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ERLEND FORNÆSS WOLD3

Abstract. We prove that a Stein manifold of dimension d admits a proper
holomorphic embedding into any Stein manifold of dimension at least 2d + 1 sat-
isfying the holomorphic density property. This generalizes classical theorems of
Remmert, Bishop and Narasimhan, pertaining to embeddings into complex eu-
clidean spaces, as well as several other recent results.

1 Introduction

A complex manifold X is said to satisfy the density property if the Lie algebra
generated by all the C-complete holomorphic vector fields on X is dense in the
Lie algebra of all holomorphic vector fields on X in the compact-open topology;
see [24, 25] or [12, Section 4.10]. This condition holds trivially on compact mani-
folds, in which case every vector field is complete, but is fairly restrictive on non-
compact manifolds. It is especially interesting on Stein manifolds, in which case
it implies the Andersén-Lempert-Forstnerič-Rosay theorem on approximation of
isotopies of injective holomorphic maps of Runge domains by holomorphic auto-
morphisms. (See [2, 3, 14] for the case X = Cn and [12, Theorem 4.10.6, p. 132] or
[21, Appendix] for the general case.) Similarly, one defines the volume density
property of a Stein manifold X , endowed with a holomorphic volume form ω, by
considering the Lie algebra of all holomorphic vector fields on X with vanishing
ω-divergence; their flows can be approximated by ω-preserving automorphisms of
X .
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Denote by O(S) the algebra of all holomorphic functions on the complex man-
ifold S, endowed with the compact-open topology. A compact set K in S is said
to be O(S)-convex if for every point x ∈ S \ K there exists g ∈ O(S) with
|g(x)| > supK |g|.

In this paper, we prove the following result.

Theorem 1.1. Let X be a Stein manifold satisfying either the density property
or the volume density property and S be a Stein manifold, 2 dim S + 1 ≤ dimX.
Then every continuous map f : S → X is homotopic to a proper holomorphic em-
bedding F : S ↪→ X. If, in addition, K is a compact O(S)-convex set in S such that
f is holomorphic on a neighborhood of K , and S′ is a closed complex subvariety
of S such that the restricted map f |S′ : S′ ↪→ X is a proper holomorphic embed-
ding of S′ into X, then F can be chosen to agree with f on S′ and to approximate
f uniformly on K as closely as desired.

Since a Stein manifold X with the density property is an Oka manifold (see [16]
or [12, Theorem 5.5.18, p. 206]), it follows that every continuous map S → X from
a Stein manifold S is homotopic to a holomorphic map; see [12, Theorem 5.4.4,
p. 193]). Furthermore, the jet transversality theorem [12, Section 7.8] shows that
a generic holomorphic map S → X is an injective immersion when 2 dim S + 1 ≤
dimX .

The main new point of Theorem 1.1 is that it gives proper holomorphic embed-
dings. This is a nontrivial addition, since the Oka property for holomorphic maps
need not imply the corresponding Oka property for proper holomorphic maps; see
[8, Example 1.3]). We do not know whether Theorem 1.1 holds for every Stein
Oka manifold X .

In the special case when S is a relatively compact, smoothly bounded, strongly
pseudoconvex domain in another Stein manifold S̃, Theorem 1.1 holds (except
perhaps the interpolation condition) for every Stein manifold X without the density
property assumption; see [7, 8].

We actually prove the following more precise result, showing, in particular,
that the proper holomorphic embedding F : S ↪→ X in Theorem 1.1 can be chosen
to avoid a given compact holomorphically convex subset L of the target manifold
X .

Theorem 1.2. Let X be a Stein manifold of dimension n satisfying either the
density property or the volume density property, L a compact O(X)-convex set in X,
S a Stein manifold of dimension d with 2d +1 ≤ n, S′ a closed complex subvariety
of S, K a compact O(S)-convex subset of S, and f : S → X a continuous map such
that
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(a) f is holomorphic on a neighborhood of K ,
(b) the restriction f |S′ : S′ → X is a proper holomorphic embedding, and
(c) f (S \ K̊ ) ⊂ X \ L.

Then there exist a proper holomorphic embedding F : S ↪→ X and a homotopy of
continuous maps ft : S → X (t ∈ [0, 1]), with f0 = f and f1 = F, such that for
every t ∈ [0, 1],

• ft is holomorphic on a neighborhood of K and uniformly close to f on K ,
• ft|S′ = f |S′ , and
• ft(S \ K̊ ) ⊂ X \ L.

Comparable results for mappings to X = Cn were obtained by Forstnerič and
Ritter in [13]. We prove Theorem 1.2 in Section 3, after preparing the necessary
tools in Section 2.

