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Abstract In this paper, we prove that every conformal minimal immersion of an open Rie-
mann surface into R

n for n ≥ 5 can be approximated uniformly on compacts by conformal
minimal embeddings (see Theorem 1.1). Furthermore, we show that every open Riemann
surface carries a proper conformal minimal embedding into R

5 (see Theorem 1.2). One of
our main tools is a Mergelyan approximation theorem for conformal minimal immersions to
R
n for any n ≥ 3 which is also proved in the paper (see Theorem 5.3).
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1 Introduction

One of the central questions in geometric analysis is to understand whether an abstract
manifold of a certain kind is embeddable as a submanifold of a Euclidean space. Notable
results were obtained, among many others, by Whitney [35] in differential geometry, Nash
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2 A. Alarcón et al.

[30] inRiemannian geometry,Greene andWu [21] in harmonicmapping theory, andRemmert
[32], Bishop [9], Narasimhan [28,29], Eliashberg and Gromov [13] and Schürmann [34] in
complex geometry.

The same question is highly interesting in the context of minimal submanifolds, a fun-
damental subject in differential geometry. Two dimensional minimal submanifolds (i.e.,
minimal surfaces) in R

n are especially interesting objects. They lie at the intersection of
several branches of Mathematics and Physics and enjoy powerful tools coming from differ-
ential geometry, topology, partial differential equations, and complex analysis; see [31] for
a classical survey and [26,27] for more recent ones, among others.

The aim of this paper is to obtain general embedding results for minimal surfaces in R
n

for n ≥ 5. Our first main result is the following.

Theorem 1.1 Let M be an open Riemann surface. If n ≥ 5 then every conformal minimal
immersion u : M → R

n can be approximated uniformly on compacts in M by conformal
minimal embeddings. The same holds if M is a compact bordered Riemann surface with
nonempty boundary and u is of classC r (M) for some r ∈ N; in such case, the approximation
takes place in the C r (M) topology.

Recall that a conformal immersion u : M → R
n (n ≥ 3) of an open Riemann surface M

is minimal if and only if it is harmonic: �u = 0. An immersion u : M → R
n is said to be an

embedding if u : M → u(M) is a homeomorphism.
More precisely, our proof will show that, for any n ≥ 5, the set of all conformal minimal

embeddingsM ↪→ R
n is of the second category in the Fréchet space of all conformalminimal

immersions M → R
n , endowed with the compact-open topology.

Theorem 1.1 obviously fails in dimensions n ≤ 4 since transverse self-intersections are
stable in these dimensions. By using the tools of this paper, it can be seen that a generic
conformal minimal immersion M → R

4 has only simple double points (normal crossings).
We now come to the following second main result of the paper.

Theorem 1.2 Every open Riemann surface M carries a proper conformal minimal embed-
ding into R

5. Furthermore, if K is a compact holomorphically convex set in M and n ≥ 5,
then every conformal minimal embedding from a neighborhood of K into R

n can be approx-
imated, uniformly on K , by proper conformal minimal embeddings M ↪→ R

n.

Ourmethods also provide the control of the flux of the conformalminimal embeddings that
we construct.Recall that thefluxof a conformalminimal immersionu = (u1, . . . , un) : M →
R
n is the homomorphism H1(M;Z) → R

n givenby the imaginary periods of the holomorphic
(1, 0)-form ∂u = (∂u1, . . . , ∂un) (see 2.5). In particular, the approximation in Theorem 1.1
can be done by embeddings with the same flux as the original immersion, whereas the proper
conformal minimal embeddings in the first assertion of Theorem 1.2 can be found with any
given flux; see Theorems 6.1 and 7.1.

One of our main tools is a Mergelyan approximation theorem for conformal minimal
immersions toRn for any n ≥ 3 that is also proved in the paper (see Theorem 5.3), extending
the result of Alarcón and López [5] which applies to n = 3. The proof in [5] uses the
Weierstrass representation of conformal minimal immersions M → R

3, and hence it does
not generalize to the case n > 3.

Let us place Theorem 1.2 in the context of results in the literature. It has been known
since the 1950’s that every open Riemann surface embeds properly holomorphically in C

3

[9,28,29,32]. Since a holomorphic embedding is also conformal and harmonic, it follows
that every open Riemann surface carries a proper conformal minimal embedding into R

6.
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Embedded minimal surfaces in R
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In a different direction, Greene and Wu showed in 1975 [21] that every open k-dimensional
Riemannian manifold Mk admits a proper (not necessarily conformal) harmonic embedding
intoR2k+1; hence surfaces (k = 2) embed properly harmonically intoR5.However, the image
of a non-conformal harmonic map is not necessarily a minimal surface, hence Theorem 1.2
is a refinement of their result when M is an orientable surface.

The optimal result for immersions was obtained by Alarcón and López who proved that
every open Riemann surface carries a proper conformal minimal immersion into R

3 [5,6].
It is well known that Theorem 1.2 fails in dimension n = 3. Indeed, the existence of a

proper conformal minimal embedding M ↪→ R
3 is a very restrictive condition on M and

there is a rich literature on this subject; see the recent surveys [26,27] and the references
therein. Note however that every Riemann surface (open or closed) admits a smooth proper
conformal (but not necessarily minimal!) embedding into R

3 according to Rüedy [33]; see
also Garsia [20] for a partial result in this direction.

It remains an open problem whether Theorem 1.2 holds in dimension n = 4:

Problem 1.3 Does every open Riemann surface admit a proper conformal minimal embed-
ding into R

4?

Motivated by the result of Greene and Wu [21], another interesting but less ambitious
open question is whether every open (orientable) Riemannian surface admits a harmonic
embedding into R

4. These problems seem nontrivial also for nonproper embeddings.
Since everyholomorphic embedding is conformal andharmonic (henceminimal), Problem

1.3 is related to the analogous long standing open problem whether every open Riemann sur-
face admits a proper holomorphic embedding intoC2. (See the survey of Bell andNarasimhan
[8, Conjecture 3.7, p. 20], and [15, Sections 8.9–8.10].) For recent progress on this problem,
we refer to the articles of Forstnerič and Wold [18,19] and the references therein. In partic-
ular, the following result is proved in [18]: Let M be a compact bordered Riemann surface
with nonempty boundary bM . If M admits a (nonproper) holomorphic embedding into C

2,
then its interior M̊ = M\bM admits a proper holomorphic embedding into C

2. The same
problem makes sense for conformal minimal embeddings and it naturally appears as a first
approach to Problem 1.3.

Problem 1.4 Let M be a compact bordered Riemann surface with nonempty boundary bM .
Assume that M admits a conformal minimal embedding M ↪→ R

4 of class C 1(M). Does
the interior M̊ admit a proper conformal minimal embedding into R

4?

It was proved in [19] that every circular domain in the Riemann sphereCP1 (possibly infi-
nitely connected) admits a proper holomorphic embedding intoC2, hence a proper conformal
minimal embedding into R

4.
The constructions in [18,19] use the theory of holomorphic automorphisms of complex

Euclidean spaces. After exposing and sending to infinity a point in each boundary component
of M , a proper holomorphic embedding M̊ ↪→ C

2 is obtained by successively pushing the
image of the boundary bM to infinity by holomorphic automorphisms of C2. Such approach
does not seem viable for conformal minimal embeddings since this class of maps is only
preserved under rigid transformations of Rn . It is therefore a challenging problem to find
suitable methods that could work for conformal minimal embeddings.

On the other hand, there are no topological obstructions to these questions since Alarcón
and López [7] proved that every open orientable surface admits a smooth proper embedding
in C

2 whose image is a complex curve. For bordered orientable surfaces of finite topology
this was shown earlier by Černe and Forstnerič [10].
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4 A. Alarcón et al.

The results in this paper, as well as the methods used in their proofs, are influenced by the
recent work [3] of the first two named authors who proved results analogous to Theorems
1.1 and 1.2 for a certain class of directed holomorphic immersions (including null curves)
of Riemann surfaces into C

n , n ≥ 3. A null curve M → C
n is a holomorphic immersion

whose derivative lies in the punctured null quadric A∗ = A\{0} ⊂ C
n ; see (2.2). The real

part of a null curve is a conformal minimal immersion M → R
n . (Obviously, the real part

of an embedded null curve is not necessarily embedded.) These techniques exploit the close
connection betweenminimal surfaces inRn andmodern Oka theory in complex analysis. The
most relevant point for the global approximation results (in particular, Theorems 1.1, 1.2 and
5.3) is that the punctured null quadricA∗ is anOkamanifold. (The simplest description of this
class of complex manifolds can be found in Lárusson’s AMS Notices article [24]. Roughly
speaking, maps M → X from any Stein manifold M (in particular, from any open Riemann
surface) to an Oka manifold X satisfy all forms of Oka principle. Recent expository articles
on this subject are [16,17]; a more comprehensive treatment can be found in the monograph
[15].) On the other hand, local results which pertain to properties of conformal minimal
immersions on compact bordered Riemann surfaces, such as Theorem 3.1 (the structure
theorem) and Theorem 4.1 (the general position theorem), do not require thatA∗ is Oka. This
dichotomy has already been pointed out in [3].

