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Every conformal minimal surface in R3

is isotopic to the real part of a holomorphic
null curve

By Antonio Alarcón at Granada and Franc Forstnerič at Ljubljana

Abstract. We show that for every conformal minimal immersion u WM ! R3 from
an open Riemann surface M to R3 there exists a smooth isotopy ut WM ! R3 (t 2 Œ0; 1�) of
conformal minimal immersions, with u0 D u, such that u1 is the real part of a holomorphic
null curve M ! C3 (i.e. u1 has vanishing flux). If furthermore u is nonflat, then u1 can be
chosen to have any prescribed flux and to be complete.

1. The main results

Let M be a smooth oriented surface. A smooth immersion u D .u1; u2; u3/ WM ! R3

is minimal if its mean curvature vanishes at every point. The requirement that an immersion u
be conformal uniquely determines a complex structure on M . Finally, a conformal immersion
is minimal if and only if it is harmonic: �u D 0 (Osserman [20]). A holomorphic immersion
F D .F1; F2; F3/ WM ! C3 of an open Riemann surface to C3 is said to be a null curve if
its differential dF D .dF1; dF2; dF3/ satisfies the equation

.dF1/
2
C .dF2/

2
C .dF3/

2
D 0:

The real and the imaginary part of a null curve M ! C3 are conformal minimal immersions
M ! R3. Conversely, the restriction of a conformal minimal immersion u WM ! R3 to any
simply connected domain � �M is the real part of a holomorphic null curve �! C3; u is
globally the real part of a null curve if and only if its conjugate differential d cu satisfiesR
C d

cu D 0 for every closed curve C in M . This period vanishing condition means that u
admits a harmonic conjugate v, and F D uC {v WM ! C3 ({ D

p
�1) is then a null curve.
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78 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

In this paper we prove the following result which further illuminates the connection
between conformal minimal surfaces in R3 and holomorphic null curves in C3. We shall sys-
tematically use the term isotopy instead of the more standard regular homotopy when talking
of smooth 1-parameter families of immersions.

Theorem 1.1. Let M be an open Riemann surface. For every conformal minimal im-
mersion u WM ! R3 there exists a smooth isotopy ut WM ! R3 .t 2 Œ0; 1�/ of conformal
minimal immersions such that u0 D u and u1 D <F is the real part of a holomorphic null
curve F WM ! C3.

The analogous result holds for minimal surfaces in Rn for any n � 3, and the tools used
in the proof are available in that setting as well. On a compact bordered Riemann surface we
also have an up to the boundary version of the same result (cf. Theorem 4.1).

Given a conformal minimal immersion u WM ! R3, the flux map of u is the group
homomorphism Fluxu W H1.M IZ/! R3 on the first homology group of M which is given
on any closed curve C in M by

(1.1) Fluxu.C / D
Z
C

d cu:

We can view Fluxu as the element of the de Rham cohomology groupH 1.M IR3/ determined
by the closed real 1-form d cu D {.àu � àu/ with values in R3. (Note that d cu is closed pre-
cisely when u is harmonic: dd cu D 0.) A conformal harmonic immersion u WM ! R3 is the
real part of a holomorphic null curve M ! C3 if and only if the flux map Fluxu is identically
zero. Hence Theorem 1.1 can be expressed as follows.

Every conformal minimal immersion is isotopic to one with vanishing flux.

Every open Riemann surfaceM is homotopy equivalent to a wedge of circles, and its first
homology group H1.M IZ/ is a free abelian group with at most countably many generators.
If M is of finite genus g with m topological ends, then H1.M IZ/ Š Z2gCm�1.

We now describe a more general existence result for isotopies of conformal minimal
immersions. Recall that an immersion u WM ! Rn is said to be complete if the pullback
u�.ds2/ of the Euclidean metric ds2 on Rn is a complete metric on M . It is easily seen that
a holomorphic null curve M ! C3 is complete if and only if its real part M ! R3 is com-
plete (cf. Osserman [20]). An immersion u WM ! R3 is nonflat if its image u.M/ � R3 is
not contained in any affine plane. It is easily seen that every flat conformal minimal immer-
sion from a connected open Riemann surface is the real part of a holomorphic null curve (see
Remark 2.1), so Theorem 1.1 trivially holds in this case. For nonflat immersions we have the
following second main result of this paper.

Theorem 1.2. LetM be a connected open Riemann surface and let p WH1.M IZ/!R3

be a group homomorphism. For every nonflat conformal minimal immersion u WM ! R3 there
exists a smooth isotopy ut WM ! R3 .t 2 Œ0; 1�/ of conformal minimal immersions such that
u0 D u, u1 is complete, and Fluxu1

D p. Furthermore, if u is complete, then an isotopy as
above can be chosen such that ut is complete for every t 2 Œ0; 1�. In particular, every nonflat
conformal minimal immersion M ! R3 is isotopic through conformal minimal immersions to
the real part of a complete holomorphic null curve.
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Alarcón and Forstnerič, Isotopies of conformal minimal surfaces 79

It was shown by Alarcón, Fernández, and López [2, 3] that every group homomorphism
p W H1.M IZ/! R3 is the flux map p D Fluxu of a complete conformal minimal immersion
u WM ! R3. The novel part of Theorem 1.2 is that one can deform an arbitrary nonflat con-
formal minimal immersion M ! R3 through a smooth family of such immersions to one that
is complete and has the given flux homomorphism.

Our results provide an initial step in the problem of homotopy classification of confor-
mal minimal immersions M ! R3 by their tangent maps; we discuss this in Section 8 below
(see in particular Proposition 8.4). The subject of homotopy classification of immersions goes
back to Smale [21] and Hirsch [15], and it was later subsumed by Gromov’s h-principle in
smooth geometry (see Gromov’s monograph [12]). The basic result of the Hirsch–Smale theory
is that if M and N are smooth manifolds and 1 � dimM < dimN , then regular homotopy
classes of immersions M ! N are in one-to-one correspondence with the homotopy classes
of fiberwise injective vector bundle maps TM ! TN of their tangent bundles; the same holds
if dimM D dimN and M is not compact. This has been extended subsequently to several
other classes of immersions. In particular, Eliashberg and Gromov obtained the h-principle for
holomorphic immersions of Stein manifolds to complex Euclidean spaces; see the discussion
and references in [10, Section 8.5].

Here we are interested in regular homotopy classes of conformal minimal immersions of
open Riemann surfaces into R3. The .1; 0/-derivative àu of a conformal (not necessarily har-
monic) immersion u WM ! R3 gives a map M ! A� D A n ¹0º with vanishing real periods
into the punctured null quadric (2.2); harmonic (minimal) immersions correspond to holomor-
phic maps M ! A�. (See Section 2.) The question is whether regular homotopy classes of
conformal minimal immersions are in one-to-one correspondence with the homotopy classes
of continuous maps M ! A�. (We wish to thank R. Kusner who pointed out (private com-
munication) the connection to the theory of spin structures on Riemann surfaces; we refer to
the preprint [18] by R. Kusner and N. Schmitt. Since A� is an Oka manifold and every open
Riemann surface M is a Stein manifold, the homotopy classes of continuous maps M ! A�

coincide with the homotopy classes of holomorphic maps by the Oka principle [10, Theo-
rem 5.4.4].) One direction is provided by [4, Theorem 2.6]: Every continuous mapM ! A� is
homotopic to the derivative of a holomorphic null immersionM ! C3, hence to the .1; 0/-der-
ivative of a conformal minimal immersion M ! R3. What remains unclear is whether two
conformal minimal immersions M ! R3, whose .1; 0/-derivatives are homotopic as maps
M ! A�, are regularly homotopic through conformal minimal immersions. A more precise
question is formulated as Problem 8.2 below.

Another main result of the paper is an h-Runge approximation theorem for conformal
minimal immersions of open Riemann surfaces to R3; see Theorem 6.3. (Here, h stands for
homotopy. This terminology is inspired by Gromov’s h-Runge approximation theorem which
plays a key role in the Oka principle for holomorphic maps from Stein manifolds to elliptic
and Oka manifolds; cf. [13] and [10, Chapter 6].) Basically our result says that a homotopy of
conformal minimal immersions ut W U ! R3 .t 2 Œ0; 1�/, defined on a Runge open set U in an
open Riemann surface M and such that u0 extends to a nonflat conformal minimal immersion
M ! R3, can be approximated uniformly on compacts in U by a homotopy of conformal
minimal immersions Qut WM ! R3 such that Qu0 D u0. We also prove a version of this result
with a fixed component function. For the usual (nonparametric) version of this result see [5,6].

We now describe the content and the organization of the paper.
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80 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

In Section 2 we establish the notation and review the background. In Section 3 we prepare
the necessary results concerning the existence of loops with vanishing real or complex periods
in the punctured null quadric A� D A n ¹0º (see (2.2)). After suitable approximation, using
Mergelyan’s theorem, a loop with vanishing real period represents the .1; 0/-differential àu of
a conformal minimal immersion u WM ! R3 along a closed embedded Jordan curve in our
Riemann surfaceM ; similarly, a loop with vanishing complex period represents the differential
dF D àF of a holomorphic null curve F WM ! C3 along a curve in M . A reader familiar
with Gromov’s convex integration theory [8, 12] will notice a certain similarity of ideas in
the construction of such loops. In order to use the Mergelyan approximation theorem and at
the same time keep the period vanishing condition we work with period dominating sprays of
loops (cf. Lemma 3.6), using some results from our previous paper [4] on holomorphic null
curves.

In Section 4 we prove Theorem 1.1 in the special case when M has finite topology. The
general case is treated in Section 5.

In Section 6 we prove Theorem 6.3 (the h-Runge approximation theorem for conformal
minimal immersions of open Riemann surfaces to R3). By using this h-Runge theorem we
obtain in Section 7 several extensions of Theorem 1.1 to isotopies of complete conformal min-
imal immersions; in particular, we prove Theorem 1.2.

In Section 8 we discuss the topology of the space of all conformal minimal immersions
M ! R3 and we indicate several open questions related to the results in the paper.

2. Notation and preliminaries

A compact set K in a complex manifold X is said to be holomorphically convex (or
O.X/-convex) if for every point p 2 X nK there exists a holomorphic function f 2 O.X/
satisfying jf .p/j > maxK jf j. This notion is especially important if X is a Stein manifold (in
particular, an open Riemann surface) in view of the Runge approximation theorem (also called
the Oka–Weil theorem); see e.g. [16].

Let M be a Riemann surface. An immersion u D .u1; u2; u3/ WM ! R3 is conformal
if and only if, in any local holomorphic coordinate z D x C {y on M , the partial derivatives
ux D .u1;x; u2;x; u3;x/ and uy D .u1;y ; u2;y ; u3;y/, considered as vectors in R3, have the
same Euclidean length and are orthogonal to each other at every point of M :

(2.1) juxj D juy j > 0; ux � uy D 0:

Equivalently, ux ˙ {uy 2 C3 n ¹0º are null vectors, i.e. they lie in the null quadric

(2.2) A D ¹z D .z1; z2; z3/ 2 C3
W z21 C z

2
2 C z

2
3 D 0º:

We shall write A� D An¹0º. It is easily seen that A� is a smooth closed hypersurface in C3n¹0º

which is the total space of a (nontrivial) holomorphic fiber bundle with fiber C� over CP1 (see
[4, p. 741]). In particular, A� is an Oka manifold [4, Proposition 4.5].

The exterior derivative on M splits into the sum d D àC à of the .1; 0/-part à and the
.0; 1/-part à. In any local holomorphic coordinate z D x C {y on M we have

(2.3) 2àu D .ux � {uy/dz; 2àu D .ux C {uy/d Nz:
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Hence (2.1) shows that u is conformal if and only if the differential àu D .àu1; àu2; àu3/
satisfies the nullity condition

(2.4) .àu1/2 C .àu2/2 C .àu3/2 D 0:

Assume now thatM is a connected open Riemann surface and that u WM ! R3 is a con-
formal immersion. It is classical (cf. Osserman [20]) that

�u D 2H�;

whereH WM ! R denotes the mean curvature function of u, � WM ! S2 � R3 is the Gauss
map of u, and � is the Laplacian operator with respect to the metric induced on M by the
Euclidean metric of R3 via u. Hence u is minimal (H D 0) if and only if it is harmonic
(�u D 0). If v is any local harmonic conjugate of u, then it follows from the Cauchy–Riemann
equations that

à.uC {v/ D 2àu D 2{ àv:

Thus F D uC {v is a holomorphic immersion into C3 whose differential dF D àF D 2àu
has values in A� (2.2); i.e. a null holomorphic immersion. In particular, the differential àu of
any conformal minimal immersion is a holomorphic 1-form satisfying (2.4).

