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Abstract We construct complex contact structures on C
2n+1 for any n ≥ 1 with

the property that every holomorphic Legendrian map C → C
2n+1 is constant. In

particular, these contact structures are not globally contactomorphic to the standard
complex contact structure on C

2n+1.
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1 Introduction and Main Results

LetM be a complexmanifold of odd dimension 2n+1 ≥ 3,where n ∈ N = {1, 2, . . .}.
A holomorphic vector subbundle ξ ⊂ T M of complex codimension one in the tangent
bundle T M is a holomorphic contact structure on M if every point p ∈ M admits an
open neighborhood U ⊂ M such that ξ |U = ker α for a holomorphic 1-form α on U
satisfying

α ∧ (dα)n �= 0.

A 1-form α satisfying this nondegeneracy condition is called a holomorphic con-
tact form, and (M, ξ) is a complex contact manifold. We shall also write (M, α)
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when ξ = ker α holds on all of M . The model is the complex Euclidean space
(C2n+1

x1,y1,...,xn ,yn ,z, ξ0 = ker α0) where α0 is the standard complex contact form

α0 = dz +
n∑

j=1

x j dy j . (1.1)

By Darboux’s theorem, every holomorphic contact form equals α0 in suitably chosen
local holomorphic coordinates at any given point (see e.g., Geiges [11, Theo-
rem 2.5.1, p. 67] for the smooth case and [1, Theorem A.2] for the holomorphic one).
This standard case has recently been considered by Alarcón, López, and the author
in [1]. They proved in particular that every open Riemann surface R admits a proper
holomorphic embedding f : R ↪→ (C2n+1, α0) as a Legendrian curve, meaning that
f ∗α0 = 0 holds on R. In the same paper, the authors asked whether there exists a
holomorphic contact form α on C

3 which is not globally equivalent to the standard
form α0 (cf. [1, Problem 1.5, p. 4]). In this paper, we provide such examples in every
dimension.

Theorem 1.1 For every n ∈ N, there exists a holomorphic contact form α on C
2n+1

such that any holomorphic map f : C → C
2n+1 satisfying f ∗α = 0 is constant.

In particular, the complex contact manifold (C2n+1, α) is not contactomorphic to
(C2n+1, α0).

Indeed, a contactomorphism sends Legendrian curves to Legendrian curves, and
(C2n+1, ξ0) admits plenty of embedded Legendrian complex lines C ↪→ C

2n+1. For
example, given a point p = (x0, y0, z0) ∈ C

3 and a vector ν = (ν1, ν2, ν3) ∈ ker α0|p,
the quadratic map f : C → C

3 given by

f (ζ ) =
(
x0 + ν1ζ, y0 + ν2ζ, z0 + ν3ζ − ν1ν2ζ

2/2
)

is a holomorphic Legendrian embedding satisfying f (0) = p and f ′(0) = ν.
We expect that our construction actually gives many nonequivalent holomorphic

contact structures on C
2n+1; however, we do not know how to distinguish them.

Eliashberg showed that on R
3 there exist countably many isotopy classes of smooth

contact structures [8,9]. His classification is based on the study of overtwisted disks
in contact 3-manifolds; it is not clear whether a similar invariant could be used in the
complex case.

In order to proveTheorem1.1,we consider thedirectedKobayashimetric associated
to a contact complex manifold (M, ξ). Let D = {ζ ∈ C : |ζ | < 1} denote the open
unit disk. Given a holomorphic subbundle ξ ⊂ T M , we say that a holomorphic disk
f : D → M is tangential to ξ or horizontal if

f ′(ζ ) ∈ ξ | f (ζ ) holds for all ζ ∈ D.
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3168 F. Forstnerič

Consider the function ξ → R+ given for any point p ∈ M and vector v ∈ ξp by

|v|ξ = inf

{
1

|λ| : ∃ f : D → M horizontal, f (0) = p, f ′(0) = λv

}
.

When ξ = T M , this is the Kobayashi length of the tangent vector v ∈ TpM , and its
integrated version is the Kobayashi metric on M (cf. Kobayashi [14,15]). The directed
version of the Kobayashi metric was studied byDemailly [5] and several other authors,
mainly on complex projective manifolds. More general metrics, obtained by integrat-
ing aRiemannianmetric along horizontal curves in a smooth directedmanifold (M, ξ),
have been studied by Gromov [13] under the name Carnot–Carathéodory metrics.
(See also Bellaïche [2].) For this reason, we propose the nameCarnot–Carathéodory–
Kobayashi metric or CCK metric, for the pseudodistance function dξ : M ×M → R+
defined by

dξ (p, q) = inf
γ

∫ 1

0
|γ ′(t)|ξ dt, p, q ∈ M, (1.2)

where the infimum is over all piecewise smooth paths γ : [0, 1] → M satisfying
γ (0) = p, γ (1) = q and γ ′(t) ∈ ξγ (t) for all t ∈ [0, 1]. (By Chow’s theorem [4],
a horizontal path connecting any given pair of points in M exists when the repeated
commutators of vector fields tangential to ξ span the tangent space ofM at every point.
A discussion and proof of Chow’s theorem can also be found in Gromov’s paper [13,
pp. 86, 113]. Another source is Sussmann [17,18].)

