minkowski theorem, every convex domain in Rn can be exhausted by an
increasing sequence of smoothly bounded, strictly convex domains.

Theorem 5.1. Let n � 3 be a natural number, let L � D � Rn be smoothly bounded
(of class at least C 2) strictly convex domains, and let η > 0 be such that D ⊂ L−η. Let M
be a compact bordered Riemann surface and let F ∈ CMI1(M,Rn) be a conformal minimal
immersion with F (bM) ⊂ D \ L . Given a number μ > 0 and a compact set K ⊂ M̊, there
exists a continuous map F̃ : M → D satisfying the following conditions:

(i) F̃ |M̊ : M̊ → D is a complete proper conformal minimal immersion;
(ii) F̃ (bM) ⊂ bD is a finite family of closed curves;
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(iii) Flux(F̃ ) = Flux(F );
(iv) ‖F̃ − F‖0,M <

√
2η2 + 2η/κmin

L ;

(v) ‖F̃ − F‖1,K < μ.

If n � 5, then we can choose F̃ to be an embedding on M̊ .

Unfortunately, we are unable to ensure that the frontier F̃ (bM) ⊂ bD consists of Jordan
curves even when n � 5; the reason is explained in Remark 5.4 at the end of the section.

The proof Theorem 5.1 uses an inductive procedure in which we alternately apply the
following two types of deformations to a conformal minimal immersion F : M → Rn.

(i) Push the boundary F (bM) closer to bD while keeping the resulting immersion suitably
close to F in the C 0(M) sense, depending on how far is F (bM) from bD . This
deformation is provided by Lemma 5.2.

(ii) Increase the interior boundary distance of the immersion by a prescribed (arbitrarily
big) amount by a deformation which is arbitrarily small in the C 0(M) sense. Such
deformation is provided by Lemma 4.1 in Section 4.

The resulting sequence of conformal minimal immersions Fk : M → D (k ∈ Z+) converges
uniformly on M to a continuous map F̃ : M → D satisfying Theorem 5.1.

We begin with technical preparations.

Lemma 5.2. Let n � 3, let L � D be smoothly bounded, strictly convex domains in Rn,
and let η > 0 be such that D ⊂ L−η. Let M be a compact bordered Riemann surface and let
F ∈ CMI1∗(M,Rn). Assume that for a compact set K ⊂ M̊, we have

F (M \ K̊) ⊂ D \ L . (5.2)

Given a number δ satisfying 0 < δ < 1/κmax
D , F can be approximated as closely as desired in the

C 1(K) topology by a conformal minimal immersion F̃ ∈ CMI1∗(M,Rn) enjoying the following
properties:

(a) ‖F̃ − F‖0,M <
√

2η2 + 2η/κmin
L ;

(b) F̃ (M \ K̊) ⊂ D \ L ;
(c) F̃ (bM) ⊂ D \ Dδ;
(d) Flux(F̃ ) = Flux(F ).

Proof. The main idea is to perturb F near bM in such a way that the image of each point
p ∈ bM is moved into the convex shell D \ Dδ by pushing it in a direction orthogonal to the
inner unit normal νL (p) of bL at p (see Figure 5.1). By Pythagoras’ theorem and basic theory
of convex domains, condition (5.2) ensures that it will be enough to push each point a distance
smaller than

√
η2 + 2η/κmin

L , allowing us to guarantee condition (a).

We may assume that M is a smoothly bounded domain in an open Riemann surface M̃ .
Without loss of generality, we may also assume that δ > 0 is small enough so that L ⊂ Dδ.

In view of (5.2), we may choose a constant ς > 0 such that

L −ς ⊂ Dδ, F (M \ K̊) ⊂ D \ L −ς . (5.3)

Pick another constant c > 0 to be specified later. For every point x ∈ bL , set

Bx := bL ∩ Bx(c), (5.4)

where Bx(c) denotes the open euclidean ball in Rn centered at x with radius c > 0. Set

Ox = D ∩ {y − tνL (y) : y ∈ Bx, t > ς} ⊂ D \ L −ς . (5.5)
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Figure 5.1 (colour online). The convex domains L and D .

