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Abstract Let M be a connected open Riemann surface. We prove that the space
L (M,C2n+1) of all holomorphic Legendrian immersions of M to C

2n+1, n ≥ 1, endowed
with the standard holomorphic contact structure, is weakly homotopy equivalent to the space
C (M,S4n−1) of continuous maps from M to the sphere S4n−1. If M has finite topological
type, then these spaces are homotopy equivalent. We determine the homotopy groups of
L (M,C2n+1) in terms of the homotopy groups of S4n−1. It follows that L (M,C2n+1) is
(4n − 3)-connected.
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retract
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1 Introduction

It is an interesting and important problem to describe the rough shape of mapping spaces
that arise in analysis and geometry. Answering such a question typically amounts to proving
a homotopy principle (h-principle) to the effect that analytic solutions can be classified by
topological data; in particular, a solution exists in the absence of topological obstructions.
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For a survey of the h-principle and its applications, see the monographs by Gromov [15],
Eliashberg and Mishachev [9], and Spring [20]. In complex analysis, a synonym for h-
principle is Oka principle. This is a subject with a long and rich history going back to Oka’s
paper [19] in 1939; we refer to the monograph [11].

In this paper, we describe the rough shape of the space L (M,C2n+1) of holomorphic
Legendrian immersions of an open Riemann surface M into the complex Euclidean space
C
2n+1, n ≥ 1, with the standard holomorphic contact structure (1.2). Our main result is

that L (M,C2n+1) is weakly homotopy equivalent to the space C (M,S4n−1) of continuous
maps from M to the (4n − 1)-dimensional sphere, and is homotopy equivalent to it if M
has finite topological type; see Corollary 1.2. Analogous results for several other mappings
spaces were obtained in [12].

We begin by introducing the relevant spaces of maps. All spaces under consideration are
endowed with the compact-open topology, unless otherwise specified.

A holomorphic 1-form α on a complex manifold X of odd dimension 2n + 1 ≥ 3 is said
to be a contact form if it satisfies the nondegeneracy condition α ∧ (dα)n �= 0 at every point
of X . The model is the complex Euclidean space C2n+1 with coordinates

x = (x1, . . . , xn) ∈ C
n, y = (y1, . . . , yn) ∈ C

n, z ∈ C, (1.1)

and α the standard contact form

α = dz +
n∑

j=1

x j dy j . (1.2)

By Darboux’s theorem, every holomorphic contact form on a (2n+1)-dimensional complex
manifold is given by (1.2) in some local holomorphic coordinates at each point (see [5,
Theorem A.2]; for the smooth case, see e.g. [14, Theorem 2.5.1]).

A smooth map F : M → C
2n+1 from a smooth manifold M is said to be Legendrian if

F∗α = 0 on M . It is an elementary observation that every smooth Legendrian surface in a
3-dimensional complex contact manifold is a complex curve; see Proposition 1.5.

Let M be a connected open Riemann surface. Denote by I (M,C2n) the space of all
holomorphic immersions M → C

2n , and consider the closed subspace

I∗(M,C2n) = {
(x, y) ∈ I (M,C2n) : xdy =

n∑

j=1

x j dy j is an exact 1-form on M
}
.

Elements of I∗(M,C2n) will be called exact holomorphic immersions. Let

I∗(M,C2n)
φ

↪−→ I (M,C2n) (1.3)

be the inclusion. Note that the map

L (M,C2n+1) −→ I∗(M,C2n) × C,

given for a fixed choice of a base point u0 ∈ M by

L (M,C2n+1) 	 (x, y, z) 
−→ (x, y, z(u0)) ∈ I∗(M,C2n) × C, (1.4)

is a homeomorphism. This follows immediately from the formula

z(u) = z(u0) −
∫ u

u0
xdy, u ∈ M, (1.5)
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which holds for any Legendrian immersion (x, y, z) ∈ L (M,C2n+1), observing also that
the integral

∫ u
u0

xdy is independent of the choice of a path from u0 to u (and hence defines a

Legendrian immersion by the above formula) if and only if (x, y) ∈ I∗(M,C2n). It follows
that the projection π : L (M,C2n+1) → I∗(M,C2n) is a homotopy equivalence.

Fix a nowhere vanishing holomorphic 1-form θ on M ; such exists by the Oka-Grauert
principle [11, Theorem5.3.1]. The specific choice of θ will be irrelevant. For every immersion
σ ∈ I (M,C2n), the map dσ/θ : M → C

2n is holomorphic and it avoids the origin 0 ∈ C
2n .

The correspondence σ 
→ dσ/θ defines a continuous map

ϕ : I (M,C2n) −→ O(M,C2n∗ ).

Here, C2n∗ = C
2n\{0}. By [12, Theorem 1.4], ϕ is a weak homotopy equivalence, and a

homotopy equivalence if M has finite topological type.
Let ι : O(M,C2n∗ ) ↪→ C (M,C2n∗ ) denote the inclusion of the space of holomorphic

maps into the space of continuous maps. Since C2n∗ is a homogeneous space of the complex
Lie group GL2n(C), ι is a weak homotopy equivalence by the Oka-Grauert principle [11,
Theorem 5.3.2]; if M has finite topological type, then ι is a homotopy equivalence [17].

Finally, the radial projection C
2n∗ → S

4n−1 onto the unit sphere induces a homotopy
equivalence τ : C (M,C2n∗ ) → C (M,S4n−1).

In summary, all the maps in the following sequence except φ are known to be weak
homotopy equivalences, and to be homotopy equivalences when M has finite topological
type:

L (M,C2n+1)
π−→ I∗(M,C2n)

φ
↪−→ I (M,C2n)

ϕ−→
ϕ−→ O(M,C2n∗ )

ι
↪−→ C (M,C2n∗ )

τ−→ C (M,S4n−1). (1.6)

The following is our main result.

Theorem 1.1 For every connected open Riemann surface M, the inclusion

I∗(M,C2n) ↪−→ I (M,C2n)

of the space of exact holomorphic immersions M → C
2n, n ≥ 1, into the space of all

holomorphic immersions is a weak homotopy equivalence, and a homotopy equivalence if
the surface M has finite topological type.

Since a composition of (weak) homotopy equivalences is again a (weak) homotopy equiv-
alence, Theorem 1.1 implies the following.

Corollary 1.2 All the maps in the sequence (1.6), and compositions thereof, are weak homo-
topy equivalences, and homotopy equivalences if M has finite topological type. This holds
in particular for the map L (M,C2n+1) → C (M,S4n−1).

The first part of Theorem 1.1 follows immediately from Theorem 4.1, which establishes
the parametricOka principlewith approximation for the inclusion (1.3). The same proof gives
the parametric Oka principle with approximation for holomorphic Legendrian immersions;
see Remark 4.2. The basic case of the latter result is [5, Theorem 1.1]. The parametric case
considered here is more demanding, but unavoidable when analysing the homotopy type of
these mapping spaces. The second part of Theorem 1.1 is proved in Sect. 5. Our proofs bring
together tools from complex analysis and geometry, convex integration theory, and the theory
of absolute neighborhood retracts.
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The examples in [10] show that Theorem 1.1 and Corollary 1.2 have no analogue for
more general holomorphic contact structures on Euclidean spaces; see Remark 1.4. In those
examples, the contact structure is Kobayashi hyperbolic, and hence it does not admit any
nonconstant Legendrian maps from C or C∗.

It was shown in [5] that the space L (M,C2n+1) is very big from the analytic viewpoint.
In particular, every holomorphic Legendrian map K → C

2n+1 from a (neighborhood of) a
compact O(M)-convex subset K ⊂ M can be approximated on K by proper holomorphic
Legendrian embeddings of M into C

2n+1. Furthermore, every bordered Riemann surface
carries a complete proper holomorphic Legendrian embedding into the ball of C3, and a
complete bounded holomorphic Legendrian embedding in C

3 such that the image surface
is bounded by Jordan curves. (An immersion F : M → R

n is said to be complete if the
pull-back of the Euclidean metric onRn by F is a complete metric on M .) Analogous results
for holomorphic immersions M → C

n (n ≥ 2), null holomorphic curves in Cn (n ≥ 3), and
conformal minimal immersions in R

n (n ≥ 3) were proved in [1,2].
On a compact bordered Riemann surface M , we define for every integer r ≥ 1 the corre-

sponding mapping spaces L r (M,C2n+1) and I r∗ (M,C2n) ⊂ I r (M,C2n) by considering
maps of class C r (M) that are holomorphic in the interior M̊ = M\bM ; see Sect. 2.2. These
spaces are complex Banach manifolds (see Theorem 2.3), and hence absolute neighborhood
retracts, and the corresponding maps in the sequence (1.6) are homotopy equivalences (see
Remark 4.2 and Sect. 5).