The directed complex manifold (M, ξ) is said to be (Kobayashi) hyperbolic if dξ

given by (1.2) is a distance function on M (i.e., if dξ (p, q) > 0 holds for all pairs of
distinct points p, q ∈ M), and is complete hyperbolic if dξ is a complete metric on M .
Clearly, the directed Kobayashi metric on (M, ξ) dominates the standard Kobayashi
metric on M .

Now, Theorem 1.1 is an obvious corollary to the following result.

Theorem 1.2 For every n ∈ N, there exists a holomorphic contact form α on C
2n+1

such that the complex contact manifold (C2n+1, ξ = ker α) is Kobayashi hyperbolic.

The contact 1-forms that we shall construct in the proof of Theorem 1.2 are of the
form

α = 	∗α0

where α0 is the standard contact form (1.1) and 	 : C
2n+1 ↪→ C

2n+1 is a Fatou–
Bieberbach map, i.e., an injective holomorphic map from C

2n+1 onto a proper
subdomain 
 = 	(C2n+1) � C

2n+1 such that (
, α0|
) is a hyperbolic contact
manifold. Let us describe this construction. Let CN > 0 for N ∈ N be a sequence
diverging to +∞ and

K =
∞⋃

N=1

2N−1bD
2n
(x,y) × CNDz . (1.3)

Here, bD
2n
(x,y) ⊂ C

2n denotes the boundary of the unit polydisk in the (x, y)-space

and Dz is the closed unit disk in the z direction. Thus, K is the union of a sequence
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of compact cylinders KN = 2N−1bD
2n
(x,y) × CNDz tending to infinity in all direc-

tions. Theorem 1.2 follows immediately from the following two results of possible
independent interest. In both results, K is the set given by (1.3).

Proposition 1.3 If CN ≥ n23N+1 holds for all N ∈ N, then the domain 
0 =
C
2n+1\K is α0-hyperbolic. (Here, α0 is the contact form (1.1).)

Proposition 1.4 For every choice of constants CN > 0, there exists a Fatou–
Bieberbach domain 
 ⊂ C

2n+1\K.

Indeed, if a domain 
0 ⊂ C
2n+1 is α0-hyperbolic then so is any subdomain 
 ⊂


0. Furthermore, a biholomorphic map 	 : C
2n+1 → 
 is an isometry in the directed

Kobayashi metric from the contact manifold (C2n+1, α) with α = 	∗α0 onto the
contact manifold (
, α0). Since (
, α0) is hyperbolic by Proposition 1.3, Theorem
1.2 follows.

Remark 1.5 It is worthwhile to observe that the contact structures in Theorem 1.2 are
isotopic to the standard contact structure on C

2n+1. Indeed, every Fatou–Bieberbach
map 	 : C

2n+1 ↪→ C
2n+1 is isotopic to the identity 	0 = Id on C

2n+1 through
a smooth 1-parameter family 	t : C

2n+1 ↪→ C
2n+1 (t ∈ [0, 1]) of injective holo-

morphic maps, and hence αt = 	∗
t α0 is an isotopy of holomorphic contact forms

connecting α0 to α = α1.

Proposition 1.3 is proved in Sect. 2; the proof uses Cauchy estimates and the explicit
expression (1.1) for the standard contact form α0. The set K given by (1.3) presents
obstacles which impose a limitation on the size of holomorphic α0-Legendrian disks.

Proposition 1.4 is a special case of Theorem 3.1 which provides a more general
result concerning the possibility of avoiding certain unions of cylinders inC

n byFatou–
Bieberbach domains. Its proof is inspired by a result of Globevnik [12, Theorem 1.1]
who constructed Fatou–Bieberbach domains in C

n whose intersection with a ball
RB

n for a given R > 0 is approximately equal to the intersection of the cylinder
D
n−1 ×C with the same ball. His result implies that one can avoid any cylinder KN in

the set K (1.3) by a Fatou–Bieberbach domain 
. We shall improve the construction
so that 
 avoids all cylinders KN at the same time. For this purpose, we will use a
sequence of holomorphic automorphisms θk ∈ Aut(Cn) such that the sequence of their
compositions�k = θk◦· · ·◦θ1 converges on a certain domain
 anddiverges to infinity
on the set K ; hence K ∩ 
 = ∅. We ensure in addition that each θk approximates the
identity map on the polydisk kD

n
, and hence the limit� = limk→∞ �k : 
 → C

2n+1

is a biholomorphic map of 
 onto C
2n+1.

