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MINIMAL HULLS OF COMPACT SETS IN R3

BARBARA DRINOVEC DRNOVŠEK AND FRANC FORSTNERIČ

Abstract. The main result of this paper is a characterization of the minimal
surface hull of a compact set K in R3 by sequences of conformal minimal
discs whose boundaries converge to K in the measure theoretic sense, and
also by 2-dimensional minimal currents which are limits of Green currents
supported by conformal minimal discs. Analogous results are obtained for the
null hull of a compact subset of C3. We also prove a null hull analogue of the
Alexander-Stolzenberg-Wermer theorem on polynomial hulls of compact sets
of finite linear measure, and a polynomial hull version of classical Bochner’s
tube theorem.

1. The role of hulls in complex analysis

and minimal surface theory

When discussing hulls in various geometries, one typically deals with dual sets of
objects. Given a set P of real functions on a manifold X, the P-hull of a compact
subset K ⊂ X is

(1.1) K̂P = {x ∈ X : f(x) ≤ sup
K

f ∀f ∈ P}.

Suppose that G is a class of geometric objects in X (for example, submanifolds or
subvarieties) such that the restriction f |C satisfies the maximum principle for every

f ∈ P and C ∈ G. Then C ⊂ K̂P for every C ∈ G with boundary bC ⊂ K, and the
main question is how closely is the hull described by such objects. A basic example
is the convex hull Co(K) of a compact set in an affine space X ∼= Rn; here P is
the class of all affine linear functions on X and G is the collection of straight line
segments in X.

Our principal aim is to introduce and study a suitable notion of the minimal

hull, K̂M, of a compact set K in R3. The idea is that K̂M should contain every
compact 2-dimensional minimal surface M ⊂ R3 with boundary bM contained in
K and hopefully not much more. Any such minimal surface is a solution of the
Plateau problem with free boundary in K; for a closed Jordan curve K we have the

classical Plateau problem (see e.g. [13, 14]). We define K̂M by using the class of
minimal plurisubharmonic functions (Definition 4.1). The minimal hull coincides
with the 2-convex hull of Harvey and Lawson [26, Definition 3.1, p. 157]. We obtain
three characterizations of the minimal hull: by sequences of conformal minimal
discs (Corollary 4.9), by minimal Jensen measures (Corollary 6.5), and by Green
currents (Theorem 6.4 and Corollaries 6.8 and 6.10). The only reason for restricting
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to R3 is that the main technical tool (see Lemma 2.8) is currently only available in
dimension 3.

Harvey and Lawson studied the minimal current hull in an arbitrary Riemann-
ian manifold (X, g) and showed that it is contained in the hull defined by p-
plurisubharmonic functions for the appropriate value of p with 2 ≤ p < dimX
[26, Sec. 4] (see Remark 4.7 below). Our results show that these hulls coincide in
R3, but it is not clear whether they coincide in more general manifolds.

By way of motivation we recall the classical case of the polynomial hull, K̂, of a
compact set K in a complex Euclidean space Cn. This is the hull (1.1) with respect
to the family P = {|f | : f ∈ O(Cn)}, where O(Cn) is the algebra of all holomorphic
functions on Cn. The same hull is obtained by using the bigger class Psh(Cn) of all
plurisubharmonic functions (see Stout [46, Theorem 1.3.11, p. 27]). A natural dual

class G consists of complex curves. The question as to what extent is K̂ described
by bounded complex curves in Cn with boundaries in K has been an important
driving force in the development of complex analysis. Wermer [47] and Stolzenberg
[45] proved that if K is a union of finitely many compact smooth curves in Cn, then

A = K̂ \K is a (possibly empty) 1-dimensional closed complex subvariety of Cn\K.
Alexander extended this to compact sets of finite linear measure [2]. Positive results
are also known for certain embedded 2-spheres in C2 [3] and totally real tori in C2

[19], among others; a survey can be found in [46]. However, Stolzenberg’s example
[44] shows that one must in general relax the requirement that the boundaries of
curves lie exactly in K. The right notion was found by Poletsky who characterized
the polynomial hull by bounded sequences of holomorphic discs with boundaries
converging to K in measure theoretic sense; here is the precise result.

Theorem 1.1 ([37, 38]). Let K be a compact set in Cn, and let B ⊂ Cn be a ball

containing K. A point p ∈ B belongs to the polynomial hull K̂ if and only if there
exists a sequence of holomorphic discs fj : D → B satisfying the following for every
j = 1, 2, . . .:

(1.2) fj(0) = p and
∣∣{t ∈ [0, 2π] : dist(f(eıt),K) < 1/j}

∣∣ ≥ 2π − 1/j.

Here |I| denotes the Lebesgue measure of a set I ⊂ R.

The fact that Poletsky’s theorem also gives a simple proof of the following result
of Duval and Sibony [16] was explained by Wold in [48].

Theorem 1.2 ([16,48]). Let K be a compact set in Cn. A point p ∈ Cn belongs to

the polynomial hull K̂ of K if and only if there exists a positive current T on Cn

of bidimension (1, 1) with compact support such that ddcT = μ − δp, where μ is a
representative Jensen measure for (evaluation at) p.

The characterization in Theorem 1.2 was extended by Harvey and Lawson [24]
to hulls in calibrated geometries. Results in this paper are not of this type.

We obtain analogous characterizations of minimal hulls of compact sets in R3

and null hulls of compact sets in C3. A suitable class of functions to define the
minimal hull is the following (see Definition 4.1):

An upper semicontinuous function u : ω → R∪{−∞} on a domain ω ⊂ Rn is said
to be minimal plurisubharmonic if the restriction of u to any affine 2-dimensional
plane L ⊂ Rn is subharmonic on L ∩ ω (in any isothermal coordinates on L).

The set of all such functions is denoted by MPsh(ω). For every u ∈ MPsh(ω)
and every conformal minimal disc f : D → ω the composition u◦f is a subharmonic
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function on D (cf. Lemma 4.4), so minimal surfaces form a class of objects which
is dual to the class of minimal plurisubharmonic functions. A C 2 function u is
minimal plurisubharmonic if and only if the sum of the two smallest eigenvalues
of its Hessian is nonnegative at every point; hence C 2 minimal plurisubharmonic
functions are exactly 2-plurisubharmonic functions studied by Harvey and Lawson
[26, Definition 2.2, p. 153]. We adopt a more suggestive terminology to emphasize

their relationship with minimal surfaces. We define the minimal hull, K̂M, of a
compact set K ⊂ Rn as the hull (1.1) with respect to the family P = MPsh(Rn);
see Definition 4.6. This notion coincides with the 2-convex hull of Harvey and
Lawson [26, Definition 3.1, p. 157]. In analogy with Theorem 1.1 we characterize
the minimal hull of a compact set K ⊂ R3 by sequences of conformal minimal discs
whose boundaries converge to K in the measure theoretic sense.

Theorem 1.3 (Corollary 4.9). Let K be a compact set in R3, and let ω � R3 be
a bounded open convex set containing K. A point p ∈ ω belongs to the minimal

hull K̂M of K if and only if there exists a sequence of conformal minimal discs
fj : D → ω such that for all j = 1, 2, . . . we have fj(0) = p and∣∣{t ∈ [0, 2π] : dist(fj(e

ıt),K) < 1/j}
∣∣ ≥ 2π − 1/j.

Theorem 1.3 is also used to characterize the minimal hull by limits of Green
currents; see Theorem 6.4 and Corollaries 6.8 and 6.10.

In the proof of Theorem 1.3 we use the following connection between conformal
minimal discs in Rn and holomorphic null discs in Cn; see Osserman [36]. A
smooth conformal immersion g : D → Rn is minimal if and only if it is harmonic,
g = 0. The map g admits a harmonic conjugate h on D such that f = g + ıh =
(f1, . . . , fn) : D → Cn is a holomorphic immersion satisfying the identity

f ′
1(ζ)

2 + f ′
2(ζ)

2 + · · ·+ f ′
n(ζ)

2 = 0 ∀ζ ∈ D.

Such f is said to be a holomorphic null disc in Cn. Conversely, the real and
the imaginary part of a holomorphic null disc in Cn are conformal minimal discs
in Rn. There is a corresponding relationship between minimal plurisubharmonic
functions on a domain ω ⊂ Rn and null plurisubharmonic functions on the tube
Tω = ω × ıRn ⊂ Cn (see Definition 2.1 and Lemma 4.3). For any null plurisubhar-
monic function u on a domain Ω ⊂ Cn and null holomorphic disc f : D → Ω the
composition u ◦ f is a subharmonic function on D (cf. Proposition 2.7(iii)). The

null hull, K̂N, of a compact set K ⊂ Cn, is the hull (1.1) with respect to the family
P = NPsh(Cn); see Definition 3.1. We obtain the following characterization of the
null hull of a compact set in C3 by sequences of null holomorphic discs, in analogy
with Theorems 1.1 and 1.3.

Theorem 1.4 (Corollary 3.5). Let K be a compact set in C3 and let Ω ⊂ C3 be a
bounded pseudoconvex Runge domain containing K. A point p ∈ Ω belongs to the

null hull K̂N of K if and only if there exists a sequence of null holomorphic discs
fj : D → Ω such that for all j = 1, 2, . . . we have fj(0) = p and∣∣{t ∈ [0, 2π] : dist(fj(e

ıt),K) < 1/j}
∣∣ ≥ 2π − 1/j.

By using this result we also characterize the null hull by limits of Green currents
supported on null holomorphic discs; see Theorem 6.2. An important ingredient is
Lemma 5.1 which shows that the mass of the Green current on Rn supported by a
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conformal minimal disc f : D → Rn is bounded by the L2-norm of f on the circle
T = bD.

We conclude this introduction by mentioning another line of results obtained
in the paper. Assume that ω is a domain in one of the spaces Cn, C3, or R3.
Let P(ω) denote one of the sets Psh(ω), NPsh(ω), or MPsh(ω). Let G(ω) denote
the dual set of discs D → ω: holomorphic if ω ⊂ Cn and P(ω) = Psh(ω), null
holomorphic if ω ⊂ C3 and P(ω) = NPsh(ω), and conformal minimal if ω ⊂ R3

and P(ω) = MPsh(ω). The following result is the main ingredient in the proof of all
the theorems mentioned so far; it furnishes many nontrivial examples of functions
in classes under consideration.

Theorem 1.5. Assume that ω, P(ω) and G(ω) are as above. Let φ : ω → R∪{−∞}
be an upper semicontinuous function. Then the function u : ω → R ∪ {−∞}, given
by

(1.3) u(x) = inf
{∫ 2π

0

φ(f(eıt))
dt

2π
: f ∈ G(ω), f(0) = x

}
, x ∈ ω,

belongs to P(ω) or is identically −∞; moreover, u is the supremum of functions in
P(ω) which are bounded above by φ.

The basic case of Theorem 1.5, with ω a domain in Cn and P(ω) = Psh(ω),
is a fundamental result due to Poletsky [37, 38] and Bu and Schachermayer [8].
(For generalizations see Lárusson and Sigurdsson [31, 32], Rosay [40, 41], Drinovec
Drnovšek and Forstnerič [15, Theorem 1.1], and Kuzman [30], among others.) The
other cases are new and proved in this paper; see Theorem 2.10 for null plurisub-
harmonic functions and Theorem 4.5 for minimal plurisubharmonic functions.