Assume that c > 0 is small enough so that Bx is a topological open ball and

Ox ⊂ Õx := {y ∈ D : 〈y − x, νL (x)〉 < −ς/2} ⊂ D \ L −ς/2 ∀x ∈ bL (5.6)

(see Figure 5.1). Observe that (5.6) holds in the limit case c = 0. Set O := {Ox : x ∈ bL }
and note that D \ L −ς =

⋃
x∈bL Ox. Denote by α1, . . . , αk the connected boundary curves of

M . Since O is an open covering of the compact set F (bM) ⊂ D \ L −ς (cf. (5.3)), there exist
a natural number l � 3 and compact connected subarcs {αi,j : (i, j) ∈ J := {1, . . . , k} × Zl}
satisfying ⋃

j∈Zl

αi,j = αi for all i ∈ {1, . . . , k},

and, for every (i, j) ∈ J, αi,j and αi,j+1 have a common endpoint pi,j and are otherwise disjoint,
αi,j ∩ αi,a = ∅ for all a ∈ Zl \ {j − 1, j, j + 1}, and

F (αi,j) ⊂ Oi,j := Oxi,j
∈ O for some xi,j ∈ bL . (5.7)

Lemma 5.3 (Notation as in Lemma 5.2.). Let ς > 0 be such that (5.3) holds. Given a
number ε1 > 0, there exists F0 ∈ CMI1∗(M,Rn) satisfying the following properties:

(P1) F0 is ε1-close to F in the C 1(K) topology;
(P2) F0(pi,j) ∈ D \ Dδ/2 for all (i, j) ∈ J;
(P3) F0(αi,j) ⊂ Oi,j for all (i, j) ∈ J;
(P4) F0(M \ K̊) ⊂ D \ L −ς ;
(P5) Flux(F0) = Flux(F ).

Proof. For each (i, j) ∈ J, we choose an arc γi,j ⊂ M̃ with the endpoint pi,j ∈ bM and
otherwise disjoint from M such that the arcs γi,j , (i, j) ∈ J, are pairwise disjoint and

S := M ∪
⋃

(i,j)∈J
γi,j ⊂ M̃
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is an admissible set in the sense of [7, Definition 5.1]. (This implies that the Mergelyan
approximation theorem holds on S.) Let v : S → D ⊂ Rn be a smooth map satisfying the
following conditions:

(i) v = F on a neighborhood of M ;
(ii) v(γi,j) ⊂ Oi,j ∩Oi,j+1 and v(qi,j) ∈ D \ Dδ/2, where qi,j is the endpoint of γi,j different

from pi,j , for all (i, j) ∈ J. (Observe that Oi,j ∩Oi,j+1 = D ∩ {y − tνL (y) : y ∈ Bxi,j
∩

Bxi,j+1 , t > ς} �= ∅. See (5.5), (5.7), and Figure 5.1.)
Pick a number ε2 > 0 which will be specified later. As in the proof of Lemma 4.3, we

may use the Mergelyan theorem for conformal minimal immersions [7, Theorem 5.3] to obtain
G ∈ CMI∗(M̃,Rn) satisfying the following properties:

(iii) G is ε2-close to v in the C 1(M) and the C 0(S) topologies;
(iv) Flux(G) = Flux(F ).
Let V ⊂ M̃ be a small open neighborhood of S. If ε2 > 0 is small enough, then properties (i)–

(iii) ensure the existence of small open neighborhoods Ui,j of αi,j , Vi,j of γi,j , and W ′
i,j � Wi,j

of pi,j in V \K, (i, j) ∈ J, satisfying the following conditions:
(v) Vi,j ∩M � W ′

i,j � Wi,j � Ui,j ∩ Ui,j+1 � V \K;
(vi) G(Vi,j−1 ∪ Ui,j ∪ Vi,j) ⊂ Oi,j (take into account (5.7));
(vii) G(qi,j) ∈ D \ Dδ/2.

Without loss of generality, we assume in addition that the compact sets W i,j ∪ V i,j , (i, j) ∈ J,
are pairwise disjoint.

By [23, Theorem 2.3] (see also [22, Theorem 8.8.1, p. 365]), there exists a smooth
diffeomorphism φ : M → φ(M) ⊂ V satisfying the following properties:
(viii) φ : M̊ → φ(M̊) is a biholomorphism;
(ix) φ is as close as desired to the identity in the C 1 topology on M \⋃(i,j)∈JW

′
i,j ;

(x) φ(pi,j) = qi,j ∈ b φ(M) and φ(M ∩W ′
i,j) ⊂Wi,j ∪ Vi,j for all (i, j) ∈ J.

Set F0 := G ◦ φ ∈ CMI1∗(M,Rn). If ε2 > 0 is small enough and the approximation in (ix) is
close enough, then F0 satisfies the conclusion of the lemma. Indeed, (P1) is ensured by (i), (iii),
and (ix); (P2) by (vii) and (x); (P3) by (v), (vi), (ix), and (x); (P4) by (i), (iii), (ix), (5.3),
(vi), (x), and (5.5); and (P5) by (iv) and the definition of F0.