We will now explicitly describe the homotopy type of L (M,C2n+1) and determine its
homotopy groups in terms of the homotopy groups of the sphere S4n−1.

A connected open Riemann surface M is homotopy equivalent to a bouquet of circles∨�
i=1 S

1, where � ∈ {0, 1, . . . ,∞} is the rank of the free abelian group H1(M;Z) = Z
�. For

� = 0, we take the bouquet to be a point. The surface M has finite topological type if and
only if � is finite; then M is biholomorphic to the complement of a finite set of points and
closed disks in a compact Riemann surface (see Stout [21]).

The bouquet
∨�

i=1 S
1 embeds in M as a deformation retract of M . Hence we have a

homotopy equivalence

C (M,S4n−1) → C

(
�∨

i=1

S
1,S4n−1

)
.

For a space Y , let us denote the space C (
∨�

i=1 S
1, Y ) by L�Y . Then L1Y is the free loop

spaceLY of Y . It is well known that if we choose a base point s ∈ S
1, then the evaluationmap

LY → Y , γ 
→ γ (s), is a fibration whose fibre is the loop space 
Y of Y [22, Theorem 10].
More generally, taking s to be the common point of the circles in the bouquet

∨�
i=1 S

1, � ≥ 1,
the evaluation map L�Y → Y is a fibration whose fibre is (
Y )�.

Corollary 1.2 now implies the first part of the following result.

Corollary 1.3 Let M be a connected open Riemann surface with H1(M;Z) = Z
�, � ∈

{0, 1, . . . ,∞}. For each n ≥ 1, the spacesL (M,C2n+1) andL�S
4n−1 are weakly homotopy

equivalent. If M has finite topological type, then they are homotopy equivalent.
It follows thatL (M,C2n+1) is path connected and simply connected, and for each k ≥ 2,

πk(L (M,C2n+1)) = πk(S
4n−1) × πk+1(S

4n−1)�.

In particular, L (M,C2n+1) is (4n − 3)-connected.

Proof Recall that πi (S
m) = 0 for all i < m, and πm(Sm) = Z. We must prove the second

part of the corollary. It is clear for � = 0, so let us assume that � ≥ 1. Since Y = S
4n−1 is
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simply connected, L�Y is path connected. Consider the long exact sequence of homotopy
groups associated to the fibration L�Y → Y with fibre (
Y )�,

· · · → πk+1(Y ) → πk((
Y )�) → πk(L�Y ) → πk(Y ) → · · · , k ≥ 1,

and recall that πi (
Y ) = πi+1(Y ) for all i ≥ 0. We see that π1(L�Y ) = 0. The fibration
L�Y → Y has a section defined by taking a point in Y to the map that takes the whole wedge
of circles to that point. Let k ≥ 2. The induced sections of the morphisms π j (L�Y ) → π j (Y )

for j = k and j = k + 1 yield a split short exact sequence of abelian groups

0 → πk((
Y )�) → πk(L�Y ) → πk(Y ) → 0,

demonstrating that πk(L�Y ) = πk(Y ) × πk+1(Y )�. 
�
Corollary 1.3 shows that holomorphic Legendrian immersions of an open Riemann sur-

face M into C
2n+1 have no homotopy invariants. Any two such immersions are homotopic

through holomorphic Legendrian immersions, and every loop of Legendrian immersions in
L (M,C3) is contractible. The first nontrivial invariant of the spaceL (M,C3) is its second
homotopy group; see Remark 1.4. This is very different from the case of smooth Legendrian
knots in a contact 3-manifold, where the basic topological invariants are the rotation number
and the Thurston–Bennequin number; see e.g. [7,8,13].

Remark 1.4 (a) Theorem 1.1 and Corollary 1.2 fail for certain other complex contact struc-
tures on C

2n+1. Indeed, for any n ≥ 1, the first author has constructed a Kobayashi
hyperbolic complex contact form η on C

2n+1 [10]. In particular, every holomorphic η-
Legendrian map M → C

2n+1 from M = C or M = C∗ is constant. Thus, the space
Lη(C∗,C3) = C

3 is contractible. On the other hand, for the α-Legendrian maps (where
α = dz + xdy),

π2(Lα(C∗,C3)) = π2(L S
3) = π3(S

3) = Z

by Corollary 1.3. As observed in [10], the hyperbolic contact forms η constructed there
are isotopic to α through a 1-parameter family of holomorphic contact forms on C2n+1.

(b) It is easily seen that Corollary 1.2 fails if we include ramified Legendrian maps in the
statement. On the other hand, it was shown in [5, Lemma 4.4 and Theorem 5.1] that every
holomorphic Legendrianmap of an open Riemann surface toC2n+1 can be approximated
uniformly on compacts by holomorphic Legendrian embeddings.

In conclusion,weobserve that holomorphicLegendrian curves in a 3-dimensional complex
contact manifold are the only smoothly immersed Legendrian surfaces. Simple examples
show that this fails in complex contact manifolds of dimension at least 5.

Proposition 1.5 Let (X, ξ) be a 3-dimensional complex contact manifold. If M is a smooth
real surface and F : M → X is a smooth Legendrian immersion, then F(M) is an immersed
complex curve in X. Furthermore, M admits the structure of a Riemann surface such that
F : M → X is holomorphic.

Proof Fix a point p0 ∈ M . By Darboux’s theorem, there exist local holomorphic coordinates
(x, y, z) on a neighborhood of the point F(p0) ∈ X in which the contact structure ξ is given
by α = dz+ xdy. Choose smooth local coordinates (u, v) on a neighborhood of p0 in M and
write F(u, v) = (x(u, v), y(u, v), z(u, v)). Then the map σ(u, v) = (x(u, v), y(u, v)) is an
immersion. Differentiation of the equation dz + xdy = 0 gives dx(u, v) ∧ dy(u, v) = 0
which is equivalent to xu yv − xv yu = 0. This means that the vectors σu = (xu, yu) and
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648 F. Forstnerič, F. Lárusson

σv = (xv, yv) in C
2 are C-linearly dependent, and hence they span a complex line. Clearly,

this line is the image of the tangent space T(u,v)M by the differential of σ at the point (u, v).
Finally, since the equation dz = −xdy is C-linear, it follows that dFp(TpM) is a complex
line in TF(p)X for every point p ∈ M .

Let J : T X → T X denote the almost complex structure operator induced by the given
complex structure on X . Since dFp(TpM) is a J -complex line in TF(p)X for every p ∈ M ,
there exists a unique almost complex structure J0 : T M → T M such that dFp(J0η) =
JdFp(η) for every p ∈ M and η ∈ TpM . The surface (M, J0) is then a Riemann surface
and F : M → X is a holomorphic Legendrian immersion. 
�

2 Preliminaries

2.1 Riemann surfaces and mapping spaces

For n ≥ 1, we denote by | · | the Euclidean norm on C
n . Given a topological space K and a

map f : K → C
n , we define

‖ f ‖0,K := sup{| f (u)| : u ∈ K }.