Applying Theorem 1.2 to maps S → X whose images do not intersect the
compact subset L ⊂ X , we see that the complement X \ L of any compact O(X)-
convex set in a Stein manifold X with the density property has the basic Oka
property with approximation for maps from Stein manifolds S satisfying
2 dim S + 1 ≤ dimX .

Condition (c) on the initial map f in Theorem 1.2 can be replaced by the
weaker condition that f (bK ∪ (S′ \ K )) ⊂ X \ L. For topological reasons, a map
f satisfying the latter condition can be deformed to a map satisfying condition (c)
by a homotopy that is fixed on a neighborhood of K and on S′; see [13, Remark 2].

Theorems 1.1 and 1.2 generalize classical results of Remmert [20], Bishop [5],
and Narasimhan [19] concerning the existence of a proper holomorphic embed-
ding S ↪→ Cn of any Stein manifold S with 2 dim S + 1 ≤ n. The corresponding
result on interpolation of embeddings into Cn on closed complex subvarieties of
S was proved by Acquistapace, Broglia and Tognoli [1]. A new proof and gener-
alizations of these classical theorems of complex analysis were given recently by
Forstnerič and Ritter in [13].

In the special case dim S = 1, i.e., S an open Riemann surface, the exis-
tence of a proper holomorphic embedding in Theorem 1.1 was proved recently by
Andrist and Wold [4]. They also constructed proper holomorphic immersions
S → X when dimX = 2. Here, we adapt their construction to the case dim S > 1.
Our proof follows the general strategy used in Oka theory (see, e.g., [12, Chapter
5]), but with nontrivial additions to ensure that we obtain proper holomorphic em-
beddings. The main technical step in the proof is extending a holomorphic map
(by approximation) across a convex bump B attached to a strongly pseudoconvex
domain A in a Stein manifold S, so that B is mapped into the complement X \ L
of a given compact O(X)-convex set L; see Lemma 2.2. The latter property is
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used to obtain a proper limit map. It is not known whether such complements
X \ L are Oka manifolds when X is Oka; this is an open problem even for the
complement of a ball in Cn. Instead of using these methods, we use tools from
the Andersén-Lempert theory concerning the approximation of certain isotopies
of biholomorphic maps of Runge domains in X by holomorphic automorphisms
of X . It seems likely that the method developed in [13] can also be used to extend
a holomorphic map across a convex bump; see Remark 3.1 below.

We do not know how to prove the analogous result for proper holomorphic
maps S → X when dim S < dimX but 2 dim S + 1 > dimX ; cf. [13] for the case
X = Cn. The reason is that our method requires that the holomorphic map in an
inductive step be an injective immersion on the attaching set A∩B of the bump B.
To achieve this, we appeal to a general position argument, which necessitates that
2 dim S + 1 ≤ dimX .

A much stronger result is known for embeddings into Cn. Every Stein manifold
of dimension d > 1 admits a proper holomorphic embedding into Cn with n =[ 3d

2

]
+ 1; see [9], [23]. We do not know whether this result can be generalized to

the target manifolds considered in this paper.

Examples 1.3. We illustrate the scope of Theorems 1.1 and 1.2 by collect-
ing known examples of Stein manifolds having either the density property or the
volume density property.
(1) The complex euclidean space Cn, n ≥ 1, has the volume density property

with respect to the volume form dz1 ∧ · · · ∧ dzn; see [2].
(2) The complex euclidean space Cn, n ≥ 2, has the density property; see [3].
(3) The Stein manifold (C∗)n, n ≥ 1, has the volume density property with re-

spect to the volume form dz1
z1

∧· · ·∧ dzn
zn

. (Here C∗ = C\{0}.) It is not known
whether (C∗)n, n > 1, satisfies the density property.

(4) For any Stein Lie group G with an invariant Haar form ω, G × C has the
density property and the volume density property with respect to ω∧ dz; see
[24].

(5) Let H be a closed proper reductive subgroup of a linear algebraic group
G. Then the homogeneous space X = G/H is a Stein manifold having the
density property, except when X = C, X = (C∗)n, or X is a Q-homology
plane with fundamental group Z2; see [6, Theorem 6]. In particular, a linear
algebraic group with connected components different from C or (C∗)n has
the density property; see [16, Theorem 3].

(6) If p : Cn → C is a holomorphic function with smooth reduced zero fiber,
then the Stein manifold X = {(x, y, z) ∈ C × C × Cn : xy = p(z)} has the
density property; see [15].
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(7) A Cartesian product X1 × X2 of two Stein manifolds X1,X2 having the den-
sity property also has the density property. A product X1 × X2 of two Stein
manifolds (X1, ω1), (X2, ω2), each having the volume density property, has
the volume density property with respect to the volume form ω1 ∧ ω2: see
[17, Theorem 1].