The proofs of our main results follow the pattern that has been established in [3]. We
exhaust the Riemann surface M by an increasing sequence of compact, smoothly bounded,
Runge domains M1 ⊂ M2 ⊂ M3 ⊂ · · · such that for every j ∈ N, Mj+1 deformation
retracts either onto Mj (the so called noncritical case), or onto Mj ∪ C j where C j is a
smooth embedded arc inM\Mj attachedwith endpoints toMj (the critical case).We proceed
recursively. Assume inductively that we have already found a conformal minimal immersion
(or embedding) u j : Mj → R

n on a neighborhood of Mj for some j ∈ N. (The initial set
M1 is chosen to be a small neighborhood of the compact set K ⊂ M on which we wish
to approximate an initially given conformal minimal immersion or embedding.) We embed
its derivative ∂u j into a period dominating holomorphic spray of maps into the punctured
null quadric A∗ (see Lemma 3.2). Since A∗ is an Oka manifold, we can approximate this
spray by a spray defined on a neighborhood of Mj+1. (In the noncritical case, this is a
direct application of the Oka property. The critical case requires additional work, using
generalized conformal minimal immersions on admissible sets, see Definitions 5.1 and 5.2.
When extending u j to the arcC j , wemust ensure the correct value of the integral

∫
C j

	(∂u j ).)
The period domination property ensures that the new spray still contains an element with
vanishing real periods on all closed curves in Mj+1, and hence it integrates to a conformal
minimal immersion u j+1 : Mj+1 → R

n . If n ≥ 5, we can furthermore arrange that u j+1

is an embedding by using a general position argument (see Theorem 4.1), similar to the
one obtained in [3, Theorem 2.4] for directed holomorphic immersions M → C

n . If the
approximations are sufficiently close at every step, then the sequence (u j ) j∈N converges to
a conformal minimal immersion u = lim j→∞ u j → R

n (embedding if n ≥ 5). The proof of
Theorem 1.2 (concerning the existence of proper conformal minimal embeddings M → R

n

for n ≥ 5) proceeds similarly, but uses a more precise version of Mergelyan’s approximation
with the control of some of the component functions; see Lemma 5.6.

A fewwords concerning the organization of the paper. In Sect. 2,we collect the preliminary
material and introduce the relevant definitions. In Sect. 3,we prove somebasic local properties
of the space of conformal minimal immersions of bordered Riemann surfaces to R

n ; cf.
Theorem 3.1. In Sect. 4, we prove the special case of Theorem 1.1 for bordered Riemann
surfaces (cf. Theorem 4.1). In Sect. 5, we prove a Mergelyan type approximation theorem
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for conformal minimal immersions of open Riemann surfaces into R
n for any n ≥ 3; see

Theorem 5.3. By combining all these results, we then prove Theorem 1.1 in Sect. 6 (cf.
Theorem 6.1) and Theorem 1.2 in Sect. 7 (cf. Theorem 7.1).

2 Notation and preliminaries

Let n ≥ 3 be a natural number, and let M be an open Riemann surface. An immersion
u = (u1, u2, . . . , un) : M → R

n is conformal (angle preserving) if and only if, in any local
holomorphic coordinate z = x+ ı y on M , the partial derivatives ux = (u1,x , . . . , un,x ) ∈ R

n

and uy = (u1,y, . . . , un,y) ∈ R
n have the same Euclidean length and are orthogonal:

|ux | = |uy | > 0, ux · uy = 0. (2.1)

Equivalently, ux ± ıuy ∈ C
n\{0} are null vectors, i.e., they belong to the null quadric

A = {
z = (z1, z2, . . . , zn) ∈ C

n : z21 + z22 + · · · + z2n = 0
}
. (2.2)

Since A is defined by a homogeneous quadratic holomorphic equation and is smooth
away from the origin, the punctured null quadric A∗ = A\{0} = Areg is an Oka manifold
(see Example 4.4 in [3, p. 743]). This means that:

Remark 2.1 Maps M → A∗ from any Stein manifold (in particular, from any open Riemann
surface) satisfy all forms of the Oka principle [15, Theorem 5.4.4].

The exterior derivative on M splits into the sum d = ∂ + ∂ of the (1, 0)-part ∂ and the
(0, 1)-part ∂ . In any local holomorphic coordinate z = x + ı y on M we have

2∂u = (ux − ıuy)dz, 2∂u = (ux + ıuy)dz̄. (2.3)

Hence (2.1) shows that u is conformal if and only if the differential ∂u = (∂u1, . . . , ∂un)
satisfies the nullity condition

(∂u1)
2 + (∂u2)

2 + · · · + (∂un)
2 = 0. (2.4)

Assume now that M is an open Riemann surface and u : M → R
n is a conformal immer-

sion. It is classical (cf. Osserman [31]) that �u = 2μH, where H : M → R
n is the mean

curvature vector of u andμ > 0 is a positive function. (In local isothermal coordinates x+ ı y
on M we have μ = ||ux ||2 = ||uy ||2.) Hence u is minimal (H = 0) if and only if it is har-
monic (�u = 0). If v is any local harmonic conjugate of u on M , then the Cauchy-Riemann
equations imply that

∂(u + ıv) = 2∂u = 2ı ∂v.

In particular, the differential ∂u of any conformal minimal immersion is a C
n-valued holo-

morphic 1-form satisfying (2.4).
The conjugate differential of a smooth map u : M → R

n is defined by

dcu = ı(∂u − ∂u) = 2�(∂u).

We have that

2∂u = du + ıdcu, ddcu = 2ı ∂∂u = �u· dx ∧ dy.

Thus u is harmonic if and only if dcu is a closed vector valued 1-form on M , and dcu = dv

holds for any local harmonic conjugate v of u.
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6 A. Alarcón et al.

The flux map of a harmonic map u : M → R
n is the group homomorphism

Fluxu : H1(M;Z) → R
n given by

Fluxu([C]) =
∫

C
dcu, [C] ∈ H1(M;Z). (2.5)

The integral on the right hand side is independent of the choice of path in a given homology
class, and we shall write Fluxu(C) for Fluxu([C]) in the sequel.

Fix a nowhere vanishing holomorphic 1-form θ on M . (Such exists by the Oka-Grauert
principle, cf. Theorem 5.3.1 in [15, p. 190].) It follows from (2.4) that

2∂u = f θ (2.6)

where f = ( f1, . . . , fn) : M → A∗ is a holomorphic map satisfying
∫

C
	( f θ) =

∫

C
du = 0 for any closed curve C in M.

Conversely, associated to any holomorphicmap f : M → C
n is the period homomorphism

P( f ) : H1(M;Z) → C
n defined on any closed curve C ⊂ M by

P( f )(C) =
∫

C
f θ.

The map f corresponds to a conformal minimal immersion u : M → R
n as in (2.6) if and

only if f (M) ⊂ A∗ and 	(P( f )) = 0; in this case, u(x) = ∫ x 	( f θ) (x ∈ M) and

Fluxu = �(P( f )) : H1(M;Z) → R
n . (2.7)

In view of Remark 2.1, the above discussion connects the theory of minimal surfaces in
R
n to the theory of Oka manifolds. For the latter, see the expository articles [16,17] and the

monograph [15].
Next, we introduce the mapping spaces that will be used in the paper.
If M is an open Riemann surface, then O(M) is the algebra of holomorphic functions

M → C, O(M, X) is the space of holomorphic mappings M → X to a complex manifold
X , and CMI(M,Rn) is the set of conformal minimal immersions M → R

n . These spaces
are endowed with the compact-open topology.

If K is a compact subset of M , then O(K ) denotes the set of all holomorphic functions
on open neighborhoods of K in M (in the sense of germs on K ). A compact set K ⊂ M is
said to be O(M)-convex if K equals its holomorphically convex hull

K̂ = {x ∈ M : | f (x)| ≤ sup
K

| f | ∀ f ∈ O(M)}.

If M is an open Riemann surface, then by Runge’s theorem K = K̂ if and only if M\K does
not contain any relatively compact connected components, and this holds precisely when
every function f ∈ O(K ) is the uniform limit on K of functions in O(M); for this reason,
such K is also called a Runge set in M . (See e.g. [23] for these classical results.)

Assume now that M is a compact bordered Riemann surface, i.e., a compact connected
Riemann surface with smooth boundary ∅ �= bM ⊂ M and interior M̊ = M\bM . Let
g ≥ 0 be the genus of M and m ≥ 1 the number of its boundary components of M . The first
homology group H1(M;Z) is then a free abelian group on l = 2g+m−1 generators whose
basis is given by smoothly embedded loops γ1, . . . , γl : S1 → M̊ that only meet at a chosen
base point p ∈ M̊ . (Here, S1 denotes the circle.) Let C j = γ j (S

1) ⊂ M denote the trace of
γ j . The union C = ⋃l

j=1 C j is then a wedge of l circles with vertex p.
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Embedded minimal surfaces in R
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Given r ∈ Z+, we denote by A r (M) the space of all functions M → C of class C r (M)

that are holomorphic in M̊ . More generally, for any complex manifold X we let A r (M, X)

denote the space of maps M → X of class C r which are holomorphic in M̊ . We write
A 0(M) = A (M) and A 0(M, X) = A (M, X). Note that A r (M,Cn) is a complex Banach
space, and for any complex manifold X the space A r (M, X) is a complex Banach manifold
modeled on A r (M,Cn) with n = dim X (see [14, Theorem 1.1]).

For any r ∈ N we denote by CMIr (M,Rn) the set of all conformal minimal immersions
M → R

n of class C r (M). More precisely, an immersion F : M → R
n of class C r belongs

to CMIr (M,Rn) if and only if ∂F is a (1, 0)-form of class C r−1(M) that has range in the
punctured null quadric A∗ (2.2) and is holomorphic in the interior M̊ = M\∂M . We write
CMI1(M,Rn) = CMI(M,Rn).

A compact bordered Riemann surface M can be considered as a smoothly bounded com-
pact domain in an open Riemann surface R. It is classical that each function in A r (M) can
be approximated in the C r (M) topology by functions in O(M). The same is true for maps
to an arbitrary complex manifold or complex space (see [11, Theorem 5.1]).

The following notions will play an important role in our analysis.

Definition 2.2 Let M be a connected open or bordered Riemann surface, let θ be a nowhere
vanishing holomorphic 1-form on M , and let A be the null quadric (2.2).

• Aholomorphic map f : M → A∗ is said to be nonflat if the image f (M) is not contained
in any complex rayCν ⊂ A of the null quadric.Aconformalminimal immersionu : M →
R
n is nonflat if the map f = 2∂u/θ : M → A∗ is nonflat, or equivalently, if the image

u(M) is not contained in an affine plane.
• A holomorphic map f : M → A∗ is nondegenerate if the image f (M) ⊂ A∗ is not

contained in any linear complex hyperplane of Cn . A conformal minimal immersion
u : M → R

n is nondegenerate if the map f = 2∂u/θ : M → A∗ is.
• A conformal minimal immersion u : M → R

n is full if the image u(M) is not contained
in an affine hyperplane.