We continue with the proof of Lemma 5.2. Let F0 ∈ CMI1∗(M,Rn) be provided by Lemma 5.3
for some ε1 > 0 which will be specified later. In view of (P2) and (P3), each arc αi,j contains
a proper connected compact subarc Ii,j � αi,j such that

F0(αi,j \ Ii,j) ⊂ (D \ Dδ/2) ∩Oi,j . (5.8)

Here Oi,j := Oxi,j
∈ O for a certain point xi,j ∈ bL , cf. (5.7).

Pick an annular neighborhood A ⊂M \K of bM and a smooth retraction ρ : A→ bM .
Choose pairwise disjoint, smoothly bounded closed disk Di,j in A, (i, j) ∈ J, such that

Ii,j � Di,j ∩ αi,j , ρ(Di,j) ⊂ Di,j ∩ αi,j , and F0(Di,j) ⊂ Oi,j . (5.9)

Set I :=
⋃

(i,j)∈J Ii,j . Choose pairs of unitary orthogonal vectors {ui,j ,vi,j} ⊂ 〈νL (xi,j)〉⊥,
where xi,j ∈ bL were given in (5.7), (i, j) ∈ J, and consider a continuous map κ : bM × D → Rn

of the form

κ(x, ξ) =

{
F0(x), x ∈ bM \ I,
F0(x) + r(x)(σ(x, ξ)ui,j + �σ(x, ξ)vi,j), x ∈ Ii,j , (i, j) ∈ J,

where r : bM → R+ and σ : I × D → C are functions as in Theorem 3.5 such that

κ(bM × T) ⊂ D \ Dδ. (5.10)

Such functions clearly exist; one can for instance take r and σ so that κ(x,D) is the planar
convex disk Dδ/2 ∩ (F0(x) + span{ui,j ,vi,j}) for all x ∈ bM .
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From properties (P3), (5.6), (5.8), and (5.10) we infer that

κ(bM × D) ⊂ D \ L −ς/2. (5.11)

Fix a number ε3 > 0 which will be specified later. Theorem 3.6 furnishes arbitrarily small
open neighborhoods Ωi,j ⊂ Di,j of Ii,j in M , (i, j) ∈ J, and a conformal minimal immersion
F̃ ∈ CMI1∗(M,Rn) satisfying the following properties:

(P6) dist(F̃ (x),κ(x,T)) < ε3 for all x ∈ bM ;
(P7) dist(F̃ (x),κ(ρ(x),D)) < ε3 for all x ∈ Ω :=

⋃
(i,j)∈J Ωi,j ⊂M \K;

(P8) F̃ is ε3-close to F0 in the C 1 topology on M \ Ω;
(P9) Flux(F̃ ) = Flux(F0).

Let us check that the immersion F̃ satisfies the conclusion of Lemma 5.2 provided that the
positive numbers ε1 and ε3 are small enough.

First of all, properties (P8) and (P1) ensure that F̃ is as close to F in the C 1(K) topology
as desired if ε1 and ε3 are small enough (observe that K ⊂M \ Ω).

Pick a point p ∈ bM and let (i, j) ∈ J with p ∈ αi,j . In view of (P3), (5.11), (5.6), and (P6),
we have

F̃ (p) ∈ Õxi,j
\ Dδ ⊂ D . (5.12)

This proves condition (c) in the lemma. Since L−η is smoothly bounded and strictly convex, it is
contained in the Euclidean ball in Rn centered at xi,j + (1/κmin

L )νL (xi,j) with radius 1/κmin
L−η

=
η + 1/κmin

L ; cf. (5.1). Therefore, taking into account that D ⊂ L−η and (5.12), Pythagoras’
theorem ensures that

‖F̃ (p) − (xi,j − tνL (xi,j))‖ <
√

2η2 +
(

2
κmin

L

− ς

)
η − ς

κmin
L

for all t ∈
( ς

2
, η
)
.

Since F (p) lies in the convex domain Õxi,j
⊂ L−η (see (5.6) and (5.7)), we have that

tp := 〈F (p) − xi,j ,−νL (xi,j)〉 ∈ (ς/2, η). Together with (5.5) and (5.7), and taking into account
(5.1), basic trigonometry gives

‖F (p) − (xi,j − tpνL (xi,j))‖ < c(ηκmax
L + 1)

√
1 − c2(κmax

L )2/4,

where c > 0 is the constant given in (5.4). The last two inequalities ensure ‖F̃ (p) − F (p)‖ <√
2η2 + 2η/κmin

L , proving (a), provided that c > 0 is chosen small enough.
In order to check (b), note that, if ε3 > 0 is sufficiently small, then (P4) and (P8) give

that F̃ (M \ (K ∪ Ω)) ⊂ D \ L −ς . On the other hand, (P7) and (5.11) guarantee that F̃ (Ω) ⊂
D \ L −ς/2 as well.