Several interesting questions remain open. One is whether there exists a com-
plete hyperbolic complex contact structure on C

2n+1. Another is whether there exist
algebraic contact forms α on C

2n+1 (i.e., with polynomial coefficients) such that
(C2n+1, α) is hyperbolic. (Our construction only furnishes transcendental examples.)
If so, what is the minimal degree of such examples, and for which degrees is a generic
(or very generic) contact form hyperbolic? In the integrable case, for affine algebraic
and projective manifolds, this is the famous Kobayashi Conjecture; see Demailly [6],
Brotbek [3], and Deng [7] for recent results on this subject.
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3170 F. Forstnerič

Perhaps the most ambitious question is to classify complex contact structures on
Euclidean spaces up to isotopy, in the spirit of Eliashberg’s classification [8,9] of
smooth contact structures on R

3.
Holomorphic contact structures on compact complex manifolds M = M2n+1 seem

much better understood than those on open manifolds; see for example the paper by
LeBrun [16] and the references therein. In particular, the space of all holomorphic con-
tact subbundles of T M , if nonempty, is a connected complex manifold [16, p. 422].
Furthermore, if M is simply connected then any two holomorphic contact structures
on M are equivalent via some holomorphic automorphism of M [16, Proposition 2.3].
In particular, the only complex contact structure on the projective spaceCP

2n+1 (up to
projective linear automorphisms) is the standard one, given in homogeneous coordi-
nates by the 1-form θ = ∑n

j=0(z jdzn+ j+1−zn+ j+1dz j ). This structure is obtained by

contracting the holomorphic symplectic formω = ∑n
j=0 dz j∧dzn+ j+1 onC

2n+2 with

the radial vector field
∑2n+1

k=0 zk
∂

∂zk
. Its restriction to any affine chartC2n+1 ⊂ CP

2n+1

is equivalent to the standard contact structure given by (1.1). It follows that the pro-
jective space CP

2n+1 does not carry any hyperbolic complex contact structures.

2 Hyperbolic Contact Structures on Domains in C
2n+1

In this section, we prove Proposition 1.3. For simplicity of notation, we consider the
case n = 1; the same proof applies in every dimension.

Thus, let (x, y, z) be complex coordinates onC
3 and α0 = dz+xdy be the standard

contact form (1.1) on C
3. Recall that D = {ζ ∈ C : |ζ | < 1} and D = {ζ ∈ C : |ζ | ≤

1}. The definition of the directed Kobayashi metric shows that Proposition 1.3 is an
immediate corollary to the following lemma.

Lemma 2.1 Assume that CN ≥ 23N+1 for every N ∈ N and let

K =
∞⋃

N=1

2N−1bD
2
(x,y) × CNDz .

For every holomorphic α0-horizontal disk f (ζ ) = (x(ζ ), y(ζ ), z(ζ )) ∈ C
3\K (ζ ∈

D) with f (0) ∈ 2N0D
3 for some N0 ∈ N, we have the estimates

|x ′(0)| < 2N0+1, |y′(0)| < 2N0+1, |z′(0)| < 22N0+1. (2.1)

Proof Replacing f by the disk ζ �→ f (rζ ) for some r < 1 close to 1, we may assume
that f is holomorphic onD. Pick a number N ∈ Nwith N > N0 such that |x(ζ )| < 2N

and |y(ζ )| < 2N for all ζ ∈ D. By the Cauchy estimates applied with δ = 2−N , we
then have

|y′(ζ )| < 22N and |x(ζ )y′(ζ )| < 23N for |ζ | ≤ 1 − 2−N .
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Since f is a horizontal disk, we have z′(ζ ) = −x(ζ )y′(ζ ) for ζ ∈ D and hence

|z(ζ )| ≤ |z(0)| +
∣∣∣∣
∫ ζ

0
xdy

∣∣∣∣ < 2N0 + 23N < 23N+1 ≤ CN for |ζ | ≤ 1 − 2−N .