One of the main ingredients in the proof of Theorem 1.5 is the approximate
solution of the Riemann-Hilbert boundary value problem for discs in the respective
classes G(ω). This result is well known for holomorphic discs, but it has been
established only very recently for null holomorphic discs (Alarcón and Forstnerič
[1]). The case of conformal minimal discs can be reduced to null holomorphic discs.

Remark 1.6. Smooth minimal plurisubharmonic functions have already been used
in minimal surface theory. One direction was to determine when a region W in
R3 is universal for minimal surfaces, in the sense that every connected properly
immersed minimal surface M in R3, with nonempty boundary and contained in W ,
is of parabolic conformal type; see [11] and [33, Sec. 3.2] for a discussion of this
question.

Minimal plurisubharmonic functions can also be used to define the class of mean-
convex domains in R3. In the literature on minimal surfaces, a domain D ⊂ Rn with
smooth boundary bD (of class C 1,1 or better) is said to be (strongly) mean-convex
if the sum of the principal curvatures of bD from the interior side is nonnegative
(resp. positive) at each point. (See e.g. the paper by Meeks and Yau [34] and the
references therein.) By Harvey and Lawson [26, Theorem 3.4], a domain D � R3 is
mean-convex if and only if it admits a smooth minimal strongly plurisubharmonic
exhaustion function ρ : D → R. Mean-convex domains have mainly been studied
as natural barriers for minimal hypersurfaces in view of the maximum principle.
The smallest mean-convex barrier containing a compact set K ⊂ Rn (if it exists) is

called the mean-convex hull of K; it coincides with the minimal hull K̂M of K when
n = 3 (cf. Definition 4.6). Our definition of the minimal hull (by the maximum
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principle with respect to the class of minimal plurisubharmonic functions) applies
to an arbitrary compact set and is in line with the standard notion of plurisubhar-
monic and holomorphic hull of a compact set in a complex manifold. The main
technique used for finding the mean-convex hull of a given compact set K is the
mean curvature flow of hypersurfaces (with K as an obstacle) introduced by Brakke
[7]. For a discussion of this subject see for example the monographs by Bellettini
[4] and Colding and Minicozzi [10]. An interesting recent result in this direction
is that given a compact set K ⊂ Rn for n ≤ 7 with boundary of class C 1,1, the

boundary bK̂ of its mean-convex hull K̂M is also of class C 1,1, and bK̂M\K consists
of minimal hypersurfaces (Spadaro [43]).

2. Null plurisubharmonic functions

In this section we introduce the notion of a null plurisubharmonic function on
a domain in Cn. One of our main results, Theorem 2.10, expresses the biggest
null plurisubharmonic minorant of a given upper semicontinuous function φ on a
domain in C3 as the envelope of the Poisson functional of φ on the family of null
holomorphic discs. This is the analogue of the Poletsky-Bu-Schachermayer theorem
for plurisubharmonic functions (cf. Theorem 1.5). In the following section we shall
use null plurisubharmonic functions to introduce the null hull of a compact set in
Cn (Definition 3.1).

Let A denote the conical quadric subvariety of Cn given by

(2.1) A = {z = (z1, · · · , zn) ∈ Cn : z21 + · · ·+ z2n = 0}.
This is called the null quadric in Cn, and its elements are null vectors. Note that A
has the only singularity at the origin. We shall write A∗ = A \ {0}. A holomorphic
map f : M → Cn from an open Riemann surface M is said to be a null holomorphic
map if

(2.2) f ′
1(ζ)

2 + f ′
2(ζ)

2 + · · ·+ f ′
n(ζ)

2 = 0

holds in any local holomorphic coordinate ζ on M , equivalently, if the derivative
f ′ has range in A. A null holomorphic map f is a (null) immersion if and only if
the derivative f ′ has range in A∗ = A \ {0}. We shall mainly be concerned with
(closed) null holomorphic discs in Cn, or null discs for short; these are C 1 maps
f : D = {ζ ∈ C : |ζ| ≤ 1} → Cn from the closed disc D which are holomorphic on
the open disc D and satisfy the nullity condition (2.2). We denote by N(D,Ω) the
set of all immersed null holomorphic discs D → Ω with range in a domain Ω ⊂ Cn.

Definition 2.1. An upper semicontinuous function u : Ω → R∪{−∞} on a domain
Ω ⊂ Cn is null plurisubharmonic if the restriction of u to any affine complex line
L ⊂ Cn directed by a null vector θ ∈ A∗ is subharmonic on L∩Ω, where A is given
by (2.1). The class of all such functions is denoted by NPsh(Ω).

Clearly we have that Psh(Ω) ⊂ NPsh(Ω), and the inclusion is proper as shown
by the following example. (Further examples are furnished by Lemma 3.8 below.)

Example 2.2. The function u(z1, z2, z3) = |z1|2 + |z2|2 − |z3|2 is not plurisub-
harmonic on any open subset of C3. However, it is null plurisubharmonic on C3,
which is seen as follows. Fix a null vector z = (z1, z2, z3) ∈ A∗. Then u(ζz) =
|ζ|2u(z) for ζ ∈ C, and we need to check that u(z) ≥ 0. The equation (2.1)
gives z23 = −(z21 + z32) and hence |z3|2 ≤ |z1|2 + |z2|3 by the triangle inequality, so
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u(z) = |z1|2 + |z2|2 − |z3|2 ≥ 0. (Note that u vanishes on some null vectors; for

example, on z = (ı
√
2/2, ı

√
2/2, 1).) For any point a ∈ C3 the function u(a + ζz)

differs from u(ζz) only by a harmonic term in ζ, so the restriction of u to any affine
complex line directed by a null vector is subharmonic. �

Given a C 2 function u on a domain in Cn we denote by Lu(x; θ) the Levi form
of u at the point x in the direction of the vector θ ∈ TxC

n.
The next lemma summarizes some of the properties of null plurisubharmonic

functions which are analogous to the corresponding properties of plurisubharmonic
functions.

Proposition 2.3. Let Ω be a domain in Cn.

(i) If u, v ∈ NPsh(Ω) and c > 0, then cu, u+ v, max{u, v} ∈ NPsh(Ω).
(ii) If u ∈ C 2(Ω), then u ∈ NPsh(Ω) if and only if Lu(x; θ) ≥ 0 for every x ∈ Ω

and θ ∈ A.
(iii) The limit of a decreasing sequence of null plurisubharmonic functions on Ω

is a null plurisubharmonic function on Ω.
(iv) If F ⊂ NPsh(Ω) is a family which is locally uniformly bounded above, then

the upper semicontinuous regularization v∗ of the upper envelope v(x) =
supu∈F u(x) is null plurisubharmonic on Ω.

(v) If u ∈ NPsh(Cn) is bounded above, then u is constant.
(vi) The Levi form of any null plurisubharmonic function of class C 2 has at

most one negative eigenvalue at each point.

Properties (i)–(iv) follow in a standard way from the corresponding properties
of subharmonic functions. Property (v) follows from the fact that every bounded
above subharmonic function on C is constant, and any two points of Cn can be
connected by a finite chain of affine complex null lines. Part (vi) is seen by observing
that every 2-dimensional complex linear subspace of Cn intersects A∗.

Part (ii) of Proposition 2.3 justifies the following definition.

Definition 2.4. A function u ∈ C 2(Ω) on a domain Ω ⊂ Cn is said to be strongly
null plurisubharmonic if Lu(x; θ) > 0 for every x ∈ Ω and θ ∈ A∗.

Remark 2.5. Null plurisubharmonic functions are a natural substitute for plurisub-
harmonic functions when considering only complex null curves (instead of all com-
plex curves). They are a special case of G-plurisubharmonic functions of Harvey
and Lawson [25], who in a series of papers studied plurisubharmonicity in a more
general geometric context (see [23,25,26], among others). Let X be a complex man-
ifold endowed with a hermitian metric, and let p ∈ {1, . . . , dimX} be an integer.
Let G(p,X) denote the Grassmann bundle over X whose fiber at a point x ∈ X
is the set of all complex p-dimensional subspaces of the tangent space TxX. Let
G ⊂ G(p,X). A function u : X → R of class C 2 is said to be G-plurisubharmonic
[25] if for each x ∈ X and W ∈ Gx the trace of the Levi form of u at x restricted to
W is nonnegative. If G = G(p,X), then G-plurisubharmonic functions are called p-
plurisubharmonic; for p = 1 we get the usual plurisubharmonic functions, while the
case p = dimX corresponds to subharmonic functions. By taking Gz ⊂ G(1,Cn)
to be the set of null complex lines through the origin, we get null plurisubharmonic
functions. �

One might ask whether there is any relationship between null plurisubharmonic
functions and 2-plurisubharmonic functions (see Remark 2.5 above), especially in
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light of the fact that the Levi form of a null plurisubharmonic function has at most
one negative eigenvalue at each point. The following example shows that this is not
the case.

Example 2.6. Let ν± =
√
2
−1

(1,±i, 0) and e3 = (0, 0, 1). These three vectors
form a unitary basis of C3, and ν± are null vectors. For z = (z1, z2, z3) ∈ C3 let

u(z1ν+ + z2ν− + z3e3) = ε|z1|2 + b|z2|2 − |z3|2.
We claim that u is null plurisubharmonic on C3 if ε > 0 is small enough and b > 0
is big enough. As in Example 2.2 we only need to verify that u ≥ 0 on A. Since u is
homogeneous, it suffices to check that u > 0 on the compact set A1 ⊂ A consisting
of unit null vectors. Let Σ be the complex 2-plane spanned by ν+ and e3. Then
Σ∩A1 = {eıtν+ : t ∈ R}. The term ε|z1|2 ensures positivity of u on a neighborhood
of Σ ∩ A1 in A1. Since b|z2|2 is positive on A1 \ Σ, we see that u > 0 on A1 if b is
chosen big enough, so u is strongly null plurisubharmonic on C3. However, since
the trace of the Levi form of u on Σ equals ε − 1, u is not 2-plurisubharmonic if
ε < 1. �

The next proposition gives some further properties of null plurisubharmonic
functions. In particular, we can approximate them by smooth null plurisubharmonic
functions.

Proposition 2.7. Let Ω be a domain in Cn.

(i) If u ∈ NPsh(Ω) and u �≡ −∞ on Ω, then u ∈ L1
loc(Ω).

(ii) If u ∈ NPsh(Ω) and u �≡ −∞ on Ω, then u can be approximated by smooth
null plurisubharmonic functions on domains compactly contained in Ω.

(iii) If u ∈ NPsh(Ω) and f ∈ N(D,Ω), then u ◦ f is subharmonic on D. More
generally, if f : M → Ω is a null holomorphic curve, then u ◦ f is subhar-
monic on M .

(iv) If Ω is a pseudoconvex Runge domain in Cn, u ∈ NPsh(Ω) and K is a
compact set in Ω, then there exists a function v ∈ NPsh(Cn) such that
v = u on K, v is strongly plurisubharmonic on Cn \Ω, and v(z) > maxK v
for any point z ∈ Cn \ Ω.

Proof. We adapt the usual proof for the plurisubharmonic case (see for example
[39, Lemma 4.11, Theorem 4.12, Theorem 4.13] or Chapter 4 in [28]). For simplicity
of notation we consider the case n = 3; the same proofs apply to any n ≥ 3.