It is useful to introduce the conjugate differential, d cu D {.àu � àu/. We have that

(2.5) 2àu D duC {d cu; dd cu D 2{ ààu D �u � dx ^ dy:

If u is harmonic (hence minimal), then d cu is a closed vector valued 1-form on M , and we
have that d cu D dv for any local harmonic conjugate v of u. The flux map of u is the group
homomorphism Fluxu W H1.M IZ/! R3 given by

Fluxu.ŒC �/ D
Z
C

d cu; ŒC � 2 H1.M IZ/:

The integral is independent of the choice of a path in a given homology class, and we shall write
Fluxu.C / for Fluxu.ŒC �/ in the sequel. Furthermore, u admits a global harmonic conjugate on
M if and only if the 1-form d cu is exact on M , and this holds if and only if

(2.6) Fluxu.C / D
Z
C

d cu D 0 for every closed curve C �M:

We shall prove Theorem 1.1 by finding an isotopy ut WM ! R3 .t 2 Œ0; 1�/ of conformal
minimal immersions, with u0 D u, such that u1 satisfies the period condition (2.6).

Fix a nowhere vanishing holomorphic 1-form � on M . (Such exists by the Oka–Grauert
principle, cf. [10, Theorem 5.3.1, p. 190].) It follows from (2.3) that

2àu D f �;

where f D .f1; f2; f3/ WM ! A� is a holomorphic map satisfying

(2.7)
Z
C

<.f �/ D

Z
C

du D 0 for any closed curve C in M:

Furthermore, we have u D <F for some null holomorphic immersion F WM ! C3 if and
only if

R
C f � D 0 for all closed curves C in M . The meromorphic function on M given by

(2.8) g WD
f3

f1 � {f2
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82 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

is the stereographic projection of the Gauss map of u, and the map f D 2àu=� can be recov-
ered from the pair .g; f3/ by the expression

(2.9) f D

�
1

2

�
1

g
� g

�
;
{

2

�
1

g
C g

�
; 1

�
f3:

The pair .g; f3�/ is called the Weierstrass data of u. The Riemannian metric ds2u induced on
M by the Euclidean metric of R3 via the immersion u equals

(2.10) ds2u D
1

2
jf � j2 D

1

4

�
1

jgj
C jgj

�2
jf3j

2
j� j2:

We denote by distu the distance function induced on M by ds2u. Conversely, given a mero-
morphic function g and a holomorphic function f3 on M such that the map f in (2.9) has
no poles, then f assumes values in A. If in addition f does not vanish anywhere on M and
satisfies (2.7), then ds2u > 0 everywhere on M (see (2.10)), and f � integrates to a conformal
minimal immersion u WM ! R3 given by u.x/ D

R x
<.f �/ for x 2M .

Remark 2.1. If u is a flat (planar) immersion, in the sense that the image u.M/ � R3

lies in an affine 2-plane in R3, we may assume after an orthogonal change of coordinates
that u3 D const. In this case (2.3) implies àu1 D ˙{àu2 which gives d cu1 D ˙du2 and
d cu2 D ˙du1, so d cu is exact. This shows that every flat conformal minimal immersion is
the real part of a holomorphic null curve F WM ! C3. In this case the image of dF lies
in a ray C� � C3 spanned by a null vector 0 ¤ � 2 A, and F.M/ is contained in an affine
complex line aCC� � C3. Such flat null curves are precisely those that are degenerate in the
sense of [4, Definition 2.2]. Note that every open Riemann surfaceM admits flat null holomor-
phic immersions M ! C3 of the form F.x/ D eg.x/� .x 2M/, where 0 ¤ � 2 A is a null
vector and g 2 O.M/ is a holomorphic function without critical points [14].

We denote by CMI.M/ the set of all conformal minimal immersions M ! R3 and by
CMI�.M/ � CMI.M/ the subset consisting of all nonflat immersions. By NC.M/ we denote
the space of all null holomorphic immersions F WM ! C3, and NC�.M/ is the subset of
NC.M/ consisting of nonflat immersions. These spaces are endowed with the compact-open
topology. We have natural inclusions

<NC.M/ ,! CMI.M/; <NC�.M/ ,! CMI�.M/;

where <NC.M/ D ¹<F W F 2 NC.M/º is the kernel of the flux map (2.6) on CMI.M/.
If K �M is a compact subset, we denote by CMI.K/ the set of all conformal minimal

immersions of unspecified open neighborhoods of K into R3, and by CMI�.K/ � CMI.K/
the subset consisting of all immersions which are not flat on any connected component. We
define NC.K/ and NC�.K/ in the analogous way.

3. Loops with prescribed periods in the null quadric

Assume that C is a closed, embedded, oriented, real analytic curve in M . There are
an open set W �M containing C and a biholomorphic map z W W ! � onto an annulus
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� D ¹z 2 C W r�1 < jzj < rº taking C onto the positively oriented unit circle

S1 D ¹z 2 C W jzj D 1º:

The exponential map C 3 � D x C {y 7! exp.2�{ �/ 2 C� provides a universal covering of
the annulus � by the strip † D ¹x C {y W x 2 R; jyj < .2�/�1 log rº � C, mapping the real
axis R D ¹y D 0º onto the circle S1 Š R=Z. We shall view � D x C {y as a uniformizing
coordinate on W , with C D ¹y D 0º. The restriction of a conformal harmonic immersion
u WM ! R3 to W is given in this coordinate by a 1-periodic conformal harmonic immersion
U W †! R3. Along y D 0 we have

(3.1) U.x C {y/ D h.x/ � g.x/y CO.y2/;

where h.x/ D U.x C {0/ and g.x/ D �Uy.x C {0/ are smooth 1-periodic maps R! R3, h is
an immersion, and the remainder O.y2/ is bounded by cy2 for some c > 0 independent of x.
We have that

2
à
à�
U.x C {y/jyD0 D .Ux � {Uy/jyD0 D h

0.x/C {g.x/:

The conformality condition (2.1) implies that

(3.2) g.x/ � h0.x/ D 0 and jg.x/j D jh0.x/j > 0 hold for all x 2 R:

We also have that d cU D �Uydx C Uxdy and henceZ
C

d cu D

Z 1

0

d cU D �

Z 1

0

Uy.x C {0/ dx D

Z 1

0

g.x/ dx:

Condition (3.2) is equivalent to saying that the map � D h0 C {g W R! A� D A n ¹0º is a loop
in the null quadric (2.2) whose real part has vanishing period:Z 1

0

<�.x/ dx D

Z 1

0

h0.x/ dx D 0:

In this section we prove that for every such � and for any vector v 2 R3 there is an isotopy of
1-periodic maps �t W R! A� .t 2 Œ0; 1�/ such that �0 D � andZ 1

0

<�t .x/ dx D 0 for all t 2 Œ0; 1�;(3.3) Z 1

0

=�1.x/ dx D v:

(See Lemmas 3.2 and 3.4.) This will be one of the main steps in the proof of Theorems 1.1
and 1.2. (The special case v D 0 will be of importance for the proof of Theorem 1.1.)

We denote by I the space of all smooth 1-periodic immersions R! R3 endowed with
the C1 topology. We identify an immersion h 2 I with a smooth immersion S1 DR=Z!R3

of the circle into R3. We shall say that h 2 I is nonflat on a segment L � Œ0; 1� if the image
h.L/ is not contained in any affine plane of R3.

Lemma 3.1. Any pair of immersions h0; h1 2 I can be connected by a smooth path of
immersions ht 2 I .t 2 Œ0; 1�/. If furthermore h0; h1 2 I agree on a proper closed subinter-
val I � Œ0; 1�, then the isotopy ht can be chosen fixed on I . If h0jL is nonflat on a segment
L � Œ0; 1�, then we can arrange that ht jL is nonflat for every t 2 Œ0; 1�.
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84 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

Proof. Connect h0 and h1 by Qht D .1 � t /h0 C h1 (t 2 Œ0; 1�). The jet transversality
theorem shows that a generic perturbation ¹htº of ¹ Qhtº with fixed ends at t 2 ¹0; 1º (or one
that is in addition fixed on a subinterval I � Œ0; 1� on which h0 ad h1 agree) yields a smooth
isotopy of immersions connecting h0 and h1. The nonflatness condition can be satisfied by
a generic deformation; observe also that being flat is a closed condition.

Lemma 3.2. Every smooth 1-periodic immersion h0 W R! R3 (i.e. h0 2 I ) can be
approximated in I by a smooth 1-periodic immersion h W R! R3 for which there exists
a smooth 1-periodic map g W R! R3 satisfying the following properties:

(i) g.x/ � h0.x/ D 0 and jg.x/j D jh0.x/j > 0 for all x 2 R, and

(ii)
R 1
0 g.x/ dx D 0.

A map g with these properties can be chosen in any given homotopy class of sections of the
circle bundle over R=Z Š S1 determined by condition (i).

Remark 3.3. The last sentence in Lemma 3.2 requires a comment. Denote the coordi-
nates on C3 by z D � C {�, with �; � 2 R3. Let � W C3 D R3 ˚ {R3 ! R3 be the projection
�.� C {�/ D � . Then ��1.0/ \A D ¹0º and � W A� ! R3 n ¹0º is a real analytic fiber bundle
with circular fibers given by

(3.4) A \ ��1.�/ D ¹� C {� 2 C3
W � � � D 0; j�j D j�jº Š S1; � 2 R3 n ¹0º:

An immersion h 2 I determines the circle bundle Eh D .h0/�.A�/ 7! R=Z Š S1 (the pull-
back of A� ! R3 n ¹0º by the derivative h0 W R! R3 n ¹0º), and sections ofEh are 1-periodic
maps g WR!R3 satisfying condition (i) in Lemma 3.2. Every oriented circle bundleEh! S1

is trivial, and the set of homotopy classes of its sections S1 ! Eh can be identified with the
fundamental group �1.S1/ D Z.

Proof of Lemma 3.2. Pick a ı > 0 with 3ı < 1. We approximate h0 by an immersion
Qh0 2 I whose derivative is constant on J D Œ0; 3ı� and such that Qh0 agrees with h0 outside
a slightly bigger interval J 0 � J . (We think of intervals in Œ0; 1� as arcs in the circle R=Z D S1.
The rate of approximation of h0 by Qh0 will of course depend on ı which we are free to choose
as small as we wish.) Replacing h0 by Qh0 we assume from now on that h0 satisfies these
properties.

Let e1; e2; e3 denote the standard basis of R3. After an orthogonal rotation and a dila-
tion on R3 we may assume that h00.x/ D e1 for x 2 Œ0; 3ı�. Let B denote the closed unit ball
in R3. Pick a number 0 < � < 1 and a family of immersions hp 2 I , depending smoothly on
p D .p1; p2; p3/ D p1e1 C p2e2 C p3e3 2 B and with h0 the given immersion, such that

h0p.x/ D

´
e1 C �p; if x 2 Œ0; ı�;

e1; if x 2 Œ2ı; 3ı�:

We choose hp to agree with h0 outside a small neighborhood of the indicated intervals, so
every hp is close to h0 (depending on the choice of �). Let A 2 O.3/ be the orthogonal linear
transformation on R3 given by

Ae1 D e2; Ae2 D �e1; Ae3 D e3:
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Define a locally constant map Qgp W Œ0; ı� [ Œ2ı; 3ı�! R3 by setting

Qgp.x/ D

´
e2 C �Ap � �2

p2
3

1C�p1
e1; if x 2 Œ0; ı�;

�e2; if x 2 Œ2ı; 3ı�:

Since 0 < � < 1 and p 2 B, we have 1C �p1 > 0 and hence Qgp is well defined; further-
more, we have that Qgp.x/ ¤ 0 for all x 2 Œ0; ı� [ Œ2ı; 3ı� and p 2 B. A calculation shows
that Qgp.x/ � h0p.x/ D 0 for x 2 Œ0; ı� [ Œ2ı; 3ı� and

(3.5)
Z ı

0

Qgp.x/ dx C

Z 3ı

2ı

Qgp.x/ dx D �ı

�
Ap � �

p23
1C �p1

e1
�
:

Set

(3.6) gp.x/ D

´
je1C�pj
j Qgp.x/j

Qgp.x/; if x 2 Œ0; ı�;

Qgp.x/ D �e2; if x 2 Œ2ı; 3ı�:

Clearly, jgp.x/j D jh0p.x/j and gp.x/ � h0p.x/ D 0 for all x 2 Œ0; ı� [ Œ2ı; 3ı� and p 2 B. For
x 2 Œ0; ı� we also have Qgp.x/ D e2C �ApCO.�2/ D A.e1C �p/CO.�2/. Since A is ortho-
gonal, we get j Qgp.x/j D jA.e1 C �p/j CO.�2/ D je1 C �pj CO.�2/ and hence

je1 C �pj
j Qgp.x/j

D
je1 C �pj

je1 C �pj CO.�2/
D 1CO.�2/:

This shows that the rescaling in the definition (3.6) of gp changes the integrals in (3.5) only by
a term of size O.�2ı/, so we have

(3.7)
Z ı

0

gp.x/ dx C

Z 3ı

2ı

gp.x/ dx D �ı
�
Ap CO.�/

�
:

We now extend each gp to a smooth 1-periodic map R! R3, depending smoothly
on p 2 B, such that the following conditions hold:

(a) gp.x/ � h0p.x/ D 0 and jgp.x/j D jh0p.x/j > 0 for all x 2 R and p 2 B,

(b)
ˇ̌R 2ı
ı gp.x/ dx C

R 1
3ı gp.x/ dxj <

1
3
�ı for all jpj D 1.