Finally, (P5) and (P9) trivially imply (d). This concludes the proof of Lemma 5.2.

Proof of Theorem 5.1. By the Mergelyan theorem for conformal minimal immersions [7],
we may assume that F ∈ CMI1∗(M,Rn). Moreover, if n � 5, then we may also assume that F
is an embedding; see Theorem 4.5.

Let μ > 0 and η > 0 be as in the theorem. Since F (bM) ⊂ D \ L , there exist a number ε > 0
and a smoothly bounded compact domain K0 ⊂ M̊ which is a strong deformation retract of
M such that K ⊂ K0, L −ε ⊂ D , and

F (M \ K̊0) ⊂ D \ L −ε.
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Since ε > 0, it follows from (5.1) that
√

2(η − ε)2 + 2(η − ε)/κmin
L−ε

<
√

2η2 + 2η/κmin
L ; we

therefore may choose a sequence −1/κmax
D > δ1 > δ2 > · · · > limj→∞ δj = 0 satisfying L −ε ⊂

Dδ1 and √
2(η − ε)2 +

2(η − ε)
κmin

L−ε

+
∑
j�1

√
2δ2j +

2δj
κmin

D

<

√
2η2 +

2η
κmin

L

. (5.13)

Set F0 := F , δ0 := η − ε, B0 := L−ε, and Bj := Dδj
for all j ∈ N. Fix a point p0 ∈ K̊ and a

number ε0 with 0 < ε0 < μ.
By recursively applying Lemmas 4.1, 5.2, and Theorem 4.5, we may construct a sequence

{Ξj = (Kj , Fj , εj)}j∈N, where Kj is a smoothly bounded compact domain in M̊ which is a
strong deformation retract of M and we have

⋃
j∈N

Kj = M̊ , Fj ∈ CMI1∗(M,Rn), and εj > 0,
satisfying the following conditions for all j ∈ N:

(aj) Kj−1 ⊂ K̊j ;
(bj) Fj is εj-close to Fj−1 in the C 1(Kj−1) topology;
(cj) ‖Fj − Fj−1‖0,M <

√
2δ2j−1 + 2δj−1/κmin

Bj−1 ;

(dj) Fj(M \ K̊j−1) ⊂ D \ Bj−1;
(ej) Fj(M \ K̊j) ⊂ D \ Bj ;
(fj) Flux(Fj) = Flux(F );
(gj) distFj

(p0, bKi) > i for all i ∈ {0, . . . , j};
(hj) if n � 5, then Fj is an embedding;
(ij) if n � 5, then εj < min{εj−1/2, τj , ςj}, where the number τj is defined by (4.22) and

ςj =
1

2j2
inf
{
‖Fj−1(p) − Fj−1(q)‖ : p, q ∈M, d(p, q) >

1
j

}
.

If n = 3, 4, then εj < min{εj−1/2, τj}.
Note that Ξ0 = (F0,K0, ε0) satisfies (e0), (f0), (g0), and (h0), whereas the other conditions

are void for j = 0. Let j ∈ N and assume the existence of triples Ξ0, . . . ,Ξj−1 enjoying these
conditions. Fix εj > 0 such that (ij) holds. Applying Lemma 5.2 to the data

L = Bj−1, D , η = δj−1, M, F = Fj−1, K = Kj−1, δ = δj ,

we obtain Fj ∈ CMI1∗(M,Rn) satisfying (bj), (cj), (dj), (fj), Fj(bM) ⊂ D \ Bj , and
distFj

(p0, bKi) > i for all i ∈ {0, . . . , j − 1}. Therefore, we may choose Kj � M fulfilling
conditions (aj) and (ej).

We now apply Lemma 4.1 to approximate Fj uniformly onM by a conformal minimal immer-
sion F̂j ∈ CMI1∗(M,Rn) such that F̂j(M) ⊂ D , Flux(F̂j) = Flux(F ), and distF̂j

(p0, bM) > j.
Assuming as we may that the approximation is close enough, F̂j satisfies all the properties of
Fj that we have verified so far. Replacing Fj by F̂j and enlarging the set Kj if necessary we
may assume that condition (gj) holds as well.