We begin by explaining the proof of part (i). Since the cone A ⊂ C3 (2.1) is not
contained in any complex hyperplane of C3, there exist three C-linearly independent
vectors θ1, θ2, θ3 ∈ A. As in the standard case we assume that u(p) > −∞ for some
p ∈ Ω, and we need to prove that for every r > 0 such that

Dr
p := {p+ z1θ1 + z2θ2 + z3θ3 : |zi| ≤ r, 1 ≤ i ≤ 3} ⊂ Ω

we have u ∈ L1(Dr
p). Since u is bounded above on the compact set Dr

p, we only

need to show that
∫
Dr

p
u dV > −∞; the claim then follows as in the standard case.

Fix r > 0 as above. For any z = (z1, z2, z3) such that |zi| ∈ [0, r] for i = 1, 2, 3, the

restriction of u to the disc {p +
∑j−1

i=1 ziθi + ζθj : |ζ| ≤ r} is subharmonic for each
1 ≤ j ≤ 3. Applying the submean value property in each variable we obtain

u(p) ≤
∫ 2π

0

∫ 2π

0

∫ 2π

0

u(p+ r1e
ıt1θ1 + r2e

ıt2θ2 + r3e
ıt3θ3) dt1 dt2 dt3
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for all ri ∈ [0, r], i = 1, 2, 3. Multiplying this inequality by r1r2r3dr1 dr2 dr3 and
integrating with respect to ri ∈ [0, r] for 1 ≤ i ≤ 3 gives u(p) ≤ C

∫
Dr

p
u dV , where

the positive constant C depends on the choice of the θj ’s. This proves (i).
In part (ii) we proceed as in the usual proof for smoothing plurisubharmonic

functions, convolving u by a smooth approximate identity φt satisfying the property
φt(

∑3
i=1 ziθi) = ϕt(|z1|, |z2|, |z3|). We leave the obvious details to the reader.

For functions u ∈ C 2(Ω), property (iii) is an immediate consequence of Proposi-
tion 2.3(ii). In the general case the same result follows from part (ii) (smoothing)
and the fact that the limit of a decreasing sequence of subharmonic functions is
subharmonic.

It remains to prove (iv). Since Ω is pseudoconvex and Runge, the polynomial

hull K̂ is contained in Ω [27, Theorem 2.7.3, p. 53]. Pick an open set U � Ω

with K̂ ⊂ U . By [27, Theorem 2.6.11, p. 48] there is a smooth plurisubharmonic

exhaustion function ρ : Cn → R+ that vanishes on a neighborhood of K̂ and is
positive strongly plurisubharmonic on Cn \ U . Let χ : Cn → [0, 1] be a smooth
function that equals 1 on U and has support contained in Ω. Then the function
v = χu+ Cρ for big C > 0 has the stated properties. �

In the sequel we shall use the following result of Alarcón and Forstnerič [1,
Lemma 3.1] which gives approximate solutions to a Riemann-Hilbert boundary
value problem for null holomorphic discs in C3. As in [15], we can add to their
result the estimate (2.3) of the average of a given function u over the boundary of
a suitably chosen null disc. Note that the central null disc f in Lemma 2.8 below
is arbitrary, but the null discs centered at boundary points f(ζ), ζ ∈ bD = T, are
linear round discs in the same direction.

Lemma 2.8. Let f : D → C3 be a null holomorphic immersion, let θ ∈ A∗ be
a null vector, and let μ : T → [0,∞) be a continuous function. Define the map
g : T×D → C3 by g(ζ, ξ) = f(ζ)+μ(ζ)ξθ. Given ε > 0 and 0 < r < 1, there exist a
number r′ ∈ [r, 1) and a null holomorphic immersion h : D → C3 with h(0) = f(0),
satisfying the following properties:

(i) dist(h(ζ), g(ζ,T)) < ε for all ζ ∈ T,
(ii) dist(h(ρζ), g(ζ,D)) < ε for all ζ ∈ T and all ρ ∈ [r′, 1), and
(iii) h is ε-close to f in C1 topology on {ζ ∈ C : |ζ| ≤ r′}.

Furthermore, given an upper semicontinuous function u : C3 → R ∪ {−∞} and an
arc I ⊂ T, we may achieve, in addition to the above, that

(2.3)

∫
I

u
(
h(eıt)

) dt

2π
≤

∫ 2π

0

∫
I

u
(
g(eıt, eıs)

) dt
2π

ds

2π
+ ε.

The following proposition is [17, Lemma 2.1] and [8, Proposition II.1] for the
case of null plurisubharmonic functions.

Proposition 2.9. Let Ω be a domain in Cn and φ : Ω → R ∪ {−∞} be an upper
semicontinuous function. Define u1 = φ and for j > 1

(2.4) uj(z) = inf

{∫ 2π

0

uj−1

(
z + eıtθ

) dt

2π

}
, z ∈ Ω,

where the infimum is taken over all vectors θ ∈ A∗ such that {z + ζθ : |ζ| ≤ 1} ⊂
Ω. Then the functions uj are upper semicontinuous and decrease pointwise to the
largest null plurisubharmonic function uφ on Ω bounded above by φ.
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Proof. We follow the proof of [8, Proposition II.1]. We first show by induction
that the functions uj (2.4) are upper semicontinuous. Assume that j > 1 and that
uj−1 is upper semicontinuous (this holds when j = 2). Choose a sequence zk in

Ω converging to z0 ∈ Ω and a null vector θ ∈ A∗ such that z0 + Dθ = {z0 + ζθ :
|ζ| ≤ 1} ⊂ Ω. For k0 ∈ N big enough the set U =

⋃∞
k=k0

(zk + Dθ) is relatively

compact in Ω. Then uj−1 is bounded above on U and satisfies uj−1(z0 + ζθ) ≥
lim supk→∞ uj−1(zk + ζθ) for all ζ ∈ D. Fatou’s lemma implies∫ 2π

0

uj−1

(
z0 + eıtθ

) dt

2π
≥ lim sup

k→∞

∫ 2π

0

uj−1

(
zk + eıtθ

) dt

2π
≥ lim sup

k→∞
uj(zk).

Taking the infimum over all null vectors θ we get uj(z0) ≥ lim supk→∞ uj(zk).
Therefore uj is upper semicontinuous, which concludes the inductive step. The
sequence uj is obviously pointwise decreasing, so the limit function uφ is also upper
semicontinuous.

To show that uφ is null plurisubharmonic, pick a point z ∈ Ω and a null vector

θ ∈ A∗ such that z + D θ ⊂ Ω. It follows from Beppo Levi monotone convergence
theorem that

uφ(z) = lim
j→∞

uj(z) ≤ lim
j→∞

∫ 2π

0

uj−1

(
z + eıtθ

) dt

2π
=

∫ 2π

0

uφ

(
z + eıtθ

) dt

2π
.

It remains to prove that uφ is the largest null plurisubharmonic function domi-
nated by φ. Choose a null plurisubharmonic function v ≤ φ. We show by induction
that v ≤ uj for every j ∈ N; clearly this will imply that v ≤ uφ. Suppose that
v ≤ uj for some j ∈ N; this trivially holds for j = 1 since u1 = φ. For every point

z ∈ Ω and every null vector θ ∈ A∗ such that z + D θ ⊂ Ω, we then have that

v(z) ≤
∫ 2π

0

v
(
z + eıtθ

) dt

2π
≤

∫ 2π

0

uj

(
z + eıtθ

) dt

2π
.

Taking infimum over all θ we get v(z) ≤ uj+1(z), which concludes the inductive
step. �

Given a point z ∈ Ω we define N(D,Ω, z) = {f ∈ N(D,Ω) : f(0) = z}. We are
now ready to prove the following central result of this section.

Theorem 2.10 (Null plurisubharmonic minorant). Let φ : Ω → R ∪ {−∞} be an
upper semicontinuous function on a domain Ω ⊂ C3. Then the function

(2.5) u(z) = inf
{∫ 2π

0

φ(f(eıt))
dt

2π
: f ∈ N(D,Ω, z)

}
, z ∈ Ω,

is null plurisubharmonic on Ω or identically −∞; moreover, u is the supremum of
the null plurisubharmonic functions on Ω which are not greater than φ.

Proof. Proposition 2.9 furnishes a decreasing sequence of upper semicontinuous
functions un on Ω which converges pointwise to the largest null plurisubharmonic
function uφ on Ω dominated by φ. To conclude the proof we need to show that

uφ(z) = inf
{∫ 2π

0

φ(f(eıt))
dt

2π
: f ∈ N(D,Ω, z)

}
, z ∈ Ω.

We denote the right hand side of the above equation by u(z).
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Since uφ is a null plurisubharmonic function on Ω dominated by φ, Proposi-
tion 2.7 gives the following estimate for any f ∈ N(D,Ω, z):

uφ(z) ≤
∫ 2π

0

uφ(f(e
ıt))

dt

2π
≤

∫ 2π

0

φ(f(eıt))
dt

2π
.

Taking the infimum over all such f we obtain uφ ≤ u on Ω.
To prove the reverse inequality, fix a point z ∈ Ω and choose a number ε > 0.

Since un(z) decreases to uφ(z) as n → ∞, there is a positive integer n so large that

(2.6) uφ(z) ≤ un(z) < uφ(z) + ε.

By (2.4) there exists a null vector θ ∈ A∗ such that the null disc fn−1(ζ) = z + ζθ
(ζ ∈ D) lies in Ω and satisfies

(2.7)

∫ 2π

0

un−1

(
fn−1(e

ıt)
) dt

2π
≤ un(z) +

ε

n
.

Fix a point eıt0 ∈ T. By the definition of un−1 (2.4) there exists a null vector
θt0 ∈ A∗ such that the null disc D � ζ �→ fn−1(e

ıt0) + ζθt0 lies in Ω and satisfies

(2.8)

∫ 2π

0

un−2

(
fn−1(e

ıt0) + eıtθt0
) dt

2π
≤ un−1(fn−1(e

ıt0)) +
ε

4n
.

Setting gn−1(e
ıs, ζ) = fn−1(e

ıs) + ζθt0 , it follows from (2.8) that there is a small
arc I ⊂ T around the point eıt0 such that∫ 2π

0

∫
I

un−2

(
gn−1(e

ıs, eıt)
) ds

2π

dt

2π
≤

∫
I

un−1

(
fn−1(e

ıs)
) ds

2π
+

|I|
2π

ε

3n
.

By repeating this construction at other points of T we find finitely many closed

arcs I ′′j ⊂ T (j = 1, . . . , l) such that
⋃l

j=1 I
′′
j = T. The function un−2 is bounded

above by some constant M on
⋃l

j=1

⋃
ζ∈I′′

j
(fn−1(ζ)+D θtj ). We can choose smaller

arcs Ij � I ′j � I ′′j (j = 1, . . . , l) such that I
′
j ∩ I

′
k = ∅ if j �= k and the set

E = T \
⋃l

j=1 Ij has arbitrarily small measure |E| (for example less than ε
2nM ) and

smooth families of affine null discs gn−1(ζ, ξ) = fn−1(ζ) + ξθtj for (ζ, ξ) ∈ I ′j × D

such that

(2.9)

∫ 2π

0

∫
Ij

un−2

(
gn−1(e

ıs, eıt)
) ds

2π

dt

2π
≤

∫
Ij

un−1

(
fn−1(e

ıs)
) ds

2π
+

|I|
2π

ε

2n
.