Condition (a) is compatible with the definition of gp on Œ0; ı� [ Œ2ı; 3ı�. Condition (b) can be
achieved by choosing gp.x/ to spin sufficiently fast (with nearly constant angular velocity)
along the circle bundles defined by condition (a) as x traces the intervals in the two integrals.
Since spinning in both directions is allowed, and we can change the direction on short intervals
with an arbitrarily small contribution to the integral, we can arrange that gp belongs to any
given homotopy class of sections (independent of p 2 B).

Choosing � > 0 small enough, condition (b) together with (3.7) impliesˇ̌̌̌Z 1

0

gp.x/ dx � �ıAp

ˇ̌̌̌
<
�ı

2
; p 2 B:

Since jApj D jpj for all p 2R3, it follows that the map B 3 p 7!
R 1
0 gp.x/ dx 2R3 is nowhere

vanishing on the sphere S2 D bB D ¹jpj D 1º and the restricted map S2 7! R3 n ¹0º ' S2

has the same degree as the map p 7! Ap, which is one. Hence there exists a point p 2
ı

B for
which

R 1
0 gp.x/ dx D 0. The pair .g; h/ D .gp; hp/ then clearly satisfies Lemma 3.2.

We shall also need the following version of Lemma 3.2 in which all maps remain fixed
on a proper subinterval of Œ0; 1� and the period of g1 equals any given vector in R3.
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86 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

Lemma 3.4. Let g0; h0 WR!R3 be smooth 1-periodic maps satisfying condition (3.2),
and let v 2 R3. Given a proper closed subinterval I � Œ0; 1�, there exist smooth isotopies of
1-periodic maps gt ; ht W R! R3 .t 2 Œ0; 1�/ such that

� gt .x/ D g0.x/ and ht .x/ D h0.x/ for x 2 I and t 2 Œ0; 1�,

� condition (3.2) holds for .gt ; ht / for every t 2 Œ0; 1�, and

�

R 1
0 g1.x/ dx D v.

Furthermore, given a segment I 0 � Œ0; 1� such that h0jI 0 is nonflat, we can choose ht ; gt as
above such that ht jI 0 is nonflat for every t 2 Œ0; 1�.

Proof. Choose a pair of nontrivial closed intervals J;L � Œ0; 1� such that the intervals
I; J; L � Œ0; 1� are pairwise disjoint. We may assume that J D Œ0; 3ı� for a small ı > 0. (As
before, we consider these intervals as arcs in the circle R=Z D S1.) We explain the individual
moves without changing the notation at every step.

We begin by deforming the pair .g0; h0/, keeping it fixed on the segment I , such that for
x 2 J we have h00.x/ D e1 and g0.x/ D e2. Consider the 1-periodic map

�0 WD h
0
0 C {g0 W R! A� D A n ¹0º:

Set
w D

Z
Œ0;1�nL

�0.x/ dx 2 C3:

By [4, Lemma 7.3] there is a smooth 1-periodic map �1 W R! A� which agrees with �0 on
Œ0; 1�nL such that

R
L �1.x/ dx 2 C3 is arbitrarily close to {v�w 2 C3, and hence

R 1
0 �1.x/ dx

is close to {v. (The main point of the proof is that A is connected and its convex hull equals C3.)
By general position we may assume that <�1 does not assume the value 0 2 R3. By another
small correction of �1 onLwe may also arrange that

R 1
0 <�1.x/ dx D 0, while �1 still assumes

values in A� and
R 1
0 =�1.x/ dx remains close to v. Fix a point x0 2 I and set

h1.x/ D h0.x0/C

Z x

x0

<�1.s/ ds; x 2 R:

Then h1 2 I is a smooth 1-periodic immersion which agrees with h0 on Œ0; 1� n L and satisfies
h01 D <�1. By Lemma 3.1 we can connect h0 to h1 by a smooth isotopy of immersions ht 2 I

such that ht .x/ D h0.x/ for every t 2 Œ0; 1� and x 2 Œ0; 1� n L.
By the argument given in Remark 3.3 we can cover the homotopy h0t W R! R3 n ¹0º by

a smooth homotopy of 1-periodic maps gt W R! R3 such that g0 is the given initial map, the
homotopy is fixed on Œ0; 1� n L, and .gt ; ht / satisfies condition (3.2) for every t 2 Œ0; 1�. The
maps g1 and =�1 are sections of the circle bundle E1 D .h01/

�E ! S1, but they need not be
homotopic. To correct this, we replace =�1 by another section of the same bundle whose period
is still close to v and which is homotopic to g1 (see the last sentence in Lemma 3.2). It is then
possible to choose the homotopy gt as above connecting g0 to g1 D =�1. The homotopy of
smooth 1-periodic maps �t D h0t C {gt W R! A� (t 2 Œ0; 1�) satisfies all the required prop-
erties, except that the period

R 1
0 g1.x/ dx 2 R3 is only close to v 2 R3. It remains to make

this period exactly equal to v by another small deformation of the pair .g1; h1/ that is fixed
on the segment I . This can be achieved by the perturbation device on the segment J D Œ0; 3ı�
described in the proof of Lemma 3.2.
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Alarcón and Forstnerič, Isotopies of conformal minimal surfaces 87

We shall also need a period perturbation lemma for (finite unions of) loops in the null
quadric A (see (2.2)). Let L D C1.S1;A�/ denote the space of smooth loops in A� D An¹0º.
We may think of � 2 L as a smooth 1-periodic map R! A�; in particular, we writeZ

S1

� D

Z 1

0

�.x/ dx 2 C3:

We identify the tangent space TzA � TzC3 at a point z 2 A� with a complex 2-dimensional
subspace of C3.

Definition 3.5. A loop � 2 L is said to be nondegenerate on a segment I � S1 if the
family of tangent spaces ¹T�.x/A W x 2 I º spans C3.

Since A is a complex cone, the tangent space TzA at any point 0 ¤ z 2 A is spanned by
z together with one more vector, and TzA D TwA for any pointw D �z with � ¤ 0. It follows
that a loop � 2 L is nondegenerate on the segment I � S1 if and only if the image �.I / is not
contained in any ray C � � � A of the null quadric.

A continuous map � W W ! L from a complex manifold W to the loop space L is
naturally identified with a continuous map � W W � S1 ! C3. Such a map is said to be holo-
morphic if for every x 2 S1 the map �. � ; x/ W W ! C3 is holomorphic; in such case we shall
also say that the family �w D �.w; � / 2 L is holomorphic in w 2 W .

Consider the period map P W L! C3 defined by

P .�/ D

Z 1

0

�.x/ dx 2 C3; � 2 L:

Lemma 3.6 (Period dominating sprays of loops). Let I � S1 be a nontrivial segment.
If a loop � 2 L D C1.S1;A�/ is nondegenerate on I (Definition 3.5), then there is a holo-
morphic family of loops ¹�wºw2W 2 L, whereW � C3 is a ball centered at 0 2 C3, such that
�0 D � , �w.x/ D �.x/ for all x 2 S1 n I and w 2 W , and

àP .�w/
àw

ˇ̌̌̌
wD0

W T0C
3
Š C3

! C3 is an isomorphism:

More generally, given a family of loops �q 2 L depending continuously on a parameter q in
a compact Hausdorff spaceQ such that �q is nondegenerate on the segment I for every q 2 Q,
there is a ball 0 2 W � CN for some N 2 N and a continuous family of loops �q;w 2 L

.q 2 Q;w 2 W /, depending holomorphically on w 2 W , such that �q;0 D �q for all q 2 Q,
�q;w D �q on S1 n I for all q 2 Q and w 2 W , and

(3.8)
àP .�q;w/
àw

ˇ̌̌̌
wD0

W T0C
N
Š CN

! C3 is surjective for every q 2 Q:

Definition 3.7. A family of loops ¹�wºw2W satisfying the domination condition (3.8)
is called a holomorphic period dominating spray of loops.

For a general notion of a (local) dominating holomorphic spray, see for instance
[7, Definition 4.1] or [10, Definition 5.9.1]. Period dominating sprays were first constructed
in [4, Lemma 5.1].
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88 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

Proof. The main idea is contained in the proof of [4, Lemma 5.1]; we outline the main
idea for the sake of readability. Since � is nondegenerate on I , there are points x1; x2; x3 2

ı

I

and holomorphic vector fields V1; V2; V3 on C3 which are tangential to the quadric A given
by (2.2) such that the vectors Vj .�.xj // 2 C3 for j D 1; 2; 3 are a complex basis of C3.
Choose a smooth function hj W S1 ! C supported on a short segment Ij � I around the point
xj for j D 1; 2; 3. Let �jt denote the flow of the vector field Vj for time t 2 C near 0. It is easily
seen that for suitable choices of the functions hj the holomorphic spray of loops �w 2 L, given
for any w D .w1; w2; w3/ 2 C3 sufficiently close to the origin by

�w.x/ D �
1
w1h1.x/

ı �2w2h2.x/
ı �3w3h3.x/

�.x/ 2 C3; x 2 S1;

enjoys the stated properties; in particular, it is period dominating. The same proof applies to
a continuous family of loops ¹�qºq2Q � L by using compositions of flows of finitely many
holomorphic vector fields tangential to A.

Remark 3.8. Lemma 3.6 also applies to a finite union C D
Sl
jD1 Cj , where each

Cj Š S1 is an embedded oriented analytic Jordan curve in a Riemann surface. Let � W C ! A�

be a smooth map. Given pairwise disjoint segments Ij � Cj n
S
i¤j Ci .j D 1; : : : ; l/ such

that � is nondegenerate on every Ij in the sense of Definition 3.5, the same proof furnishes
a holomorphic family �w 2 C1.C;A�/ for w in a ball 0 2 W � C3l such that �0 D � , �w
agrees with � on C n

Sl
jD1 Ij for every w 2 W , and the differential at w D 0 of the map

P D .P1; : : : ; Pl/ W W ! .C3/l with the components

Pj .w/ D

Z
Cj

�w 2 C3

is an isomorphism. The analogous result also holds for homotopies of maps �q 2 C1.C;A�/
with the parameter q 2 Q in a compact Hausdorff space. In the present paper we shall use it
for 1-parameter homotopies, with the parameter q D t 2 Œ0; 1�.

Remark 3.9. Results in this section apply to real analytic Jordan curves in Riemann
surfaces via a holomorphic change of coordinates along the curve, mapping the curve onto the
circle S1 � C. However, one can also use them for smooth curves by applying an asymptoti-
cally holomorphic change of coordinates (i.e. one whose à-derivative vanishes along the curve),
mapping the curve onto the circle S1. Such changes of coordinates, which always exist along
a smooth curve, respect conditions (3.1) and (3.2) which concern first order jets. However, real
analytic curves suffice for the applications in this paper.

4. Proof of Theorem 1.1 for surfaces with finite topology

In this section we prove Theorem 1.1 for Riemann surfaces M with finitely generated
first homology group H1.M IZ/ Š Zl , l 2 N.

Without loss of generality we may assume that M is connected and the immersion u in
Theorem 1.1 is nonflat, u 2 CMI�.M/ (cf. Remark 2.1). Set u0 WD u.