(8) Let R be a reductive subgroup of a linear algebraic group G such that the
homogeneous space X = G/R has a left-invariant volume form ω. Then the
space (X, ω) has the volume density property; see [18, Corollary 6.2].

2 The main lemma

In this section, we develop the key analytic ingredients used in the proof of Theo-
rem 1.1, namely, Lemma 2.2 and Proposition 2.3.

Recall that a compact subset K of a complex manifold S is said to be a Stein
compact if it admits a basis of open Stein neighborhoods in S. If K ⊂ A are
compacts in S, we say that K is O(A)-convex if there exists an open set U ⊂ S
containing A such that K is O(U)-convex.

We recall the notions of a (special) Cartan pair and of a convex bump, adjusting
slightly [12, Definition 5.10.2, p. 218]; see also [12, Figure 5.2, p. 219].

Definition 2.1. A pair of compact sets (A,B) in a complex manifold S is said
to be a Cartan pair if

(i) A, B, D := A ∪ B, and C := A ∩ B are Stein compacta, and
(ii) A,B are separated in the sense that A\B ∩ B\A = ∅.

A Cartan pair (A,B) is said to be special, and B is said to be a convex bump on
A if
(iii) A and D = A ∪ B are compact strongly pseudoconvex domains, and
(iv) there exists a holomorphic coordinate system on a neighborhood of B in S in

which the sets B and C = A ∩ B are strongly convex.

In the definition on [12, p. 218], the sets B and C are not explicitly required to
be convex along bC ∩ Å = bB ∩ Å (it is merely required that the boundaries of A
and A∪B be strongly convex in local coordinates near B). The assumption here is
satisfied trivially in the context of that definition by a suitable choice of the set B.

Lemma 2.2. Let S be a Stein manifold of dimension d and X a Stein manifold
of dimension n, where 2d + 1 ≤ n. Let D = A ∪ B be a compact strongly pseudo-
convex domain in S such that (A,B) is a special Cartan pair and B is a compact
convex bump attached to A along the convex set C = A ∩ B. Let

(a) L be a compact O(X)-convex subset of X,



140 R. ANDRIST, F. FORSTNERIČ, T. RITTER, AND E. F. WOLD

(b) K be a compact subset of Å \ C such that K ∪ C is O(A)-convex,
(c) W ⊂ S be an open set containing A, and
(d) f : W ↪→ X be an injective holomorphic immersion such that f −1(L) ⊂ K̊ .

If X has either the density property or the volume density property, then f can be
approximated as closely as desired, uniformly on A, by an injective holomorphic
immersion f̃ : W̃ → X on a neighborhood W̃ of D = A∪B satisfying f̃ −1(L) ⊂ K̊ .

Proof. First consider the case in which X has the density property; the nec-
essary modifications required for the case X has the volume density property are
explained at the end of the proof.

Replacing S with a suitable Stein neighborhood of the compact strongly
pseudoconvex domain D = A ∪ B, if necessary, we may assume that A and D
are O(S)-convex. It then follows from condition (b) that C and K ∪ C are also
O(S)-convex.

Pick a smoothly bounded, strongly pseudoconvex Runge domain W0 ⊂ S such
that A ⊂ W0 � W and A is O(W0)-convex. By [8, Theorem 1.1], we can approxi-
mate f uniformly on A by a proper holomorphic embedding g : W0 ↪→ X such that
g−1(L) ⊂ K̊ . To see this, pick a strongly plurisubharmonic exhaustion function
σ : X → R such that L ⊂ {σ < 0} and σ > 0 on the compact set f (W0 \ K ).
Given ε > 0, the cited result lets us approximate f uniformly on A by a proper
holomorphic map g : W0 → X satisfying σ(g(z)) > σ( f (z)) − ε for all z ∈ W0.
Choosing ε > 0 small enough, we obtain g−1(L) ⊂ K̊ , as claimed. The fact that g
can be chosen to be an embedding follows by a general position argument, since
2d + 1 ≤ n.

The image � := g(W0) is a closed complex submanifold of X . Since K ∪ C
is O(A)-convex and A is O(W0)-convex, K ∪ C is also O(W0)-convex, and hence
g(K ∪C) is O(�)-convex. Moreover, L∩� ⊂ g(K ) ⊂ g(K ∪C) since g−1(L) ⊂ K̊ ,
and [10, Lemma 6.5] then shows that L∪g(K ∪C) is also O(X)-convex. Replacing
f with g and W with W0, we may assume that f has these properties.