Let M be an open Riemann surface. We denote by O(M) the algebra of all holomorphic
functions on M . If K is a compact subset of M , then O(K ) is algebra of all holomorphic
functions on open neighborhoods of K in M , where we identify any pair of functions that
agree on some neighborhood of K . If K is a smoothly bounded compact domain inM , then for
any integer r ≥ 0, we denote by C r (K ) the algebra of all r times continuously differentiable
complex valued functions on K , and by A r (K ) the subalgebra of C r (M) consisting of all
functions that are holomorphic in the interior K̊ = K\bK of K . We denote by ‖ f ‖r,K the
C r norm of a function f ∈ C r (K ), where the derivatives are measured with respect to a
Riemannian metric on M ; the choice of the metric will not be important. The corresponding
notation O(M)n and A r (K )n and norms ‖ · ‖r,K are used for maps f = ( f1, . . . , fn) with
values in C

n , whose component functions f j belong to the respective function spaces.
A compact bordered Riemann surface is a compact Riemann surface M whose nonempty

boundary bM consists of finitely many smooth Jordan curves. The interior M̊ = M\bM
of a compact Riemann surface is a bordered Riemann surface. It is classical [21] that every
compact bordered Riemann surface M is conformally equivalent to a smoothly bounded
compact domain in an open Riemann surface M̃ , so the function spaces A r (M) are defined
as above. Note that A r (M) is a complex Banach algebra for every r ≥ 0.

Every bordered Riemann surface M admits smooth closed curvesC1, . . . ,C� ⊂ M̊ form-
ing a basis of the homology group H1(M;Z) = Z

� such that the union C = ⋃�
j=1 C j is

Runge in M , meaning that the Mergelyan approximation theorem [18] holds: every continu-
ous function on C can be uniformly approximated by functions that are holomorphic on M .
When M is connected, this holds if and only if M\C has no relatively compact connected
component.

2.2 Spaces of Legendrian immersions

Let n ∈ N = {1, 2, 3, . . .}. On the space C2n+1 we use the coordinates (x, y, z) introduced
by (1.1). To simplify the notation, we often write the standard contact form (1.2) on C

2n+1

in the form
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α = dz + xdy, where xdy =
n∑

j=1

x j dy j .

We identify C
2n
(x,y) with the subspace {z = 0} ⊂ C

2n+1. Recall (see (1.3)) that I (M,Cn)

denotes the space of holomorphic immersions M → C
n , and I∗(M,C2n) is the closed

subspace ofI (M,C2n) consisting of holomorphic immersions (x, y) : M → C
2n for which

the holomorphic 1-form xdy is exact on M : the exact holomorphic immersions. The space
L (M,C2n+1) of holomorphic Legendrian immersions M → C

2n+1 is homeomorphic to
I∗(M,C2n) × C provided M is connected; see (1.4).

On a compact bordered Riemann surface M with smooth boundary we introduce the
analogous mapping spaces for any integer r ≥ 1:

• I r (M,Cn) is the space of holomorphic immersions M → C
n of class A r (M);

• I r∗ (M,C2n) is the space of holomorphic immersions (x, y) : M → C
2n of classA r (M)

for which the holomorphic 1-form xdy = ∑n
j=1 x j dy j is exact;

• L r (M,C2n+1) is the space of immersions F : M → C
2n+1 of class A r (M) such that

F∗α = 0, that is, F is Legendrian with respect to the contact form (1.2).

As in Sect. 1, when M is connected, the map (1.4) induces a homeomorphism

L r (M,C2n+1) → I r∗ (M,C2n) × C.

2.3 The period map, dominating sprays, and a local structure theorem

Let M be an open Riemann surface of finite topological type. Let H1(M;Z) = Z
� with

� ≥ 0. Pick closed curves C1, . . . ,C� ⊂ M forming a Runge homology basis (see Sect. 2.1).
Let

P = (P1, . . . ,P�) : O(M)2n → C
�

be the period map whose j-th component is given by

P j (x, y) =
∫

C j

x dy, x, y ∈ O(M)n . (2.1)

Note that P(x, y) = 0 if and only if the 1-form xdy = ∑n
i=1 xi dyi is exact, and hence

I∗(M,C2n) = {(x, y) ∈ I (M,C2n) : P(x, y) = 0}.
If M is a compact smoothly bordered Riemann surface, then (2.1) defines a period map

P : A r (M)2n → C
�, r ∈ N, (2.2)

and

I r∗ (M,C2n) = {(x, y) ∈ I r (M,C2n) : P(x, y) = 0}.
The following lemma provides an important tool used in the proof of Theorem 4.1. Clearly,

the lemma is vacuous if (and only if) � = 0, that is, M is the closed disk D.

Lemma 2.1 Let M be a compact bordered Riemann surface, and let P be the period map
(2.2) associated to a Runge homology basis of M. Assume that P is a compact Hausdorff
space (a parameter space) and r ∈ N. Given a continuous map (x, y) : P × M → C

2n

such that for every p ∈ P, the map (x(p, · ), y(p, · )) : M → C
2n is nonconstant, of class
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A r (M), and its differential is continuous as a function of (p, u) ∈ P × M, there exist an
integer N ∈ N and a continuous map (x̃, ỹ) : P × M × C

N → C
2n such that the map

(x̃(p, · , · ), ỹ(p, · , · )) : M × C
N → C

2n is of class A r (M × C
N ) for every p ∈ P, its

differential is continuous on P × M × C
N , and the partial differential

∂

∂ζ

∣∣∣∣
ζ=0

P(x̃(p, · , ζ ), ỹ(p, · , ζ )) : CN −→ C
� (2.3)

is surjective for every p ∈ P. (Here, ζ = (ζ1, . . . , ζN ) are coordinates on CN .)

A map (x̃, ỹ) with surjective differential (2.3) is called a period dominating holomorphic
spray of maps P × M → C

2n with the core (x̃(· , · , 0), x̃(· , · , 0)) = (x, y).
Note that continuity of a map (x, y) : P×M → C

2n , which is holomorphic on the interior
M̊ for each p ∈ P , implies continuity of its M-derivative of any order on P × M̊ . Since
the period basis for M is supported in M̊ , the lemma holds under this weaker assumption,
which already ensures continuity of the period map (2.3). However, we shall use the lemma
in the more general situation when M is an admissible set (see Remark 2.2). Since such sets
may include arcs, we need the stronger hypothesis that the differential is continuous in all
variables.

Proof Without loss of generality, we assume that the Riemann surfaceM is connected.When
P = {p} is a singleton, a spraywith these propertieswas obtained in [5, proof ofTheorem3.3].
(We drop P from the notation.) An inspection of that proof shows that there exists a spray
of this type, with N = � = rank H1(M;Z), such that all but one of its component functions
x̃ j , ỹ j are independent of ζ ∈ C

�. For example, if yk is nonconstant, there is a map (x̃, ỹ)
satisfying (2.3) such that for all u ∈ M and ζ ∈ C

� we have

ỹ(u, ζ ) = y(u),

x̃ j (u, ζ ) = x j (u) for j ∈ {1, . . . , n}\{k},

x̃k(u, ζ ) = xk(u) +
�∑

j=1

g j (u)ζ j , (2.4)

where the functions g1, . . . , g� ∈ A r (M) are chosen such that
∫
Ci

g j dyk approximates the
Kronecker symbol δi, j for i, j = 1, . . . , �. The approximation can be as close as desired.
One first constructs smooth functions g j on the curves Ci in the homology basis such that∫
Ci

g j dyk = δi, j and then applies Mergelyan’s theorem to obtain functions in A r (M).
Similarly, if xk is nonconstant but yk is constant, the goal is accomplishedby letting ỹk(u, ζ ) =
yk + ∑�

j=1 g j (u)ζ j for suitably chosen functions g1, . . . , g� ∈ A r (M), while the other

components of the map are independent of ζ ∈ C
�.