Fix p� 2M . There exist embedded, closed, oriented, real analytic curves C1; : : : ; Cl in
M such thatCi\Cj D ¹p�ºwhen i ¤ j , the homology classes ŒCj � 2H1.M IZ/ are a basis of
the first homology group H1.M IZ/, M retracts onto C D

Sl
jD1 Cj , and C is O.M/-convex.
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Alarcón and Forstnerič, Isotopies of conformal minimal surfaces 89

Along each curve Cj we choose a uniformizing holomorphic coordinate �j D x C {y (see
Section 3). In this coordinate we can represent the differential 2àu0 on Cj by a pair of smooth
1-periodic maps gj;0; hj;0 W R! R3 such that

�j;0 WD h
0
j;0 C {gj;0 W R! A�; 2àu0 D �j;0d�j on Cj :

Lemma 3.4 furnishes smooth homotopies of 1-periodic maps hj;t ; gj;t W R! R3 that are fixed
near the intersection point Ci \ Cj D ¹p�º such that

(4.1) �j;t D h
0
j;t C {gj;t W R! A�

holds for j D 1; : : : ; l and t 2 Œ0; 1�, and at t D 1 we also have that

(4.2)
Z 1

0

gj;1.x/ dx D 0; j D 1; : : : ; l:

Furthermore, given nontrivial arcs Ij � Cj n ¹p�º, we can choose �j;t to be nondegenerate
on Ij (see Definition 3.5) for all t 2 Œ0; 1� and all j D 1; : : : ; l .

Fix a nowhere vanishing holomorphic 1-form � onM (such � exists by the Oka–Grauert
principle, see Section 2). We then have that 2àu0 D �0� , where �0 D 2àu0=� WM ! A�

is a holomorphic map. Let �t W C D
Sl
iD1 Ci ! A� be the smooth map determined by the

equations

(4.3) �t � jCj
D �j;td�j D

�
h0j;t C {gj;t

�
d�j ; j D 1; : : : ; l; t 2 Œ0; 1�:

Here �j;t is given by (4.1). Note that �t 2 C1.C;A�/ depends smoothly on t 2 Œ0; 1�.
Let P W C1.C;A�/! .C3/l denote the period map which associates to any map

� 2 C1.C;A�/ the vector .Pj .�//ljD1 with the components

(4.4) Pj .�/ D

Z
Cj

�� D

Z 1

0

�j .x/ dx 2 C3; j D 1; : : : ; l:

The 1-periodic map �j W R! R3 is just the map � expressed in the uniformizing coordinate
�j D xj C {yj along Cj D ¹yj D 0º, that is, �� D �jd�j on Cj . If � corresponds to the dif-
ferential 2àu of some u 2 CMI.M/, in the sense that 2àu D �� holds on C , then the real
periods of � vanish, <P .�/ D 0, while the imaginary periods =P .�/ are the flux of u:

=Pj .�/ D Fluxu.Cj / D
Z
Cj

d cu D

Z 1

0

=�j .x/ dx 2 R3; j D 1; : : : ; l:

Since �j;t is nondegenerate on the segment Ij � Cj for any t 2 Œ0; 1� and j D 1; : : : ; l ,
Lemma 3.6 and Remark 3.8 furnish a spray of maps �t;w 2 C1.C;A�/ .t 2 Œ0; 1�/, depending
holomorphically on a complex parameter w in a ball W � CN around the origin 0 2 CN for
some big N , such that
� �t;0 D �t for all t 2 Œ0; 1�,
� the map P D .P1; : : : ; Pl/ W Œ0; 1� �W ! .C3/l with the components

(4.5) Œ0; 1� �W 3 .t; w/ 7! Pj .t; w/ D

Z
Cj

�t;w� D

Z 1

0

�j;t;w.x/ dx 2 C3

is submersive with respect to the variable w at w D 0, i.e. the partial differential

àwP.t; w/jwD0 W CN
! .C3/l

is surjective for every t 2 Œ0; 1�.
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In the sequel we shall frequently use that A� is an Oka manifold (see [4, Proposition 4.5]),
and hence maps M ! A� from any Stein manifold M (in particular, from an open Riemann
surface) to A� satisfy the Runge and the Mergelyan approximation theorems in the absence
of topological obstructions. The Runge approximation theorem in this setting amounts to the
(basic or parametric) Oka property with approximation for holomorphic maps to Oka mani-
folds; see [10, Theorem 5.4.4]. (An introductory survey of Oka theory can be found in [11].)
The global Mergelyan approximation theorem on suitable subsets of the source Stein mani-
fold follows by combining the local Mergelyan theorem, which holds for an arbitrary target
manifold (see [10, Theorem 3.7.2]), and the Oka property.

In the case at hand, the Riemann surface M retracts onto the union of curves

C D

l[
jD1

Cj :

Since the ballW � CN is contractible, we infer that any continuous map Œ0; 1��W �C ! A�

extends to a continuous map
Œ0; 1� �W �M ! A�:

Applying the parametric version of Mergelyan’s theorem we can approximate the family of
maps �t;w W C ! A� arbitrarily closely in the smooth topology by a family of holomorphic
maps ft;w WM ! A� depending holomorphically on w 2 W and smoothly on t 2 Œ0; 1�. (The
ball W is allowed to shrink around 0 2 CN .) Furthermore, as the initial map �0;0 D 2àu0=�
is holomorphic on M , the family ¹ft;wº can be chosen such that f0;0 D �0;0 on M . If the
approximation of �t;w by ft;w is close enough for every t 2 Œ0; 1� and w 2 W , it follows from
submersivity of the map (4.5) and the implicit function theorem that there is a smooth map
w D w.t/ 2 W .t 2 Œ0; 1�/ close to 0 such that w.0/ D 0 and the homotopy of holomorphic
maps ft;w.t/ WM ! A� satisfies

(4.6)
Z
Cj

ft;w.t/� D Pj .t; 0/; j D 1; : : : ; l; t 2 Œ0; 1�:

(Here Pj is defined by (4.5).) By (4.1) and (4.5) we have that

<Pj .t; 0/ D <

Z
Cj

�t;0� D

Z 1

0

h0j;t .x/ dx D 0; j D 1; : : : ; l; t 2 Œ0; 1�:

Hence it follows from (4.6) that the real part of the holomorphic 1-form ft;w.t/� integrates to
a conformal minimal immersion ut 2 CMI.M/ given by

(4.7) ut .p/ D u0.p�/C

Z p

p�

<.ft;w.t/�/; p 2M; t 2 Œ0; 1�:

For t D 0 we get the initial immersion u D u0 since <.f0;0�/ D <.2àu0/ D du0. In view
of (4.2) we also have P.1; 0/ D 0, i.e. the holomorphic 1-form f1;w.1/� with values in A� has
vanishing periods along the curves C1; : : : ; Cl . It follows that u1 is the real part of the null
holomorphic immersion F WM ! C3 defined by

F.p/ D u0.p�/C

Z p

p�

f1;w.1/�; p 2M:

This completes the proof of Theorem 1.1 when H1.M IZ/ if finitely generated.
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If M is a compact Riemann surface with smooth boundary, then the above proof also
gives the following analogue of Theorem 1.1 for conformal minimal immersions M ! R3

that are smooth up to the boundary.

Theorem 4.1. Let M be a compact bordered Riemann surface with nonempty smooth
boundary bM and let r � 1. For every conformal minimal immersion u WM ! R3 of class
C r.M/ there exists a smooth isotopy ut WM ! R3 .t 2 Œ0; 1�/ of conformal minimal immer-
sions of class C r.M/ such that u0 D u and u1 D <F is the real part of a holomorphic null
curve F WM ! C3 which is smooth up to the boundary.

5. Proof of Theorem 1.1: The general case

For an open Riemann surface M of arbitrary topological type we construct an isotopy of
conformal minimal immersion ¹utºt2Œ0;1� � CMI.M/ satisfying Theorem 1.1 by an inductive
procedure. As before, we assume that the initial immersion u0 2 CMI�.M/ is nonflat, and all
steps of the proof will be carried out through nonflat immersions.

Pick a smooth strongly subharmonic Morse exhaustion function � WM ! R. We can
exhaust M by an increasing sequence ; DM0 �M1 � � � � �

S1
iD0Mi DM of compact

smoothly bounded domains of the formMi D ¹p 2M W �.p/� ciº, where c0 < c1 < c2 < � � �
is an increasing sequence of regular values of � with limi!1 ci D C1. Each domain Mi is
a bordered Riemann surface, possibly disconnected. We may assume that � has at most one
critical point pi in each difference MiC1 nMi . It follows that Mi is O.M/-convex and its
interior

ı

Mi is Runge in M for every i 2 ZC.
We proceed by induction. The initial step is trivial since M0 D ;. Assume inductively

that an isotopy uit 2 CMI�.Mi / .t 2 Œ0; 1�/ satisfying the conclusion of Theorem 1.1 has
already been constructed over a neighborhood ofMi for some i 2 ZC. In particular, ui0 agrees
on Mi with the initial immersion u0, while ui1 D <F

i is the real part of a null holomorphic
immersion F i defined on a neighborhood of Mi . We will show that ¹uitºt2Œ0;1� can be approx-
imated arbitrarily closely in the smooth topology on Œ0; 1� �Mi by an isotopy ¹uiC1t ºt2Œ0;1�

satisfying the analogous properties over a neighborhood of MiC1. The limit
ut D lim

i!1
uit 2 CMI�.M/

will clearly satisfy Theorem 1.1.
Let C1; : : : ; Cl �

ı

Mi be closed, oriented, real analytic curves whose homology classes
form a basis of H1.Mi IZ/ and which satisfy the other properties as in Section 4. Set

C D

l[
jD1

Cj �Mi

and let P W C1.C;A�/! .C3/l denote the period map (4.4). Fix a nowhere vanishing holo-
morphic 1-form � on M (see Section 2) and write

(5.1) 2àuit D f
i
t � on Mi ; t 2 Œ0; 1�;

where f it WMi ! A� is a holomorphic map depending smoothly on t 2 Œ0; 1�. (We adopt the
convention that a map is holomorphic on a closed set in a complex manifold if it is holomorphic
on an unspecified open neighborhood of that set.) Note that the map f0 D 2àu0=� WM ! A�

is defined and holomorphic on all of M .
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We consider the following two essentially different cases.

(A) The noncritical case: � has no critical value in Œci ; ciC1�.

(B) The critical case: � has a critical point pi 2
ı

MiC1 nMi .

In case (A) there is no change of topology when passing from Mi to MiC1. By [4, Lem-
ma 5.1] (see also Lemma 3.6 above) there is a spray of maps f it;w 2 O.Mi ;A

�/ .t 2 Œ0; 1�/,
depending holomorphically on a complex parameter w in a ball W � CN around the origin
0 2 CN for some big N , satisfying the following two properties:

� f it;0 D f
i
t for all t 2 Œ0; 1�,

� the map P D .P1; : : : ; Pl/ W Œ0; 1� �W ! .C3/l with the components

(5.2) Œ0; 1� �W 3 .t; w/ 7! Pj .t; w/ D

Z
Cj

f it;w� 2 C3

is submersive with respect to the variable w at w D 0, i.e. the partial differential

àwP.t; w/jwD0 W CN
! .C3/l

is surjective for every t 2 Œ0; 1�.

In view of (5.1) we have

<Pj .t; 0/ D

Z
Cj

<.f it;0�/ D

Z
Cj

duit D 0; j D 1; : : : ; l; t 2 Œ0; 1�;

and

Pj .1; 0/ D

Z
Cj

f i1;0� D

Z
Cj

2àui1 D 0; j D 1; : : : ; l;

since ui1 D <F
i for a holomorphic null immersion F i WMi ! C3.

Since A� is an Oka surface and Mi is a strong deformation retract of MiC1, the same
argument as in Section 4 (using the Oka principle for maps to A�) shows that the spray f it;w can
be approximated as closely as desired in the smooth topology on Mi by a spray of holomor-
phic maps f iC1t;w WMiC1 ! A�, depending holomorphically on w 2 W (the ball W shrinks
a little) and smoothly on t 2 Œ0; 1�, such that f iC10;0 D f0jMi

. Assuming that the approximation
is close enough, the submersivity property of the period map P (5.2) furnishes a smooth map
w D w.t/ 2 W .t 2 Œ0; 1�/ close to 0 such that w.0/ D 0 and we have for every j D 1; : : : ; l
that Z

Cj

<.f iC1
t;w.t/

�/ D 0; t 2 Œ0; 1�;

Z
Cj

f iC1
1;w.1/

� D 0:

By integrating the family of 1-forms <.f iC1
t;w.t/

/ .t 2 Œ0; 1�/ with the correct choices of initial
values at a chosen initial point in each connected component of Mi (as in (4.7)) we obtain
a smooth family of conformal minimal immersions uiC1t 2 CMI�.MiC1/ which satisfies the
induction step. This completes the discussion of the noncritical case (A).