For a conformal minimal immersion M → R
3, nonflat, full, and nondegenerate are

equivalent notions. However, in dimensions n > 3 we have

Nondegenerate �⇒ Full �⇒ Nonflat , (2.8)

but the converses are not true (see [31]).
If M is an open Riemann surface, we denote by CMI∗(M,Rn) (resp. CMInf (M,Rn) the

subset of CMI(M,Rn) consisting of all immersions which are nondegenerate (resp. nonflat)
on every connected component of M . By (2.8), we have

CMI∗(M,Rn) ⊂ CMInf (M,Rn).

The analogous notation CMIr∗(M,Rn) ⊂ CMIrnf (M,Rn) ⊂ CMIr (M,Rn) is used for a com-
pact bordered Riemann surface M and r ∈ N. Note that CMIr∗(M,Rn) and CMIrnf (M,Rn)

are open subsets of CMIr (M,Rn).
Since the tangent space TzA is the kernel at z of the (1, 0)-form

∑n
j=1 z j dz j , we have

TzA = TwA for z, w ∈ C
n\{0} if and only if z and w are colinear. This implies

Lemma 2.3 A holomorphic map f : M → A∗ is nonflat if and only if the linear span of the
tangent spaces T f (x)A over all points x ∈ M equals Cn.
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8 A. Alarcón et al.

Remark 2.4 The second condition inLemma2.3wasused as the definition of a nondegenerate
map in [3, Definition 2.2, p. 736]. This property enables the construction of period dominating
sprays of holomorphic maps M → A∗ with the given core map f (cf. Lemma 3.2). Here, we
revert to the standard terminology used in minimal surface theory as given by Definition 2.2.

3 Conformal minimal immersions of bordered Riemann surfaces

The following result gives some basic local properties of the space of conformal minimal
immersions of a bordered Riemann surface toRn . It is analogous to Theorem 2.3 in [3] where
similar properties were proved for certain classes of directed holomorphic immersions; in
particular, for null holomorphic immersions M → C

n for any n ≥ 3.

Theorem 3.1 Let M be a compact bordered Riemann surface with nonempty boundary bM,
and let n ≥ 3 and r ≥ 1 be integers.

(a) Every conformal minimal immersion u ∈ CMIr (M,Rn) can be approximated in the
C r (M) topology by nondegenerate conformal minimal immersions ũ ∈ CMIr∗(M,Rn)

satisfying Fluxu = Fluxũ .
(b) Each of the spacesCMIr∗(M,Rn) andCMIrnf (M,Rn) is a real analytic Banach manifold

with the natural C r (M) topology.
(c) If M is a smoothly bounded compact domain in a Riemann surface R, then every u ∈

CMIr (M,Rn) can be appproximated in the C r (M) topology by conformal minimal
immersions defined on open neighborhoods of M in R.

Proof Fix a nowhere vanishing holomorphic 1-form θ on M . Choose a basis {γ j }lj=1 of the
homology group H1(M;Z) and denote by

P = (P1, . . . , Pl) : A (M,Cn) → (Cn)l

the period map whose j-th component, applied to f ∈ A (M,Cn), equals

Pj ( f ) =
∫

γ j

f θ =
∫ 1

0
f (γ j (t)) θ(γ j (t), γ̇ j (t)) dt ∈ C

n . (3.1)

Proof of (a) For simplicity of notation we assume that r = 1; the same proof applies for any
r ∈ N.

Let u : M → R
n be a degenerate conformal minimal immersion. The map f =

2∂u/θ : M → A∗ is continuous on M and holomorphic in M̊ , and the linear span of
f (M) is a k-dimensional linear complex subspace � ⊂ A, 1 ≤ k < n. Fix distinct points
{p1, . . . , pk, q1, . . . , qn−k} ∈ M such that { f (p1), . . . , f (pk)} is a basis of �. Choose a
nonconstant function h ∈ A (M) such that h(pi ) = 0 for all i = 1, . . . , k, and h(q j ) = 1 for
all j = 1, . . . , n − k. Choose a holomorphic vector field V on C

n tangential to A such that
{ f (p1), . . . , f (pk), V ( f (q1)), . . . , V ( f (qn−k))} is a basis of Cn . Let t �→ φ(t, z) denote
the flow of V for small complex values of time t , with φ(0, z) = z. For any g ∈ A (M) near
the zero function we define the map 
(g) ∈ A (M,A∗) by


(g)(x) = φ(g(x)h(x), f (x)), x ∈ M.

Clearly 
(0) = f . Consider the holomorphic map

A (M) � g �−→ P(
(g)) ∈ (Cn)l .
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Embedded minimal surfaces in R
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Since the space A (M) is infinite dimensional, there is a function g ∈ A (M)\{0} arbi-
trarily close to the zero function such that P(
(g)) = P(
(0)) = P( f ); in particular,
	P(
(g)) = 0. For such g, the map f̃ = 
(g) : M → A∗ integrates to a conformal mini-
mal immersion ũ(x) = u(p) + ∫ x

p 	( f̃ θ) that is close to u and satisfies Fluxu = Fluxũ .
For a generic choice of points q ′

j ∈ M near q j , j = 1, . . . , n − k, we have that
g(q ′

j )h(q ′
j ) �= 0 and { f (p1), . . . , f (pk), V ( f (q ′

1)), . . . , V ( f (q ′
n−k))} is a basis of C

n .

Hence, { f (p1), . . . , f (pk), f̃ (q ′
1), . . . , f̃ (q ′

n−k)} is a basis of Cn provided that g(q ′
j ) ∈ C

∗
is close enough to 0 for every j = 1, . . . , n − k. Since g(pi )h(pi ) = 0, we also have that
f̃ (pi ) = f (pi ) for i = 1, . . . , k, and f̃ is nondegenerate. This proves part (a).

In the proof of part (b), we shall need the following version of [3, Lemma 5.1].

Lemma 3.2 Let r ∈ Z+, and let f ∈ A r (M,A∗) be a nonflat map. There exist an open
neighborhood U of the origin in the Euclidean space CN for some N ∈ N and a map

U × M � (ζ, x) �−→ 
 f (ζ, x) ∈ A∗

of class A r (U × M,A∗) such that 
 f (0, · ) = f and the period map U � ζ �→
P(
 f (ζ, · )) ∈ (Cn)l (3.1) is submersive at ζ = 0. Furthermore, there is a neighborhood V
of f in A r (M,A∗) such that the map V � h �→ 
h can be chosen holomorphic in h.

The cited result [3, Lemma 5.1] is stated for the case when P( f ) = 0, r = 0, and
f : M → A∗ is nondegenerate as opposed to nonflat, the latter being a weaker condition
when n > 3; see (2.8). (In fact, [3, Lemma 5.1] applies to more general conical subvarieties
of Cn .) However, the proof given there applies in the present situation since it only uses the
condition that the linear span of the tangent spaces T f (x)A over all x ∈ M equals Cn . By
Lemma 2.3, this holds if and only if the map f : M → A∗ is nonflat. See also Remark 2.4.

A holomorphic family of maps 
 f (ζ, · ) : M → A∗ (ζ ∈ U ⊂ C
N ) in Lemma 3.2 is

called a period dominating spray with core 
 f (0, · ) = f and with values in A∗. In [3,
Proof of Lemma 5.1] it was shown that there is a spray with these properties given by


 f (ζ, x) = 
(ζ, x, f (x)) ∈ A∗, (3.2)

where 
 : U × M × A → A is a holomorphic map of the form


(ζ, x, z) = φ1
ζ1g1(x) ◦ · · · ◦ φN

ζN gN (x)(z) ∈ A, (3.3)

where z ∈ A, x ∈ M , ζ = (ζ1, . . . , ζN ) ∈ U ⊂ C
N , g1, . . . , gN are holomorphic functions

on M , and φ
j
t is the flow of a holomorphic vector field Vj on C

n that is tangential to A.

Proof of (b) By [14, Theorem 1.1], the space A r−1(M,A∗) is a complex Banach manifold
modeled on the complex Banach space A r−1(M,Cn−1) (since dimA∗ = n − 1). Set

A r−1
0 (M,A∗) = { f ∈ A r−1(M,A∗) : 	(P( f )) = 0},

where P : A r−1(M,Cn) → (Cn)l is the (holomorphic) period map (3.1). LetA r−1
0,∗ (M,A∗)

denote the open subset ofA r−1
0 (M,A∗) consisting of all nondegenerate maps (see Definition

2.2). Since nondegenerate maps are nonflat, Lemma 3.2 implies that the differential dPf0

of the restricted period map P : A r−1(M,A∗) → (Cn)l at any point f0 ∈ A r−1
0,∗ (M,A∗)

has maximal rank equal to ln. By the implicit function theorem, it follows that f0 admits
an open neighborhood � ⊂ A r−1(M,A∗) such � ∩ A r−1

0 (M,A∗) = � ∩ A r−1
0,∗ (M,A∗)

is a real analytic Banach submanifold of � which is parametrized by the kernel of the
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10 A. Alarcón et al.

real part 	(dPf0) of the differential of P at f0; this is a real codimension ln subspace
of the complex Banach space A r−1(M,Cn−1) (the tangent space of the complex Banach
manifold A r−1(M,A∗)). This shows that A r−1

0,∗ (M,A∗) is a real analytic Banach manifold.
The integration x �→ v + ∫ x

p 	( f θ) (x ∈ M), with an arbitrary choice of the initial value
v ∈ R

n at a chosen base point p ∈ M , provides an isomorphismbetween theBanachmanifold
A r−1

0,∗ (M,A∗) × R
n and the space CMIr∗(M,Rn), so the latter is also a Banach manifold.

The same argument applies to the space CMIrnf (M,Rn) of nonflat maps. This completes the
proof of part (b).