Set L′ = L ∪ f (K ). Then L′ ∩ f (C) = ∅; and L′, f (C), and L′ ∪ f (C) are
O(X)-convex. Pick a compact set P ⊂ X \ L′ containing f (C) in its interior such
that L′ ∪ P is also O(X)-convex. The hypotheses on the pair (A,B) imply the
existence of a holomorphic coordinate system z = (z1, . . . , zd ) : V0 → Cd on a
neighborhood V0 ⊂ S of B such that, in these coordinates, the compact sets B and
C = A ∩ B are geometrically convex. Recall that the embedding f is defined on a
neighborhood W of A.

Choose open convex neighborhoods U,V ⊂ S of C and B, respectively, such
that U ⊂ V ∩ W and V ⊂ V0. (More precisely, assume the sets z(U) ⊂ z(V ) ⊂ Cd
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to be convex.) We can find an isotopy rt : V → V of injective holomorphic self-
maps, depending smoothly on the parameter t ∈ [0, 1], such that
(1) r0 is the identity map on V ,
(2) rt(U) ⊂ U for all t ∈ [0, 1], and
(3) r1(V ) ⊂ U .

In the coordinates z on V0, we can simply choose rt to be a family of linear con-
tractions towards a point in U .

Since U is convex, by the Oka-Grauert principle (cf. [12, Subsection 5.3]), the
normal bundle of the embedding f : W ↪→ X is holomorphically trivial over U .
Hence, shrinking W around A and U around C if necessary, we have a holomor-
phic map F : W ×Dn−d → X (Dn−d is the polydisc in Cn−d ) such that F is injective
holomorphic on U × Dn−d and F (z, 0) = f (z) for all z ∈ W . Shrinking the neigh-
borhood U ⊃ C further and rescaling in the fiber variable w ∈ Dn−d , if necessary,
we may also assume that the Stein domain � := F (U × Dn−d ) ⊂ P ⊂ X \ L′ is
Runge in P̊ and its closure � is O(P)-convex. Since L′ ∪P is O(X)-convex, L′ ∪�
is also O(X)-convex. Hence there exists a Stein neighborhood �′ ⊂ X of L′ such
that � ∩�′

= ∅ and the union �0 := � ∪�′ is a Stein Runge domain in X .
Consider the isotopy of biholomorphic maps φt : V ×Dn−d → V ×Dn−d given

by

(2.1) φt(z,w) = (rt(z),w), z ∈ V, w ∈ Dn−d , t ∈ [0, 1].

Define a smooth isotopy of injective holomorphic maps ψt : �0 → X (t ∈ [0, 1])
by

ψt = F ◦ φt ◦ F−1 on �,(2.2a)

ψt = Id on �′.(2.2b)

The map ψt is defined on � since rt(U) ⊂ U for all t ∈ [0, 1]. Note that ψ0 is
the identity on �0, and the domain ψt(�0) is Runge in X for all t ∈ [0, 1]. By the
Andersén-Lempert-Forstnerič-Rosay Theorem [12, Theorem 4.10.6, p. 132], we
can approximate the map ψ1 = F ◦ φ1 ◦ F−1 : �0 → X uniformly on compacta
in �0 by holomorphic automorphisms 	 ∈ Aut(X). Fix such 	 and consider the
injective holomorphic map

G = 	−1 ◦ F ◦ φ1 : V × Dn−d → X.

Observe that G is indeed defined on V × Dn−d , since φ1(z,w) = (r1(z),w) and
r1(V ) ⊂ U (see condition (3) above); so φ1(V × Dn−d ) ⊂ U × Dn−d .

By (2.2b), ψ1 is the identity map on �′ ⊃ L′; hence 	 can be chosen to ap-
proximate the identity as closely as desired on a neighborhood of L′, and we may
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assume that G(V × Dn−d ) ⊂ X \ L′. From (2.2a), we see that

G = 	−1 ◦ ψ1 ◦ F on U × Dn−d .

Since 	−1 ◦ψ1 is close to the identity map on F (U ×Dn−d ) by the choice of 	, G
is close to F on U ×Dn−d . More precisely, the above argument shows that for each
compact subset M of U × Dn−d , we can choose the automorphism 	 ∈ Aut(X)
such that the associated map G is as close as desired to F on M .

Assuming, as we may, that the approximation of F by G is close enough, and
shrinking their domains slightly, we can glue the holomorphic maps
F : W × Dn−d → X and G : V × Dn−d → X into a holomorphic map
F̃ : (A ∪ B) × ρDn−d → X for some 0 < ρ < 1 such that F̃ is close to F
on A × ρDn−d and is close to G on B × ρDn−d . (Apply the gluing lemma [11,
Theorem 4.1]; see also [12, Theorem 8.7.2, p. 359].) The holomorphic map
f̃ := F̃ (· , 0) : A ∪ B = D → X then satisfies the conclusion of Lemma 2.2,
except that it need not be an injective embedding. It can, however, be made into
an injective embedding by a small perturbation, since 2d + 1 ≤ n. Making all the
approximations close enough ensures that the preimage under f̃ of the compact
set L ⊂ X is close to the preimage under f of L, so f̃ −1(L) ⊂ K̊ . This proves
Lemma 2.2 when X has the density property.