Consider now the critical case (B), i.e. � has a critical point pi 2
ı

MiC1 nMi . By the
assumption this is the only critical point of � on MiC1 nMi and is a Morse point. Now MiC1

admits a strong deformation retraction onto Mi [E where E is an embedded analytic arc in
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the complement ofMi , passing through pi , which is attached transversely with both endpoints
to bMi . There are two possibilities:

(a) E is attached with both endpoints to the same connected component of Mi .

(b) The endpoints of E belong to different connected components of Mi .

Let us begin with case (a). The arc E completes inside the domain Mi to a closed
smooth embedded curve ClC1 �MiC1 which is a new generator of the homology group
H1.MiC1IZ/; hence the latter group is generated by the curves C1; : : : ; ClC1. By approxi-
mation we may assume that ClC1 is real analytic. Let � D xC {y be a uniformizing coordinate
in an open annular neighborhood WlC1 �M of ClC1 (see Section 2). Let f it W Ui ! A� be
the isotopy of holomorphic maps from the inductive step, defined on an open neighborhood
Ui of Mi in M and satisfying (5.1). In analogy with (4.3) we define the isotopy of maps
� it W ClC1 \ Ui ! A� by the equation

(5.3) f it � jClC1\Ui
D �t d�; t 2 Œ0; 1�:

For t D 0 the same equation defines the map

�0 W ClC1 ! A�

on all of ClC1 since f i0 D 2àu0=� WM ! A� is globally defined onM . Furthermore, we have
�0.x/ D h

0
0.x/C {g0.x/, where h0.x/ D u0.x/ is the restricted immersion u0jClC1

expressed
in the uniformizing coordinate along ClC1.

Applying Lemma 3.4 to .g0; h0/ we find an isotopy of smooth 1-periodic maps

(5.4) �t .x/ D h
0
t .x/C {gt .x/ 2 A�; x 2 R; t 2 Œ0; 1�;

which agrees with �0 at t D 0 and satisfies the following conditions:

(i) ht is a nonflat immersion for every t 2 Œ0; 1�,

(ii) the extended map agrees with the previously defined map on the segment in Œ0; 1� repre-
senting the arc ClC1 \Mi D ClC1 nE,

(iii)
R 1
0 g1.x/ dx D 0.

We extend the isotopy f it from Mi to Mi [E by the equation

(5.5) f it � D �t d�; t 2 Œ0; 1�:

The maps f it WMi [E ! A� are smooth (also in t 2 Œ0; 1�) and holomorphic on a neighbor-
hood of Mi , and we have

(5.6)
Z
ClC1

<
�
f it �

�
D 0; t 2 Œ0; 1�;

Z
ClC1

f i1 � D

Z 1

0

g1.x/ dx D 0:

We now complete the induction step as in the case of surfaces with finite topology treated
in Section 4; let us outline the main steps. First we apply [4, Lemma 5.1] to embed the isotopy
f it into a spray f it;w WMi [E ! A� of smooth maps which are holomorphic on Mi and
depend holomorphically on a parameter w 2 W � CN in a ball of CN for some big N such
that f i0;0 D 2àu0=� and the period map .t; w/ 7! P.t; w/ 2 .C3/lC1 with the components

Pj .t; w/ D

Z
Cj

f it;w� 2 C3; j D 1; : : : ; l C 1;

is submersive with respect to w at w D 0. (Compare with (4.5). This also follows from the
proof of Lemma 3.6 and Remark 3.8 above.) Since A� is an Oka manifold, the parametric
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94 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

Mergelyan approximation theorem [10, Theorem 5.4.4] allows us to approximate the spray
f it;w in the smooth topology on Mi [E by a spray of holomorphic maps Qf it;w WMiC1 ! A�,
depending smoothly on t 2 Œ0; 1� and holomorphically on w 2 W (the ball W is allowed to
shrink a little) such that Qf i0;0 D f

i
0;0 D 2àu0=� . If the approximation is sufficiently close, then

the implicit function theorem furnishes a smooth map w W Œ0; 1�! W � CN close to 0, with
w.0/ D 0, such that the isotopy of holomorphic maps

f iC1t D Qf it;w.t/ WMiC1 ! A�; t 2 Œ0; 1�;

satisfies the following properties:

.˛/ f iC10 D f i0 D 2àu0=� on MiC1,

.ˇ/ f iC1t approximates f it as closely as desired in the smooth topology on Mi [E (uni-
formly in t 2 Œ0; 1�),

./
R
Cj
<.f iC1t �/ D 0 for all j D 1; : : : ; l C 1 and t 2 Œ0; 1�,

.ı/
R
Cj
f iC11 � D 0 for all j D 1; : : : ; l C 1.

Property ( ) ensures that the real part <.f iC1t �/ of the holomorphic 1-form f iC1t � integrates
to a conformal minimal immersion uiC1t WMiC1!R3 depending smoothly on t 2 Œ0; 1�. Prop-
erty (˛) shows that uiC10 D ui0 D u0 with correct choices of constants of integration, and .ˇ/
implies that uiC1t approximates uit in the smooth topology onMi . Finally, property .ı/ ensures
that uiC11 D <F iC1, where F iC1 WMiC1 ! C3 is a holomorphic null curve obtained by inte-
grating the holomorphic 1-form f iC11 � . This completes the induction step in case (a).

In case (b), when the endpoints of the arc E belong to different connected compo-
nents of the domain Mi , E does not complete to a closed loop inside Mi , and the inclusion
Mi ,!MiC1 induces an isomorphism H1.Mi IZ/ Š H1.MiC1IZ/. Let ClC1 �Mi [E be
a real analytic arc containing E in its relative interior. Choose a holomorphic coordinate �
on a neighborhood of ClC1 in M which maps ClC1 into the real axis and maps E onto the
segment Œ0; 1� � R � C. Let f it and � it be determined by (5.1) and (5.3), respectively. In the
local coordinate �, �t is of the form (5.4), where ht .x/ and gt .x/ are defined for x near the
endpoints 0; 1 of �.E/ D Œ0; 1�. Clearly, we can extend ht and gt smoothly to Œ0; 1� such that
conditions (i) and (ii) (stated just below (5.4)) hold. The map f it defined by (5.5) then satis-
fies the first condition in (5.6), and the second condition is irrelevant. We now complete the
inductive step exactly as in case (a).

6. h-Runge approximation theorem for conformal minimal immersions

The proof of Theorem 1.1, given in Sections 4 and 5, depends on the Mergelyan approx-
imation theorem applied to period dominating sprays with values in A� D A n ¹0º, where
A is the null quadric (2.2). We now present a more conceptual approach to this problem.
Theorem 6.3 below is a homotopy version of the Runge–Mergelyan approximation theorem
for isotopies of conformal minimal immersions, with the additional control of one component
function which is globally defined on the Riemann surface. This will be used in Section 7 to
prove Theorems 1.2 and 7.3.

We begin by introducing the type of sets that we shall consider for the Mergelyan approxi-
mation (cf. [6, Definition 2.2] or [4, Definition 7.1]).
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Alarcón and Forstnerič, Isotopies of conformal minimal surfaces 95

Definition 6.1. A compact subset S of an open Riemann surfaceM is said to be admis-
sible if S D K [ � , where K D

S
Di is a union of finitely many pairwise disjoint, compact,

smoothly bounded domains Di in M and � D
S
j is a union of finitely many pairwise

disjoint analytic arcs or closed curves that intersect K only in their endpoints (or not at all),
and such that their intersections with the boundary bK are transverse.

An admissible subset S �M is O.M/-convex (also called Runge in M ) if and only if
the inclusion map S ,!M induces an injective homomorphism H1.S IZ/ ,! H1.M IZ/.

Given an admissible set S D K [ � �M , we denote by O.S;A�/ the set of all smooth
maps S ! A� which are holomorphic on an unspecified open neighborhood of K (depend-
ing on the map). We denote by O�.S;A

�/ the subset of O.S;A�/ consisting of those maps
mapping no component of K and no component of � to a ray on A�.

Fix a nowhere vanishing holomorphic 1-form � on M . (Such exists by the Oka–Grauert
principle, see Section 2; the precise choice of � will be unimportant in the sequel.)

The following definition of a conformal minimal immersion of an admissible subset
emulates the spirit of the concept of marked immersion [6] and provides the natural initial
objects for the Mergelyan approximation by conformal minimal immersions.

Definition 6.2. Let M be an open Riemann surface and let S D K [ � �M be an
admissible subset (Definition 6.1). A generalized conformal minimal immersion on S is a pair
.u; f �/, where f 2 O.S;A�/ and u W S ! R3 is a smooth map which is a conformal minimal
immersion on an open neighborhood of K, such that

� f � D 2àu on an open neighborhood of K,

� for any smooth path ˛ in M parametrizing a connected component of � we have
<.˛�.f �// D ˛�.du/ D d.u ı ˛/.

A generalized conformal minimal immersion .u; f �/ is nonflat if u is nonflat on every con-
nected component of K and also on every curve in � , equivalently, if f 2 O�.S;A

�/.

We denote by GCMI.S/ the set of all generalized conformal minimal immersions on S ,
and by GCMI�.S/ the subset consisting of nonflat generalized conformal minimal immersions.
We have natural inclusions

CMI.S/ � GCMI.S/; CMI�.S/ � GCMI�.S/;

where CMI.S/ is the set of conformal minimal immersions on open neighborhoods of S . If
.u; f �/ 2 GCMI.S/, then clearly ujK 2 CMI.K/,

R
C <.f �/ D 0 for every closed curve C

on S , and u.x/ D u.x0/C
R x
x0
<.f �/ for every pair of points x0; x in the same connected

component of S .
We say that .u; f �/ 2 GCMI.S/ can be approximated in the C 1.S/ topology by con-

formal minimal immersions in CMI.M/ if there is a sequence vi 2 CMI.M/ .i 2 N/ such
that vi jS converges to ujS in the C 1.S/ topology and àvi jS converges to f � jS in the C 0.S/

topology. (The latter condition is a consequence of the first one on K, but not on � .)

Theorem 6.3 (h-Runge approximation theorem for conformal minimal immersions).
Let M be an open Riemann surface and let u 2 CMI�.M/ be a nonflat conformal minimal
immersion M ! R3. Assume that S D K [ � �M is an O.M/-convex admissible subset
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96 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

(Definition 6.1) and .ut ; ft�/ 2 GCMI�.S/ .t 2 Œ0; 1�/ is a smooth isotopy of nonflat general-
ized conformal minimal immersions on S (Definition 6.2) with u0 D ujS and f0� D .2àu/jS .
Then the family .ut ; ft�/ can be approximated arbitrarily closely in the C 1.S/ topology by
a smooth family Qut 2 CMI�.M/ .t 2 Œ0; 1�/ satisfying the following conditions:

(i) Qu0 D u.

(ii) Flux Qut
.C / D

R
C =.ft�/ for every closed curve C � S and t 2 Œ0; 1�. (See (1.1).)

(iii) Assume in addition that for every t 2 Œ0; 1� the third component function u3t of ut extends
harmonically to M and the third component f 3t of ft extends holomorphically to M
(hence 2àu3t D f 3t � on M ). Then the family Qut can be chosen to satisfy (i), (ii) and also
Qu3t D u

3
t for all t 2 Œ0; 1�.

In the proof of Theorem 6.3 we shall need the following version of the h-Runge approx-
imation property for maps into A� with the control of the periods.

Lemma 6.4. Let M be an open Riemann surface and f D .f 1; f 2; f 3/ WM ! A�

a holomorphic map whose image is not contained in a ray in C3. Assume that S D K[� �M
is an O.M/-convex admissible subset (Definition 6.1). Then every smooth isotopy

ft D .f
1
t ; f

2
t ; f

3
t / 2 O�.S;A

�/; t 2 Œ0; 1�;

with f0 D f jS can be approximated arbitrarily closely in C 1.S/ by a smooth family of holo-
morphic maps

Qft D . Qf
1
t ;
Qf 2t ;
Qf 3t / WM ! A�; t 2 Œ0; 1�;

satisfying the following conditions:

(i) Qf0 D f .

(ii)
R
C
Qft� D

R
C ft� for every closed curve C � S and every t 2 Œ0; 1�.

(iii) If f 3t extends holomorphically to M for all t 2 Œ0; 1�, then we can choose the family Qft
such that Qf 3t D f

3
t for all t 2 Œ0; 1�.

Proof of Lemma 6.4. An isotopy satisfying properties (i) and (ii) is obtained by follow-
ing the proof of (the special case of) Theorem 1.1 in Section 4. Here is a brief sketch.