Finally, Theorem 4.5 enables us to ensure condition (hj), thereby closing the induction.
Properties (cj) and (5.13) guarantee that the sequence {Fj}j∈N converges in the C 0(M)

topology to a continuous map F̃ = limj→+∞ Fj : M → Rn satisfying Theorem 5.1(iv); take
into account that Bj = Dδj

and so κmin
Bj > κmin

D for all j ∈ N (cf. (5.1)). From conditions (bj)
and (ij), we obtain that

F̃ is εj-close to Fj in the C 1(Kj) topology for all j ∈ Z+. (5.14)

In particular, F̃ is ε0-close to F0 = F in the C 1(K) topology; since ε0 < μ, property (v) in
Theorem 5.1 holds. Furthermore, as in the proof of Theorem 1.1, we see that conditions (gj),
(hj), (ij), and (5.14) ensure that F̃ |M̊ : M̊ → Rn is a complete minimal immersion which is
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an embedding if n � 5. Finally, property (fj) give that Flux(F̃ ) = Flux(F ), whereas (dj) and
(5.14) guarantee that F̃ (M̊) ⊂ D and F̃ |M̊ : M̊ → D is a proper map; recall that Bj = Dδj

for
all j ∈ N and that {δj}j∈N ↘ 0. Since F̃ is continuous on M , it follows that F̃ (bM) ⊂ bD is a
finite family of curves.

Remark 5.4. Our method does not ensure that the map F̃ |bM : bM → Rn in Theorem 5.1
is an embedding. The reason is that, at each step in the recursive procedure, we can only
assert that Fj is

√
2δ2j−1 + 2δj−1/κmin

D -close to Fj−1 in the C 0(bM) topology (cf. (cj)), and
the number δj−1 is given a priori in the construction of Fj−1 (or in other words, Fj−1 depends
on δj−1). To guarantee embeddedness of F̃ (bM), a more accurate approximation, depending
on the geometry of Fj−1(bM), would be required.

6. Proof of Theorems 1.2, 1.4, and Corollary 1.5

6.1. Proof of Theorem 1.2

Part (a) is a direct consequence of Theorem 5.1; indeed for F and D as in Theorem 1.2(a), just
take any smoothly bounded, strictly convex domain L � D with F (bM) ∩ L = ∅ and apply
Theorem 5.1.

We now prove part (b). Let F : M → D be as in Theorem 1.2(b) and let ε > 0. Up to a
translation, we may assume without loss of generality that the origin 0 ∈ Rn lies in D . Set
d := max{‖x‖ : x ∈ bD} > 0. Fix λ ∈ (0,min{1, 1/2dκmax

D }) to be specified later. Set F0 :=
(1 − λ)F ∈ CMI1(M,Rn) and observe that F0(bM) ⊂ D \ D2λd and

‖F0 − F‖0,M � λd. (6.1)

Theorem 5.1 applied to the data L = D2λd, D , η = 2λd, and F = F0, furnishes a continuous
map F̃ : M → D such that F̃ (M̊) ⊂ D , F̃ |M̊ : M̊ → D is a conformal complete proper minimal
immersion (embedding if n � 5), Flux(F̃ ) = Flux(F0), and

‖F̃ − F0‖0,M <

√
8λ2d2 + 4λd

(
1

κmin
D

− 2λd
)

(take into account (5.1)). Together with (6.1), we obtain that ‖F̃ − F‖0,M < ε provided that
λ > 0 is chosen sufficiently small. This shows that the flux can be changed by an arbitrarily
small amount when passing from F to F̃ . This completes the proof of Theorem 1.2.

6.2. Proof of Theorem 1.4

Let D ⊂ Rn (n � 3) be a convex domain. Take an exhaustion B0 � B1 � · · · �
⋃

j∈Z+
Bj = D

ofD by smoothly bounded, strictly convex domains Bj ⊂ Rn. Choose a sequence {λj}j∈Z+ ↘ 0
with 0 < λj < 1/κmax

Bj , and denote by δj the Hausdorff distance between Bj
λj

and Bj+1 for
all j ∈ Z+. It follows that δj > λj and Bj+1 ⊂ Bj

−δj+λj
for all j ∈ Z+. (Observe that possibly

Bj
−δj+λj

� D.)