To obtain the parametric case,we observe that the nonparametric case for a given parameter
value p0 ∈ P automatically satisfies the domination condition (2.3) for all points p in an
open neighborhood U ⊂ P of p0. Since P is compact, finitely many such neighborhoods
U1, . . . ,Um cover P , and it suffices to combine the associated sprays, eachwith the parameter
space C�, into a single spray with the parameter space Cm�. 
�
Remark 2.2 (Admissible sets) Lemma 2.1 also holds, with the same proof, if M is a compact
admissible set in an open Riemann surface M̃ ; see [6, Definition 5.1]. This means that
M = K ∪ �, where K = ⋃

j K j is a union of finitely many pairwise disjoint, compact,

smoothly bounded domains K j in M̃ and � = ⋃
i �i is a union of finitely many pairwise
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disjoint smooth arcs or closed curves that intersect K only in their endpoints, or not at all, and
such that their intersections with the boundary bK are transverse. By Mergelyan’s theorem
[18], every function f ∈ A r (M), r ≥ 0, can be approximated in the C r (M)-topology by
functions holomorphic on a neighborhood ofM . If in additionM is Runge (O(M̃)-convex) in
M̃ , which holds if and only if the inclusionmapM ↪→ M̃ induces an injective homomorphism
H1(M;Z) ↪→ H1(M̃;Z), then the approximation is possible by functions holomorphic on
M̃ .

An application ofLemma2.1 and the implicit function theoremgive the following structure
theorem for the spaces I r∗ (M,C2n) and L r (M,C2n+1).

Theorem 2.3 Let M be a compact bordered Riemann surface. For every r ≥ 1, the spaces
I r∗ (M,C2n) and L r (M,C2n+1) are complex Banach manifolds.

Proof In view of the homeomorphismL r (M,C2n+1) → I r∗ (M,C2n) ×C induced by the
map (1.4), it suffices to show that I r∗ (M,C2n) is a closed complex Banach submanifold of
I r (M,C2n), the latter being an open subset of the complex Banach space A r (M)2n .

Obviously, I r∗ (M,C2n) = {σ ∈ I r (M,C2n) : P(σ ) = 0} is a closed subset of
I r (M,C2n). The period map P : A r (M)2n → C

� is holomorphic. Lemma 2.1 (with P
a singleton) says that P has maximal rank � at each point σ ∈ A r (M)2n that represents a
nonconstant map. Hence, the conclusion follows from the implicit function theorem. 
�

It is easily seen that the tangent space to the submanifoldI r∗ (M,C2n) ofI r (M,C2n) at
the point σ0 = (x0, y0) ∈ I r∗ (M,C2n) equals

Tσ0I
r∗ (M,C2n) = {

σ = (x, y) ∈ A r (M)2n :
∫

C j

xdy0 + x0dy = 0, j = 1, . . . , l
}
,

where the curves C1, . . . ,Cl form a basis of H1(M;Z).

3 An application of the convex integration lemma

In this section, we establish a key technical result, Lemma 3.2, which will be used in the
proof of Theorem 4.1 in order to extend families of Legendrian immersions across a smooth
arc attached to a compact smoothly bounded domain in a Riemann surface.

Let P be a compact Hausdorff space; it will serve as the parameter space. Let C 0,1(P ×
[0, 1]) denote the space of all continuous functions f : P×[0, 1] → C, considered as a family
of paths f p = f (p, · ) : [0, 1] → C depending continuously on p ∈ P , whose derivative
ḟ p(s) = d f p(s)/ds is also continuous in both variables (p, s) ∈ P × [0, 1]. The analogous
notation

C 0,1(P × [0, 1],Cn) = C 0,1(P × [0, 1])n
is used for maps f = ( f1, . . . , fn) : P × [0, 1] → C

n .
We shall need the following lemma.

Lemma 3.1 Let Q ⊂ P be compact Hausdorff spaces, and let f ∈ C 0,1(P × [0, 1])
and h ∈ C (P × [0, 1]) be complex valued functions, with h nowhere vanishing. Write
f p = f (p, · ) and similarly for h. Let b : P → C be a continuous function such that

b(p) =
∫ 1

0
f p(s)h p(s) ds, p ∈ Q.
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There is a homotopy f t ∈ C 0,1(P × [0, 1]) (t ∈ [0, 1]) satisfying the following conditions:

(i) f tp = f p for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]);
(ii) f tp(s) = f p(s) and ḟ tp(s) = ḟ p(s) for s = 0, 1 and for all (p, t) ∈ P × [0, 1];
(iii)

∫ 1
0 f 1p (s)h p(s) ds = b(p) for all p ∈ P.

Proof This is a parametric version of Gromov’s one-dimensional convex integration lemma
[16, Lemma 2.1.7]. The basic version of Gromov’s lemma says that for any open connected
set 
 in a Euclidean space Rn (or in a Banach space), the set of integrals

∫ 1
0 f (s)ds over all

paths f : [0, 1] → 
, with fixed endpoints f (0) and f (1) in 
, equals the convex hull of

. It is a trivial matter to adapt it to arcs of class C 1 with the matching conditions for the
derivatives at the endpoints of [0, 1]. For the parametric versionwe refer to [20, Theorem 3.4].
The nowhere vanishing function h plays the role of a weight; it would suffice to assume that
h is not identically zero and work on the corresponding subinterval. 
�

In preparation for the next lemma, we need some additional notation. Given z =
(z1, . . . , zn), w = (z1, . . . , zn) ∈ C

n , we write zw = ∑n
j=1 z jw j . We denote by

I (P × [0, 1],Cn) ⊂ C 0,1(P × [0, 1],Cn) (3.1)

the set of all f ∈ C 0,1(P × [0, 1],Cn) for which the derivative ḟ p(s) = d f p(s)/ds ∈ C
n is

nowhere vanishing on (p, s) ∈ P × [0, 1]. We think of f ∈ I (P × [0, 1],Cn) as a family
of immersed arcs f p : [0, 1] → C

n depending continuously on the parameter p ∈ P .
The following is the main technical lemma used in the proof of Theorem 4.1.

Lemma 3.2 Let Q ⊂ P be compact Hausdorff spaces, let ξ = ( f, g) ∈ I (P ×[0, 1],C2n)

with f, g ∈ C 0,1(P × [0, 1])n, and let β : P → C be a continuous function such that

β(p) =
∫ 1

0
f p(s)ġp(s)ds, p ∈ Q. (3.2)

Then there exists a homotopy ξ t = ( f t , gt ) ∈ I (P × [0, 1],C2n) (t ∈ [0, 1]) satisfying the
following conditions:

(a) ξ tp = ξp for (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]);
(b) ξ tp(s) = ξp(s) and ξ̇ tp(s) = ξ̇p(s) for s = 0, 1 and (p, t) ∈ P × [0, 1];
(c)

∫ 1
0 f 1p (s)ġ1p(s)ds = β(p) for p ∈ P.

In [12, Lemma 3.1] we give more precise analogues of Lemmas 3.1 and 3.2 by controlling
the integrals in (iii) and (c) for all t ∈ [0, 1]. This can be proved here as well, but is not
needed for the application in the present paper.

Proof Since the derivative ξ̇p(s) = (ξ̇p,1(s), . . . , ξ̇p,2n(s)) ∈ C
2n is nowhere vanishing on

(p, s) ∈ P × [0, 1] and P is compact, an elementary argument gives finitely many pairs of
compact setsUj ⊂ Vj in P ( j = 1, . . . ,m), withUj ⊂ V̊ j and

⋃m
j=1Uj = P , and pairwise

disjoint closed segments I1, . . . , Im contained in [0, 1] such that for every j = 1, . . . ,m,
there exists an index k = k( j) ∈ {1, 2, . . . , 2n} such that

ξ̇p,k(s) �= 0 for all s ∈ I j and p ∈ Vj . (3.3)

The proof of the lemma proceeds by a finite induction on j = 1, . . . ,m. The desired
homotopy is obtained as a composition of m homotopies, each supported on one of the
segments I1, . . . , Im . We explain the initial step; the subsequent steps are analogous.
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Thus, let j = 1 and let k = k(1) ∈ {1, 2, . . . , 2n} be such that (3.3) holds for j = 1.
Suppose first that k ∈ {n + 1, . . . , 2n}. Write k = n + l with l ∈ {1, . . . , n}. Recall that
ξ = ( f, g) where f, g ∈ C 0,1(P × [0, 1])n . Then (3.3) means that the function ġp,l is
nowhere vanishing on I1 for all p ∈ V1. Let us define the function b : P → C by

b(p) = β(p) −
∫

[0,1]\I1
f p,l(s)ġp,l(s)ds −

∫ 1

0

n∑

i=1
i �=l

f p,i (s)ġp,i (s)ds. (3.4)

In view of (3.2) we have that

b(p) =
∫

I1
f p,l(s)ġp,l(s)ds, p ∈ Q.