For the case X satisfies the volume density property with respect to a holomor-
phic volume form ω, choose ρ > 0 small and change the definition of the isotopy
φt : V × ρDn−d → V × Dn−d in (2.1) to

φt(z,w) = (rt(z), gt(z,w)) , z ∈ V, w ∈ ρDn−d ,

where the holomorphic map gt(z,w) is chosen such that g0(z,w) = w, gt(z, 0) = 0,
for all z ∈ V and t ∈ [0, 1], and such that φt preserves the volume form F∗ω on
V × Dn−d ; see [4] for the details. The conjugate isotopy ψt given by (2.2) then
preserves the volume form ω in the sense that ψ∗

t ω = ω for all t ∈ [0, 1]. Since
V × ρDn−d (and hence its image F (V × ρDn−d )) is contractible, all of its coho-
mology groups vanish. Hence the volume-preserving version of the Andersén-
Lempert-Forstnerič-Rosay theorem applies and shows that ψ1 can be approxi-
mated by ω-preserving automorphisms 	 of X which are close to the identity
map on �′.1 The rest of the proof is exactly as in the case of a manifold X having

1We only need the vanishing of the group Hn−1(· ,C) to approximate the infinitesimal generator of
the isotopy on small time intervals by flows of globally defined holomorphic vector fields on X with
vanishing ω-divergence; see the proof of [12, Theorem 4.9.2, p. 125] for the case ω is the standard vol-
ume form dz1 ∧ · · ·∧ dzn on X = C

n. Although this cohomology vanishing condition need not hold for
the domain �′, this is irrelevant, since we are approximating the constant isotopy ψt = Id there. Now
apply [12, Proposition 4.10.4, p. 132] to obtain the approximation by ω-preserving automorphisms of
X . This argument can also be found in [17, Theorem 2].
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the density property. �
Using Lemma 2.2, we now deal with the noncritical case in the proof of Theo-

rem 1.1. Let A ⊂ A′ be compact strongly pseudoconvex domains in a Stein man-
ifold S. We say that A′ is a noncritical strongly pseudoconvex extension of
A (cf. [12, p. 218]) if there exist a strongly plurisubharmonic function ρ without
critical points on a neighborhood U of A′ \ A and a pair of real numbers c < c′

satisfying

(2.3) U ∩ A = {z ∈ U : ρ(z) ≤ c}, U ∩ A′ = {z ∈ U : ρ(z) ≤ c′}.

Proposition 2.3. Assume that A ⊂ A′ is a noncritical strongly pseudoconvex
extension in a Stein manifold S. Let X be a Stein manifold with the density property
(or the volume density property) satisfying 2 dim S+1 ≤ dimX, and let L ⊂ X be a
compact O(X)-convex set. Given an injective holomorphic immersion f : W ↪→ X
on an open set W ⊃ A such that f −1(L) ⊂ Å, we can approximate f as close
as desired uniformly on A by an injective holomorphic immersion f ′ : W ′ ↪→ X,
defined on a small open neighborhood W ′ ⊂ S of A′, such that f ′(W ′ \ Å) ⊂ X \L.

Proof. Set d = dim S and n = dimX , so 2d + 1 ≤ n. Replacing S by a
suitable Stein neighborhood of A′, we may assume that A and A′ are O(S)-convex.
Pick a compact set K ⊂ Å such that K is O(S)-convex and f −1(L) ⊂ K̊ . (With
ρ as in (2.3), we can simply take K = {z ∈ A : ρ(z) ≤ c0} for some constant
c0 < c close to c.) Choose a finite open cover {U1, . . . ,Ul} of the compact
set A′ \ A such that for each j = 1, . . . , l, there exists a biholomorphic map
θ j : Uj → Bd ⊂ Cd onto the unit ball in Cd and such that K ∪ U j is O(S)-convex.
The latter condition can be satisfied by choosing the sets Uj small enough.

By [12, Lemma 5.10.3, p. 218], there exist compact strongly pseudoconvex
domains A = A0 ⊂ A1 ⊂ · · · ⊂ Am = A′ such that for each k = 0, 1, . . . ,m − 1,
Ak+1 = Ak ∪ Bk, where Bk is a convex bump on Ak and (Ak,Bk) is a special Cartan
pair; see Definition 2.1. Furthermore, each Bi is contained in one of the sets
Uj (i), and the compact sets Bi and Ci = Ai ∩ Bi are geometrically convex with
respect to the holomorphic coordinates θ j (i) : Uj (i) → Bd . In particular, Bi and
Ci are O(Uj (i))-convex. Since for each j = 1, . . . , l, K ∪ U j is O(S)-convex,
K ∪ Bi and K ∪ Ci are also O(S)-convex (and hence O(Ai+1)-convex) for every
i = 0, 1, . . . ,m − 1.