Let χ : T → [0, 1] be a smooth function such that χ ≡ 1 on
⋃l

j=1 Ij and χ ≡ 0 on a

neighborhood of the set T \
⋃l

j=1 I
′
j . Define the map hn−1 : T× D → C3 by

hn−1(ζ, ξ) = gn−1(ζ, χ(ζ)ξ), (ζ, ξ) ∈ T× D.

By Lemma 2.8 we get a null disc fn−2 centered at z and satisfying∫ 2π

0

un−2

(
fn−2(e

ıt)
) dt

2π
≤

∫ 2π

0

un−1

(
fn−1(e

ıt)
) dt

2π
+

ε

n
.

(We apply Lemma 2.8 l times, once for each of the segments I1, . . . , Il.)
Repeating this procedure we get null discs f1, f2, . . . , fn−1 in Ω, centered at z,

such that for k = 1, . . . , n− 2 we have∫ 2π

0

uk

(
fk(e

ıt)
) dt

2π
≤

∫ 2π

0

uk+1

(
fk+1(e

ıt)
) dt

2π
+

ε

n
.
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Since u1 = φ, we get by (2.6) and (2.7) that∫ 2π

0

φ
(
f1(e

ıt)
) dt

2π
≤

∫ 2π

0

un−1

(
fn−1(e

ıt)
) dt

2π
+

(n− 2)ε

n
≤ un(z)+ ε ≤ uφ(z)+2ε.

Therefore u(z) ≤ uφ(z) + 2ε. Since this holds for any given ε > 0, we get u(z) ≤
uφ(z). This completes the proof of Theorem 2.10. �

3. Null hulls of compact sets in C3

In the section we introduce the null hull of a compact set in Cn. This is a special
case of G-convex hulls introduced by Harvey and Lawson in [25, Definition 4.3,
p. 2434].

Definition 3.1. Let K be a compact set in Cn (n ≥ 3). The null hull of K is
defined by

(3.1) K̂N = {z ∈ Cn : v(z) ≤ max
K

v ∀v ∈ NPsh(Cn)}.

The maximum principle for subharmonic functions implies that for any bounded

null holomorphic curve A ⊂ Cn with boundary bA ⊂ K we have A ⊂ K̂N.
Since Psh(Cn) ⊂ NPsh(Cn), we have

(3.2) K ⊂ K̂N ⊂ K̂ ⊂ Co(K).

The polynomial hull K̂ is rarely equal to the convex hull Co(K) of K. The following

example shows that in general we also have K̂N �= K̂.

Example 3.2. Let K = {(0, 0, eıt) : t ∈ R}, the unit circle in the z3-axis. Clearly

K̂ = {(0, 0, ζ) : |ζ| ≤ 1}. However, since the function u(z1, z2, z3) = |z1|2 +
|z2|2 − |z3|2 is null plurisubharmonic (cf. Example 2.2) and it equals −|z3|2 on the

coordinate axis {(0, 0)} × C, we see that K̂N = K. (See Theorem 3.7 for a more
general result.)

The following lemma is an immediate consequence of the inclusion K̂N ⊂ K̂

(3.2), the standard fact that K̂ ⊂ Ω for any compact set K in a pseudoconvex
Runge domain Ω ⊂ Cn [27, Theorem 2.7.3], and of Proposition 2.7(iv) which shows
that the restriction map NPsh(Cn) → NPsh(Ω) has dense image.

Lemma 3.3. If Ω is a pseudoconvex Runge domain in Cn, then for any compact

set K in Ω we have K̂N ⊂ Ω and

(3.3) K̂N = {z ∈ Ω : v(z) ≤ max
K

v ∀v ∈ NPsh(Ω)}.

The following result is proved by following the standard case of plurisubharmonic
functions (see [27, Theorem 2.6.11, p. 48] or [46, Theorem 1.3.8, p. 25]).

Proposition 3.4. Given a compact null convex set K = K̂N ⊂ Cn and an
open set U ⊃ K, there exists a smooth null plurisubharmonic exhaustion func-
tion ρ : Cn → R+ such that ρ = 0 on a neighborhood of K and ρ is positive strongly
null plurisubharmonic on Cn \ U .

Our next result, which is essentially a corollary to Theorem 2.10, characterizes
the null hull of a compact set in C3 by Poletsky sequences of null holomorphic discs.
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Corollary 3.5. Let K be a compact set in C3 and let Ω ⊂ C3 be a bounded
pseudoconvex Runge domain containing K. A point p ∈ Ω belongs to the null hull

K̂N of K if and only if there exists a sequence of null holomorphic discs fj ∈
N(D,Ω, p) such that

(3.4)
∣∣{t ∈ [0, 2π] : dist(fj(e

ıt),K) < 1/j}
∣∣ ≥ 2π − 1/j, j = 1, 2, . . . .

Proof. We follow the case of polynomial hulls (cf. Theorem 1.1). Since Ω is pseu-

doconvex and Runge in C3, we have K̂N ⊂ K̂ ⊂ Ω, where the first inclusion uses
(3.2) and the second one is a standard result [27, Theorem 2.7.3]. Assume that
for some point p ∈ Ω there exists a sequence fj ∈ N(D,Ω, p) satisfying (3.4). Pick
u ∈ NPsh(C3). Let Uj = {z ∈ C3 : dist(z,K) < 1/j}, Mj = supUj

u, M = supΩ u,

and Ej = {t ∈ [0, 2π] : fj(e
ıt) /∈ Uj}. Then |Ej | ≤ 1/j by (3.4). Since u ◦ fj is

subharmonic, we have

u(p) = u(fj(0)) ≤
∫
Ej

u(fj(e
ıt))

dt

2π
+

∫
[0,2π]\Ej

u(fj(e
ıt))

dt

2π
≤ M/j +Mj .

Passing to the limit as j → ∞ gives u(p) ≤ supK u. This shows that p ∈ K̂N.
To prove the converse, pick an open set U in C3 with K ⊂ U � Ω. The function

φ : Ω → R, which equals −1 on U and equals 0 on Ω \ U , is upper semicontinuous.
Let u ∈ NPsh(Ω) be the associated extremal null plurisubharmonic function (2.5).
Then clearly −1 ≤ u ≤ 0 on Ω and u = −1 on K. Hence Lemma 3.3 implies that

u(p) = −1 for any point p ∈ K̂N. Fix such p and pick a number ε > 0. Theorem

2.10 furnishes a null disc f ∈ N(D,Ω, p) such that
∫ 2π

0
φ(f(eıt)) dt

2π < −1+ε/2π. By

the definition of φ this implies that |{t ∈ [0, 2π] : f(eıt) ∈ U}| ≥ 2π − ε. Applying
this with the sequence of sets Uj = {z ∈ C3 : dist(z,K) < 1/j} and numbers
εj = 1/j gives Corollary 3.5. �

If we take Ω = C3, then the first part of the proof of Corollary 3.5 fails since the
sequence of discs fj need not be bounded. However, the converse part still holds
and gives the following observation which was pointed out by Rosay [40,41] in the
case of holomorphic discs: we can find null discs with a given center p and with
most of their boundaries squeezed in any given open set, possibly very small and
far away from p.

Corollary 3.6. Given a point p ∈ C3 and a nonempty open set B ⊂ C3, there
exists a sequence of null holomorphic discs fj ∈ N(D,C3, p) such that

(3.5)
∣∣{t ∈ [0, 2π] : fj(e

ıt)) ∈ B}
∣∣ ≥ 2π − 1/j, j = 1, 2, . . . .

Proof. Let φ : C3 → R equal −1 on B and equal 0 on C3 \ B, so φ is upper semi-
continuous. Let u ∈ NPsh(C3) be the associated extremal null plurisubharmonic
function defined by (2.5). Then u ≤ 0 on C3 and u = −1 on B. It follows from
Proposition 2.3(v) that u is constant on C3, so u(p) = −1. The same argument as
in the proof of Corollary 3.5 gives a sequence fj ∈ N(D,C3, p) satisfying (3.5). �

As a consequence of the Alexander-Stolzenberg-Wermer theorem on polynomial
hulls of compact sets of finite length in Cn [2, 45, 47], we now obtain the following
description of null hulls of such set.

Theorem 3.7. If Γ is a compact set in Cn (n ≥ 3) contained in a connected

compact set of finite linear measure, then Γ̂N\Γ is a complex null curve (or empty).
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Proof. According to Alexander [2], the set V = Γ̂ \ Γ is a (possibly empty) closed
bounded 1-dimensional complex subvariety of Cn\Γ with V \V ⊂ Γ. Let V =

⋃
j Vj

be a decomposition of V into irreducible components, and let A denote the union
of all components Vj which are null curves. Then A is a bounded complex null

curve and A \A ⊂ Γ. Clearly A ⊂ Γ̂N by the maximum principle for subharmonic
functions.

We claim that Γ̂N = Γ ∪ A; this will prove the theorem. To this end we will
show that for any p ∈ V \ A there exists a function φ ∈ NPsh(Cn) such that
φ(p) > maxΓ φ.

Let B denote the union of all irreducible components Vi of V which are not
contained in A (i.e., which are not null curves). Then B is a bounded 1-dimensional
complex subvariety of Cn \ Γ and B \ B ⊂ Γ. Let C(B) denote the union of the
singular locus Bsing and the set of points z ∈ Breg such that the tangent line
TzB ⊂ A is a null line. Then C(B) is a closed discrete subset of B which clusters
only on Γ. (To see that C(B) cannot cluster at a singular point z ∈ Bsing, choose
a local irreducible component Bj of B at z and parametrize Bi locally near z
by a nonconstant holomorphic map f : D → Bi with f(0) = z. Clearly the set
{ζ ∈ D : f ′(ζ) ∈ A} is either all of D or else is discrete in D; the first case is
impossible by the definition of B.) Hence the set

(3.6) K = Γ ∪ A ∪ C(B) ⊂ Γ̂

is compact. Fix a point p ∈ B \ A; then either p /∈ K or p is an isolated point of
K. Choose a pair of bounded open sets U0, U1 � Cn such that

U0 ∩ U1 = ∅, K \ {p} ⊂ U0, p ∈ U1.

Pick a smooth function h : Cn → [0, 1] such that h = 0 on U0 (in particular,
h = 0 on Γ) and h = 1 on U1. Choose ε > 0 small enough such that the function

h̃(z) = h(z) + ε|z − p|2 (z ∈ Cn) satisfies maxΓ h̃ < 1. Note that h̃(p) = 1

and h̃ is strongly plurisubharmonic on U0 ∪ U1 (since h is locally constant there
and z �→ |z − p|2 is strongly plurisubharmonic on Cn). Pick a smooth function
χ : Cn → [0, 1] such that χ = 0 on a small open neighborhood of the set K (3.6)
and χ > 0 on Cn \ (U0 ∪ U1). Since V is a closed complex curve in Cn \ Γ, there
exists a plurisubharmonic function φ ≥ 0 on an open neighborhood of V in Cn that
vanishes quadratically on V and satisfies

(3.7) Lφ(z; θ) > 0 for all z ∈ Vreg and θ ∈ TzC
n \ TzV.