We now apply Lemma 3.1 with Q ⊂ P replaced by the pair of parameter sets V1 ∩ Q ⊂ V1,
the interval [0, 1] replaced by the segment I1, with the functions on I1 given by

f p = f p,l , h p = ġp,l for p ∈ V1,

and with the function b given by (3.4). (When applying Lemma 3.1, we pay attention to the
matching condition (ii) at the endpoints of the interval I1). This gives a homotopy f tp,l ∈
C 0,1(V1 × [0, 1]) (t ∈ [0, 1]) satisfying the following conditions:

(a’) f tp,l = f p,l for all (p, t) ∈ (V1 × {0}) ∪ ((Q ∩ V1) × [0, 1]);
(b’) f tp,l(s) = f p,l(s) for all s = [0, 1]\I1 and (p, t) ∈ V1 × [0, 1];
(c’)

∫
I1

f 1p,l(s)ġp,l(s)ds = b(p) for all p ∈ V1.

Condition (b’) means that the deformation is supported on the segment I1.
Let ξ tp = ( f tp, gp) : [0, 1] → C

2n (t ∈ [0, 1]) denote the homotopywhose l-th component
equals f tp,l and whose other components agree with the corresponding components of ξp .
Note that ξ tp agrees with ξp on [0, 1]\I1 for all t ∈ [0, 1] and p ∈ V1, and hence is an
immersion (since its component ġp,l is nowhere vanishing on I1 and ξ tp = ξp on [0, 1]\I1).
Clearly, ξ tp satisfies conditions (a) and (b) in Lemma 3.2 for (p, t) ∈ (V1 × {0}) ∪ ((Q ∩
V1)×[0, 1]), and it satisfies condition (c) for all p ∈ V1 in view of the definition (3.4) of the
function b.

Pick a continuous function χ : P → [0, 1] such that χ = 1 on U1 and suppχ ⊂ V̊1.
Replacing f tp by f χ(p)t

p and ξ tp by ξ
χ(p)t
p yields a homotopy, defined for all p ∈ P , which

satisfies conditions (a) and (b), and it satisfies condition (c) for p ∈ U1.
This concludes the first step if k(1) ∈ {n + 1, . . . , 2n}. If on the other hand k = k(1) ∈

{1, . . . , n}, we apply the same argument with the roles of the components reversed, using the
integration by parts formula

∫ 1

0
f p,k(s)ġp,k(s) ds = f p,k(1)gp,k(1) − f p,k(0)gp,k(0) −

∫ 1

0
gp,k(s) ḟ p,k(s) ds.

In this case, the assumption is that ḟ p,k(s) �= 0 for all s ∈ I1 for p ∈ V1. The same argument
as above gives a homotopy gtp,k , supported on I1, which achieves condition (c) for all p ∈ U1.
As before, the other components of the map are kept fixed.

This concludes the first step of the induction.
In the second step with j = 2, we take as our datum the map ξ1 ∈ I (P × [0, 1],C2n)

(the final map at t = 1 in the homotopy obtained in step 1). By following the proof of step 1
with the pair of parameter sets Q2 = Q ∪U1 ⊂ P , we find a family of immersions

ξ1,tp = ( f 1,tp , g1,tp ) : [0, 1] → C
2n, (p, t) ∈ P × [0, 1],
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satisfying the following conditions:

• ξ
1,t
p = ξ1p for (p, t) ∈ (P × {0}) ∪ (Q2 × [0, 1]);

• ξ
1,t
p (s) = ξ1p(s) for all s ∈ [0, 1]\I2 and (p, t) ∈ P × [0, 1];

• ∫ 1
0 f 1,1p (s)ġ1,1p (s)ds = β(p) for all p ∈ U1 ∪U2.

Since the deformation ξ
1,t
p is supported on I2 which is disjoint from I1, it does not destroy

the immersion property of the individual maps [0, 1] → C
2n in the family. Also, since the

deformation is fixed for p ∈ Q2 = Q ∪U1, it does not change the values of the integrals in
(c) for p ∈ Q2, and in addition it achieves the correct values for points p ∈ U2.

We now take ξ2 = ξ1,1 ∈ I (P × [0, 1],C2n) as the datum in step 3, let Q3 = Q2 ∪U2,
and proceed as before. After m steps of this kind, the proof is complete. 
�

4 A parametric Oka principle for Legendrian immersions

Let M be an open Riemann surface. In this section we prove the parametric Oka principle
with approximation for the inclusion I∗(M,C2n) ↪→ I (M,C2n) in Theorem 1.1.

Let P be a compact Hausdorff space. We introduce the following mapping spaces:

I (P × M,C2n) = {σ ∈ C (P × M,C2n) : σp ∈ I (M,C2n) for every p ∈ P};
I∗(P × M,C2n) = {σ ∈ I (P × M,C2n) : σp ∈ I∗(M,C2n) for every p ∈ P}.

Here, σp = σ(p, · ) : M → C
2n . Given a compact set K ⊂ M , we write

‖σ‖1,P×K = sup
x∈K

|σp(x)| + sup
x∈K

|dσp(x)|

where the norm |dσp| of the differential is measured with respect to a fixed Hermitian metric
on T M (whose precise choice will not be important) and the Euclidean norm on C2n .

Theorem 4.1 Assume that M is an open Riemann surface, Q ⊂ P are compact Hausdorff
spaces, D � M is a smoothly bounded domain whose closure D̄ is O(M)-convex, and
σ = (x, y) ∈ I (P × M,C2n) (n ≥ 1) satisfies the following two conditions:

(a) σ |Q×M ∈ I∗(Q × M,C2n);
(b) there is an open set U ⊂ M, with D̄ ⊂ U, such that σ |P×U ∈ I∗(P ×U,C2n).

Given ε > 0, there is a homotopy σ t ∈ I (P × M,C2n) (t ∈ [0, 1]) satisfying the following
conditions:

(1) σ t
p = σp for every (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]);

(2) σ t |P×D ∈ I∗(P × D,C2n) for every t ∈ [0, 1];
(3) ‖σ t − σ‖1,P×D̄ < ε for every t ∈ [0, 1];
(4) σ 1 ∈ I∗(P × M,C2n).

If a continuous map ϕ : X → Y satisfies the parametric h-principle (without approxima-
tion), then ϕ is a weak homotopy equivalence. Hence, the first part of Theorem 1.1 is an
immediate corollary of Theorem 4.1.

Remark 4.2 (a) The proof of Theorem 4.1 gives the analogous result for a compact bordered
Riemann surface M ; in this case, the proof is completed in finitely many steps.

123



The Oka principle for holomorphic Legendrian curves in C
2n+1 655

(b) The proof of Theorem 4.1 also gives the parametric Oka principle with approximation
for Legendrian immersions. However, a minor difference in the proof is explained in the
paragraph following the proof of Theorem 4.1. It has to do with the fact that the map
L (M,C2n+1) → I∗(M,C2n) × C (see (1.4)) is a homeomorphism only when M is
connected. Hence, when extending an exact holomorphic immersion σ = (x, y) (the
projection of a Legendrian immersion (x, y, z)) across a smooth arc E connecting a pair
of disjoint domains in M , we must ensure that the integral of the 1-form xdy on E equals
the difference of the values of the last component z at the respective endpoints of the arc;
in view of (1.5), this ensures the correct extension of the z-component.

Proof of Theorem 4.1 Pick a smooth strongly subharmonic Morse exhaustion function
ρ : M → R and exhaust M by sublevel sets

Dj = {u ∈ M : ρ(u) < c j }, j ∈ N,

where c1 < c2 < c3 < · · · is an increasing sequence of regular values of ρ chosen such that
lim j→∞ c j = ∞. We may assume that each interval [c j , c j+1] contains at most one critical
value of the function ρ, and that D1 coincides with the given domain D in Theorem 4.1. Let
U1 = U ⊃ D̄1 be the open neighborhood of D̄1 as in the theorem.