Proof of (c) Without loss of generality, we may assume that M is connected. Let u ∈
CMIr (M,Rn). By part (a) we may assume that u is nondegenerate. Write 2∂u = f θ , where
f : M → A∗ is a nondegenerate holomorphic map. Let 
 f be a period dominating spray
of conformal minimal immersions with the core f , furnished by Lemma 3.2. By [12, Theo-
rem 1.2], we can approximate f uniformly on M by holomorphic maps f̃ : V → A∗ defined
on an open neighborhood V of M in R. The associated spray 
 f̃ is then defined and holo-

morphic on a neighborhood Ũ × Ṽ ⊂ C
N ×R of {0}×M . If f̃ is sufficiently uniformly close

to f on M , then the domain and the range of the period map P(
 f̃ ) are so close to those of

P(
 f ) that the range of P(
 f̃ ) contains the point P( f ) ∈ C
ln . (Note that the components of

P( f ) are purely imaginary since f corresponds to a conformal minimal immersion.) Hence
f̃ can be approximated in C r−1(M) by a holomorphic map h ∈ O(W,A∗) on a connected
open neighborhood W ⊂ R of M satisfying P(h) = P( f ); in particular, 	(P(h)) = 0. The
integral ũ(x) = u(p)+∫ x

p 	(h θ) is then a conformal minimal immersion in a neighborhood
of M in R which approximates u in C r (M,Rn). ��

4 Desingularizing conformal minimal immersions

In this section we prove the following general position theorem (a special case of Theorem
1.1) for conformal minimal immersions of bordered Riemann surfaces.

Theorem 4.1 Let M be a compact bordered Riemann surface and let n ≥ 5 and r ≥ 1 be
integers. Every conformal minimal immersion u ∈ CMIr (M,Rn) can be approximated arbi-
trarily closely in the C r (M) topology by a conformal minimal embedding ũ ∈ CMIr (M,Rn)

satisfying Fluxũ = Fluxu.

Since the set of embeddings M → R
n is clearly open in the set of immersions of class

C r (M) for any r ≥ 1 and CMIr (M,Rn) is a closed subset of the Banach space C r (M,Rn)

(hence a Baire space), we immediately get

Corollary 4.2 Let M be a compact bordered Riemann surface. For every pair of integers
n ≥ 5 and r ≥ 1 the set of conformal minimal embeddings M ↪→ R

n of class C r (M) is
residual (of the second category) in the Baire space CMIr (M,Rn).

Proof of Theorem 4.1 In view of Theorem 3.1 (parts a, c), we may assume that M is a
smoothly bounded domain in an open Riemann surface R and u is a nondegenerate (see
Definition 2.2) conformal minimal immersion in an open neighborhood of M in R.

We associate to u the difference map δu : M × M → R
n defined by

δu(x, y) = u(y) − u(x), x, y ∈ M.
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Clearly, u is injective if and only if (δu)−1(0) = DM := {(x, x) : x ∈ M}. Since u is an
immersion, it is locally injective, and hence there is an open neighborhood U ⊂ M × M
of the diagonal DM such that δu does not assume the value 0 ∈ R

n on U\DM . To prove
the theorem, it suffices to find arbitrarily close to u another conformal minimal immersion
ũ : M → R

n whose difference map δũ is transverse to the origin 0 ∈ R
n on M × M\U .

Since dimR M × M = 4 < n, this will imply that δũ does not assume the value zero on
M × M\U , so ũ(x) �= ũ(y) if (x, y) ∈ M × M\U . If (x, y) ∈ U\DM then ũ(x) �= ũ(y)
provided that ũ is close enough to u, so ũ is an embedding.

To find such ũ, we shall construct a neighborhood � ⊂ R
N of the origin in a Euclidean

space and a real analytic map H : � × M → R
n satisfying the following properties:

(a) H(0, · ) = u,
(b) H(ξ, · ) : M → R

n is a conformal minimal immersion of class C r (M) for every ξ ∈ �,
and

(c) the difference map δH : � × M × M → R
n , defined by

δH(ξ, x, y) = H(ξ, y) − H(ξ, x), ξ ∈ �, x, y ∈ M, (4.1)

is a submersive family on M × M\U , in the sense that the partial differential

dξ |ξ=0 δH(ξ, x, y) : RN → R
n (4.2)

is surjective for every (x, y) ∈ M × M\U .

Assume for a moment that such H exists. By compactness of M × M\U , the partial
differential dξ (δH) (4.2) is surjective for all ξ in a neighborhood�′ ⊂ � of the origin inRN .
Hence the map δH : M × M\U → R

n is transverse to any submanifold of Rn , in particular,
to the origin 0 ∈ R

n . The standard transversality argument due to Abraham [1] (a reduction
to Sard’s theorem; see also [15, Section 7.8]) shows that for a generic choice of ξ ∈ �′, the
difference map δH(ξ, · , · ) is transverse to 0 ∈ R

n on M × M\U , and hence it omits the
value 0 by dimension reasons. By choosing ξ sufficiently close to 0 ∈ R

N we thus obtain
a conformal minimal embedding ũ = H(ξ, · ) : M → R

n close to u, thereby proving the
theorem.

We construct a spray H of conformal minimal immersions, satisfying properties (a)–(c)
above, by suitably modifying the proof of the corresponding result for directed holomorphic
immersions in [3, Theorem 2.4]. ��

Fix a nowhere vanishing holomorphic 1-form θ on M and write 2∂u = f θ , where
f : M → A∗ is a nondegenerate holomorphic map (see Definition 2.2). The main step
in the construction of the spray H is furnished by the following lemma.

Lemma 4.3 (Assumptions as above) For every (p, q) ∈ M × M\DM there exists a spray
H = H (p,q)(ξ, · ) : M → R

n of conformal minimal immersions of class C r (M), depending
analytically on the parameter ξ in a neighborhood of the origin in R

n, satisfying properties
(a) and (b) above, but with (c) replaced by the following property:

(c’) the partial differential dξ |ξ=0 δH(ξ, p, q) : Rn → R
n is an isomorphism.

Proof Let � ⊂ M be a smooth embedded arc connecting p to q . Pick a point p0 ∈ M\�
and closed loops C1, . . . ,Cl ⊂ M\� based at p0 and forming a Runge basis of H1(M;Z).
Set C = ⋃l

j=1 C j . Let γ j : [0, 1] → C j ( j = 1, . . . , l) and λ : [0, 1] → � be smooth
parametrizations of the respective curves.

Since u is nonflat, Lemma 2.3 and the Cartan extension theorem furnish holomorphic
vector fields V1, . . . , Vn on C

n , tangential to A, and points x1, . . . , xn ∈ �\{p, q} such that,
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12 A. Alarcón et al.

setting zi = f (xi ) ∈ A∗, the vectors Vi (zi ) for i = 1, . . . , n span C
n . Let ti ∈ (0, 1) be such

that λ(ti ) = xi . Let φi
t denote the flow of Vi . Choose smooth functions hi : C ∪ � → R+

(i = 1, . . . , n) that vanish at the endpoints p, q of � and on the curves C ; their values on �

will be chosen later. Let ζ = (ζ1, . . . , ζn) ∈ C
n . Consider the map

ψ f (ζ, x) = φ1
ζ1h1(x) ◦ · · · ◦ φn

ζnhn(x)
( f (x)) ∈ A∗, x ∈ C ∪ �.

Clearly it is holomorphic in the variable ζ ∈ C
n near the origin, ψ f (0, · ) = f , and

ψ f (ζ, x) = f (x) if x ∈ C ∪ {p, q} (since hi = 0 on C ∪ {p, q}). We have that

∂ψ f (ζ, x)

∂ζi

∣
∣
∣
∣
ζ=0

= hi (x) Vi ( f (x)), x ∈ C ∪ �, i = 1, . . . , n.

By choosing the function hi to have support concentrated near the point xi = λ(ti ) ∈ �, we
can arrange that for every i = 1, . . . , n we have that

∫ 1

0
hi (λ(t)) Vi ( f (λ(t))) θ(λ(t), λ̇(t)) dt ≈ Vi (zi ) θ(λ(ti ), λ̇(ti )) ∈ C

n .

Assuming as we may that the above approximations are close enough, the vectors on the left
hand side of the above display form a basis of Cn .

Fix a number ε > 0; its precise value will be chosen later. We apply Mergelyan’s theorem
to find holomorphic functions gi ∈ O(M) such that

sup
C∪�

|gi − hi | < ε for i = 1, . . . , n.

Consider the holomorphic maps

�(ζ, x, z) = φ1
ζ1g1(x) ◦ · · · ◦ φn

ζngn(x)
(z) ∈ A,

� f (ζ, x) = �(ζ, x, f (x)) ∈ A, (4.3)

where x ∈ M , z ∈ A, and ζ is near the origin in C
n . Note that � f (0, · ) = f . If the

approximations of hi by gi are close enough, then the vectors

∂

∂ζi

∣
∣
∣
∣
ζ=0

∫ 1

0
� f (ζ, λ(t)) θ(λ(t), λ̇(t)) dt =

∫ 1

0
gi (λ(t)) Vi ( f (λ(t))) θ(λ(t), λ̇(t)) dt

(4.4)
in Cn are so close to the corresponding vectors Vi (zi ) θ(λ(ti ), λ̇(ti )) (i = 1, . . . , n) that they
are C-linearly independent.

The Cn-valued 1-form � f (ζ, · ) θ need not have exact real part, so it may not correspond
to the differential of a conformal minimal immersion. We shall now correct this.

From the Taylor expansion of the flow of a vector field we see that

� f (ζ, x) = f (x) +
n∑

i=1

ζi gi (x)Vi ( f (x)) + o(|ζ |).