(Such φ can be chosen of the form φ =
∑

k |fk|2, where {fk} is a collection of
holomorphic defining functions for V on a Stein neighborhood of V in Cn.) We
claim that for C > 0 chosen big enough the function

v = h̃+ Cχφ

is null plurisubharmonic on an open neighborhood of Γ ∪ V = Γ̂ in Cn. (Even
though φ is only defined near V , the multiplier χ vanishes near Γ, and hence we
extend the product χφ as zero on a neighborhood of Γ.) We have v = h̃ on a
neighborhood D � U0 ∪U1 of K, so v is strongly plurisubharmonic there. Suppose
now that z ∈ V \ D. Then z is a regular point of V and the tangent line TzV is
not a null line, so TzV ∩ A = {0}. It follows from (3.7) that Lφ(z; θ) > 0 for every
θ ∈ A∗. Since the set V \ D is compact, we can ensure by choosing C > 0 big
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enough that Lv(z; θ) > 0 for every z ∈ V \D and θ ∈ A∗, which proves the claim.

Observe also that v(p) = h̃(p) = 1 and maxΓ v = maxΓ h̃ < 1.

Since Γ̂ is polynomially convex, Proposition 2.7(iv) furnishes a null plurisubhar-

monic function φ ∈ NPsh(Cn) which agrees with v near Γ̂. Then 1 = φ(p) > maxΓ φ

and hence p /∈ Γ̂N. This completes the proof. �

In the course of proof of Theorem 3.7 we have actually shown the following result.

Lemma 3.8. Let V be a smooth locally closed complex curve in Cn (n ≥ 3) whose
tangent line TzV is not a null line for any z ∈ V . Then for every h ∈ C 2(V ) there
exists an open neighborhood Ω ⊂ Cn of V and a strongly null plurisubharmonic
function v ∈ NPsh(Ω) such that v|V = h.

Theorem 3.7 also implies the following corollary; clearly one can formulate more
general statements in this direction.

Corollary 3.9. Assume that Γ is a rectifiable connected Jordan curve in Cn (n ≥ 3)
which contains an embedded arc I ⊂ Cn of class C r for some r > 1. If there exists
a point p ∈ I such that the tangent line TpI does not belong to the null quadric A,

then Γ̂N = Γ.

Proof. If Γ̂ �= Γ, then V = Γ̂ \ Γ is a connected complex curve with boundary
bV = Γ by Alexander’s theorem [2]. Since the arc I ⊂ bV is of class C r with r > 1,
the union V ∪ I is a C 1 variety with boundary along I (see Chirka [9]). If TpI does
not belong to A for some p ∈ I, then V is not a null curve; hence the conclusion
follows from Theorem 3.7. �

4. Minimal plurisubharmonic functions and minimal hulls

In this section we study minimal plurisubharmonic functions on domains in Rn

and minimal hulls of compact subsets of Rn. The central results, Theorem 4.5 and
Corollary 4.9, are only proved for n = 3 since they rely on the disc formula in
Theorem 2.10.

Definition 4.1. An upper semicontinuous function u on a domain ω ⊂ Rn (n ≥ 3)
is minimal plurisubharmonic if the restriction of u to any affine 2-dimensional plane
L ⊂ Rn is subharmonic on L∩ω (in any isothermal linear coordinates on L). The set
of all such functions will be denoted by MPsh(ω). A function u ∈ C 2(ω) is minimal
strongly plurisubharmonic if the restriction of u to any affine 2-dimensional plane
L ⊂ Rn is strongly subharmonic on L ∩ ω.

Linear coordinates (y1, y2) on a 2-plane L⊂Rn are isothermal if L is parametrized
by x = a+y1v1+y2v2, where a ∈ L and v1, v2 ∈ R3 is a pair of orthogonal vectors of
equal length. Note that if u ∈ C 2(ω) is minimal plurisubharmonic, then u(x)+ε|x|2
is minimal strongly plurisubharmonic on ω for every ε > 0. (Here |x|2 =

∑n
i=1 x

2
i .)

Remark 4.2. Smooth minimal plurisubharmonic functions are exactly 2-
plurisubharmonic functions studied by Harvey and Lawson in [26] (see in partic-
ular Definition 2.2, Proposition 2.3 and Definition 4.1 in [26, p. 153]). They are
characterized by the property that the sum of the two smallest eigenvalues of the
Hessian is nonnegative at each point. Here we adopt a more suggestive terminology
to emphasize their relationship with minimal surfaces.

Licensed to IMFM. Prepared on Thu Mar 17 03:48:53 EDT 2016 for download from IP 193.2.68.232.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



MINIMAL HULLS OF COMPACT SETS IN R
3 7491

There is a close connection between minimal plurisubharmonic functions on Rn

and null plurisubharmonic functions on Cn.

Lemma 4.3. Let ω ⊂ Rn and Ω = Tω = ω × ıRn ⊂ Cn.

• If u ∈ MPsh(ω), then the function U(x + ıy) = u(x) (x + ıy ∈ Ω) is null
plurisubharmonic on the tube Ω = Tω.

• Conversely, if U ∈ NPsh(Ω) is independent of the variable y = �z, then
the function u(x) = U(x+ ı0) (x ∈ ω) is minimal plurisubharmonic on ω.

Proof. Recall that the real and the imaginary parts of a holomorphic null disc f ∈
N(D,Cn) are conformal minimal discs in Rn; conversely, every conformal minimal
disc in Rn is the real part of a holomorphic null disc in Cn. Since U ◦ f = u ◦ �f
for all f ∈ N(D,Ω), the lemma follows. �

Lemma 4.3 shows that properties (i), (iii)-(v) in Lemma 2.3 and (i)-(iii) in Propo-
sition 2.7 of null plurisubharmonic functions descend to the corresponding proper-
ties of minimal plurisubharmonic functions. In particular, we have the following
result.

Lemma 4.4. An upper semicontinuous function u on a domain ω ⊂ Rn is minimal
plurisubharmonic if and only if for every conformal minimal immersion f : D → ω
the composition u◦f is subharmonic on D. More generally, the restriction u|M of a
minimal plurisubharmonic function to any minimal 2-dimensional submanifold M
is subharmonic in any isothermal coordinates on M .

A precise expression for the Laplacian of u ◦ f , where f : D → ω is a conformal
minimal immersion, is given by (5.13) below.

For any open set ω ⊂ Rn (n ≥ 3) we denote by M(D, ω) the set of all conformal
minimal immersions f : D → ω. Given a point x ∈ ω we set

M(D, ω, x) = {f ∈ M(D, ω) : f(0) = x}.

The following result gives an effective way of constructing minimal plurisubhar-
monic functions on domains in R3.

Theorem 4.5. Let ω be a domain in R3 and let φ : ω → R ∪ {−∞} be an upper
semicontinuous function on ω. Then the function

(4.1) u(x) = inf
{∫ 2π

0

φ(f(eıt))
dt

2π
: f ∈ M(D, ω, x)

}
, x ∈ ω,

is minimal plurisubharmonic on ω or identically −∞; moreover, u is the supremum
of the minimal plurisubharmonic functions on ω which are not greater than φ.

Proof. Given a minimal plurisubharmonic function v ∈ MPsh(ω) such that v ≤ φ
and a point x ∈ ω, the maximum principle for subharmonic functions shows that

v(x) ≤
∫ 2π

0

v(f(eıt))
dt

2π
≤

∫ 2π

0

φ(f(eıt))
dt

2π
, ∀f ∈ M(D, ω, x).

By taking the infimum over all f we obtain v ≤ u on ω, where u is defined by (4.1).
To complete the proof we show that u is minimal plurisubharmonic. Let Φ be the
upper semicontinuous function on Ω = ω × ıR3 defined by Φ(x + ıy) = φ(x) for
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x ∈ ω and y ∈ R3. Fix z = x+ ıy ∈ Ω. Since Φ ◦ g = φ ◦ �g for all g ∈ N(D,Ω, z)
and since any f ∈ M(D, ω, x) is the real part of a null disc g ∈ N(D,Ω, z), we have

inf
{∫ 2π

0

Φ(g(eıt))
dt

2π
: g ∈ N(D,Ω, z)

}

= inf
{∫ 2π

0

φ(f(eıt))
dt

2π
: f ∈ M(D, ω, x)

}
.

The left hand side defines a function U(z) which is null plurisubharmonic on Ω
by Theorem 2.10. Comparing the two sides we see that U is independent of the
imaginary component y = �z. Hence the function on the right hand side, which
equals u (4.1), is minimal subharmonic on ω by Lemma 4.3. �

Definition 4.6. The minimal hull of a compact set K ⊂ Rn (n ≥ 3) is the set

(4.2) K̂M = {x ∈ Rn : u(x) ≤ sup
K

u ∀u ∈ MPsh(Rn)}.

We clearly have

(4.3) K ⊂ K̂M ⊂ Co(K),

where Co(K) denotes the convex hull of K.
The maximum principle for subharmonic functions implies that for any bounded

minimal surface M ⊂ Rn with boundary bM ⊂ K we have M ⊂ K̂M.

Remark 4.7. Since minimal plurisubharmonic functions can be approximated by
smooth minimal plurisubharmonic functions, we see that our definition of the min-
imal hull coincides with the 2-convex hull of Harvey and Lawson [26, Definition 3.1,
p. 157]. In [26, Sec. 4] they introduced a minimal current hull of dimension p of a
compact set in any Riemannian manifold (Xn, g) for 2 ≤ p < n and showed that it
is contained in the p-plurisubharmonic hull of K [26, Theorem 4.11]. �

We have the following analogue of Proposition 3.4 whose proof we leave to the
reader; it closely follows the standard plurisubharmonic case (cf. [46, Theorem 1.3.8,
p. 25]).

Proposition 4.8. Given a compact minimally convex set K = K̂M in Rn and an
open set U ⊂ Rn containing K, there exists a smooth minimal plurisubharmonic
exhaustion function ρ : Rn → R+ such that ρ = 0 on a neighborhood of K and ρ is
positive minimal strongly plurisubharmonic on Rn \ U .

Theorem 4.5 implies the following characterization of the minimal hull of a com-
pact set in R3 by sequences of conformal minimal discs. This shows that our
definition of the minimal hull is a natural one. Other evidence to this effect is
furnished by Theorem 6.4 below which identifies the minimal hull of a compact set
in R3 with its minimal current hull.

Corollary 4.9. Let K be a compact set in R3, and let ω � R3 be a bounded open

convex set containing K. A point p ∈ ω belongs to the minimal hull K̂M of K if
and only if there exists a sequence of conformal minimal discs fj ∈ M(D, ω, p) such
that

(4.4)
∣∣{t ∈ [0, 2π] : dist(fj(e

ıt),K) < 1/j}
∣∣ ≥ 2π − 1/j, j = 1, 2, . . . .
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Proof. Note that Proposition 2.7(iv) also holds for minimal plurisubharmonic func-
tions with essentially the same proof: given a compact set K in R3, an open convex
set ω ⊂ R3 containing K, and a function u ∈ MPsh(ω), there exists a func-
tion v ∈ MPsh(R3) such that v = u on K, v is strictly convex on R3 \ ω, and
v(x) > maxK v for each x ∈ R3 \ ω. This implies that, similarly to Lemma 3.3, we
have

K̂M = {x ∈ ω : v(x) ≤ max
K

v ∀v ∈ MPsh(ω)}.