By Lemma 3.6 and Remark 3.8 we can embed the isotopy ¹ftºt2Œ0;1� into a holomor-
phic period dominating spray of smooth maps ft;w D .f 1t;w ; f

2
t;w ; f

3
t;w/ W S ! A�. Here,w is

a parameter in a ballW � CN around the origin in a complex Euclidean space for some bigN ,
ft;w depends holomorphically on w and smoothly on t 2 Œ0; 1�, and ft;0 D ft for all t . The
phrase period dominating refers to a fixed finite set of closed loops in S forming a basis of the
first homology group H1.S IZ/.

Since A� is an Oka manifold, we have the Mergelyan approximation property for maps
from Stein manifolds (in particular, from open Riemann surfaces) to A� in the absence of
topological obstructions. (See the argument and the references given in Section 4 above.) In
the case at hand, the map f D f0 WM ! A� is globally defined and the domain Œ0; 1� �W of
the spray ft;w is contractible, so there are no topological obstructions to extending these maps
continuously to all of M . Applying the Mergelyan approximation theorem on S we obtain
a spray of holomorphic maps Qft;w WM ! A�, depending holomorphically on w (whose
domain is allowed to shrink a little) and smoothly on t 2 Œ0; 1�, such that Qft;w approximatesft;w
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Alarcón and Forstnerič, Isotopies of conformal minimal surfaces 97

in the C 1 topology on S , and Qf0;0 D f0 holds on M . Within this family we can then pick
an isotopy Qft D Qft;w.t/ .t 2 Œ0; 1�/ satisfying properties (i) and (ii). The smooth function
Œ0; 1� 3 t 7! w.t/ 2 CN is chosen by the implicit function theorem such thatw.0/ D 0 (which
implies property (i)), w.t/ is close to 0 2 CN for all t 2 Œ0; 1� (to guarantee the approximation
on S ), and Qft satisfies the period conditions in property (ii).

It remains to show that we can also fulfill property (iii). Let C1; : : : ; Cl be closed, ori-
ented, analytic curves in S whose homology classes form a basis of H1.S IZ/. Assume that
f 3t extends holomorphically to M for all t 2 Œ0; 1�. We argue as in [4, Theorem 7.7]. Set
A0 D A \ ¹z1 D 1º and observe that A n ¹z1 D 0º is biholomorphic to A0 �C� (in particular,
A0 �C� is an Oka manifold), and the projection �1 W A! C is a trivial fiber bundle with Oka
fiber A0 except over 0 2 C where it is ramified. We may embed the isotopy ft into a spray
ft;w D .f

1
t;w ; f

2
t;w ; f

3
t;w/ W S ! A� of smooth maps which are holomorphic on a neighbor-

hood of K and depend holomorphically on a parameter w 2 W � CN in a ball of some CN

such that f0;0 D f0, the third component f 3t;w of ft;w equals f 3t for all .t; w/ 2 Œ0; 1��W , and
the period map .t; w/ 7! P.t; w/ 2 .C2/l with the components

Pj .t; w/ D

Z
Cj

.f 1t;w ; f
2
t;w/� 2 C2; j D 1; : : : ; l;

is submersive with respect to w at w D 0. Up to slightly shrinking the ball W , the Oka prin-
ciple for sections of ramified holomorphic maps with Oka fibers (see [9] or [10, Section 6.13])
enables us to approximate the spray ft;w in the smooth topology on S by a spray of holo-
morphic maps Qft;w WM ! A�, depending smoothly on t 2 Œ0; 1� and holomorphically on
w 2 W , such that Qf0;0 D f and the third component Qf 3t;w of Qft;w equals f 3t;w D f

3
t for all

.t; w/ 2 Œ0; 1� �W . If the approximation is close enough, then the implicit function theorem
furnishes a smooth map w W Œ0; 1�! W � CN close to 0, with w.0/ D 0, such that the iso-
topy of holomorphic maps Qft WD Qft;w.t/ WM ! A� .t 2 Œ0; 1�/ satisfies (i), (ii), and (iii). For
further details we refer to the proof of [4, Theorem 7.7].

Given a compact bordered Riemann surfaceR D R [ bR with smooth boundary bR con-
sisting of finitely many smooth Jordan curves, we denote by A r.R/ the set of all mapsR! C
of class C r .r 2 ZC/ that are holomorphic on the interior R of R.

Proof of Theorem 6.3. Pick a smooth strongly subharmonic Morse exhaustion function
� WM ! R. We exhaust M by an increasing sequence

M1 �M2 � � � � �

1[
jD1

Mj DM

of compact smoothly bounded domains of the form

Mj D ¹p 2M W �.p/ � cj º;

where c1 < c2 < � � � is an increasing sequence of regular values of � with limj!1 cj D C1.
Since S is O.M/-convex, we can choose � and c1 such that S �

ı

M1 and S is a strong defor-
mation retract of M1; in particular, the inclusion S ,!M1 induces an isomorphism

H1.S IZ/ Š H1.M IZ/

of their homology groups. Each domain Mj D
ı

Mj [ b
ı

Mj is a compact bordered Riemann
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98 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

surface, possibly disconnected. We may assume that � has at most one critical point pj in
each difference MjC1 nMj . It follows that Mj is O.M/-convex and

ı

Mj is Runge in M for
every j 2 N.

We proceed by induction. In the first step we obtain an extension from S to M1.
Assume for simplicity thatM1 and so S are connected; the same argument works on any

connected component. Pick a point x0 2 S . By Lemma 6.4, the family ft .t 2 Œ0; 1�/ can be
approximated arbitrarily closely in C 1.S/ by a smooth isotopy of maps

ft;1 D .f
1
t;1; f

2
t;1; f

3
t;1/ WM1 ! A�

of class A 1.M1/
3 such that the family of conformal minimal immersions

ut;1 D .u
1
t;1; u

2
t;1; u

3
t;1/ 2 CMI�.M1/

given by

ut;1.x/ D ut .x0/C

Z x

x0

<.ft;1�/; x 2M1;

is well defined and satisfies

(i1) u0;1 D ujM1
,

(ii1) Fluxut;1
.C / D

R
C =.ft�/ for every closed curve C � S and every t 2 Œ0; 1�,

(iii1) u3t;1 D u
3
t jM1

for all t 2 Œ0; 1� provided that the assumptions in Theorem 6.3 (iii) hold.

Assume inductively that for some j 2 N we have already constructed a smooth isotopy

ut;j D .u
1
t;j ; u

2
t;j ; u

3
t;j / 2 CMI�.Mj /; t 2 Œ0; 1�;

satisfying

(ij ) u0;j D ujMj
,

(iij ) Fluxut;j
.C / D

R
C =.ft�/ for every closed curve C � S and every t 2 Œ0; 1�,

(iiij ) u3t;j D u
3
t jMj

for all t 2 Œ0; 1� provided that the assumptions in Theorem 6.3 (iii) hold.

Let us show that the smooth isotopy ¹ut;j ºt2Œ0;1� can be approximated arbitrarily closely
in the smooth topology on Œ0; 1� �Mj by a smooth isotopy ¹ut;jC1ºt2Œ0;1� � CMI�.MjC1/
satisfying the analogous properties. The limit Qut D limj!1 ut;j 2 CMI�.M/ will clearly
satisfy Theorem 6.3. Indeed, properties (ij ), (iij ), and (iiij ) trivially imply (i), (ii), and (iii),
respectively.

The noncritical case. Assume that � has no critical value in Œcj ; cjC1�. In this caseMj
is a strong deformation retract of MjC1. As above, we finish by using Lemma 6.4 applied to
the family of maps ft;j WMj ! A� .t 2 Œ0; 1�/ given by 2àut;j D ft;j � on Mj .

The critical case. Assume that � has a critical point pjC1 2MjC1nMj . By the assump-
tions on �, pjC1 is the only critical point of � on MjC1 nMj and is a Morse point. Since � is
strongly, the Morse index of pjC1 is either 0 or 1.

If the Morse index of pjC1 is 0, then a new (simply connected) component of the sublevel
set ¹� � rº appears at pjC1 when r passes the value �.pjC1/. In this case

MjC1 DM
0
jC1 [M

00
jC1;

where M 0jC1 \M
00
jC1 D ;, M

00
jC1 is a simply connected component of MjC1, and Mj is
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a strong deformation retract of M 0jC1. Let � �M 00jC1 be a smoothly bounded compact disc
that will be specified later. It follows that Mj [� is a strong deformation retract of MjC1.
Extend ¹ut;j D .u1t;j ; u

2
t;j ; u

3
t;j /ºt2Œ0;1� to � as any smooth isotopy of conformal minimal

immersions such that u0;j j� D uj�; for instance one can simply take ut;j j� D uj� for all
t 2 Œ0; 1�. If the assumptions in Theorem 6.3 (iii) hold, then take this extension to also satisfy
u3t;j j� D u

3
t j� for all t 2 Œ0; 1�. For instance, one can choose � such that f 3t does not vanish

anywhere on � for all t 2 Œ0; 1�, pick x0 2
ı

�, and take

ut;j .x/ D yt C<

Z x

x0

�
1

2

�
1

g
� g

�
;
{

2

�
1

g
C g

�
; 1

�
f 3t �; x 2 �;

where yt D .y1t ; y
2
t ; y

3
t / 2 R3 depends smoothly on t 2 Œ0; 1� and satisfies y0 D u.x0/ and

y3t D u
3
t .x0/ for all t 2 Œ0; 1�, and g is the complex Gauss map of u (cf. (2.8) and (2.9) and

observe that g is holomorphic and does not vanish anywhere on �). This reduces the proof to
the noncritical case.

If the Morse index of pjC1 is 1, then the change of topology of the sublevel set ¹� � rº
at pjC1 is described by attaching toMj an analytic arc  �

ı

MjC1 nMj . Observe thatMj [ 
is an O.M/-convex strong deformation retract of MjC1. Without loss of generality we may
assume that Mj [  is admissible in the sense of Definition 6.1. Reasoning as in the critical
step in Section 5, we extend the family ¹ut;j ºt2Œ0;1� to a smooth isotopy of nonflat generalized
conformal minimal immersions ¹.ut;j ; ft;j �/ºt2Œ0;1� � GCMI�.Mj [ / such that

.u0;j ; f0;j �/ D .u; 2àu/jMj[ :

If the assumptions in Theorem 6.3 (iii) hold, then we take this extension such that their third
components satisfy u3t;j D u

3
t jMj[ and f 3t;j � D .2àu

3
t /jMj[ for all t 2 Œ0; 1�. Then, to con-

struct the isotopy ut;jC1 2 CMI�.MjC1/ .t 2 Œ0; 1�/ meeting (ijC1), (iijC1), and (iiijC1), we
reason as in the first step of the inductive process. This finishes the inductive step and proves
the theorem.

7. Isotopies of complete conformal minimal immersions

The aim of this section is to prove Theorem 1.2. The core of the proof is given by the
following technical result. Recall that given a compact set K in an open Riemann surface M ,
we denote by CMI.K/ the set of maps K ! R3 extending as conformal minimal immersions
to an unspecified open neighborhood of K in M , and by CMI�.K/ � CMI.K/ the subset of
those immersions which are nonflat on every connected component of K.

Lemma 7.1. Let M DM [ bM be a compact connected bordered Riemann surface.
Let u D .u1; u2; u3/ 2 CMI�.M/ be a conformal minimal immersion which is of class C 1.M/

up to the boundary. Let K �M be an O.M/-convex compact set containing the topology
of M . Let ut D .u1t ; u

2
t ; u

3
t / 2 CMI�.K/, t 2 Œ0; 1�, be a smooth isotopy with u0 D ujK .

Assume also that u3t extends holomorphically to M for all t 2 Œ0; 1�. Let x0 2 K and denote
by � the positive number given by

� WD distu.x0; bM/(7.1)

D inf¹length.u.// W  an arc in M connecting x0 and bM º:

(Here length. � / denotes the Euclidean length in R3.) Then, for any ı > 0, the family ut can
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100 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

be approximated arbitrarily closely in the smooth topology on K by a family Qut 2 CMI�.M/

of class C 1.M/, depending smoothly on t 2 Œ0; 1� and enjoying the following properties:

(I) Qu0 D u.

(II) Qu3t D u
3
t for all t 2 Œ0; 1�.

(III)
R
C d

c. Qut � ut / D 0 for every closed curve C � K and every t 2 Œ0; 1�.

(IV) dist Qut
.x0; bM/ > � � ı for all t 2 Œ0; 1�.

(V) dist Qu1
.x0; bM/ > 1=ı.