From this estimate, the definition of the set K and the fact that f (D) ∩ K = ∅, it
follows that

(x(ζ ), y(ζ )) /∈ 2N−1bD
2 for |ζ | ≤ 1 − 2−N .

Since 2N−1bD
2 disconnects the disk 2ND

2 and we have (x(0), y(0)) ∈ 2N0D
2 ⊂

2N−1
D
2, we conclude that

(x(ζ ), y(ζ )) ∈ 2N−1
D
2 for |ζ | ≤ 1 − 2−N .

If N − 1 > N0, we can repeat the same argument with the restricted horizontal disk
f : (1 − 2−N )D → C

3 to obtain

(x(ζ ), y(ζ )) ∈ 2N−2
D
2 for |ζ | ≤ 1 − 2−N − 2−(N−1).

After finitely steps of the same kind, we get that

(x(ζ ), y(ζ )) ∈ 2N0D
2 for |ζ | ≤ 1 − 2−N − · · · − 2−(N0+1).

Since 2−N + · · · + 2−(N0+1) < 1/2, we see that (x(ζ ), y(ζ )) ∈ 2N0D
2 for |ζ | ≤ 1/2.

Applying once again the Cauchy estimates gives |x ′(0)|, |y′(0)| ≤ 2N0+1 and hence
|z′(0)| = |x(0)y′(0)| ≤ 22N0+1; these are precisely the conditions in (2.1). ��

3 Fatou–Bieberbach Domains Avoiding a Union of Cylinders

In this section, we prove the following result on avoiding certain closed cylindrical
sets in C

n by Fatou–Bieberbach domains. This includes Proposition 1.4 as a special
case.

Theorem 3.1 Let 0 < a1 < b1 < a2 < b2 < · · · and ci > 0 be sequences of real
numbers such that limi→∞ ai = limi→∞ bi = +∞. Let n > 1 be an integer and

K =
∞⋃

i=1

(
biD

n−1\aiDn−1
)

× ciD ⊂ C
n . (3.1)

Then there exists a Fatou–Bieberbach domain 
 ⊂ C
n\K.

As said in Sect. 1, the proof is inspired by [12, Proof of Theorem 1.2] to a cer-
tain point and is based on the so-called push-out method. Since the set K (3.1) is
noncompact, the construction of automorphisms used in the proof is somewhat more
involved in our case. On the other hand, since our goal is merely to avoid K by a
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3172 F. Forstnerič

Fatou–Bieberbach domain, and not to approximate a given cylinder as Globevnik did
in [12], the construction is less precise in certain other aspects.

Proof We denote by Aut(Cn) the group of all holomorphic automorphisms of C
n . We

first give the proof for n = 2 and explain in the end how to treat the general case.
Let (z1, z2) be complex coordinates on C

2, and let K = K1 be the set (3.1). Up to
a dilation of coordinates, we may assume without loss of generality that a1 > 1.

Pick sequence εk ∈ (0, 1) satisfying
∑∞

k=1 εk < +∞.We shall construct sequences
of automorphisms φk, ψk ∈ Aut(C2) (k ∈ N) of the following form:

φk(z1, z2) = (z1, z2 + fk(z1)), ψk(z1, z2) = (z1 + gk(z2), z2), (3.2)

where fk and gk are suitably chosen entire functions on C to be specified. Set

θk = ψk ◦ φk, �k = θk ◦ · · · ◦ θ1, k ∈ N. (3.3)

We will also ensure that for every k ∈ N we have

|θk(z) − z| < εk for z ∈ kD
2
.

Granted the last condition, it follows (cf. [10, Proposition 4.4.1 and Corollary 4.4.2])
that the sequence �k ∈ Aut(C2) converges uniformly on compacts in the open set


 =
∞⋃

k=1

�−1
k (kD

2) = {z ∈ C
2 : (�k(z))k∈N is a bounded sequence}

to a biholomorphic map � = limk→∞ �k : 
 → C
2 of 
 onto C

2. We will also
ensure that

|�k(z)| → +∞ for all points z ∈ K , (3.4)

and hence K ∩ 
 = ∅. This will prove the theorem when n = 2.
We begin by explaining how to choose the first two maps φ1 andψ1; all subsequent

steps will be analogous. Set b0 = 1. Pick a sequence r j satisfying b j−1 < r j < a j

for all j = 1, 2, . . .. Let N j ∈ N be a sequence of integers to be specified later. Set

f (ζ ) =
∞∑

j=1

(
ζ

r j

)N j

.