To begin the induction, set ε0 = ε and

σ t,1 = σ |P×U1 ∈ I∗(P ×U1,C
2n), t ∈ [0, 1].

We shall inductively find a sequence of open sets Uj ⊃ D̄ j in M , homotopies

σ t, j ∈ I (P ×Uj ,C
2n), t ∈ [0, 1], j ∈ N

and numbers ε j > 0 satisfying the following conditions for j = 1, 2, 3, . . .:

(a j ) σ
t, j
p = σp|Uj for every (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]);

(b j ) σ t, j |P×D1 ∈ I∗(P × D1,C
2n) for every t ∈ [0, 1];

(c j ) ‖σ t, j − σ t, j−1‖1,P×D̄ j−1
< ε j for every t ∈ [0, 1];

(d j ) σ 1, j |P×Dj ∈ I∗(P × Dj ,C
2n);

(e j ) ε j < ε j−1/2;
( f j ) If σ̃ t : P × D̄ j−1 → C

2n satisfies ‖σ̃ t − σ t, j−1‖1,P×D̄ j−1
< 2ε j for every t ∈ [0, 1],

then σ̃ t (p, · ) : D̄ j−1 → C
2n is an immersion for every p ∈ P and t ∈ [0, 1].

Conditions (a1), (b1) and (d1) hold by the definition of σ t,1, (e1) is fulfilled by choosing
0 < ε1 < ε0/2, while (c1) and ( f1) are vacuous.

Assume for a moment that sequences with these properties exist. Conditions (c j ), (e j )
and ( f j ) ensure that the sequence (σ t, j ) j∈N converges to a limit

σ t = lim
j→∞ σ t, j : P × M −→ C

2n, t ∈ [0, 1]

such that σ t
p : M → C

2n is a holomorphic immersion for every p ∈ P and t ∈ [0, 1] and
(3) holds. Condition (a j ) ensures that all homotopies σ t, j are fixed on the parameter set
(P × {0}) ∪ (Q × [0, 1]), which gives (1). Condition (b j ) shows that σ t

p : D → C
2n is an

exact holomorphic immersion for every p ∈ P and t ∈ [0, 1], so (2) holds. Condition (d j )

shows that σ 1
p : M → C

2n is an exact holomorphic immersion for every p ∈ P , which gives
(4). This shows that the theorem holds if we can construct such a sequence of homotopies.

We now explain the induction. Assume that the quantities satisfying the above conditions
have been found up to an index j ∈ N. Then, conditions (e j+1) and ( f j+1) hold provided
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that the number ε j+1 > 0 is chosen small enough; fix such a number. We shall now explain
how to obtain σ t, j+1 and Uj+1 satisfying conditions (a j+1)–(d j+1). We distinguish two
topologically different cases: (a) the noncritical case, and (b) the critical case.

(a) The noncritical case: ρ has no critical values in [c j , c j+1]. In this case, D̄ j is a
deformation retract of D̄ j+1. (In the critical case considered below, we use the noncritical
case also for certain noncritical pairs of sets K ⊂ L defined by another strongly subharmonic
function.)

Pick a Runge homology basis B = {γi }li=1 for H1(Dj ;Z), that is, such that the union of

supports
⋃l

i=1 |γi | is O(Dj )-convex. Let P denote the associated period map (2.1):

P(σ ) =
(∫

γi

xdy

)

i=1,...,l

∈ C
l , σ = (x, y) ∈ I (Dj ,C

2n).

Note that the pair (B,P) also applies to the domain Dj+1 since D̄ j is a deformation retract of
D̄ j+1. Let ζ = (ζ1, . . . , ζN ) denote the coordinates onCN . ShrinkingUj ⊃ D̄ j if necessary,
Lemma 2.1, applied with the parameter space P ′ = P × [0, 1], gives an integer N ∈ N and
a spray

σ̃ t = (x̃ t , ỹt ) : P ×Uj × C
N → C

2n, t ∈ [0, 1],
such that the map σ̃ t

p = σ̃ t (p, · , · ) : Uj × C
N → C

2n satisfies the following conditions:

(i) σ̃ t
p is holomorphic on Uj × C

N for every (p, t) ∈ P × [0, 1];
(ii) σ̃ t

p(· , 0) = σ t
p(· , 0) at ζ = 0 ∈ C

N for every (p, t) ∈ P × [0, 1];
(iii) the partial differential

∂

∂ζ

∣∣∣∣
ζ=0

P(σ̃ t
p(· , ζ )) : CN −→ C

� (4.1)

is surjective for every (p, t) ∈ P × [0, 1].
Furthermore, in view of Mergelyan’s theorem [18], the functions g j used in the construction
of σ̃ t (see (2.4)) can be chosen holomorphic on M . Since the spray σ̃ t is linear in ζ ∈ C

N

and the core σ̃ t
p(· , 0) = σ t

p is holomorphic on M for all (p, t) ∈ (P ×{0})∪ (Q×[0, 1]), σ̃ t
p

is holomorphic on M ×C
N for all (p, t) ∈ (P ×{0})∪ (Q ×[0, 1]). Pick an open relatively

compact neighborhoodUj+1 � M of D̄ j+1 which deformation retracts onto D̄ j+1. Since the
map σ̃ t

p(· , 0) = σ t
p is an immersion on the respective domain for every (p, t) ∈ P × [0, 1],

we can shrink Uj slightly around D̄ j and choose a ball B ⊂ C
N around the origin such that

(iv) σ̃ t
p(· , ζ ) : Uj → C

2n is an immersion for every (p, t) ∈ P × [0, 1] and ζ ∈ B̄, and

(v) σ̃ t
p(· , ζ ) : U j+1 → C

2n is an immersion for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]) and
ζ ∈ B̄.

Claim: σ̃ t can be approximated as closely as desired in theC 1 normon D̄ j× B̄, and uniformly
in the parameters (p, t) ∈ P × [0, 1], by a homotopy

τ t : P ×Uj+1 × B → C
2n, t ∈ [0, 1],

satisfying conditions (i)–(v) above and also the following two conditions:

• τ t (p, · , ζ ) : Uj+1 → C
2n is a holomorphic immersion for every (p, t) ∈ P × [0, 1] and

ζ ∈ B, and
• τ t (p, · , · ) = σ̃ t (p, · , · ) for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]).
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Proof of the claim Such τ t can be found by following the noncritical case in [12,
proof of Theorem 5.3] when the cone A equals C

2n . The only difference is that, in the
present situation, the maps σ̃ t

p depend holomorphically on the additional complex parameter

ζ ∈ B ⊂ C
N . We outline the main steps and refer to the cited source for the details.

Fix a nowhere vanishing holomorphic 1-form θ onM . Let d denote the exterior differential
on M . Consider the family of holomorphic maps

φ̃t
p(· , ζ ) = dσ̃ t

p(· , ζ )/θ : Uj → C
2n∗ (4.2)

for (p, t) ∈ P × [0, 1] and ζ ∈ B̄. Their ranges avoid the origin since the maps σ̃ t
p(· , ζ ) are

immersions by condition (iv). Furthermore, for each (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]) and
ζ ∈ B̄, the map φ̃t

p(· , ζ ) : U j+1 → C
2n∗ is holomorphic on U j+1 in view of condition (v).

Let Q denote the period map defined for any map φ : Dj → C
2n by

Q(φ) =
(∫

Ci

φ θ

)

i=1,...,l

∈ (C2n)l .

Here, {Ci }li=1 is aRunge homology basis of H1(Dj ;Z).We embed the family ofmaps (4.2) as
the core of a spray φt

p(· , ζ, w) (that is, φt
p(· , ζ, 0) = φ̃t

p(· , ζ )), depending holomorphically

on another set of parameters w ∈ C
N ′

for some integer N ′ ∈ N, such that the partial
differential

∂

∂w

∣∣∣∣
w=0

Q(φt
p(· , ζ, w)) : CN ′ → (C2n)l

is surjective for every (p, t) ∈ P ×[0, 1] and ζ ∈ B. SuchQ-period dominating sprays were
constructed in [4, Lemma 5.1]; see also [3, Lemma 3.6] for the parametric case.