Since |gi | < ε on C , the periods over the loops C j can be estimated by
∣
∣
∣
∣
∣

∫

C j

(
� f (ζ, · ) − f

)
θ

∣
∣
∣
∣
∣
≤ η0ε|ζ | (4.5)

for some constant η0 > 0 and for all sufficiently small |ζ |.
Lemma 3.2 gives holomorphic maps
(̃ζ , x, z) and
 f (̃ζ , x) = 
(̃ζ , x, f (x)) (see (3.2)

and (3.3)), with the parameter ζ̃ near 0 ∈ C
Ñ for some Ñ ∈ N and x ∈ M , such that
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(0, x, z) = z and the differential of the associated period map ζ̃ �→ P(
 f (̃ζ , · )) ∈ C
ln

(see (3.1)) at the point ζ̃ = 0 has maximal rank equal to ln. The same is true if the map
f ∈ A (M,A∗) varies locally near the given initial map. In particular, we can replace f by
the spray � f (ζ, · ) and consider the composed map

C
Ñ × C

n × M � (̃ζ , ζ, x) �−→ 
(̃ζ , x, � f (ζ, x)) ∈ A∗

which is defined and holomorphic for (̃ζ , ζ ) near the origin in C
Ñ × C

n and for x ∈ M .
The implicit function theorem furnishes a C

Ñ -valued holomorphic map ζ̃ = ρ(ζ ) near
ζ = 0 ∈ C

n , with ρ(0) = 0 ∈ C
Ñ , such that the Cn-valued holomorphic 1-form on M given

by

� f (ζ, x, v) = 
(ρ(ζ ), x, � f (ζ, x)) θ(x, v), x ∈ M, v ∈ TxM

satisfies the conditions
∫

C j

� f (ζ, · , · ) =
∫

C j

f θ, j = 1, . . . , l

for every ζ ∈ C
n near the origin. In particular, the real parts of these periods vanish. (Themap

ρ = (ρ1, . . . , ρn) also depends on f , but we suppressed this dependence in our notation.) It
follows that the integral

Hu(ζ, x) = u(p0) +
∫ x

p0
	(� f (ζ, · , · )) = u(p0) +

∫ 1

0
	(� f (ζ, γ (t), γ̇ (t))) dt (4.6)

is independent of the choice of the path from the initial point p0 ∈ M to the variable point
x ∈ M . Clearly Hu is analytic, Hu(0, · ) = u, Hu(ζ, · ) : M → R

n is a conformal minimal
immersion for every ζ ∈ C

n sufficiently close to 0, and the flux homomorphism of Hu(ζ, · )
equals that of u for every fixed ζ . Furthermore, in view of (4.5) we have the estimate

|ρ(ζ )| ≤ η1ε|ζ | (4.7)

for some constant η1 > 0 independent of ε and ζ .
The map 
(̃ζ , x, z), furnished by Lemma 3.2, is obtained by composing flows of certain

holomorphic vector fields Wj on A for the complex times ζ̃ j g̃ j (x), where g̃ j ∈ O(M) and
ζ̃ j ∈ C. (See (3.3).) The Taylor expansion of the flow, together with the estimate (4.7), gives
∣
∣
(ρ(ζ ), x, � f (ζ, x)) − � f (ζ, x)

∣
∣ =

∣
∣
∣
∑

ρ j (ζ )g̃ j (x)Wj (� f (ζ, x)) + o(|ζ |)
∣
∣
∣ ≤ η2ε|ζ |

for some constant η2 > 0 and for all x ∈ M and all ζ near the origin in C
n . Applying this

estimate on the curve � with the endpoints p and q we get that
∣
∣
∣
∣

∫ 1

0
� f (ζ, λ(t), λ̇(t)) dt −

∫ 1

0
� f (ζ, λ(t)) θ(λ(t), λ̇(t)) dt

∣
∣
∣
∣ ≤ η3ε|ζ |

for some constant η3 > 0 independent of ε and ζ . If ε > 0 is chosen small enough, then it
follows that the derivatives

∂

∂ζi

∣
∣
∣
∣
ζ=0

∫ 1

0
� f (ζ, λ(t), λ̇(t)) dt ∈ C

n, i = 1, . . . , n,

are so close to the respective vectors in (4.4) that they areC-linearly independent. This means
that the holomorphic map ζ �→ ∫ 1

0 � f (ζ, λ(t), λ̇(t)) dt ∈ C
n is locally biholomorphic near

ζ = 0. By (4.6), its real part equals
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14 A. Alarcón et al.

∫ 1

0
	(� f (ζ, λ(t), λ̇(t))) dt = Hu(ζ, q) − Hu(ζ, p) = δHu(ζ, p, q).

After a suitable C-linear change of coordinates ζ = ξ + ıη on C
n it follows that the partial

differential ∂
∂ξ

∣
∣
ξ=0δHu(ξ, p, q) : Rn → R

n is an isomorphism. The spray

H (p,q)(ξ, · ) := Hu(ξ, · ) (4.8)

satisfies the conclusion of Lemma 4.3. ��
The spray Hu (4.8), furnished by Lemma 4.3, depends real analytically on u ∈

CMIr∗(M,Rn) in a neighborhood of a given nondegenerate conformal minimal immersion
u0 ∈ CMIr∗(M,Rn). In particular, if u(η, · ) : M → R

n is a family of conformal minimal
immersions depending analytically on a parameter η, then Hu(η,·)(ξ, · ) depends analytically
on (ξ, η). This allows us to compose any finite number of such sprays just as was done in
[3]. We recall this operation for two sprays. Suppose that H = Hu(ξ, · ) and G = Gu(η, · )
are sprays with Hu(0, · ) = Gu(0, · ) = u. The composed spray is defined by

(H�G)u(ξ, η, x) = GHu(ξ,·)(η, x), x ∈ M.

Clearly we have (H�G)u(0, η, · ) = Gu(η, · ) and (H�G)u(ξ, 0, · ) = Hu(ξ, · ). The opera-
tion � extends by induction to finitely many factors and is associative. (This is similar to the
composition of sprays introduced by Gromov [22]; see also [15, p. 246].)

Pick an open neighborhoodU ⊂ M × M of the diagonal DM such thatU ∩ (δu)−1(0) =
DM . Lemma 4.3 furnishes a finite open covering U = {Ui }mi=1 of the compact set M × M\U
and sprays of conformal minimal immersions Hi = Hi (ξ i , · ) : M → R

n , with Hi (0, · ) =
u, where ξ i = (ξ i1, . . . , ξ

i
ki

) ∈ �i ⊂ R
ki , such that the difference map δHi (ξ i , p, q) is

submersive at ξ i = 0 for all (p, q) ∈ Ui . By taking ξ = (ξ1, . . . , ξm) ∈ R
N , with N =∑m

i=1 ki , and setting

H(ξ, x) = (H1�H2� · · · �Hm)(ξ1, . . . , ξm, x)

we obtain a spray satisfying properties (a) and (b) whose difference map δH is submersive
on M × M\U for all ξ ∈ R

N sufficiently near the origin. As explained earlier, a generic
member H(ξ, · ) of this spray (for ξ sufficiently close to 0 ∈ R

N ) is a conformal minimal
embedding M ↪→ R

n . ��

5 Mergelyan’s theorem for conformal minimal immersions to R
n

In this section, we prove a Mergelyan type approximation theorem for conformal minimal
immersions of open Riemann surfaces into R

n for any n ≥ 3; see Theorem 5.3. The special
case n = 3 has been already proved by Alarcón and López [5, Theorem 4.9] by using the
López-Ros transformation for conformal minimal immersionsM → R

3 (see [25]), a tool that
is not available for n ≥ 4. Here we use the more general approach which has been developed
in [3] for approximating holomorphic null curves and more general directed holomorphic
immersions of open Riemann surfaces to C

n .
We begin by introducing a suitable type of sets for the Mergelyan approximation. The

same type of sets have been used in [3] (see Definition 7.1 there) and in several other papers.

Definition 5.1 A compact subset S of an open Riemann surface M is said to be admissible
if S = K ∪ �, where K = ⋃

D j is a union of finitely many pairwise disjoint, compact,
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smoothly bounded domains D j in M and � = ⋃
�i is a union of finitely many pairwise

disjoint smooth arcs or closed curves that intersect K only in their endpoints (or not at all),
and such that their intersections with the boundary bK are transverse.

Note that an admissible set S ⊂ M is Runge in M (i.e., O(M)-convex) if and only if the
inclusion map S ↪→ M induces an injective homomorphism H1(S;Z) ↪→ H1(M;Z) of the
first homology groups. If this holds, then we have the Mergelyan approximation theorem:
Every continuous function f : S = K ∪ � → C that is holomorphic in the interior K̊ of the
compact set K can be approximated, uniformly on S, by functions holomorphic on M . More
generally, if f is of class C r on S for some r ≥ 0, then the approximation can be made in
the C r (S) topology.

Recall that A denotes the null quadric (2.2) and A∗ = A\{0}.
Given an admissible set S = K ∪ � ⊂ M , we denote by O(S,A∗) the set of all smooth

maps S → A∗ which are holomorphic on an unspecified open neighborhood of K (depending
on the map). In accordance with Definition 2.2, we say that a map f ∈ O(S,A∗) is nonflat
if it maps no component of K and no component of � to a ray in A∗. Likewise, we say that
f ∈ O(S,A∗) is nondegenerate if it maps no component of K and no component of � to a
complex hyperplane of Cn . We denote byO∗(S,A∗) the subset ofO(S,A∗) consisting of all
nondegenerate maps.

Fix a nowhere vanishing holomorphic 1-form θ on M . The following notion of a general-
ized conformal minimal immersion emulates the spirit of the concept of marked immersion
[5]. (The same notion has been used in [4, Definition 6.2].)

Definition 5.2 Let M be an open Riemann surface and let S = K ∪� ⊂ M be an admissible
subset (see Definition 5.1). A generalized conformal minimal immersion on S is a pair
(u, f θ), where f ∈ O(S,A∗) and u : S → R

n is a smooth map which is a conformal
minimal immersion on an open neighborhood of K , such that the following properties hold:

• f θ = 2∂u on an open neighborhood of K in M ;
• for any smooth path α in M parametrizing a connected component of � we have

	(α∗( f θ)) = α∗(du) = d(u ◦ α).

A generalized conformal minimal immersion (u, f θ) is said to be nonflat (resp. nondegener-
ate) if the map f ∈ O(S,A∗) is nonflat (resp. nondegenerate) on every connected component
of K and on every connected component of � (see Definition 2.2).

Property (b) shows that a generalized conformal minimal immersion on a curve C ⊂ M
is nothing else than a 1-jet of a conformal immersion along C .

We denote by GCMI(S,Rn) the set of all generalized conformal minimal immersions
S → R

n and by GCMI∗(S,Rn) ⊂ GCMI(S,Rn) the subset consisting of all nondegenerate
ones. We say that (u, f θ) ∈ GCMI(S) can be approximated in the C 1(S) topology by
conformal minimal immersions in CMI(M) if there exists a sequence vi ∈ CMI(M) (i ∈ N)

such that vi |S converges to u|S in the C 0(S) topology and 2∂vi |S converges to f θ |S in the
C 0(S) topology.