Using Lemma 2.2, we inductively find injective holomorphic immersions
fi : Wi ↪→ X for i = 0, . . . ,m, f0 = f , such that for every i = 1, . . . ,m, fi is
defined on a small open neighborhood Wi of Ai , it approximates fi−1 as closely
as desired uniformly on Ai−1, and it satisfies f −1

i (L) ⊂ K̊ . The hypotheses in
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Lemma 2.2 are clearly satisfied at each step of the induction. If the aproxima-
tion is sufficiently close at every step, then the final map f ′ = fm : Wm → X ,
which is defined on a neighborhood W ′ = Wm of A′, satisfies the conclusion of the
proposition. �

3 Proof of Theorems 1.1 and 1.2

We focus on Theorem 1.1; it will be clear that the same construction gives the
more precise statement in Theorem 1.2. The proof amounts to an inductive appli-
cation of Proposition 2.3 and an additional argument applied to critical points of
an exhaustion function on S. The procedure is similar to that used in Oka theory
(cf. [12, Chapter 5]), but contains additional ingredients to ensure that the limit
map is proper.

We begin with the case S′ = ∅, i.e, without the interpolation condition. By a
general position argument for holomorphic maps (see, e.g., [12, Section 7.8]), we
may assume that the initial map f0 = f is an injective holomorphic immersion on
an open set U0 ⊂ S containing K . (We may assume that K is nonempty, since we
can deform f to an injective holomorphic immersion on a small open set in S.)

Since K is O(S)-convex, there exists a smooth strongly plurisubharmonic
Morse exhaustion function ρ : S → R such that ρ < 0 on K , ρ > 0 on S \ U0,
and 0 is a regular value of ρ. Let p1, p2, . . . be the critical points of ρ in {ρ > 0},
ordered by 0 < ρ(p1) < ρ(p2) < · · · . Choose an increasing sequence 0 < c0 <

c1 < c2 < · · · with lim j→∞ c j = +∞ such that every c j is a regular value of
ρ and c2 j−1 < ρ(p j ) < c2 j for j = 1, 2, . . .. (If there are only finitely many,
say N , critical points p j , j = 1, . . . ,N , we choose c j , j > N , arbitrarily, sub-
ject only to the condition lim j→∞ c j = +∞.) Furthermore, we require c2 j−1 and
c2 j to be close to ρ(p j ) in a sense to be specified later. For j = 0, 1, 2, . . ., set
Kj = {z ∈ S : ρ(z) ≤ c j } so that K ⊂ K0 ⊂ K1 ⊂ · · · ⊂ ⋃∞

j =0 Kj = S, every Kj is
O(S)-convex, and Kj−1 ⊂ K̊ j for all for j = 1, 2, . . ..

Also choose an exhaustion L1 ⊂ L2 ⊂ · · · ⊂ ⋃∞
j =1 L j = X of X by compact

O(X)-convex sets. For convenience, assume that L j = {σ ≤ j} for a smooth
strongly plurisubharmonic Morse exhaustion function σ : X → R, chosen such
that every integer j ∈ N is a regular value of σ. For Theorem 1.2, we can assume
that L1 = L is the given O(X)-convex set that satisfies condition (c).

Set f0 = f and pic a number ε0 > 0. Choose a distance function dist on
X induced by a complete Riemannian metric. We now find continuous maps
f j : S → X and positive numbers ε j such that for every j = 1, 2, . . .,
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(a) f j is an injective holomorphic immersion on an open neighborhood Wj of
Kj .

(b) supz∈Kj−1
dist( f j (z), f j−1(z)) < ε j−1.

(c) f j (Kj \ Kj−1) ⊂ X \ L j .
(d) there exists a homotopy h j : S × [0, 1] → X with h j ;0 := h j (·, 0) = f j−1,

h j ;1 := h j (·, 1) = f j , and for all t ∈ [0, 1], h j ;t : h j (·, t) is holomorphic on a
neighborhood of Kj−1 and

(3.1) sup
z∈Kj−1

dist(h j ;t(z), f j−1(z)) < ε j−1.

(e) 0 < ε j < ε j−1/2; and
(f) every holomorphic map F : S → X satisfying supz∈Kj

dist(F (z), f j (z)) < 2ε j

is an injective immersion on Kj−1.
Let us explain the construction. Assuming that the maps f0, . . . , f j−1 and

the corresponding numbers ε0, . . . , ε j−1 with the required properties have already
been found (this is true for j = 1), we must explain the contruction of the next map
f j and the choice of the number ε j . There are two distinct cases to consider: the
noncritical case, in which Kj \ Kj−1 does not contain any critical point of ρ (this
happens for odd values of j), and the critical case, in which Kj \ Kj−1 contains
a critical point of ρ (this happens for even values of j). We explain in detail how
to get the maps f1 and f2; all subsequent steps are analogous to one of these two
cases.