Fix a ball B ′ ⊂ C
N ′

centered at the origin. Since C2n∗ is an Oka manifold, the parametric
Oka principle with approximation [11, Theorem 5.4.4] shows that we can approximate the
family of holomorphic maps φt

p : Uj × B̄ × B̄ ′ → C
2n∗ in the C r topology on D̄ j × B × B ′

by a continuous family of holomorphic maps

ψ t
p : Uj+1 × B × B ′ → C

2n∗ , (p, t) ∈ P × [0, 1],
such that ψ t

p(· , ζ, w) = φt
p(· , ζ, w) for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]) and (ζ, w) ∈

B × B ′. Assuming that the approximation is close enough, the implicit function theorem
gives a continuous function w = w(p, t, ζ ) on P × [0, 1] × B̄ with values in CN ′

and close
to 0, such that w is holomorphic in ζ ∈ B, vanishes for (p, t) ∈ (P × {0}) ∪ (Q × [0, 1])
and ζ ∈ B, and we have the period vanishing conditions

Q(
ψ t

p(· , ζ, w(p, t, ζ ))
) = 0 for all (p, t, ζ ) ∈ P × [0, 1] × B. (4.3)

Pick an initial point u0 ∈ Dj . It is straightforward to verify that the family of maps

τ t (p, u, ζ ) = σ̃ t (p, u0, ζ ) +
∫ u

u0
ψ t

p(· , ζ, w(p, t, ζ )) θ, u ∈ Uj+1,

then satisfies the claim. (Since D̄ j is a deformation retract ofUj+1, the integral is independent
of the choice of the path in Uj+1 due to the period vanishing condition (4.3).) If Dj is
disconnected, the same argument applies on each connected component. 
�

We continue with the proof of the theorem. Assuming as we may that the approximation
of σ̃ t by τ t is close enough, the period domination property (4.1) of the spray σ̃ t and the
implicit function theorem give a continuous map
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ζ : P × [0, 1] → B ⊂ C
N ,

with values close to 0 (depending on how close τ t is to σ̃ t ), such that

ζ vanishes on the set (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]), (4.4)

and the family of holomorphic immersions

σ
t, j+1
p = τ t (p, · , ζ(p, t)) : Uj+1 → C

2n

satisfies the period conditions

P(σ
t, j+1
p ) = P(σ

t, j
p ), (p, t) ∈ P × [0, 1]. (4.5)

In view of (4.4), σ t, j+1 satisfies condition (a j+1). Writing σ
t, j+1
p = (xt, j+1

p , yt, j+1
p ), it

follows from (4.5) that for every loop C ⊂ D1 and for all (p, t) ∈ P × [0, 1], we have
∫

C
xt, j+1
p dyt, j+1

p =
∫

C
xt, jp dyt, jp = 0.

This shows that σ t, j+1 satisfies condition (b j+1). The same argument for loops C ⊂ Dj+1

and t = 1 shows that (d j+1) holds. (Note that it suffices to verify the period vanishing condi-
tion for loops in D̄ j , which is a deformation retract of D̄ j+1.) Finally, condition (c j+1) holds
if the approximations are close enough. This completes the inductive step in the noncritical
case.

(b) The critical case: ρ has a (unique, Morse) critical point in D j+1\D̄ j . In this case,
D̄ j+1 deformation retracts onto a compact set of the form S = D̄ j ∪ E , where E is a smooth
embedded arc contained in Dj+1\D̄ j , except for its endpoints which lie in bD j . We may
assume that E intersects bD j transversely at both endpoints. Hence, S is an admissible Runge
set in Dj+1 (see Remark 2.2 and [6, Definition 5.1]).

There are two topologically different cases to consider.

Case 1: the arc E closes inside the domain Dj to a Jordan curve C such that E = C\Dj .
This happens when the endpoints of E belong to the same connected component of D̄ j . In
this case, H1(Dj+1;Z) = H1(Dj ;Z) ⊕ Z where C represents the additional generator.

Case 2: the endpoints of the arc E belong to different connected components of D̄ j . In this
case, no new element of the homology basis appears.

We begin with case 1. Let C be a smooth Jordan curve in M such that E = C\Dj . Recall
that σ = (x, y) ∈ I (P×M,C2n) is the given map in the theorem, and σ t, j = (xt, j , yt, j ) ∈
I (P × Uj ,C

2n) is a homotopy from the j-th step. After shrinking the neighborhood Uj

around D̄ j if necessary, we can extend σ t, j from P ×Uj to a homotopy

σ t, j = (xt, j , yt, j ) : P × (Uj ∪ E) → C
2n, t ∈ [0, 1]

such that σ t, j
p |E : E → C

2n is a C 1 immersion for every (p, t) ∈ P × [0, 1] and
σ
t, j
p |E = σp|E for all (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]).

In particular, condition (a) on σ (in the theorem) implies
∫

C
xt, jp dyt, jp = 0 for all (p, t) ∈ Q × [0, 1]. (4.6)
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Our goal is to deform the homotopy σ t, j (only) on the relative interior of E , keeping it
fixed for the parameter values (p, t) ∈ (P × {0}) ∪ (Q × [0, 1]), to a new homotopy (still
denoted σ t, j = (xt, j , yt, j )) such that at t = 1 we have

∫

C
x1, jp dy1, jp = 0 for all p ∈ P. (4.7)

This can be done by using Lemma 3.2 as follows. Choose a smooth regular parametriza-
tion λ : [0, 1] → E with λ(0), λ(1) ∈ bD j . Consider the family of immersed arcs
ξ tp = ( f tp, g

t
p) : [0, 1] → C

2n for (p, t) ∈ P × [0, 1] defined by

ξ tp(s) = σ
t, j
p (λ(s)) = (

f tp(s), g
t
p(s)

)
, s ∈ [0, 1]. (4.8)

It follows that
∫

E
xt, jp dyt, jp =

∫ 1

0
f tp(s)ġ

t
p(s)ds.

Define the function β : P → C by

β(p) = −
∫

C\E
x1, jp dy1, jp , p ∈ P. (4.9)

We now apply Lemma 3.2 to the family (ξ tp)p,t , the pair of parameter spaces

(p, t) ∈ P ′ = P × [0, 1], Q′ = (P × {0}) ∪ (Q × [0, 1]),
the functionβ given by (4.9), taking into account condition (4.6). This provides a deformation
of (ξ tp)(p,t)∈P ′ through a family of immersions [0, 1] → C

2n of class C 1 (the parameter of
the homotopy τ ∈ [0, 1] shall be omitted) such that the homotopy is fixed for (p, t) ∈ Q′, it
is fixed near the endpoints of [0, 1] for all (p, t) ∈ P ′, and the new family obtained at τ = 1
satisfies the condition

∫ 1

0
f 1p (s)ġ1p(s)ds = β(p), p ∈ P.

By using the parametrization λ : [0, 1] → E as in (4.8), this provides a homotopy of the
family of immersions σ

t, j
p = (xt, jp , yt, jp ) : Uj ∪ E → C

2n which is fixed onUj such that the
new family satisfies the condition

∫

E
x1, jp dy1, jp =

∫ 1

0
f 1p (s)ġ1p(s)ds = β(p), p ∈ P. (4.10)

Now, (4.7) follows immediately from (4.9) and (4.10).
Denote by P ′ the period map (2.1) with respect to the homology basis B of Dj and the

additional loop C . It follows from the above that P ′(σ 1, j
p ) = 0 for all p ∈ P .

The inductive step can now be completed as in the noncritical case; here is an outline.
By Lemma 2.1 we can embed the family of immersions σ

t, j
p : Uj ∪ E → C

2n ((p, t) ∈
P × [0, 1]) as the core of a period dominating spray depending on an additional set of
variables ζ ∈ C

N . (The set Uj may shrink around D̄ j .) Since D̄ j ∪ E is an admissible
set in Dj+1 and a deformation retract of D̄ j+1, we can apply the Mergelyan theorem for
holomorphic immersions to C

2n to approximate this spray, as closely as desired in the C 1-
topology on D̄ j ∪ E , by a spray consisting of holomorphic immersions from a neighborhood
Uj+1 ⊂ M of D̄ j+1 intoC2n . As in the proof of the noncritical case, replacing the parameter
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ζ by a suitably chosen function ζ(p, t) with values in C
N and close to 0 gives a homotopy

σ t, j+1 ∈ I (P ×Uj+1,C
2n) satisfying conditions (a j+1)–(d j+1).