Theorem 5.3 (Mergelyan’s theorem for conformal minimal immersions) Assume that M
is an open Riemann surface and that S = K ∪ � is a compact Runge admissible set in M.
Then, every generalized conformal minimal immersion (u, f θ) ∈ GCMI(S,Rn) for n ≥ 3
can be approximated in theC 1(S) topology by nondegenerate conformalminimal immersions
ũ ∈ CMI∗(M,Rn).

Furthermore, given a group homomorphism p : H1(M;Z) → R
n satisfying p(C) =

Fluxu(C) for every closed curve C ⊂ S, we can choose ũ as above such that Fluxũ = p.
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Proof Let ρ : M → R be a smooth strongly subharmonic Morse exhaustion function. We
exhaust M by an increasing sequence M1 ⊂ M2 ⊂ · · · ⊂ ⋃∞

i=1 Mi = M of compact
smoothly bounded domains of the form Mi = {p ∈ M : ρ(p) ≤ ci }, where c1 < c2 < · · ·
is an increasing sequence of regular values of ρ with limi→∞ ci = +∞. Each domain Mi

is therefore a compact bordered Riemann surface, possibly disconnected. We may assume
that ρ has at most one critical point pi in each difference Mi+1\Mi . It then follows that Mi

is Runge in M for every i ∈ N. Finally, since S is Runge, we may assume without loss of
generality that S ⊂ M̊1 and S is a strong deformation retract of M1, hence the inclusion map
S ↪→ M1 induces an isomorphism H1(S;Z) ∼= H1(M1;Z) of the homology groups. ��

We proceed by induction. The basis is given by the following lemma.

Lemma 5.4 Every (u, f θ) ∈ GCMI(S,Rn) for n ≥ 3 can be approximated in the C 1(S)

topology by nondegenerate conformal minimal immersions in CMI∗(M1,R
n).

Proof Since S = K ∪ � is a strong deformation retract of M1, we may assume that S is
connected; the same argument can be applied on any connected component.

By part (a) of Theorem 3.1, and deforming (u, f θ) slightly on �, we may assume that
(u, f θ) ∈ GCMI∗(S,Rn), i.e., it is nondegenerate in the sense of Definition 5.2.

Claim It is possible to approximate f ∈ O∗(S,A∗) as closely as desired uniformly on S by
a holomorphic map f1 : M1 → A∗ such that

∫

C
( f1 − f )θ = 0 for every closed curve C ⊂ S. (5.1)

Assume for a moment that this holds. Since H1(S;Z) ∼= H1(M1;Z) and f θ has no real
periods on S, the same is true for f1 on M1 in view of (5.1). Hence, f1 provides a conformal
minimal immersion u1 ∈ CMI(M1,R

n) by the expression

u1(p) = u(p0) +
∫ p

p0
	( f1θ), p ∈ M1,

where p0 ∈ K is any base point. Furthermore, since S is connected, u1 can be assumed to
be as close as desired to u in the C 1(S) topology provided that the approximation of f by f1
is close enough. In particular, since u is nondegenerate, u1 can be taken in CMI∗(M1,R

n).
This proves Lemma 5.4 provided that the above claim holds.
The construction of a holomorphic map f1 : M1 → A∗ satisfying (5.1) is similar to the

proof of theMergelyan approximation theorem for null holomorphic curves (and other classes
of directed holomorphic immersions) in [3, Theorem 7.2]. The main difference is that the
period vanishing condition in the latter result is now replaced by the condition of matching
the periods of a given map. Here is the outline.

By the assumption, the map f is holomorphic on an open neighborhoodU ⊂ M of K and
is smooth on �. By part (a) of Theorem 3.1, we may assume that f is nondegenerate. Up to a
shrinking ofU around K , we can apply [3, Lemma 5.1] to find a period dominating spray of
smooth maps fw : U ∪ � → A∗ which are holomorphic on U and depend holomorphically
on a parameter w in a ball B ⊂ C

N , with f0 = f . (One deforms f by flows of holomorphic
vector fields on A which generate the tangent space at every point of A∗; see (3.2) and (3.3)
above. The time variables of these flows are holomorphic functions on a neighborhood of S
in M , chosen so as to ensure the period domination property.)

By Mergelyan approximation, we can approximate the map f = f0 uniformly on S
by a map f̃0 which is holomorphic on a small open neighborhood V ⊂ M of the set S.

123

Author's personal copy



Embedded minimal surfaces in R
n 17

(Explicitly, we can use [15, Theorem 3.7.2, p. 81], noticing that our set S is a special case of
the sets S = K0 ∪ E in the cited theorem.) By applying the same flows to f̃0, we get a new
holomorphic spray of maps f̃w : V → A∗ which approximates the initial spray fw uniformly
on S, and uniformly with respect to the parameter w. (This part of the construction can be
done with an arbitrary complex manifold X in place of A∗.)

Since A∗ is an Oka manifold (see Remark 2.1) and S is Runge in M and a deformation
retract of M1, we can apply [15, Theorem 5.4.4, p. 193] (the main result of Oka theory) to
approximate the spray f̃w uniformly on S (and uniformly with respect to the parameterw) by
a holomorphic spray of maps gw : M1 → X . (The parameter set B ⊂ C

N is allowed to shrink
a little. The topological condition on the inclusion S ↪→ M1 is used to get the existence of a
continuous extension of the spray f̃w from S to M1, a necessary condition to apply the Oka
principle.)

If both approximations made above are close enough, then there exists a point w0 ∈ B
close to the origin such that the map gw0 : M1 → A∗ satisfies the period condition (5.1).
(The last argument is as in the proof of Theorem 3.1 c.) Taking this map as our f1 completes
the proof of Lemma 5.4. ��

The following result provides the inductive step in the recursive process.

Lemma 5.5 Assume that p : H1(M;Z) → R
n is a group homomorphism. Let i ∈ N

and let ui ∈ CMI∗(Mi ,R
n) be a nondegenerate conformal minimal immersion such that

Fluxui (C) = p(C) for all closed curve C ⊂ Mi . Then, ui can be approximated in theC 1(Mi )

topology by nondegenerate conformal minimal immersions ui+1 ∈ CMI∗(Mi+1,R
n) satis-

fying Fluxui+1(C) = p(C) for all closed curve C ⊂ Mi+1.

Proof We consider two essentially different cases.

The noncritical case ρ has no critical value in [ci , ci+1]. In this case, there is no change of
topology when passing from Mi to Mi+1, and Mi is a strong deformation retract of Mi+1.
The immersion ui+1 can then be constructed as in the proof of Lemma 5.4.

The critical case ρ has a critical point pi+1 ∈ Mi+1\Mi . By the assumptions on ρ, pi+1 is the
only critical point of ρ on Mi+1\Mi and is a Morse point. Since ρ is strongly subharmonic,
the Morse index of pi+1 is either 0 or 1.

If the Morse index of pi+1 is 0, then a new (simply connected) component of the sublevel
set {ρ ≤ r} appears at pi+1 when r passes the value ρ(pi+1). In this case, we reduce the
proof to the noncritical case by defining ui+1 on this new component as any nondegenerate
conformal minimal immersion.

Assume now that the Morse index of pi+1 is 1. In this case, the change of topology
of the sublevel set {ρ ≤ r} at pi+1 is described by attaching to Mi a smooth arc γ ⊂
M̊i+1\Mi such thatMi ∪γ is a Runge strong deformation retract ofMi+1.We assumewithout
loss of generality that Mi ∪ γ is admissible (see Definition 5.1). Since ui is nondegenerate
and Fluxui (C) = p(C) for all closed curve C ⊂ Mi , we may extend ui to Mi ∪ γ as a
nondegenerate generalized conformal minimal immersion (ûi , f̂iθ) ∈ GCMI∗(Mi ∪ γ,Rn)

such that ûi = ui on Mi and
∫
C �( fiθ) = p(C) for all closed curve C ⊂ Mi ∪ γ . This can

be done as in [4, Lemma 3.4] where the details are given for the case n = 3, but the same
proof works in general. By Lemma 5.4, we can approximate (ûi , f̂iθ) in C 1(Mi ∪ γ ) by a
conformal minimal immersion on an open neighborhood of Mi ∪ γ without changing the
flux. This reduces the proof to the noncritical case considered above. ��

CombiningLemmas 5.4 and 5.5,wemay construct a sequence of nondegenerate conformal
minimal immersions {ui ∈ CMI∗(Mi )}i∈N such that:
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• ui is as close to (u, f θ) as desired in the C 1(S) topology for all i ∈ N.
• ui is as close to ui−1 as desired in the C 1(Mi−1) topology for all i ≥ 2.
• Fluxui (C) = p(C) for all closed curve C ⊂ Mi and all i ∈ N.

If these approximations are close enough, then the limit ũ := limi→∞ ui : M → R
n is a

nondegenerate conformal minimal immersion as close to (u, f θ) in the C 1(S) topology as
desired and satisfying Fluxũ = p. This concludes the proof of Theorem 5.3. ��

The following Mergelyan type result for conformal minimal immersions into R
n with

n − 2 fixed components was essentially proved in [2]. It will play an important role in the
proof of Theorem 1.2 in Sect. 7.

Lemma 5.6 Assume that M is a compact bordered Riemann surface and K is a union of
finitely many pairwise disjoint, smoothly bounded, compact Runge domains in M̊. Assume
that K contains a basis of H1(M;Z) and naturally identify H1(K ;Z) = H1(M;Z). Let
u = (u1, . . . , un) ∈ CMI∗(K ,Rn) be a nondegenerate conformal minimal immersion and
assume that u j extends harmonically to M for all j ≥ 3. Then u can be approximated in
the C 1(K ) topology by nondegenerate conformal minimal immersions ũ = (ũ1, . . . , ũn) ∈
CMI∗(M,Rn) such that Fluxũ = Fluxu and ũ j = u j for all j ≥ 3.