Proof of part (a). Let M be a compact bordered Riemann surface. Let F0 ∈ CMI1∗(M,Rn)
be an immersion (embedding if n � 5) satisfying F0(bM) ⊂ B1 \ B0. Choose K0 any smoothly
bounded compact domain in M̊ which is a strong deformation retract of M and with
F0(M \ K̊0) ⊂ B0 \ B0

λ0
, and any number ε0 > 0. As in the proof of Theorem 5.1, we may

recursively apply Lemmas 5.2, 4.1, and Theorem 4.5 in order to construct a sequence
{Ξj = (Kj , Fj , εj)}j∈N, where Kj is a smoothly bounded compact domain in M̊ which is a



882 A. ALARCÓN ET AL.

strong deformation retract of M and we have
⋃

j∈N
Kj = M̊ , Fj ∈ CMI1∗(M,Rn), and εj > 0,

satisfying the following conditions for all j ∈ N:

(aj) Kj−1 ⊂ K̊j ;
(bj) ‖Fj − Fj−1‖1,Kj−1 < εj ;

(cj) ‖Fj − Fj−1‖0,M <
√

2δ2j−1 + 2δj−1/κmin
Bj−1

λj−1

;

(dj) Fj(M \ K̊j−1) ⊂ Bj \ Bj−1
λj−1

;

(ej) Fj(M \ K̊j) ⊂ Bj \ Bj
λj

;
(fj) Flux(Fj) = Flux(F0);
(gj) distFj

(p0, bKi) > i for all i ∈ {0, . . . , j};
(hj) if n � 5, then Fj is an embedding;
(ij) if n � 5, then εj < min{εj−1/2, τj , ςj}, where the number τj is defined by (4.22) and

ςj =
1

2j2
inf
{
‖Fj−1(p) − Fj−1(q)‖ : p, q ∈M, d(p, q) >

1
j

}
.

If n = 3, 4, then εj < min{εj−1/2, τj}.
(Property (cj) is useless in this proof and can be ruled out. In fact, unlike in Theorem 5.1, it
does not enable us to ensure that the sequence {Fj}j∈Z+ converges up to bM ; see Remark 6.1
for a more detailed explanation.) In this case, to pass from Fj−1 to Fj in the inductive step we
apply Lemma 5.2 to the data

L = Bj−1
λj−1

, D = Bj , η = δj−1, F = Fj−1, δ = λj .

As in the proof of Theorem 5.1, and taking into account that D =
⋃

j∈Z+
Bj , these properties

ensure that {Fj}j∈N converges uniformly on compact subsets of M̊ to a conformal complete
proper minimal immersion (embedding if n � 5) F̃ : M̊ → D. Furthermore, since F0 is full then
F̃ is also full provided the numbers εj are chosen small enough at each step. This concludes
the proof of part (a).

Proof of part (b). Let M̃ be an open Riemann surface and let p : H1(M̃ ; Z) be a group
homomorphism. Exhaust M̃ by an increasing sequence M0 ⊂M1 ⊂ · · · ⊂ ⋃∞

j=0Mj = M̃ of
compact smoothly bounded connected Runge regions such that M0 is a disk and the Euler
characteristic of Mj \ M̊j−1 satisfies χ(Mj \ M̊j−1) ∈ {0,−1} for all j ∈ N.

Set K0 := M0 and let F0 ∈ CMI1∗(K0,Rn) be an immersion (embedding if n � 5) satisfying
F0(K0) ⊂ B0 \ B0

λ0
. Fix ε0 > 0 and a point p0 ∈ M̊ . We shall construct a sequence {Ξj =

(Kj , Fj , εj)}j∈Z+ where Kj ⊂Mj is a smoothly bounded compact Runge domain which is
a strong deformation retract of Mj , Fj ∈ CMI1∗(Kj ,Rn), and εj > 0, satisfying the following
conditions:

(aj) Kj−1 ⊂ K̊j ;
(bj) ‖Fj − Fj−1‖1,Kj−1 < εj ;
(dj) Fj(Kj \ K̊j−1) ⊂ Bj \ Bj−1

λj−1
;

(ej) Fj(bKj) ⊂ Bj \ Bj
λj

;
(fj) Flux(Fj) = p|H1(Kj ;Z);
(gj) distFj

(p0, bKi) > i for all i ∈ {0, . . . , j};
(hj) if n � 5, then Fj is an embedding;
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(ij) if n � 5, then εj < min{εj−1/2, τj , ςj}, where the number τj is defined by (4.22) and

ςj =
1

2j2
inf
{
‖Fj−1(p) − Fj−1(q)‖ : p, q ∈ Kj−1, d(p, q) >

1
j

}
.

If n = 3, 4, then εj < min{εj−1/2, τj}.
(Observe that there is no property (cj) in the above list; this is not a misprint, we labeled the
properties in this way in order to emphasize that, under our current assumptions, a condition
similar to (cj) in the proof of part (a) is not expected.) The triple Ξ0 = (K0, F0, ε0) meets
the above conditions for j = 0, except for (a0), (b0), (d0), and (i0) which are void. For the
inductive step, assume that we have triples Ξ0, . . . ,Ξj−1 satisfying the required properties for
some j ∈ N and let us construct Ξj . Fix εj > 0 to be specified later. Let us distinguish cases
depending on whether the Euler characteristic χ(Mj \ M̊j−1) equals 0 or −1.