Proof. By Theorem 6.3 we may assume without loss of generality that K is a compact
connected smoothly bounded domain in M , and the isotopy ut extends to a smooth isotopy
of conformal minimal immersions in CMI�.M/ of class C 1.M/. We emphasize that the latter
assumption can be fulfilled while preserving the initial immersion u (see Theorem 6.3 (i)) and
the third component of any immersion ut in the family (see Theorem 6.3 (iii)).

Write u D u0. Since ut depends smoothly on t , (7.1) ensures that, up to possibly enlarg-
ing K, we may also assume the existence of a number t0 2 �0; 1Œ such that

(7.2) distut
.x0; bK/ > � �

ı

2
for all t 2 Œ0; t0�:

Let � be a nowhere vanishing holomorphic 1-form of class A 1.M/. Write 2àut D ft� ,
where ft D .f 1t ; f

2
t ; f

3
t / WM ! A� is of class A 0.M/3.

Denote bym 2 N the number of boundary components ofM . By the assumptions onK,
the open setM nK consists precisely ofm connected componentsO1; : : : ; Om, each one con-
taining in its boundary a component of bM . Let zj W Oj ! C be a conformal parametrization
such that zj .Oj / is a round open annulus of radii 0 < rj < Rj < C1 (observe that Oj is
a bordered annulus), j D 1; : : : ; m.

Claim 7.2. There exist numbers t0 < t1 < � � � < tl D 1, l 2 N, and compact annuli
Aj;k � Oj , .j; k/ 2 I WD ¹1; : : : ; mº � ¹1; : : : ; lº, satisfying the following properties:

(i) Aj;k contains the topology of Oj for all .j; k/ 2 I . In particular, every arc  �M con-
necting x0 and bM contains a sub-arc connecting the two boundary components of Aj;k
for all k 2 ¹1; : : : ; lº, for some j 2 ¹1; : : : ; mº.

(ii) zj .Aj;k/ is a round compact annulus of radii rj;k andRj;k , where rj < rj;k < Rj;k < Rj
for all .j; k/ 2 I .

(iii) Aj;k \ Aj 0;k0 D ; for all .j; k/ ¤ .j 0; k0/ 2 I .

(iv) f 3t does not vanish anywhere on Aj;k for all t 2 Œtk�1; tk�, for all .j; k/ 2 I .

Proof. Let t 2 Œt0; 1�. Since ut is nonflat, f 3t does not vanish identically and hence its
zeros are isolated on M . Therefore there exist compact annuli Atj � Oj , j D 1; : : : ; m, such
that Atj contains the topology of Oj , zj .Atj / is a round compact annulus, and f 3t does not
vanish anywhere on Atj . Since f 3t depends smoothly on t , there exists an open connected
neighborhood Ut of t in Œt0; 1� such that f 3t 0 does not vanish anywhere on Atj for all t 0 2 Ut .
Since Œt0; 1� D

S
t2Œt0;1�

Ut is compact, there exist numbers t0 < t1 < � � � < tl D 1, l 2 N,
such that

Sl
kD1 Utk D Œt0; 1�. Set Aj;k WD A

tk
j and observe that properties (i), (ii), and (iv)

hold. To finish we simply shrink the annuli Aj;k in order to ensure (iii).
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Alarcón and Forstnerič, Isotopies of conformal minimal surfaces 101

Since Aj;k � Œtk�1; tk� is compact for all .j; k/ in the finite set I , property (iv) gives
a small number � > 0 such that

(7.3) � < min
²ˇ̌̌̌
f 3t �

dzj

ˇ̌̌̌
.x/ W x 2 Aj;k; t 2 Œtk�1; tk�; .j; k/ 2 I

³
:

The next step in the proof of the lemma consists of constructing on each annulus Aj;k
a Jorge–Xavier-type labyrinth of compact sets (see [17] or [1–3]).

Let N be a large natural number that will be specified later.
Assume that 2=N < min¹Rj;k � rj;k W .j; k/ 2 I º. For any n 2 ¹1; : : : ; 2N 2º, we set

sj;kIn WD Rj;k � n=N
3 and observe that rj;k < sj;kIn < Rj;k . We set

Lj;kIn WD

²
x 2 Aj;k W sj;kIn C

1

4N 3
� jzj .x/j � sj;kIn�1 �

1

4N 3
;(7.4)

1

N 2
� arg..�1/nzj .x// � 2� �

1

N 2

³
� Aj;k :

By (iii), the compact sets Lj;kIn �M nK are pairwise disjoint. We also set

Lj;k WD

2N 2[
nD1

Lj;kIn; L WD
[

.j;k/2I

Lj;k;

and observe that K \ L D ; and K [ L is O.M/-convex. (See Figure 7.1.)

Figure 7.1. The labyrinth zj .Lj;k/ inside the round annulus zj .Aj;k/ � C.

Denote by gt the complex Gauss map of ut , i.e. the meromorphic function on M

gt D
f 3t

f 1t � {f
2
t

; t 2 Œ0; 1�;
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102 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

and recall that

(7.5) ft D

�
1

2

�
1

gt
� gt

�
;
{

2

�
1

gt
C gt

�
; 1

�
f 3t ; t 2 Œ0; 1�

(see (2.8) and (2.9)). Since ft is holomorphic on M , (iv) ensures that gt has neither zeros nor
poles on Aj;k for all t 2 Œtk�1; tk�, .j; k/ 2 I . In particular, since I is finite and Œtk�1; tk� is
compact, there exists a constant c0 > 0 such that jgt j > c0 on Aj;k for all t 2 Œtk�1; tk� and
all .j; k/ 2 I . Therefore, we may take a number � > 0 large enough so that

(7.6) j1C �t j � jgt j > 2N
4 on Aj;k for all t 2 Œtk�1; tk� and all .j; k/ 2 I ;

recall that t0 > 0.
Consider the family of holomorphic maps ht D .h1t ; h

2
t ; h

3
t / W K [ L! A�, t 2 Œ0; 1�,

given by

(7.7) ht D ft on K

and

ht D

�
1

2

�
1

.1C �t/gt
� .1C �t/gt

�
;(7.8)

{

2

�
1

.1C �t/gt
C .1C �t/gt

�
; 1

�
f 3t on L:

The map ht is said to be obtained from ft on L by a López–Ros transformation; see [19].
Since ft depends smoothly on t 2 Œ0; 1�, it is clear from (7.5), (7.7), and (7.8) that the

family ht depends smoothly on t 2 Œ0; 1� as well. Notice that, since 1C �t ¤ 0, the holomor-
phicity of ft implies the one of ht , t 2 Œ0; 1�. Moreover, equations (7.7), (7.8), and (7.5) also
give that

(7.9) h0 D f0jK[L; h3t D f
3
t jK[L for all t 2 Œ0; 1�:

On the other hand, since K \ L D ; and L is the union of finitely many pairwise disjoint
closed discs, (7.7) ensures that

(7.10)
Z
C

.ht � ft /� D 0 for every closed curve C � K [ L and every t 2 Œ0; 1�.

In view of (7.9) and (7.10), Lemma 6.4 provides a family of holomorphic maps

Qft D . Qf
1
t ;
Qf 2t ;
Qf 3t / WM ! A�;

depending smoothly on t 2 Œ0; 1�, such that

(v) Qf0 D f0,

(vi) Qf 3t D f
3
t for all t 2 Œ0; 1�,

(vii)
R
C .
Qft � ft /� D 0 for every closed curve C � K and every t 2 Œ0; 1�,

(viii) Qft is as close to ht in the smooth topology on K [ L as desired, t 2 Œ0; 1�.

For each t 2 Œ0; 1�, consider the conformal minimal immersion Qut 2 CMI�.M/ given by

Qut .x/ WD ut .x0/C<

Z x

x0

Qft�; x 2M:

Observe that Qut is well defined; see (vii) and recall that the periods of ft� D 2àut are purely
imaginary.
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Alarcón and Forstnerič, Isotopies of conformal minimal surfaces 103

Let us check that the family ¹ Qutºt2Œ0;1� satisfies the conclusion of the lemma. Indeed,
since the family Qft depends smoothly on t 2 Œ0; 1�, the same is true for the family Qut . Moreover,
(viii) and (7.7) ensure that Qut can be chosen as close as desired to ut in the smooth topology
on K (uniformly with respect to t 2 Œ0; 1�); recall that K is a compact smoothly bounded
domain in M , hence arc-connected. On the other hand, we have that

(7.11) Qut .x0/ D ut .x0/; 2 à Qut D Qft� for all t 2 Œ0; 1�;

hence properties (I), (II), and (III) directly follow from (v), (vi), and (vii), respectively.
Let us prove (IV) provided that the number N is big enough and the approximation

in (viii) is close enough. Indeed, fix t 2 Œ0; 1� and let us distinguish cases.
First assume that t 2 Œ0; t0�. In this case (7.2) ensures that

dist Qut
.x0; bM/ � dist Qut

.x0; bK/ > � � ı

provided that Qut is close enough to ut on K.
Assume now that t 2 Œt0; 1�; hence t 2 Œtk�1; tk� for some k 2 ¹1; : : : ; lº. Recall that the

Riemannian metric ds2
Qut

induced on M by the Euclidean metric of R3 via Qut is given by

(7.12) ds2
Qut
D
1

2
j Qft� j

2
� j Qf 3t � j

2

(see (2.10) and take into account that x C 1
x
� 2 for all x > 0). In particular, (viii) ensures that

(ix) ds2
Qut

is as close to 1
2
jht� j

2 as desired in the smooth topology on K [ L.

In view of property (i) above, it suffices to show that length Qut
./ > max¹� � ı; 1

ı
º for any

arc  � Aj;k connecting the two boundary components of the annulus Aj;k , j D 1; : : : ; m,
where length Qut

denotes the length function in the Riemannian surface .M; ds2
Qut
/. This will

also prove (V).
Indeed, let j 2 ¹1; : : : ; mº and let  � Aj;k be an arc connecting the two boundary

components of Aj;k . On the one hand, (7.8) give that

1

2
jht� j

2
D
1

4

�
1

j1C �t jjgt j
C j1C �t jjgt j

�2
jf 3t j

2
j� j2 on L:

This, (ix), (7.6), and (7.3), imply that

(7.13) ds2
Qut
> N 8�2jdzj j

2 on Lj;k :

On the other hand, (7.12), (vi), and (7.3) give that

(7.14) ds2
Qut
� j Qf 3t � j

2
D jf 3t � j

2 > �2jdzj j
2 on Aj;k :

The above two estimates ensure that

(7.15) length Qut
./ > min

²
1

2
; rj;k

³
�N;

where rj;k > 0 is the inner radius of zj .Aj;k/ (see Claim 7.2 (ii)). Indeed, assume first that 
crosses Lj;kIn, for some n 2 ¹1; : : : ; 2N 2º, in the sense that  contains a subarc O � Lj;kIn
such that zj . O/ connects the two circumferences defining zj .Lj;kIn/; see (7.4) and Figure 7.1.
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104 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

It follows that the Euclidean length of zj . O/ is at least 1=2N 3 (cf. (7.4)) and hence (7.13)
ensures that length Qut

./ > length Qut
. O/ > 1

2
�N . Assume now that the arc  crosses Lj;kIn

for no n 2 ¹1; : : : ; 2N 2º. In this case, for any n 2 ¹1; : : : ; 2N 2 � 1º, zj ./ surrounds the set
zj .Lj;kIn/ in order to scape by the opening of zj .Lj;kInC1/; see (7.4) and Figure 7.1. Since
this phenomenon happens at least 2N 2 � 1 times, the Euclidean length of zj ./ is larger than
.2N 2 � 1/rj;k > Nrj;k and hence (7.14) gives that length Qut

./ > rj;k�N .
In view of (7.15), to conclude the proof it suffices to choose N large enough so that

min¹1
2
; rj;kº�N > max¹� � ı; 1

ı
º for all .j; k/ 2 I .

Proof of Theorem 1.2. Let � WM ! R be a smooth strongly subharmonic Morse ex-
haustion function. We can exhaust M by an increasing sequence

M0 �M1 � � � � �

1[
iD0

Mi DM

of compact smoothly bounded domains of the form

Mi D ¹p 2M W �.p/ � ciº;

where c0 < c1 < � � � is an increasing sequence of regular values of � with limi!1 ci D C1.
Each domainMi D

ı

Mi [ bMi is a compact bordered Riemann surface, possibly disconnected.
We may further assume that � has at most one critical point pi in each difference MiC1 nMi .
It follows that Mi is O.M/-convex and its interior

ı

Mi is Runge in M for every i 2 ZC.
We proceed by induction. Choose a point x0 2

ı

M0 and set

(7.16) �i WD distu.x0; bMi / > 0 for all i 2 ZC:

The initial step is the smooth isotopy ¹u0t WD ujM0
2 CMI�.M0/ºt2Œ0;1�. Assume inductively

that we have already constructed for some i 2 ZC a smooth isotopy uit 2 CMI�.Mi / .t 2 Œ0; 1�/

satisfying the following conditions:

(ai ) ui0 D ujMi
,

(bi ) Fluxui
1
.C / D p.C / for every closed curve C �Mi ,

(ci ) distui
t
.x0; bMi / > �i �

1
i

for all t 2 Œ0; 1� (this condition is omitted for i D 0),

(di ) distui
1
.x0; bMi / > i .