Proof Let θ be a nowhere vanishing holomorphic 1-form on M . As usual, we write f j =
2∂u j/θ ∈ O(K ) for all j and notice that f j ∈ O(M) for all j ≥ 3. Denote by � the
quadratic holomorphic form −(

∑n
j=3( f

j )2)θ2 on M .
Let S = K ∪ � ⊂ M be a Runge connected admissible set (see Definition 5.1) such that

� does not vanish anywhere on �. Choose a nondegenerate generalized conformal minimal
immersion (v, gθ) ∈ GCMI∗(S,Rn) such that

• v = u and g = f on K ,
• v j = u j and g j = f j on S for all j ≥ 3, where v = (v1, . . . , vn) and g = (g1, . . . , gn).

(We refer the reader to [2, Proof of Lemma 3.3] for details on how to find such (v, gθ).)
By the latter condition, (g1)2 + (g2)2 = −∑n

j=3(g
j )2 = �/θ2 on S. Further, since u is

nondegenerate, the functions g1 and g2 are lineraly independent inO(K ). By [2, Lemma 3.3],
(g1, g2) can be uniformly approximated on S by a pair (h1, h2) ⊂ O(M)2 satisfying

• (h1)2 + (h2)2 = �/θ2,
• the 1-form

(
(h1, h2) − (g1, g2)

)
θ is exact on S, and

• the zeros of (h1, h2) on M are those of ( f 1, f 2) on K (in particular, (h1, h2) does not
vanish anywhere on M\K ).

Fix a point p0 ∈ K and set ũ j (p) := u j (p0)+	 ∫ p
p0
h jθ , p ∈ M , j = 1, 2, and ũ j := u j

for all j = 3, . . . , n. If the approximation of (g1, g2) by (h1, h2) is close enough on S, then
it is clear that ũ = (ũ1, . . . , ũn) ∈ CMI∗(M,Rn) satisfies the conclusion of the lemma. ��

6 Approximation by conformal minimal embeddings

In this section, we prove the following more precise version of Theorem 1.1.

Theorem 6.1 Let M be an open Riemann surface and let n ≥ 5 be an integer. Given a
conformal minimal immersion u : M → R

n, a compact Runge set K ⊂ M and a number
ε > 0, there exists a conformal minimal embedding ũ : M → R

n such that supx∈K |ũ(x) −
u(x)| < ε and Flux(ũ) = Flux(u).
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Proof Exhaust M by an increasing sequence M1 ⊂ M2 ⊂ · · · ⊂ ⋃∞
i=1 Mi = M of compact,

smoothly bounded, Runge domains such that K ⊂ M1 and each domain Mi is a compact
bordered Riemann surface.

We proceed by induction.
Theorem 4.1 furnishes a conformal minimal embedding u1 ∈ CMI(M1,R

n) which is as
close as desired to u in the C 1(M1) topology and satisfies Fluxu1(C) = Fluxu(C) for all
closed curve C ⊂ M1. We may further assume by Theorem 3.1 (a) that u1 is nondegenerate,
i.e., u1 ∈ CMI∗(M1,R

n).
Let i ∈ N and assume the existence of a nondegenerate conformal minimal embedding

ui ∈ CMI∗(Mi ,R
n) with Fluxui (C) = Fluxu(C) for all closed curve C ⊂ Mi . Theorem 5.3

ensures that ui can be approximated in the C 1(Mi ) topology by nondegenerate conformal
minimal immersions ui+1 ∈ CMI∗(Mi+1,R

n) with Fluxui+1(C) = Fluxu(C) for all closed
curve C ⊂ Mi+1. Moreover, in view of Theorem 4.1, this approximation can be done by
embeddings.

This process gives a sequence of nondegenerate conformal minimal embeddings {ui ∈
CMI∗(Mi ,R

n)}i∈N such that

• ui is as close to u as desired in the C 1(K ) topology for all i ∈ N.
• ui is as close to ui−1 as desired in the C 1(Mi−1) topology for all i ≥ 2.
• Fluxui (C) = Fluxu(C) for all closed curve C ⊂ Mi and all i ∈ N.

If these approximations are close enough, then the limit ũ = limi→∞ ui : M → R
n is a

nondegenerate conformal minimal embedding satisfying the conclusion of the theorem. (See
for instance [7, Proof of Theorem 4.5] for a similar argument.) ��

7 Construction of proper conformal minimal embeddings

In this section, we prove Theorem 1.2 in the following more precise form.

Theorem 7.1 Let M be an open Riemann surface and let K ⊂ M be a compact smoothly
bounded Runge domain in M. Let u = (u1, . . . , un) : K → R

n be a conformal minimal
immersion on a neighborhood of K , and let p : H1(M;Z) → R

n be a group homomorphism
satisfying p(C) = Fluxu(C) for every closed curve C ⊂ K. Then, for any ε > 0, there
exists a nondegenerate conformal minimal immersion ũ = (ũ1, . . . , ũn) : M → R

n such
that supx∈K |ũ(x) − u(x)| < ε, (ũ1, ũ2) : M → R

2 is proper, and Fluxũ = p. Furthermore,
if n ≥ 5, then the approximating immersions ũ : M → R

n can be taken to be embeddings.

Theorem 7.1 was already proved for n = 3 by Alarcón and López in [5]. Their proof uses
theWeierstrass representation of conformal minimal immersions M → R

3 and hence it does
not generalize to the case n > 3.

Proof Let ρ : M → R be a smooth strongly subharmonic Morse exhaustion function and
exhaust M by an increasing sequence M1 ⊂ M2 ⊂ · · · ⊂ ⋃∞

i=1 Mi = M of compact
smoothly bounded Runge domains of the form Mi = {p ∈ M : ρ(p) ≤ ci }, where c1 <

c2 < · · · is an increasing sequence of regular values of ρ with limi→∞ ci = +∞. Each
domain Mi is a compact bordered Riemann surface, possibly disconnected. Assume that ρ

has at most one critical point pi in each difference Mi+1\Mi . Since K is Runge in M , we
may also assume that M1 = K .

Since K is compact, we may assume up to a translation that max{u1, u2} > 1 on bK .
Further, by Theorem 3.1 (a) we may assume that u is nondegenerate (see Definition 2.2).
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We proceed by induction. The initial immersion is u1 = u ∈ CMI∗(M1,R
n). The induc-

tive step is furnished be the following lemma.

Lemma 7.2 Let i ∈ N and let ui = (u1i , . . . , u
n
i ) ∈ CMI∗(Mi ,R

n) be a nondegenerate
conformal minimal immersion such that

(I) Fluxui (C) = p(C) for all closed curve C ⊂ Mi and
(II) max{u1i , u2i } > i on bMi .

Then, ui can be approximated in the C 1(Mi ) topology by nondegenerate conformal minimal
immersions ui+1 = (u1i+1, . . . , u

n
i+1) ∈ CMI∗(Mi+1,R

n) such that

(i) Fluxui+1(C) = p(C) for all closed curve C ⊂ Mi+1,

(iii) max{u1i+1, u
2
i+1} > i on Mi+1\M̊i , and

(iii) max{u1i+1, u
2
i+1} > i + 1 on bMi+1.

Proof ByTheorem3.1 (c),wemay assume that ui extends as a conformalminimal immersion
to an unspecified open neighborhood of Mi .

We consider two essentially different cases.

The noncritical case Assume that ρ has no critical value in [ci , ci+1].
In this case, there is no change of topology when passing from Mi to Mi+1, and Mi is a

strong deformation retract of Mi+1. Denote by m ∈ N the number of boundary components
of bMi . It follows that Mi+1\M̊i = ⋃m

j=1 A j where the sets A j , j = 1, . . . ,m, are pairwise
disjoint smoothly bounded compact annuli. For each j ∈ {1, . . . ,m} write bA j = α j ∪ β j

withα j ⊂ bMi andβ j ⊂ bMi+1. In viewof condition (II) in the statement of the lemma, there
exists an integer l ≥ 3 such that each α j splits into l compact subarcs α j,k , k ∈ Zl = Z/ lZ,
satisfying the following conditions:

(a1) α j,k and α j,k+1 intersect at a common endpoint p j,k and α j,k ∩ α j,a = ∅ for all
a ∈ Zl\{k − 1, k, k + 1}, for all ( j, k) ∈ I := {1, . . . ,m} × Zl .

(a2)
⋃

k∈Zl
α j,k = α j for all j ∈ {1, . . . ,m}.

(a3) There exist subsets I1, I2 of I such that I = I1 ∪ I2, I1 ∩ I2 = ∅, and uσ
i > i on α j,k

for all ( j, k) ∈ Iσ , σ = 1, 2.

For every j = 1, . . . ,m let {γ j,k ⊂ A j : ( j, k) ∈ I } be a family of pairwise disjoint
smooth Jordan arcs such that γ j,k connects p j,k ∈ α j with a point q j,k ∈ β j and is otherwise
disjoint from bA j . We may assume in addition that the set

S = Mi ∪
⋃

( j,k)∈I
γ j,k

is admissible in the sense of Definition 5.1. Recall thatMi is Runge inM , and hence S ⊂ M is
Runge as well. Let θ be a nowhere vanishing holomorphic 1-form on M . Extend (ui , 2∂ui ) to
S as a nondegenerate generalized conformal minimal immersion (ui , f θ) ∈ GCMI∗(S,Rn)

satisfying that:

• uσ
i > i on γ j,k ∪ α j,k ∪ γ j,k−1 for all ( j, k) ∈ Iσ , σ = 1, 2.

• uσ
i > i + 1 on {q j,k, q j,k−1} for all ( j, k) ∈ Iσ , σ = 1, 2.

The existence of such extension is trivially ensured by property (a3). Theorem 5.3 then
provides v = (v1, . . . , vn) ∈ CMI∗(Mi+1,R

n) enjoying the following properties:

(b1) v is as close as desired to ui in the C 1(Mi ) topology.
(b2) vσ > i on γ j,k ∪ α j,k ∪ γ j,k−1 for all ( j, k) ∈ Iσ , σ = 1, 2.