Now Corollary 4.9 follows from Theorem 4.5 by analogous observations such as
Corollary 3.5 follows from Theorem 2.10; we leave out the obvious details. �

We end this section by explaining the relationship between the minimal hull and
the null hull (see Definition 3.1). Let π : Cn → Rn be the projection π(x + ıy) =
x. By Lemma 4.3 a minimal plurisubharmonic function u on Rn lifts to a null
plurisubharmonic function u ◦ π on Cn. This implies that for any compact set
L ⊂ Cn we have

(4.5) π
(
L̂N

)
⊂ π̂(L)

M
.

The inclusion may be strict: take L ⊂ C3 to be a smoothly embedded Jordan
curve such that K = π(L) ⊂ R3 is also a smooth Jordan curve. Then K bounds a

minimal surface M which is therefore contained in K̂M. However, if for some point
p ∈ L the tangent line TpL does not belong to the null quadric A (2.1), then by

Corollary 3.9 we have L̂N = L.
For a more precise result in this direction see Corollary 6.8 below.

5. Green currents

In this section we obtain some technical results that will be used in the sequel.
For the general theory of currents we refer to Federer [18] or Simon [42]; see also
Morgan [35] for a reader friendly introduction to the subject.

Let ζ = x + ıy be the coordinate on C ∼= R2. The Green current, G, on the
closed unit disc D is defined on any 2-form α = adx ∧ dy with a ∈ C (D) by

(5.1) G(α) = − 1

2π

∫
D

log |ζ|·α = − 1

2π

∫
D

log |ζ|· a(ζ)dx ∧ dy.

Clearly G is a positive current of bidimension (1, 1). For any function u of class C 2

on a domain in C we have ddcu = 2ı∂∂̄u = u· dx ∧ dy. Green’s formula

(5.2) u(0) =
1

2π

∫ 2π

0

u(eıt)dt+
1

2π

∫
D

log |ζ|·u(ζ) dx ∧ dy,

which holds for any u ∈ C 2(D), tells us that

(ddcG)(u) = G(ddcu) =
1

2π

∫ 2π

0

u(eıt)dt− u(0).

This means that ddcG = σ − δ0, where σ is the normalized Lebesgue measure on
the circle bD = T and δx is the evaluation at a point x. If u is subharmonic, then

0 ≤ G(u· dx ∧ dy) = ddcG(u) =

∫
T

u dσ − u(0).
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Let x = (x1, . . . , xn) be the coordinates on Rn. Given a smooth map f =
(f1, . . . , fn) : D → Rn we denote by f∗G the 2-dimensional current on Rn given on
any 2-form α =

∑n
i,j=1 ai,jdxi ∧ dxj by

(5.3) (f∗G)(α) = G(f∗α) = − 1

2π

∫
D

log |ζ|· f∗α.

Clearly supp(f∗G) ⊂ f(D). We call f∗G the Green current supported by f .
Assume now that f : D → Cn is a C 2 map that is holomorphic on D. (Identifying

Cn with R2n, the Cauchy-Riemann equations imply that f is conformal harmonic,
except at the critical points where df = 0.) Since f commutes with the ∂-operator,
and hence also with the conjugate differential dc = ı(∂ − ∂), we get for any u ∈
C 2(Cn) that

ddc(f∗G)(u) = f∗G(ddcu) = G(f∗ddcu) = G(ddc(u ◦ f)) =
∫
T

(u ◦ f)dσ− (u ◦ f)(0).

This gives the following well-known formula:

(5.4) ddc(f∗G) = f∗σ − δf(0);

see e.g. Duval and Sibony [16, Example 4.9].
Recall the following representation theorem (see Federer [18, §4.1.5–§4.1.7]). As-

sociated to any p-dimensional current T on Rn of finite mass there is a positive

Radon measure ||T || on Rn and a ||T ||-measurable frame of unit p-vectors �T such
that for any p-form α with compact support on Rn we have that

(5.5) T (α) =

∫
Rn

〈α, �T 〉 d ||T ||.

Here 〈α, �T 〉 denotes the value of α on the p-vector �T (a ||T ||-measurable function
on Rn). The mass M(T ) of the current T is then given by

(5.6) M(T ) = sup{T (α) : |〈α, �T 〉| ≤ 1} =

∫
Rn

d ||T ||.

In particular, every current of finite mass is representable by integration.
Wold proved that for any holomorphic disc f : D → Cn the mass M(f∗G) is

bounded in terms of the dimension n and of supζ∈D
|f(ζ)| (cf. [48, Lemma 2.2]).

The following lemma gives an explicit formula for a bigger class of Green currents.
What is important for our purposes is that M(f∗G) is bounded by the L2-norm of
f on the circle.

Lemma 5.1. If f = (f1, . . . , fn) : D → Rn is a conformal harmonic immersion of
class C 2(D), then the mass of the Green current f∗G satisfies

(5.7) M(f∗G) ≤ 1

4

(∫
T

|f |2dσ − |f(0)|2
)
.

If f is injective outside of a closed set of measure zero in D, or if f : D → Cn is a
holomorphic disc, then we have equality in (5.7).

Proof. Denote the partial derivatives of f : D → Rn by fx and fy. Write

|f |2 =

n∑
i=1

f2
i , |∇f |2 =

n∑
i=1

|∇fi|2 =

n∑
i=1

(
f2
i,x + f2

i,y

)
.
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We identify fx and fy with the vector fields f∗
∂
∂x and f∗

∂
∂y , respectively. Since f

is conformal, these vector fields are orthogonal and satisfy |fx| = |fy|. Let

(5.8) �T =
fx ∧ fy
|fx|· |fy|

=
fx ∧ fy
|fx|2

.

Given a 2-form α on Rn, we have

(5.9) f∗α = 〈α ◦ f, fx ∧ fy〉 dx ∧ dy = 〈α ◦ f, �T 〉 |fx|2 dx ∧ dy.

The definition of T = f∗G (5.3) and the formula (5.9) imply

(5.10) T (α) = − 1

2π

∫
D

log |ζ|· 〈α ◦ f, �T 〉· |fx|2 dx ∧ dy.

From the definition of the mass of a current and (5.10) it follows that

(5.11) M(T ) = sup{T (α) : |〈α, �T 〉| ≤ 1} ≤ − 1

2π

∫
D

log |ζ|· |fx|2 dx ∧ dy.

So far we have only used the hypothesis that f is conformal. At this point we
take into account that f is also harmonic. For any harmonic function v ∈ C 2(D)
we have

ddcv2 = d(2vdcv) = 2dv ∧ dcv = 2|∇v|2dx ∧ dy.

Applying this to each component fi of the harmonic map f = (f1, . . . , fn) we get

|∇f |2 dx ∧ dy =

n∑
i=1

|∇fi|2 dx ∧ dy =
1

2

n∑
i=1

ddcf2
i .

Inserting the identity |fx|2 dx ∧ dy = 1
2 |∇f |2 dx ∧ dy = 1

4

∑n
i=1 dd

cf2
i into (5.11)

and applying Green’s identity (5.2) gives the inequality (5.7) for M(f∗G). �

Remark 5.2. The formula (5.11) shows that the mass measure of T = f∗G (5.5)
equals

(5.12) ||T ||(U) = − 1

2π

∫
f−1(U)

log |ζ|· |fx|2 dx ∧ dy

for any open set U ⊂ Rn such that f is injective on f−1(U) ⊂ D. The possible loss
of mass, leading to a strict inequality in (5.11) and hence in (5.7), may be caused
by the cancellation of parts of the immersed surface f(D) (considered as a current)

due to the reversal of the orientation of the frame field �T . (This can happen for
example by immersing the disc conformally onto a Möbius band in R3 and letting
�T be its tangential frame field.) If f is injective outside a closed set E ⊂ D of
measure zero, then for any open set V ⊃ E we can easily find a 2-form α such

that |〈α, �T 〉| ≤ 1 on f(D) and 〈α, �T 〉 = 1 on f(D \ V ). By shrinking V down to
E we see that the inequality in (5.11) becomes an equality. A holomorphic disc
f : D → Cn carries a canonical orientation induced by the complex structure, so
there is no cancellation of mass in the current f∗G. On the other hand, the total
mass of f(D), counted with multiplicities and with the weight induced by − log |· |,
always equals the expression on the right hand side of (5.7). �

Given a C 2 function u on a domain in Rn, we denote by

Hessu =

(
∂2u

∂xi∂xj

)
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its Hessian, a quadratic form on TxR
n. If �Tx is a unit p-frame at x, we denote by

tr�Tx
(Hessu) the trace of the Hessian of u restricted to the p-plane span �Tx ⊂ TxR

n.

Lemma 5.3. For every conformal harmonic immersion f : D → Rn we have

(5.13) ddc(u ◦ f) =
(
tr�T (Hessu) ◦ f

)
· |fx|2 dx ∧ dy,

where �T is the unit 2-frame along f(D) given by (5.8).

Proof. Note that dc(u ◦ f) =
∑n

j=1

(
∂u
∂xj

◦ f
)
· dcfj and hence

ddc(u ◦ f) =
n∑

i,j=1

d

(
∂u

∂xj
◦ f

)
∧ dcfj =

n∑
i,j=1

(
∂2u

∂xi∂xj
◦ f

)
· dfi ∧ dcfj .

(We used the fact that ddcfj = 0 since f is harmonic.) We also have

dfi ∧ dcfj = (fi,xdx+ fi,ydy) ∧ (−fj,ydx+ fj,xdy) = (fi,xfj,x + fi,yfj,y) dx ∧ dy.

Inserting this identity into the previous formula yields

ddc(u ◦ f) =
n∑

i,j=1

(
∂2u

∂xi∂xj
◦ f

)(
fi,xfj,x + fi,yfj,y

)
dx ∧ dy

=
(
f t
x· (Hessu) ◦ f · fx + f t

y· (Hessu) ◦ f · fy
)
dx ∧ dy

=
(
tr�T (Hessu) ◦ f

)
· |fx|2 dx ∧ dy.

(We used the fact that |fx| = |fy| and fx· fy = 0 since f is conformal.) This gives
(5.13). �

Remark 5.4. The formula (5.13) actually means that

tr�T (Hessu) = M (u|M ),

whereM is the Laplace-Beltrami operator on the minimal surfaceM = f(D) ⊂ Rn

in the induced metric. (See e.g. [23, Proposition 2.10] or (2.10) in [26]. If M is not
minimal, then there is an error term; see (2.9) in [26].) �

Lemma 5.5. Let T = f∗G be the Green current (5.3) on Rn supported by a con-

formal harmonic immersion f : D → Rn, and let �T be a unit tangential 2-frame
along f(D). For every C 2 function u on a neighborhood of f(D) we have that
(5.14)∫

Rn

tr�T (Hessu) d ||T || ≤ − 1

2π

∫
D

log |ζ|· ddc(u ◦ f) =
∫ 2π

0

u
(
f(eıt)

) dt
2π

− u(f(0)).

The equality holds under the same conditions as in Lemma 5.1.

Proof. Let �T be as in (5.8). From the expression (5.12) for ||T || we get that∫
Rn

tr�T (Hessu)· d ||T || ≤ − 1

2π

∫
D

log |ζ|·
(
tr�T (Hessu) ◦ f

)
· |fx|2 dx ∧ dy.