The initial map f0 : S → X is holomorphic on the open set U0 ⊃ K0. Choose a
smoothly bounded strongly pseudoconvex open domain D0 in S such that
K0 ⊂ D0 � U0. (We may simply take D0 = {ρ < c} for sufficiently small
c > 0.) By [8, Theorem 1.1], there exists a holomorphic map g : D0 → X such
that

g(bD0) ⊂ X \ L1 and sup
z∈K0

dist(g(z), f0(z)) <
ε0
2
.

(For Theorem 1.2, we can choose K0 and D0 such that f0(D0 \ K0) ⊂ X \L1, so the
above condition holds with g = f0.) Furthermore, g can be chosen so that there
is a homotopy from f0 to g, consisting of holomorphic maps on D0 and satisfying
the approximation condition in (d) for j = 1 (that is, on the set K0), with ε0
replaced by ε0/2. (Such a homotopy exists whenever the approximation of f0 by
g is sufficiently close on K0.) The map g, and the homotopy from f0 to g, can be
extended continuously to all of S, without changing them on a small neighborhood
of K0, by using a cut-off function in the parameter of the homotopy.

Since the set K1 = {ρ ≤ c1} is a noncritical strongly pseudoconvex exten-
sion of the set K0 = {ρ ≤ 0}, Proposition 2.3 furnishes an injective holomorphic
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immersion f1 : W ′
1 → X on an open set W ′

1 ⊃ K1 in S such that

f1(K1 \ K0) ⊂ X \ L1 and sup
z∈K0

dist( f1(z), g(z)) <
ε0
2
.

Furthermore, we can ensure that there exists a homotopy of holomorphic maps
from g to f1 on a neighborhood of K0 satisfying the estimate (3.1) for j = 1, with
ε0 replaced by ε0/2 and f0 replaced by g. As before, we extend the map f1 and
the homotopy continuously to all of S without changing their values on a smaller
neighborhood W1 of the set K1. By combining these two homotopies (the first one
from f0 to g, and the second one from g to f1) we get a homotopy h1,t from f0 to f1,
consisting of maps that are holomorphic on a neighborhood of K0 and satisfy the
estimate (3.1) for j = 1. Clearly the map f1 satisfies properties (a)-(d) for j = 1.
Now pick a number ε1 satisfying 0 < ε1 < ε0/2 such that condition (f) is satisfied
for j = 1 (this holds whenever ε1 > 0 is sufficiently small). This completes the
first step of the induction.

In the next step we must find the map f2 : S → X . This critical case is accom-
plished in finitely many substeps which we now describe; for further details we
refer to [12, Section 5.11, pp. 222–223].

We may assume that c1 is so close to the critical value ρ(p1) that we can work
in a coordinate neighborhood of that p1 ∈ S in which ρ assumes the quadratic
normal form furnished by [12, Lemma 3.9.1, p. 88]. We attach to the strongly
pseudoconvex domain K1 = {ρ ≤ c1} the local stable manifold E of the critical
point p1. In the local holomorphic coordinate in which ρ assumes the normal
form, E is a linear totally real disc of dimension k that equals the Morse index of
p (indeed, E is a closed ball in Rk ⊂ Rd ⊂ Cd ), E \ bE ⊂ {ρ > c1} = X \ K1,
and E is attached to K1 along a legendrian (complex tangential) sphere Sk−1 ∼= bE
contained in the strongly pseudoconvex hypersurface bK1 = {ρ = c1}.

Choose c′
1 satisfying c1 < c′

1 < ρ(p1) and close to ρ(p1). (How close is to
determined in the sequel.) By the noncritical case explained above, we may as-
sume that f1 is holomorphic on a neighborhood of the set D1 := {ρ ≤ c′

1} and
f1(D1 \ K0) ⊂ X \ L1. We may assume that conditions (a)-(f) hold for this new f1.
Let E ′ = E ∩{ρ ≥ c′

1}; this is again a totally real k-disc attached with its boundary
sphere bE ′ ∼= Sk−1 to the domain D1.