123

Author's personal copy



Embedded minimal surfaces in R
n 21

(b3) vσ > i + 1 on {q j,k, q j,k−1} for all ( j, k) ∈ Iσ , σ = 1, 2.
(b4) Fluxv(C) = Fluxui (C) for any closed curve C ⊂ Mi .

Denote by β j,k the subarc of β j connecting q j,k−1 and q j,k and containing q j,a for no
a ∈ Zl\{k − 1, k}, for all ( j, k) ∈ I . Denote by � j,k ⊂ A j the closed disc bounded by
γ j,k−1, α j,k , γ j,k , and β j,k , ( j, k) ∈ I . By (b2), (b3) and the continuity of v there exist
compact, smoothly bounded discs Dj,k ⊂ � j,k\(γ j,k−1 ∪ α j,k ∪ γ j,k), ( j, k) ∈ I , such that
Dj,k ∩ β j,k �= ∅ is a subarc of β j,k\{q j,k−1, q j,k} and the following conditions hold:

(b2’) vσ > i on � j,k\Dj,k for all ( j, k) ∈ Iσ , σ = 1, 2.
(b3’) vσ > i + 1 on β j,k\Dj,k for all ( j, k) ∈ Iσ , σ = 1, 2.

Assume that I1 �= ∅, otherwise I2 �= ∅ and we would reason in a symmetric way.
Consider the compact smoothly bounded Runge domain

S1 = M1 ∪
( ⋃

( j,k)∈I2
� j,k

)
∪

( ⋃

( j,k)∈I1
Dj,k

)
.

Observe that S1 is not connected; its components areM1∪⋃
( j,k)∈I2 � j,k and Dj,k , ( j, k) ∈ I1.

Since Dj,k is compact, there exists a constant τ1 > 0 such that

τ1 + v2 > i + 1 on
⋃

( j,k)∈I1
Dj,k, (7.1)

recall that v = (v1, v2, . . . , vn).
Denote by v̂1 = (v̂11, v̂

2
1, . . . , v̂

n
1 ) ∈ CMI∗(S1,Rn) the conformal minimal immersion

given by

v̂1 = v on M1 ∪
⋃

( j,k)∈I2
� j,k, (7.2)

v̂1 = (v1, τ1 + v2, . . . , vn) on
⋃

( j,k)∈I1
Dj,k . (7.3)

Observe that every component of v̂1 equals the restriction to S1 of the corresponding compo-
nent of v, except for v̂21 . By Lemma 5.6, we may approximate v̂1 in the C 1(S1) topology by
a nondegenerate conformal minimal immersion v1 = (v11, v

2
1, . . . , v

n
1 ) ∈ CMI∗(Mi+1,R

n)

satisfying the following properties:

(c1) v1 is as close as desired to ui in the C 1(Mi ) topology.
(c2) v11 = v1 on Mi+1.
(c3) va1 > i on

⋃
( j,k)∈Ia � j,k\Dj,k , a = 1, 2. Take into account (b2’), (7.2), and (c2).

(c4) va1 > i + 1 on
⋃

( j,k)∈Ia β j,k\Dj,k , a = 1, 2. See (b3’), (7.2), and (c2).

(c5) v21 > i + 1 on
⋃

( j,k)∈I1 Dj,k . Take into account (7.3) and (7.1).
(c6) Fluxv1(C) = Fluxui (C) for any closed curve C ⊂ Mi . See (b4).

Assume that I2 �= ∅; otherwise the immersion ui+1 = v1 satisfies the conclusion of the
lemma and we are done. Indeed, if I2 = ∅, then I1 = I and we have

Mi+1\Mi ⊂ ( ⋃

( j,k)∈I1
� j,k\Dj,k

) ∪ ( ⋃

( j,k)∈I1
Dj,k

)

and

bMi+1 ⊂ ( ⋃

( j,k)∈I1
β j,k\Dj,k

) ∪ ( ⋃

( j,k)∈I1
Dj,k

)
.
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Therefore, properties (c3) and (c5) above imply Lemma 7.2 (ii), whereas (c4) and (c5) ensure
(iii). Finally (c6), Lemma 7.2 (I), and the fact that Mi is a strong deformation retract of Mi+1

give (iii). This and (c1) would conclude the proof.

Consider the compact Runge, smoothly bounded domain

S2 = M2 ∪
( ⋃

( j,k)∈I1
� j,k

)
∪

( ⋃

( j,k)∈I2
Dj,k

)
.

Since I2 �= ∅, S2 is not connected. Pick a constant τ2 > 0 such that

τ2 + v11 > i + 1 on
⋃

( j,k)∈I2
Dj,k . (7.4)

Define v̂2 = (v̂12, v̂
2
2, . . . , v̂

n
2 ) ∈ CMI∗(S1,Rn) by

v̂2 = v1 on M1 ∪
⋃

( j,k)∈I1
� j,k, (7.5)

v̂2 = (τ2 + v11, v
2
1, . . . , v

n
1 ) on

⋃

( j,k)∈I2
Dj,k . (7.6)

Now every component of v̂2 equals the restriction to S2 of the corresponding component
of v1, except for v̂12. By Lemma 5.6 we may approximate v̂2 in the C 1(S2) topology by an
immersion v2 = (v12, v

2
2, . . . , v

n
2 ) ∈ CMI∗(Mi+1,R

n) such that:

(d1) v2 is as close as desired to ui in the C 1(Mi ) topology.
(d2) v22 = v21 on Mi+1.
(d3) va2 > i on

⋃
( j,k)∈Ia � j,k\Dj,k , a = 1, 2. Take into account (c3), (7.5), and (d2).

(d4) va2 > i + 1 on
⋃

( j,k)∈Ia β j,k\Dj,k , a = 1, 2. See (c4), (7.5), and (d2).
(d5) va2 > i + 1 on

⋃
( j,k)∈I\Ia D j,k . Take into account (c5), (7.5), (7.6), and (7.4).

(d6) Fluxv1(C) = Fluxui (C) for any closed curve C ⊂ Mi . See (c6).

Set ui+1 = v2 ∈ CMI∗(Mi+1,R
n). Since we obviously have

Mi+1\Mi ⊂ ( ⋃

( j,k)∈I1
� j,k\Dj,k

) ∪ ( ⋃

( j,k)∈I1
Dj,k

)

and

bMi+1 ⊂ ( ⋃

( j,k)∈I1
β j,k\Dj,k

) ∪ ( ⋃

( j,k)∈I1
Dj,k

)
,

(d3) and (d5) ensure condition (ii) in the lemma, (d4) and (d5) give (iii), and (d6), Lemma
7.2 (I), and the fact that Mi is a strong deformation retract of Mi+1 imply (i). Taking into
account (d1), this concludes the proof of the lemma in the noncritical case.

The critical case Assume that ρ has a critical point pi+1 ∈ Mi+1\Mi .
By the assumptions on ρ, pi+1 is the only critical point of ρ on Mi+1\Mi and it is a Morse

point of Morse index either 0 or 1.
Assume first that theMorse index of pi+1 is 0. In this case a new (simply connected) com-

ponent of the sublevel set {ρ ≤ r} appears at pi+1 when r passes the value ρ(pi+1). We then
reduce the proof of the lemma to the noncritical case by defining ui+1 = (u1i+1, . . . , u

n
i+1)

on this new component, D, as any nondegenerate conformal minimal immersion with
max{u1i+1, u

2
i+1} > i + 1 on D.
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Assume now that the Morse index of pi+1 is 1. In this case, the change of topology of the
sublevel set {ρ ≤ r} at pi+1 is described by attaching to Mi a smooth arc γ ⊂ M̊i+1\Mi ,
and hence Mi ∪ γ is a Runge strong deformation retract of Mi+1. We assume without loss
of generality that Mi ∪ γ is admissible in the sense of Definition 5.1. In view of Lemma
7.2 (I) and (II), we may extend ui to Mi ∪ γ as a nondegenerate generalized conformal
minimal immersion (ûi = (û1i , . . . , û

n
i ), f̂iθ) ∈ GCMI∗(Mi ∪ γ,Rn) such that ûi = ui on

Mi ,
∫
C �( fiθ) = p(C) for all closed curve C ⊂ Mi ∪ γ , and max{û1i , û2i } > i on γ . By

Theorem 5.3, we find a Runge compact, smoothly bounded domain M̃i and a nondegenerate
conformal minimal immersion v = (v1, . . . , vn) ∈ CMI∗(M̃i ,R

n) such that

• Mi ∪ γ ⊂ ˚̃Mi and M̃i is a strong deformation retract of Mi+1,
• Fluxv(C) = p(C) for every closed curve C ⊂ M̃i , and
• max{v1, v2} > i on M̃i\M̊i .

This reduces the proof to the noncritical case and proves the lemma.
By recursively applying Lemma 7.2, we may construct a sequence of nondegenerate

conformal minimal immersions {ui ∈ CMI∗(Mi ,R
n)}i∈N such that:

(a) ui is as close to u as desired in the C 1(K ) topology for all i ∈ N.
(b) ui is as close to ui−1 as desired in the C 1(Mi−1) topology for all i ≥ 2.
(c) Fluxui (C) = p(C) for all closed curve C ⊂ Mi and all i ∈ N.
(d) max{u1i+1, u

2
i+1} > i on Mi+1\Mi for all i ∈ N.

(e) max{u1i+1, u
2
i+1} > i + 1 on bMi+1 for all i ∈ N.

Furthermore, if n ≥ 5, applying Theorem 4.1 at each step in the recursive construction we
may assume that

(f) ui is an embedding for every i ∈ N.

If the approximations in (a) and (b) are close enough, then the limit ũ = (ũ1, . . . , ũn) :=
limi→∞ ui : M → R

n is a nondegenerate conformal minimal immersion satisfying the
conclusion of the theorem. Indeed, (c) trivially implies that Fluxũ = p, whereas properties
(d) and (e) ensure that max{ũ1, ũ2} : M → R, and hence (ũ1, ũ2) : M → R

2, are proper
maps. Finally, if n ≥ 5, then ũ can be taken an embedding; take into account (f) and see for
instance the proof of Theorem 4.5 in [7] for a similar argument.

This concludes the proof of Theorem 7.1.
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