Case 1: χ(Mj \ M̊j−1) = 0. In this case, there is no change of topology when passing from
Mj−1 toMj . Therefore,Kj−1 is a strong deformation retract ofMj . By the Mergelyan Theorem
for conformal minimal immersions [7, Theorem 5.3], we may find a smoothly bounded compact
region Kj ⊂Mj and may approximate Fj−1 by a map F̃j ∈ CMI1∗(Kj ,Rn) such that the triple
Ξ̃j = (Kj , F̃j , εj) satisfies (aj), (bj), (dj), (fj), and (gj) for i = 0, . . . , j − 1. (For (dj) take into
account (ej−1).) Applying Lemma 5.2 to the data

M = Kj , L = Bj−1
λj−1

, D = Bj , η = δj , F = F̃j , δ = λj ,

we obtain Fj ∈ CMI1∗(Kj ,Rn) such that the triple Ξj = (Kj , Fj , εj) meets condition (ej) in
addition to the above properties. Finally, by Lemma 4.1 and Theorem 4.5, we may also assume
that (gj), (hj), and (ij) are also satisfied.

Case 2: χ(Mj \ M̊j−1) = −1. In this case, there exists a smooth arc γ ⊂ M̊j \ K̊j−1 with
both endpoints in bKj−1 and otherwise disjoint with Kj−1 such that χ(Mj \ (K̊j−1 ∪ γ)) = 0.
We may also assume that S = Kj−1 ∪ γ � Mj is an admissible subset in the sense of [7,
Definition 5.1]. Extend Fj−1 to a generalized conformal minimal immersion (Fj−1, fθ) on S,
in the sense of [7, Definition 5.2], such that

Fj−1(γ) ⊂ Bj−1 \ Bj−1
λj−1

and
∫
α

�(fθ) = p(α) for every closed curve α ⊂ S; (6.2)

take into account (ej−1) and (fj−1). By the Mergelyan theorem for conformal minimal
immersions [7, Theorem 5.3], we may approximate Fj−1 on S by maps F̃j−1 ∈ CMI1∗(Mj ,Rn).
If the approximation is close enough, then, taking into account Theorem 4.5, there exists a
smoothly bounded compact Runge region Lj−1 � Mj which is a strong deformation retract of
Mj and satisfies S � Lj−1 and χ(Mj \ L̊j−1) = 0, such that the triple Ξ̃j−1 = (Lj−1, F̃j−1, εj)
satisfies

(ãj) Kj−1 � L̊j−1 ⊂Mj ;
(c̃j) ‖F̃j−1 − Fj−1‖1,Kj−1 < εj/2;
(d̃j) F̃j−1(Lj−1 \ K̊j−1) ⊂ Bj−1 \ Bj−1

λj−1
(take into account (ej−1) and (6.2));

(̃fj) Flux(F̃j−1) = p|H1(Lj−1;Z) (take into account (fj−1) and (6.2));
(g̃j) distF̃j−1

(p0, bKi) > i for all i ∈ {0, . . . , j − 1} (take into account (gj−1)). In particular,
distF̃j−1

(p0, bLj−1) > j − 1, see (ãj);
(h̃j) if n � 5, then F̃j−1 is an embedding.

This reduces the proof to Case 1, closing the induction and concluding the construction of the
sequence {Ξj}j∈Z+ .

Set R :=
⋃

j∈Z+
Kj . Since

⋃
j∈Z+

Mj = M̃ and Kj is a strong deformation retract of Mj

for all j ∈ Z+, property (aj) ensures that R ⊂ M̃ is an open domain homeomorphic to M̃ .
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Given ε > 0, properties (bj) and (ij) guarantee that we may choose the numbers εj > 0 small
enough in the inductive construction so that the sequence {Fj}j∈Z+ converges uniformly on
compact subsets of R to a conformal minimal immersion F̃ := limj→∞ Fj : R → Rn which
is ε-close to F in the C 1(M) topology; recall that K0 = M . Further, if the numbers εj are
chosen sufficiently small, then conditions (dj), (fj), (gj), and (hj) guarantee that F̃ (R) ⊂ D,
F̃ : R → D is a proper map, Flux(F̃ ) = p, F̃ is complete, and, if n � 5, F̃ is an embedding.
(Recall that

⋃
j∈Z+

Bj = D.) See the proof of Theorem 5.1 for details on how to check these
properties. This concludes the proof of part (b).