The equality holds under the same conditions as described in Lemma 5.1. Now
(5.14) follows immediately from the identity (5.13). �

Lemma 5.5 gives another proof of the mass inequality (5.11) for M(f∗G): apply
(5.14) with the function u(x) =

∑n
j=1 x

2
j and observe that tr�T (Hessu) ≡ 4 for any

�T .
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6. Characterizations of minimal hulls and null hulls

by Green currents

Recall that a 2-form α on a domain Ω ⊂ Cn is said to be positive if for every
point p ∈ Ω and vector ν ∈ TpC

n we have 〈α(p), ν ∧ Jν〉 ≥ 0. (Here J denotes
the standard complex structure operator on Cn.) Let α = α2,0 + α1,1 + α0,2 be a
decomposition according to type. Since 〈α(p), ν ∧ Jν〉 vanishes for forms of type
(2, 0) and (0, 2), we see that α is positive if and only if α1,1 is as well. A current T
of bidimension (1, 1) on Cn is positive if T (α) ≥ 0 for every positive (1, 1)-form α
with compact support.

Definition 6.1. A 2-form α on a domain Ω ⊂ Cn is null positive if for every point
p ∈ Ω and null vector ν ∈ A∗ (2.1) we have 〈α(p), ν ∧ Jν〉 ≥ 0. (We identify ν
with a tangent vector in TpC

n, and J denotes the complex structure operator.) A
(1, 1)-current T on Cn is null positive if T (α) ≥ 0 for every null positive 2-form α
with compact support.

Note that a function u of class C 2 is null plurisubharmonic (see Definition 2.1)
if and only if the (1,1)-form ddcu is null positive.

If f : D → Cn is a null holomorphic disc, then T = f∗G is a null positive current.

Indeed, if α is a null positive 2-form and �T is a positively oriented orthonormal

frame field along f , then 〈α, �T 〉 ≥ 0 and hence T (α) =
∫
〈α, �T 〉 d ||T || ≥ 0 by (5.5).

The following result is analogous to the characterization of the polynomial hull,
due to Duval and Sibony [16] and Wold [48, Theorem 2.3] (see Theorem 1.2 above).

Theorem 6.2. Let K be a compact set in C3. A point p ∈ C3 belongs to the null

hull K̂N of K (3.1) if and only if there exists a null positive (1, 1)-current T on C3

with compact support satisfying ddcT = μ− δp, where μ is a probability measure on
K and δp is the point mass at p, such that

(6.1) u(p) ≤
∫
K

u dμ ∀u ∈ NPsh(C3).

The support of any such current T is contained in the null hull K̂N of K.

Proof. If μ is a probability measure satisfying (6.1), then u(p) ≤
∫
K
udμ ≤ maxK u

for every u ∈ NPsh(C3), and hence p ∈ K̂N. (This implication holds on Cn for any
n ≥ 3.)

For the converse implication we follow Wold [48]. Choose a ball Ω ⊂ C3 contain-
ing K. Let fj ∈ N(D,Ω, p) be a sequence of null discs furnished by Corollary 3.5.
The Green currents Tj = (fj)∗(G) have uniformly bounded masses by Lemma 5.1.
Consider the Tj ’s as continuous linear functionals on the separable Banach space of
differential forms on C3 with the sup-norm topology. A bounded set of functionals
is metrizable [12, V.5.1], and hence the weak* compactness of a closed bounded set
of currents coincides with the sequential weak* compactness. Hence a subsequence
of Tj converges weakly to a null positive (1, 1)-current T with compact support and
finite mass. By (5.4) we have ddcTj = (fj)∗σ− δp for all j. Condition (3.4) implies
that the supports of the probability measures σj = (fj)∗σ converge to K; passing
to a subsequence we obtain a probability measure μ = limj→∞ σj on K. It follows
that

ddcT = lim
j→∞

ddcTj = lim
j→∞

σj − δp = μ− δp.

Licensed to IMFM. Prepared on Thu Mar 17 03:48:53 EDT 2016 for download from IP 193.2.68.232.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



7498 B. DRINOVEC DRNOVŠEK AND F. FORSTNERIČ

If u ∈ NPsh(C3), then ddcu is null positive, and hence 0 ≤ T (ddcu) =
∫
K
u dμ −

u(p).

It remains to show that suppT ⊂ K̂N. This is a special case of part (a) in the
following proposition. Part (b) will be used in Theorem 6.4 below. We consider
Rn as the standard real subspace of Cn and denote by π : Cn → Rn the projection
π(x+ ıy) = x.

Proposition 6.3. Let T be a null positive current of bidimension (1, 1) on Cn.

(a) If T has compact support and satisfies ddcT ≤ 0 on Cn\K for some compact

set K ⊂ Cn, then suppT ⊂ K̂N.
(b) Assume that T has bounded mass and π(suppT ) ⊂ Rn is a bounded subset

of Rn. If ddcT ≤ 0 on Cn \ (K × ıRn) for some compact set K ⊂ Rn, then

suppT ⊂ K̂M × ıRn. (Recall that K̂M is the minimal hull of K.)

Proof of (a). Fix a point q ∈ Cn \ K̂N. Proposition 3.4 furnishes a nonnegative
smooth function u ∈ NPsh(Cn) which is strongly null plurisubharmonic on a neigh-

borhood U ⊂ Cn of q and vanishes on a neighborhood of K̂N. Since the support
of u is contained in Cn \ K where ddcT ≤ 0, we have T (ddcu) = (ddcT )(u) ≤ 0.
(We are using the fact that T has compact support, so it may be applied to forms
with arbitrary supports.) As T is null positive on Cn, we also have T (ddcu) ≥ 0;
hence T (ddcu) = 0. Since u is strongly null plurisubharmonic on U , it follows that

M(T |U ) = 0. This proves that suppT ⊂ K̂N.

Proof of (b). Write TU = π−1(U) = U × ıRn for any U ⊂ Rn. Choose a ball

B ⊂ Rn such that π(suppT ) ∪ K̂M ⊂ B. Since T has bounded mass, it can
be applied to any 2-form with bounded continuous coefficients on the tube TB .
In particular, for any function u ∈ C 2(Rn) the current T can be applied to the

2-form ddc(u ◦ π). Fix a point q /∈ K̂M. Proposition 4.8 furnishes a smooth
nonnegative function u ∈ MPsh(Rn) that is minimal strongly plurisubharmonic
on a neighborhood U ⊂ Rn of q and vanishes on a neighborhood V ⊂ Rn of

K̂M. The function ũ = u ◦ π on Cn is then null plurisubharmonic (see Lemma
4.3), it is strongly null plurisubharmonic on the tube TU , and it vanishes on TV .
Since the support of ũ is contained in Cn \ TK where ddcT is negative, we have
T (ddcũ) = (ddcT )(ũ) ≤ 0. As T is null positive, we also have T (ddcũ) ≥ 0; hence
T (ddcũ) = 0. Since ũ is strongly null plurisubharmonic on TU , it follows that T has

no mass there. This proves that suppT ⊂ K̂M × ıRn. �
This completes the proof of Theorem 6.2. �
In the remainder of the section we obtain several characterizations of the minimal

hull of a compact set in R3. Recall that π : C3 → R3 is the projection π(x+ıy) = x.

Theorem 6.4 (Characterization of the minimal hull by currents). Let K be a

compact set in R3. A point p ∈ R3 belongs to the minimal hull K̂M (4.2) if and only
if there exists a null positive current T on C3 of finite mass such that π(suppT ) ⊂
R3 is a bounded set and ddcT = μ − δp, where μ is a probability measure on the
tube TK = K × ıR3.

Any current T satisfying Theorem 6.4 has support contained in K̂M × ıR3 ac-
cording to Proposition 6.3(b). If T and μ are as in Theorem 6.4, then

(6.2) u(p) ≤
∫
TK

(u ◦ π) dμ ≤ max
K

u ∀u ∈ MPsh(R3).
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Indeed, if u ∈ MPsh(R3), then ũ = u ◦ π ∈ NPsh(C3) by Lemma 4.3, and ũ is
bounded on TB = B × ıR3 for every bounded set B ⊂ R3. Choosing B to be a
large ball, we have suppT ⊂ TB and hence 0 ≤ T (ddcũ) =

∫
ũ dμ − u(p), thus

proving (6.2). (Here we use the fact that T has bounded mass, so it can be applied
to any 2-form with bounded continuous coefficients on TB . Note that ddcũ is such
when ũ = u ◦ π and u is a C 2 function on R3.) The projection ν = π∗μ is then
a probability measure on K satisfying u(p) ≤

∫
K
u dν for every u ∈ MPsh(R3).

Hence Theorem 6.4 implies the following corollary.

Corollary 6.5. Let K be a compact set in R3. A point p ∈ R3 belongs to the

minimal hull K̂M (4.2) if and only if there exists a probability measure ν on K such
that

(6.3) u(p) ≤
∫
K

u dν ≤ max
K

u ∀u ∈ MPsh(R3).

A measure ν satisfying (6.3) is called a minimal Jensen measure for the point

p ∈ K̂M.

Proof of Theorem 6.4. If μ is a probability measure on TK satisfying (6.2), then

the measure ν = π∗μ on K satisfies (6.3), and hence p ∈ K̂M.

Let us now prove the converse. Fix a point p ∈ K̂M. Corollary 4.9 furnishes
a bounded sequence of conformal minimal discs fj ∈ M(D,R3, p) satisfying (4.4).

We may assume that each fj is real analytic on a neighborhood of D. Let gj be the

harmonic conjugate of fj on D with gj(p) = 0. Then Fj = fj + ıgj ∈ N(D,C3) is a
null holomorphic disc. Let Θj = (fj)∗G and Tj = (Fj)∗G be the associated Green
currents on R3 and C3, respectively. Then Tj is null positive and π∗Tj = Θj for
every j. By Lemma 5.1 we have

4M(Tj) =

∫
T

|Fj |2dσ − |p|2 =

∫
T

|fj |2 dσ +

∫
T

|gj |2 dσ − |p|2.

Since the conjugate function operator is bounded on the Hilbert space L2(T)
[20, Theorem 3.1, p. 116] and the sequence fj is uniformly bounded, we see that
M(Tj) ≤ C < ∞ for some constant C and for all j ∈ N. We may assume by passing
to a subsequence that Tj converges weakly to a null positive (1, 1)-current T with
finite mass (but not necessarily with compact support since the harmonic conju-
gates gj of fj need not be uniformly bounded) and Θj converges to a 2-dimensional
current Θ on R3. From π∗Tj = Θj for all j ∈ N we also get that π∗T = Θ.

By (5.4) we have that ddcTj = (Fj)∗σ − δp for all j ∈ N. Note that π∗(Fj)∗σ =
(fj)∗σ. Condition (4.4) implies that the supports of the probability measures
(fj)∗σ converge to K, and hence the supports of the measures (Fj)∗σ converge
to the tube TK . By passing to a subsequence we obtain a probability measure
μ = limj→∞(Fj)∗σ on TK . It follows that

ddcT = lim
j→∞

ddcTj = lim
j→∞

(Fj)∗σ − δp = μ− δp.