Consider the continuous map f1|E ′ : E ′ → X . Note that f1(bE ′) ⊂ X \ L1. We
claim that f1|E ′ can be homotopically deformed to a map with values in X \ L1,
keeping the homotopy fixed near bE ′. To see this, observe that X is obtained from
X \ L̊1 by attaching to the latter set handles of index at least n. (This is because
the critical points of the function −σ : X → R have Morse indices at least n, and
X \ L̊1 = {−σ ≤ −1}.) It follows that the relative homotopy groups πl(X,X \ L1)
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vanish for l = 0, . . . , n − 1. Since k ≤ d < n, any map (E ′, bE ′) �→ (X,X \ L1)
is homotopic to a map with values in X \ L1, so the claim follows. We can extend
this homotopy to all of X without changing it on D1. We denote this new map also
by f1. By construction, f1 maps the compact set (D1 ∪ E ′) \ K̊0 to X \ L1.

We now apply Mergelyan’s Theorem [12, Theorem 3.7.2, p. 81] to make f1
holomorphic on a neighborhood � ⊂ S of the set D ′

1 ∪ E ′. To simplify notation,
we denote this new map by f1 and assume that conditions (a)-(f) hold for j = 1.

Assuming that c′
1 is close enough to ρ(p1), Lemma 3.10.1 in [12, p. 92] gives a

smooth strongly plurisubharmonic function τ on S and constants 0 < c < c′ such
that

(1) K1 ∪ E ⊂ {τ < c} ⊂ �,
(2) K2 = {ρ ≤ c2} ⊂ {τ < c′}, and
(3) τ has no critical values in the interval [c, c′].

Applying the noncritical case explained above with τ and f1, we find a map f2 and
a homotopy from f1 to f2 satisfying properties (a)-(d) for j = 2. Choose ε2 > 0
such that conditions (e) and (f) hold for j = 2. This completes the construction of
f2.

The subsequent steps in the induction are exactly the same as in one of these
two cases, depending on the parity of the index j , so the induction proceeds.

Conclusion of the proof of Theorem 1.1 (assuming S′ = ∅). Condi-
tions (a) and (e) ensure that the sequence { f j } converges uniformly on compacta
in S to a holomorphic map F = lim j→∞ f j : S → X . Condition (d) shows that the
sequence of homotopies {h j,t} also converges uniformly on compacta to a homo-
topy ht : S → X (t ∈ [0, 1]) from h0 = f0 = f to h1 = F . Properties (b) and (e)
imply

(3.2) sup
z∈Kj

dist(F (z), f j (z)) < 2ε j for j = 0, 1, 2, . . . .

In particular, supz∈K dist(F (z), f (z)) < 2ε0. The estimate (3.2), together with prop-
erty (f) of the sequence {ε j }, shows that F : S → X is an injective holomorphic
immersion on Kj−1. Since this holds for every j , F is an injective immersion on
all of S. Finally, condition (c) together with (3.2) shows that F is proper.

This completes the proof of Theorems 1.1 and 1.2 in the case S′ = ∅.

Proof of Theorem 1.1 (the general case). By assumption, the restricted
map fS′ : S′ → X is a proper holomorphic embedding. The construction of a
proper holomorphic embedding F : S ↪→ X satisfying F |S′ = f |S′ requires a minor
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modification of the induction scheme. One can proceed as in [13, Section 4],
except that the individual steps in the induction are accomplished as described
in this paper. An important point is that none of the bumps that are used in this
construction intersects the subvariety S′; hence, we can glue at every step, so as to
satisfy the required interpolation condition on S′.

Remark 3.1. Assuming that X has the density property, one can also prove
Theorem 1.2 by following the approach in [13]. The main difference with respect
to this paper lies in the proof of Lemma 2.2. When attaching a bump B to a
set A, with an embedding f : A → X , we may assume by [8, Theorem 1.1]
that f is proper holomorphic on some neighborhood W ⊂ S of A, so f (C) is an
embedded holomorphically contractible set such that L ∪ f (C) is holomorphically
convex in X . (Here C = A ∩ B.) Thus we can pick x ∈ f (C) and construct a
sequence {φ j } of holomorphic automorphisms of X such that f (C) is contained
in the basin of attraction � ⊂ X of (φ j ) j∈N, but the set L does not intersect �.
Assuming, as we may, that {φ j } satisfies the uniform attraction condition a|z| ≤
|φ j (z)| ≤ b|z| with 0 < b2 < a < b < 1 on a ball centered at the point x
(in some local holomorphic coordinates z around x with z(x) = 0), we conclude
that the basin � is biholomorphic to Cn; see [22, Theorem 9.1] for the special
case of iteration of an automorphism, and [26] for the general case of a random
iteration. Hence one can approximate and glue maps just as was done in [13].
One can find a sequence {φ j } with these properties using the Andersén-Lempert-
Forstnerič-Rosay theorem. This approach does not seem to work by using the
volume density property of X .
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[12] F. Forstnerič, Stein Manifolds and Holomorphic Mappings. The Homotopy Principle in Complex
Analysis, Springer, Heidelberg, 2011.
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