Remark 6.1. Our method does not ensure that F̃ : M̊ → D in Theorem 1.4(a) extends
continuously up to bM . The reason is that, at each step in the recursive process, we only have
that Fj is

√
2δ2j−1 + 2δj−1/κmin

Bj−1
λj−1

-close to Fj−1 in the C 0(bM) topology (see (cj)). Since the

domains Bj need not be parallel to each other, this sequence is not necessarily Cauchy (in fact
neither {δj}j∈Z+ nor {1/κmin

Bj−1
λj

}j∈Z+ need to be bounded sequences in general) and so we do

not get convergence of the sequence {Fj}j∈Z+ up to bM .

6.3. Proof of Corollary 1.5

Let D be a domain in Rn with a smooth strictly convex boundary point x ∈ bD, that is to
say, bD is smooth and has positive principal curvatures with respect to the inner normal in
a neighborhood of x. There exist a number r > 0 and a smoothly bounded, strictly convex
domain D ⊂ D such that x ∈ bD and U := bD ∩ B(x, r) ⊂ bD, where B(x, r) ⊂ Rn denotes the
Euclidean ball centered at x with radius r. Fix a number λ ∈ (0, 1/κmax

D ) to be specified later.

Proof of part (a). LetM be a compact bordered Riemann surface and let F ∈ CMI1∗(M,Rn)
be a conformal minimal immersion satisfying F (M) ⊂ D \ Dλ and

‖F (p) − x‖ < λ for all p ∈M . (6.3)

Theorem 5.1, applied to the data L = Dλ, D , η = λ, and F , furnishes a continuous map
F̃ : M → D such that F̃ (M̊) ⊂ D ⊂ D, F̃ |M̊ : M̊ → D is a conformal complete proper minimal
immersion (embedding if n � 5), and

‖F̃ − F‖0,M <

√
2λ2 + 2λ

(
1

κmin
D

− λ

)
(take into account (5.1)). In view of (6.3), we get that ‖F̃ (p) − x‖ < r for all p ∈M , provided
that λ > 0 is chosen small enough. Since F̃ (bM) ⊂ bD , we obtain that F̃ (bM) ⊂ U ⊂ bD and
hence F̃ |M̊ : M̊ → D is proper. Finally, since F is full, F̃ is also full provided the approximation
is close enough. This completes the proof of part (a).

Proof of part (b). Pick a number r′ with 0 < r′ < r and a decreasing sequence {λj}j∈Z+ ↘ 0
with 0 < λj < min{r′, 1/2κmax

D } for all j ∈ Z+. These constants will be specified later. Set
Bj = Dλj

and δj = λj − λj+1 for all j ∈ Z+. Let M̃ , p, and {Mj}j∈Z+ be as in the proof
of Theorem 1.4(b). Let F0 : M0 → Rn be a nondegenerate conformal minimal immersion
with F0(M0) ⊂ B(x, r′) ∩ (B0 \ B0

λ0
). As in the proof of Theorem 1.4(b), we may recursively

construct a sequence {Ξj = (Kj , Fj , εj)}j∈Z+ satisfying conditions (aj), (bj), (dj), (ej), (fj),
(gj), (hj), and (ij) there, and also

(cj) Fj(Kj) ⊂ B(x, r′ +
∑j

i=1

√
2δ2i−1 + 2δi−1/κmin

Bi−1
λi−1

) for all j ∈ Z+.
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Indeed, this extra condition is directly granted by Lemma 5.2(a) when passing from Ξj−1 to Ξj ;
in case χ(Mj \ M̊j−1) = −1 we take the arc γ so that Fj−1(γ) ⊂ (Bj−1 \ Bj−1

λj−1
) ∩ B(x, r′ +∑j−1

i=1

√
2δ2i−1 + 2δi−1/κmin

Bi−1
λi−1

), which is possible in view of (cj−1) and (ej−1).

Taking into account that δj = λj − λj+1 and 1/κmin
Bj

λj

= −2λj + 1/κmin
D (cf. (5.1)), the above

properties ensure that the sequence {Fj}j∈Z+ converges to a conformal complete proper
nondegenerate minimal immersion (embedding if n � 5) F̃ : R → D , where R =

⋃
j∈Z+

Mj

is homeomorphic to M̃ , satisfying Flux(F̃ ) = p and F̃ (R) ⊂ bD ∩ B(x, r) ⊂ bD, provided that
r′ and the λj ’s are chosen small enough. This concludes the proof.
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28. W. H. Meeks III and J. Pérez, ‘The classical theory of minimal surfaces’, Bull. Amer. Math. Soc. (N.S.)
48 (2011) 325–407.
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