This function will define the first automorphism φ1 (cf. (3.2)). Let fi (ζ ) =
∑i

j=1

(
ζ
r j

)N j
denote the i th partial sum of the series defining f (ζ ), where we set

f0 = 0. By choosing the exponent Ni big enough, we can ensure that the summand
(ζ/ri )Ni is arbitrarily small on the disk bi−1D and is arbitrarily big on the annulus

Ai := biD\aiD = {ζ : ai ≤ |ζ | ≤ bi }. (3.5)
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In particular, we may ensure that for every i ∈ N, we have

sup
|ζ |≤bi−1

∣∣∣∣
ζ

ri

∣∣∣∣
Ni

< 2−i−1ε1. (3.6)

It follows that the power series defining f (ζ ) converges on all of C and satisfies

sup
|ζ |≤bi−1

| f (ζ ) − fi−1(ζ )| < 2−iε1, i ∈ N. (3.7)

Note that the inequalities (3.6) and (3.7) persist if we increase the exponents Ni .We can
inductively choose the sequence Ni ∈ N to grow fast enough such that the following
inequalities hold for every i ∈ N with an increasing sequence of numbers Mi ≥ i +1:

sup
|ζ |≤bi−1

| fi−1(ζ )| + ci−1 + ε1 < Mi < inf
ζ∈Ai

(∣∣∣∣
ζ

ri

∣∣∣∣
Ni

− | fi−1(ζ )|
)

− ci − ε1. (3.8)

(Recall that Ai is the annulus (3.5). Here, c0 ≥ 0 is arbitrary, while ci > 0 for i ∈ N

are the constants in the definition (3.1) of the set K .) In view of the inequalities (3.6),
(3.7), and (3.8), there exist numbers βi−1 < αi such that for all i ∈ N we have

sup
|ζ |≤bi−1

| f (ζ )| + ci−1 < βi−1 < Mi < αi < inf
ζ∈Ai

| f (ζ )| − ci . (3.9)

This gives increasing sequences 0 < β0 < α1 < β1 < α2 < β2 < · · · diverging to
∞. Set

φ1(z1, z2) = (z1, z2 + f (z1)).

The right-hand side of (3.9) shows that for every point z = (z1, z2) ∈ Ai × ciD we
have

|z2 + f (z1)| ≥ | f (z1)| − ci > αi ,

while the left-hand side of (3.9) gives

|z2 + f (z1)| ≤ ci + | f (z1)| < βi .

Since these inequalities hold for every i ∈ N, it follows that

φ1(K ) ⊂ L :=
∞⋃

i=1

biD ×
(
βiD\αiD

)
⊂ C

2.

Note that the set L is of the same kind as K (3.1) with the reversed roles of the
variables, i.e., the cylinders in L are horizontal instead of vertical. Furthermore, since
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the sequence αi is increasing and α1 > M1 ≥ 2 by (3.9), we also see that

L ∩ (C × 2D) = ∅.

The same argument as above with the set L furnishes a shear automorphism

ψ1(z1, z2) = (z1 + g(z2), z2)

for some g ∈ O(C) (cf. (3.2)) and a set K2 of the same kind as K = K1 (3.1) (this
time again with vertical cylinders) such that, setting θ1 := ψ1 ◦ φ1 ∈ Aut(C2), we
have

θ1(K1) ⊂ K2, K2 ∩ 2D
2 = ∅, sup

z∈D2
|θ1(z) − z| < ε1. (3.10)

Continuing inductively, we find a sequence of automorphisms θk ∈ Aut(C2) and
of closed sets Kk ⊂ C

2 of the form (3.1) such that for every k ∈ N, we have

θk(Kk) ⊂ Kk+1, Kk ∩ kD
2 = ∅, sup

z∈kD2
|θk(z) − z| < εk . (3.11)

Each step of the recursion is of exactly the same kind as the initial one. This implies
that

�k(K ) ⊂ Kk+1 ⊂ C
2\(k + 1)D

2
, k ∈ N

and hence (3.4) also holds. This completes the proof when n = 2.
Suppose now that n > 2. In this case, each automorphism θk = ψk ◦φk ∈ Aut(Cn)

in the sequence (3.3) is a composition of two shear-like maps of the form

φk(z1, z2, . . . , zn) = (
z1, z2 + fk(z1), z3 + fk(z2), . . . , zn + fk(zn−1)

)
,

ψk(z1, z2, . . . , zn) = (
z1 + gk(z2), z2 + gk(z3), . . . , zn−1 + gk(zn), zn)

)
.

A suitable choice of entire functions fk, gk ∈ O(C) ensures as before that condition

(3.11) holds for each k (with D
2
replaced by D

n
). We leave the details to an interested

reader. Further details in the case n > 2 are also available in [12, proof of Theorem1.2].
��
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