The last claim in Theorem 6.4 follows directly from Proposition 6.3(b). �

Remark 6.6. The proof of Proposition 6.3 is similar to the proof of the following
result due to Harvey and Lawson [26, Theorem 4.11]: Given a compact set K ⊂ Rn

and a minimal p-dimensional current T on Rn [26, Definition 4.7] with supp(∂T ) ⊂
K, it follows that the support of T is contained in the p-plurisubharmonic hull of
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K. It is not clear from their work whether every point in the p-plurisubharmonic
hull of K lies in the support of such a current. The main new part of Theorem
6.4 for n = 3 and p = 2 is that it completely explains the minimal hull by Green
currents. It would be of interest to know whether the analogous result holds in
higher-dimensional Euclidean spaces. �

We wish to compare the minimal hull of a compact set K ⊂ Rn to the null hull
of the tube TK = K × ıRn ⊂ Cn. The latter set is unbounded, and the standard
definition of its polynomial hull (and, by analogy, of its null hull) is by exhaustion
with compact sets. Let Br ⊂ Rn denote the closed ball of radius r centered at the
origin. Then TK =

⋃
r>0 TK,r where TK,r = K × ıBr, and we set

(6.4) T̂K =
⋃
r>0

T̂K,r, (̂TK)
N
=

⋃
r>0

(̂TK,r)N.

Clearly (̂TK)
N
⊂ T̂K . From (4.5) we also get that that

(̂TK)
N
⊂ K̂M × ıRn ⊂ Co(K)× ıRn.

We do not know whether the first inclusion could be strict. On the other hand,
Theorem 6.4 motivates the following definition of the current null hull of the tube
TK .

Definition 6.7. Let K be a compact set in R3 and TK = K×ıR3 ⊂ C3 be the tube

over K. The current null hull of TK , denoted (̂TK)
N∗ , is the union of supports of

all null positive (1, 1)-currents T on C3 with finite mass such that π(suppT ) ⊂ R3

is a bounded set and ddcT ≤ 0 on C3 \ TK .

Theorem 6.2 shows that (̂TK)
N
⊂ (̂TK)

N∗ . Now Theorem 6.4 implies the follow-
ing result which extends the classical relationship between conformal minimal discs
and null holomorphic discs to the corresponding hulls.

Corollary 6.8. If K is a compact set in R3 and TK = K × ıR3 ⊂ C3, then

(6.5) (̂TK)
N∗ = K̂M × ıR3.

Here (̂TK)
N∗ denotes the current null hull of TK (see Definition 6.7).

Question 6.9. Let T be a current as in Theorem 6.4 with ddcT = μ − δp, where
μ is a probability measure on TK and p ∈ R3. Is the point p always contained in
the support of the projected current Θ = π∗T on R3?

If so, we could conclude that K̂M is the union of supports of currents of the form
Θ = limj→∞(fj)∗G, where fj is a bounded sequence of conformal minimal discs as
in Corollary 4.9 whose boundaries converge to K in the measure theoretic sense.
However, the problem is that cancellation of mass may occur in Θ; see Remark
5.2. This can be circumvented by considering (fj)∗G as bounded linear functionals
of the space of quadratic forms on R3. The clue is given by Lemma 5.5; we now
explain this.

Denote by Q(Rn) the separable Banach space consisting of all quadratic forms
h =

∑n
i,j=1 hi,j(x)dxi ⊗ dxj on Rn with continuous coefficients hi,j and with finite

sup-norm

||h|| =
n∑

i,j=1

sup
x∈Rn

|hi,j(x)| < ∞.
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Assume that T is a 2-dimensional current on Rn of finite mass (hence representable

by integration), and let �T and ||T || be its frame field and mass measure (5.5),
respectively. Then T defines a bounded linear functional on Q(Rn) by the formula

T (h) =

∫
Rn

tr�Th· d ||T ||, h ∈ Q(Rn),

where tr�Th is the trace of the restriction of h to the 2-plane span �T . Since tr�Th is

independent of the orientation determined by �T , every compact surface M ⊂ Rn

(also nonorientable) defines a bounded linear functional on Q(Rn). More generally,
one can use rectifiable surfaces with finite total area, that is, countable unions of
images of Lipshitz maps f : D → Rn. (Such surfaces define rectifiable currents; see
[18].)

Given a C 1 immersion f : D → Rn, we denote by �T the 2-frame along f deter-
mined by the partial derivatives fx, fy. Define a bounded linear functional T = f∗G
on Q(Rn) by

(6.6) T (h) = − 1

2π

∫
D

log |ζ|
(
tr�Th ◦ f

)
· dx ∧ dy, h ∈ Q(Rn).

If f is conformal harmonic, we see from (5.14) that for every u ∈ C 2(Rn) we have

(6.7) T (Hessu) = − 1

2π

∫
D

log |ζ|· ddc(u ◦ f) =
∫ 2π

0

u
(
f(eıt)

) dt
2π

− u(f(0)).

(There is no cancellation of mass as explained above, so we have the equality in
(5.14).) This gives the following characterization of the minimal hull in R3.

Corollary 6.10. Let K be a compact set in R3. A point p ∈ R3 belongs to the

minimal hull K̂M of K (4.2) if and only if there exist a continuous linear functional
T with compact support on Q(R3) and a probability measure μ on K such that

(6.8) T (Hessu) =

∫
K

u dμ− u(p) ∀u ∈ C 2(R3),

and T (Hessu) ≥ 0 for every minimal plurisubharmonic function u of class C 2 on

R3. The support of every such functional T is contained in K̂M.

Note that the measure μ in (6.8) is a minimal Jensen measure for p (see Corollary
6.5).

Proof. If T and μ as in the corollary exist, then for every u ∈ C 2(R3)∩MPsh(R3)

we have 0 ≤ T (Hessu) =
∫
K
udμ− u(p), and hence p ∈ K̂M.

Assume now that p ∈ K̂M. Let fj : D → R3 be a bounded sequence of conformal
harmonic immersions as in Corollary 4.9, with fj(0) = p for all j. The associated
linear functionals Tj on Q(R3), given by (6.6), are a bounded sequence in the
dual space Q(R3)∗. By the same argument as in the proof of Theorem 6.2 we
see that a subsequence of Tj converges in the weak* topology to a bounded linear
functional T ∈ Q(R3)∗. Similarly, we may assume that the probability measures
(fj)∗σ converge weakly to a measure μ on K. Since every Tj satisfies (6.7), we
get in the limit the identity (6.8). If u ∈ C 2 is minimal plurisubharmonic, then
Tj(Hessu) ≥ 0 by (6.7) and the submeanvalue property of the subharmonic function

u◦fj on D. Passing to the limit we obtain T (Hessu) ≥ 0. Proposition 6.3(b) shows

that suppT ⊂ K̂M. �
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7. Bochner’s tube theorem for polynomial hulls

Bochner’s tube theorem [5] says that for every connected open set ω ⊂ Rn the
envelope of holomorphy of the tube Tω = ω × ıRn equals its convex hull Co(Tω) =
Co(ω) × ıRn. This beautiful classical result can be found in most standard texts
on complex analysis (see e.g. [6, 27, 46]), and it was extended in several directions
by different authors. A new recent proof was given by J. Hounie [29], where the
reader can find updated references.

In light of Bochner’s theorem the following is a natural question:

Question 7.1. Let K be a connected compact set in Rn. Is the polynomially

convex hull T̂K (6.4) of the tube TK = K × ıRn ⊂ Cn always equal its convex hull:

T̂K ?
= Co(TK) = Co(K)× ıRn.

(The inclusion T̂K ⊂ Co(TK) is obvious.)

We give an affirmative answer if the polynomial hull of TK is defined as the
union of supports of positive currents T of bidimension (1, 1) with finite mass such
that ddcT is negative on Cn \ TK and suppT projects to a bounded subset of
Rn. This definition is entirely natural in view of the Duval-Sibony-Wold [16, 48]
characterization of the polynomial hull of a compact set L ⊂ Cn by positive (1, 1)
currents T with compact support such that ddcT ≤ 0 on Cn \ L (see Theorem 1.2
in Section 1).

Let π : Cn → Rn denote the projection π(x + ıy) = x. We have the following
result.

Theorem 7.2 (Bochner’s tube theorem for polynomial hulls). Let K be a connected
compact set in Rn. For every point z0 = p + ıq ∈ Cn with p ∈ Co(K) there
exists a positive current T of bidimension (1, 1) on Cn with finite mass satisfying
supp(T ) ⊂ Co(K)× ıRn and ddcT = μ − δz0 , where μ is a probability measure on
TK and δz0 is the Dirac mass at z0.

Conversely, let T be a positive (1, 1) current on Cn with finite mass such that
π(suppT ) is a bounded set in Rn. If ddcT ≤ 0 on Cn \TK , then suppT ⊂ Co(K)×
ıRn.

The analogous result for null hulls is given by Corollary 6.8.

Proof of Theorem 7.2. By translation invariance in the ıRn direction it suffices to
prove the result for points z0 = p ∈ Rn. We shall use the following simplest case of
the convex integration lemma due to Gromov (cf. [21] or [22]).

Lemma 7.3. Let ω be a connected open set in Rn and p ∈ Rn a point in the
convex hull Co(ω). Then there exists a smooth loop g : T = bD → ω such that∫ 2π

0
g(eıt) dt

2π = p.

The proof of Lemma 7.3 is quite simple: write p =
∑k

j=1 cjpj where pj ∈ ω

and cj > 0 with
∑k

j=1 cj = 1. Pick a smaller connected bounded open set ω′ � ω

which contains the points p1, . . . , pk. Choose a smooth path g : T → ω′ such that
it spends almost the time cj at the point pj and goes very quickly from one point
to the next in the meantime. This gives a loop in ω′ whose integral is as close as
desired to p; by a small translation of g we can ensure that it lies in ω and that its
integral equals p.
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Since every smooth map T → Rn is the boundary value of a harmonic map

g : D → Rn and we have
∫ 2π

0
g(eıt) dt

2π = g(0), we immediately get the following
corollary.

Corollary 7.4. Let ω and p be as in Lemma 7.3. Then there exists an analytic
disc f : D → Cn such that f(0) = p and f(T) ⊂ ω × ıRn.

Assume now that K is a compact connected set in Rn and p ∈ Co(K). For
each j ∈ N let ωk = {x ∈ Rn : dist(x,K) < 1/j}. Corollary 7.4 furnishes a
holomorphic disc fj : D → Cn with fj(0) = p and fj(T) ⊂ ωj × ıRn. The sequence

of real parts gj = �fj : D → ωj is uniformly bounded, and hence bounded in
L2(T). Since the harmonic conjugate transform is a bounded operator on L2(T)
(see [20, Theorem 3.1, p. 116]), we have

∫
T
|fj |2dσ ≤ C < ∞ for some constant C

and all j ∈ N. Let Tj = (fj)∗G, a positive (1, 1) current on Cn. Lemma 5.1 implies
that M(Tj) ≤ C/4 < ∞ for all j.

We now proceed as in Theorem 6.4. Passing to a subsequence we may assume
that currents Tj converge weakly to a positive (1, 1)-current T on Cn with finite
mass whose support lies over a bounded subset of Rn, and the measures σj = (fj)∗σ
converge weakly to a probability measure μ supported on K × ıRn. (No mass is
lost when passing to the limit since the sequence fj is bounded in L2(T).) By (5.4)
we have that ddcTj = (fj)∗σ − δp for all j ∈ N, and hence we get ddcT = μ− δp.

The last claim in Theorem 7.2 is proved as in Proposition 6.3(b), using the fact
that for any convex function u on Rn the function u ◦ π is plurisubharmonic on
Cn. �

Added in proof

In the recent preprint “Minimal surfaces in minimally convex domains” by
A. Alarcón, B. Drinovec Drnovšek, F. Forstnerič and F. J. López (http://arxiv.org/
abs/1510.04006) it is shown that the main results of the present paper hold in any
dimension n ≥ 3.
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