We will show that ¹uitºt2Œ0;1� can be approximated arbitrarily closely in the smooth topology
on Œ0; 1� �Mi by an isotopy ¹uiC1t ºt2Œ0;1� satisfying the analogous properties over a neigh-
borhood of MiC1. The limit ut D limi!1 uit 2 CMI�.M/ will clearly satisfy Theorem 1.2.
Indeed, properties (ai ) imply that u0 D u, (bi ) ensure that Fluxu1

D p, and (di ) give that u1 is
complete. Finally, if u is complete, then

lim
i!1

�
�i �

1

i

�
D C1

(see (7.16)); hence properties (ci ) guarantee the completeness of ut for all t 2 Œ0; 1�.
Observe that property (ci ) will not be required in the construction of uiC1t . Therefore the

construction is consistent with the fact that (ci ) does not make sense for i D 0.
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Alarcón and Forstnerič, Isotopies of conformal minimal surfaces 105

The noncritical case. Assume that � has no critical value in Œci ; ciC1�. In this case Mi

is a strong deformation retract of MiC1. In view of (ai ), (bi ), and (7.16), Lemma 7.1 can be
applied to the data�

M DMiC1; u D ujMiC1
; K DMi ; ut D u

i
t ; x0; � D �iC1; ı D 1=.i C 1/

�
;

furnishing a smooth isotopy uiC1t 2 CMI�.MiC1/ which satisfies conditions (aiC1)–(diC1)
and is as close as desired to uit in the smooth topology on Mi .

The critical case. Assume that � has a critical point piC1 2MiC1nMi . By the assump-
tions on �, piC1 is the only critical point of � on MiC1 nMi and is a Morse point. Since � is
strongly, the Morse index of piC1 is either 0 or 1.

If the Morse index of piC1 is 0, then a new (simply connected) component of the sublevel
set ¹� � rº appears at piC1 when r passes the value �.piC1/. In this case

MiC1 DM
0
iC1 [M

00
iC1;

whereM 0iC1\M
00
iC1 D ;,M

00
iC1 is a simply connected component ofMiC1, andMi is a strong

deformation retract of M 0iC1. Extend uit by setting uit D u on M 00iC1 for all t 2 Œ0; 1�. This
reduces the proof to the noncritical case.

If the Morse index of piC1 is 1, then the change of topology of the sublevel set ¹� � rº
at piC1 is described by attaching to Mi an analytic arc  �

ı

MiC1 nMi . In this case we take
r 0 2 ��.piC1/; ciC1Œ and set W D ¹� � r 0º. By the assumptions, we have that W D

ı

W [ bW

is an O.M/-convex compact bordered Riemann surface which is a strong deformation retract
ofMiC1. Arguing as in the critical case in Section 5 we may approximate ¹uitºt2Œ0;1� arbitrarily
closely in the smooth topology on Œ0; 1� �Mi by an isotopy ¹ Ouitºt2Œ0;1� � CMI�.W / satisfy-
ing Oui0 D ujW and Flux

Oui
1
.C / D p.C / for every closed curve C � W (take into account (ai )

an (bi )). Further, (7.16) ensures that dist
Oui

0
.x0; bW / > �i . Again this reduces the construction

to the noncritical case and concludes the proof of the theorem.

In a different direction, we can construct an isotopy of conformal minimal immersions
from a given immersion to a complete one without changing the flux map.

Theorem 7.3. Let M be a connected open Riemann surface of finite topology. For
every smooth isotopy ut 2 CMI�.M/ .t 2 Œ0; 1�/ there exists a smooth isotopy Qut 2 CMI�.M/

.t 2 Œ0; 1�/ of conformal minimal immersions such that Qu0 D u0, Qu1 is complete, the third com-
ponent of Qut equals the one of ut for all t 2 Œ0; 1�, and the flux map of Qut equals the one of ut
for all t 2 Œ0; 1�. Furthermore, if u0 is complete, then there exists such an isotopy where Qut is
complete for all t 2 Œ0; 1�.

Proof. Let � WM ! R be a smooth strongly subharmonic Morse exhaustion function.
Since M is of finite topology, we can exhaust it by a sequence

M0 �M1 � � � � �

1[
iD0

Mi DM

of compact smoothly bounded domains of the form

Mi D ¹p 2M W �.p/ � ciº;

where c0 < c1 < � � � is an increasing sequence of regular values of the exhaustion function �
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106 Alarcón and Forstnerič, Isotopies of conformal minimal surfaces

such that limi!1 ci D C1 and there is no critical point of � in M nM0. Then each domain
Mi D

ı

Mi [ bMi is a connected compact bordered Riemann surface which is an O.M/-convex
strong deformation retract of MiC1 and of M . Pick x0 2

ı

M0 and set

�i D distu0
.x0; bMi / > 0 for all i 2 ZC:

We proceed by induction. The initial step is the isotopy

¹u0t WD ut jM0
ºt2Œ0;1�:

Assume inductively that we have already constructed for some i 2 ZC a smooth isotopy

uit 2 CMI�.Mi /; t 2 Œ0; 1�;

satisfying the following conditions:

� ui0 D u0jMi
.

� the third component of uit equals the third component of ut restricted to Mi for all
t 2 Œ0; 1�,

� Fluxui
t
.C / D Fluxut

.C / for every closed curve C �Mi and all t 2 Œ0; 1�,

� distui
t
.x0; bMi / > �i �

1
i

for all t 2 Œ0; 1�, i 2 N,

� distui
1
.x0; bMi / > i .

Reasoning as in the proof of Theorem 1.2, Lemma 7.1 ensures that ¹uitºt2Œ0;1� can be approx-
imated arbitrarily closely in the smooth topology on Œ0; 1� �Mi by an isotopy ¹uiC1t ºt2Œ0;1�

satisfying the analogous properties overMiC1. The limit Qut D limi!1 uit 2 CMI�.M/ clearly
satisfies Theorem 7.3.

8. On the topology of the space of conformal minimal immersions

Theorem 1.1 amounts to saying that every path connected component of CMI.M/ con-
tains a path connected component of<NC.M/. (See Section 2 for the notation.) The proof (see
Sections 4 and 5) shows that a nonflat u0 2 CMI�.M/ can be connected by a path in CMI�.M/

to some u1 2 <NC�.M/. The following natural question appears:

Problem 8.1. Are the natural inclusions

<NC.M/ ,! CMI.M/; <NC�.M/ ,! CMI�.M/;

weak (or even strong) homotopy equivalences?

In order to show that the inclusion � W <NC.M/ ,! CMI.M/ is a weak homotopy equiva-
lence (i.e. �k.�/ W �k.<NC.M//

Š
�! �k.CMI.M// is an isomorphism of the homotopy groups

for each k D 0; 1; : : :), it suffices to prove that � satisfies the following:

Parametric h-principle. Given a pair of compact Hausdorff spacesQ0;QwithQ0 �Q
(it suffices to consider Euclidean compacts, or even just finite polyhedra) and a continuous
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map F W Q! CMI.M/ such that F.Q0/ � <NC.M/, we can deform F through a homotopy
Ft W Q! CMI.M/ .t 2 Œ0; 1�/ that is fixed onQ0 to a map F1 W Q! <NC.M/, as illustrated
by the following diagram:

Q0

incl
��

// <NC.M/

�

��

Q
F //

F1

::

CMI.M/.

See [8, 12] and [10, Chapter 5] for more details.
We now describe a connection to the underlying topological questions. Fix a nowhere

vanishing holomorphic 1-form � on M . (Such a 1-form exists by the Oka–Grauert principle,
cf. [10, Theorem 5.3.1, p. 190].) It follows from (2.3) that for every u 2 CMI.M/ we have

2àu D f �;

where f D .f1; f2; f3/ WM ! A� is a holomorphic map satisfyingZ
C

<.f �/ D

Z
C

du D 0

for any closed curve C in M . Furthermore, we have that u D <F for some F 2 NC.M/ if
and only if

R
C f � D 0 for all closed curves C in M .

Problem 8.2. Is the map

(8.1) ‚ W CMI.M/! O.M;A�/; ‚.u/ D 2àu=�

a weak homotopy equivalence? Does it satisfy the parametric h-principle?

Let � W O.M;A�/ ,! C .M;A�/ denote the inclusion of the space of holomorphic maps
M ! A� into the space of continuous maps. Since A� is an Oka manifold [4, Section 4], � is
a weak homotopy equivalence [10, Corollary 5.4.8]. Hence the map

Q‚ D � ı‚ W CMI.M/! C .M;A�/

is a weak homotopy equivalence if and only if ‚ is.
By [4, Theorem 2.6] every f0 2 C .M;A�/ can be connected by a path in C .M;A�/ to

a holomorphic map f1 2 O.M;A�/ such that f1� is an exact holomorphic 1-form in M ; thus
f1 D ‚.<F / for some F 2 NC.M/. In particular, we have the following consequence.

Corollary 8.3. Let M be an open Riemann surface and let � be a nonvanishing holo-
morphic 1-form on M . Every connected component of C .M;A�/ contains a map of the form
2àu=� , where u 2 CMI.M/.

It is natural to ask how many connected components does C .M;A�/ have. The answer
comes from the theory of spin structures on Riemann surfaces; we refer to the preprint [18] by
Kusner and Schmitt. Here we give a short self-contained explanation; we wish to thank Jaka
Smrekar for his help at this point.

Denote the coordinates on C3 by z D � C {�, with �; � 2 R3, and let

� W C3
D R3 ˚ {R3 ! R3

be the projection �.� C {�/ D � . Then � W A� ! R3 n ¹0º is a real analytic fiber bundle with

Brought to you by | Biblioteca de la Universidad de Sevilla
Authenticated

Download Date | 7/5/18 11:13 AM
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circular fibers

(8.2) A \ ��1.�/ D ¹� C {� 2 C3
W � � � D 0; j�j D j�jº Š S1; � 2 R3 n ¹0º:

Let S2 D ¹� 2 R3 W j�j D 1º be the unit sphere of R3. Then A� is homotopy equivalent to
A� \ ��1.S2/, and by (8.2) this is the unit circle bundle of the tangent bundle of S2:

A� \ ��1.S2/ D S.TS2/ Š SO.3/:

It follows that

(8.3) �1.A
�/ Š �1.SO.3// Š Z2 WD Z=2Z:

An open Riemann surface M has the homotopy type of a finite or countable wedge of
circles, one for each generator of H1.M IZ/. Fix a pair of points p 2M and q 2 A�, and
let C�.M;A�/ denote the space of all continuous maps sending p to q. It is easily seen that
C .M;A�/ Š C�.M;A�/ �A�. The space C�.M;A�/ is homotopy equivalent to the cartesian
product of loop spaces �.A�/ D C�.S1;A�/, one for each generator of H1.M IZ/. Since
the connected components of �.A�/ coincide with the elements of the fundamental group
�1.A

�/ Š Z2 (see (8.3)) and A� is connected, we infer the following.

Proposition 8.4. IfM is an open Riemann surface andH1.M IZ/ŠZl .l 2ZC[¹1º/,
then the connected components of C .M;A�/ are in one-to-one correspondence with the ele-
ments of the free abelian group .Z2/l . Hence each of the spaces NC.M/ and CMI.M/ has at
least 2l connected components.

The last statement follows from Theorem 1.1 and Corollary 8.3.

Acknowledgement. The authors wish to thank Jaka Smrekar for his help with the topo-
logical matters in Section 8. We also thank the referee for useful suggestions which lead to
improved presentation.
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[7] B. Drinovec Drnovšek and F. Forstnerič, Holomorphic curves in complex spaces, Duke Math. J. 139 (2007),
203–254.

[8] Y. Eliashberg and N. Mishachev, Introduction to the h-principle, Grad. Stud. Math. 48, American Mathemati-
cal Society, Providence 2002.
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Alarcón and Forstnerič, Isotopies of conformal minimal surfaces 109
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