This completes the induction step in case 1 of the critical case (b).
In case 2, the arc E connects two distinct connected components of D̄ j . We follow the

construction in case 1 to obtain an extension of the family σ t
p : Uj → C

2n across E to a
family of immersions Uj ∪ E → C

2n ; however, there is no need to adjust the value of the
integral (4.10). On the other hand, when approximating this family of maps on D̄ j ∪ E by
maps on Uj+1 ⊃ D̄ j+1, we still need to use a dominating spray as in case 1 in order to keep
the period vanishing condition on curves in the homology basis B for Dj . 
�

Returning to Remark 4.2, we note that a nontrivial difference appears in the final paragraph
of the above proof when proving the parametric Oka property for the space of Legendrian
immersions. Recall that the map L (M,C2n+1) → I∗(M,C2n) × C, given by (1.4), is a
homeomorphism only if M is connected. When the arc E connects two distinct connected
components of the set D̄ j , we must ensure the correct value of the integral (4.10) in order to
match the z-component of the Legendrian map (which is already defined on a neighborhood
of D̄ j ) near the endpoints of E . This can be achieved just like in case 1.

5 Strong homotopy equivalence for surfaces of finite topological type

In this section,we complete the proof ofTheorem1.1 by showing that ifM is a connected open
Riemann surface of finite topological type, then the inclusion I∗(M,C2n) ↪→ I (M,C2n),
already known to be a weak homotopy equivalence, is in fact a homotopy equivalence. It is
even the inclusion of a strong deformation retract. We closely follow the proof of a similar
result in [12, Section 6], which in turn is based on [17].

Our approach to showing that the weak homotopy equivalence I∗(M,C2n) ↪→
I (M,C2n) is the inclusion of a strong deformation retract is to prove that the metrizable
spaces I∗(M,C2n) and I (M,C2n) are absolute neighborhood retracts (ANR). Namely, an
ANR has the homotopy type of a CW complex, and a weak homotopy equivalence between
CW complexes is a homotopy equivalence. Hence, if j : A ↪→ B is the inclusion of a
closed subspace in a metrizable space B, both spaces are ANRs, and j is a weak homotopy
equivalence, then j is a homotopy equivalence. Moreover, j is a cofibration (in the sense of
Hurewicz), so j is the inclusion of a strong deformation retract. For more information on
what is involved, we refer to [12, Section 6].

The space I (M,C2n) is an open subset of the Fréchet space of all holomorphic maps
M → C

2n , so it is an ANR.
To show that the space I∗(M,C2n) is an ANR, we verify that it satisfies the so-called

Dugundji-Lefschetz property. Once we have prepared two ingredients for the proof, it pro-
ceeds exactly as the proof of [12, Theorem 6.1].

First, we note the homeomorphism

I (M,C2n) → O0(M,C2n∗ ) × C, σ 
→ (dσ/θ, σ (p)),

where O0(M,C2n∗ ) is the space of holomorphic maps M → C
2n∗ with vanishing periods, θ is

a nowhere vanishing holomorphic 1-form on M , and p ∈ M is a chosen base point. We put
together the parametric Oka principles with approximation for the inclusionI∗(M,C2n) ↪→
I (M,C2n) (Theorem 4.1), for the inclusion O0(M,C2n∗ ) ↪→ O(M,C2n∗ ) [12, Theorem
5.3], and for the inclusion O(M,C2n∗ ) ↪→ C (M,C2n∗ ), which comes from C

2n∗ being an Oka
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manifold. This yields the first ingredient: the parametric Oka principle with approximation
for the inclusion I∗(M,C2n) ↪→ C (M,C2n∗ ) × C.

The second ingredient is the following lemma, which is analogous to [12, Lemma 6.4].
The proof that I∗(M,C2n) is an ANR is then so similar to the proof of [12, Theorem 6.1]
that we omit further details.

Lemma 5.1 Let M be an open Riemann surface, let r ≥ 1 be an integer, and let ρ : M →
[0,∞) be a smooth exhaustion function. Let L0 ⊃ L1 ⊃ · · · ⊃ K be compact smoothly
bounded domains in M of the form ρ−1([0, c]), such that K contains all the critical points of
ρ. Let σ0 ∈ I∗(M,C2n) and let W be a neighborhood of σ0|K in I r∗ (M,C2n). Then there
are contractible neighborhoods Cm of σ0|Lm in I r∗ (Lm,C2n) such that Cm |Lm+1 ⊂ Cm+1

and Cm |K ⊂ W for all m ≥ 0.

Proof Since K contains all the critical points of ρ, there is a homology basis B = {γi }i=1,...,l

of H1(M;Z) whose support |B| = ⋃l
j=1 |γ j | is contained in K and is Runge in M . Let

P : O(M,C2n) → C
l denote the associated period map (2.1):

P(σ ) =
(∫

C j

x dy

)

j=1,...,l

, σ = (x, y) ∈ O(M,C2n).

Fix a map σ0 ∈ I∗(M,C2n). Let M0 be a compact smoothly bounded domain in M (say
a sublevel set of ρ) with the same topology as M and containing L0. Note thatI r (M0,C

2n)

is an open subset of the complex Banach space A r (M0,C
2n). Pick ε0 > 0 such that the

ε0-ball around σ0 in A r (M0,C
2n) is contained in I r (M0,C

2n).
By Lemma 2.1, the differential of the period map P : A r (M0,C

2n) → C
l at σ0 is

surjective. Let us denote it by

D = dσ0P : A r (M0,C
2n) −→ C

l .

Its kernel
�0 = ker D = {σ ∈ A r (M0,C

2n) : D(σ ) = 0} (5.1)

is a closed complex subspace of codimension l in A r (M0,C
2n); it is precisely the tangent

space to the submanifoldI r∗ (M,C2n) at the point σ0. Pick h1, . . . , hl ∈ A r (M0,C
2n) such

that the vectors D(h1), . . . , D(hl) ∈ C
l span Cl ; then

A r (M0,C
2n) = �0 ⊕ spanC{h1, . . . , hl}.

Note that the periodmapP(σ ) is definedwhenever the domain L of σ contains the support
|B|of the homologybasis.Hence, themap D = dσ0P iswell definedonC r (L ,C2n)whenever
|B| ⊂ L ⊂ M0. Taking L = |B|, it follows that the complex Banach space C r (|B|,C2n)

decomposes as a direct sum of closed complex Banach subspaces

C r (|B|,C2n) = ker D|C r (|B|,C2n) ⊕ spanC{h1||B|, . . . , hl ||B|} = � ⊕ H. (5.2)

By the implicit function theorem for Banach spaces, there are a number ε1 ∈ (0, ε0) and
smooth bounded complex functions c1, . . . , cl on the set �ε1 = {σ ∈ � : ‖σ‖r,|B| < ε1},
vanishing at the origin 0 ∈ �, such that for every σ ∈ �ε1 the map

σ̃ = σ0||B| + σ +
l∑

j=1

c j (σ )h j ||B| ∈ C r (|B|,C2n) (5.3)
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satisfies the period vanishing equation P(σ̃ ) = 0. Morever, (5.3) gives a local representation
of the set {σ̃ ∈ C r (|B|,C2n) : P(σ̃ ) = 0} in a neighborhood of σ0||B| as a graph over the
affine linear subspace σ0||B| + � ⊂ C r (|B|,C2n).

If L is any smoothly bounded compact set with |B| ⊂ L ⊂ M0 and σ ∈ A r (L ,C2n)

satisfies Dσ = 0 and ‖σ‖r,L < ε1, then (5.3) yields a map

ψL(σ ) = σ0|L + σ +
l∑

j=1

c j (σ ||B|)h j |L ∈ A r (L ,C2n)

such that P(ψL(σ )) = 0. Note that ψL(0) = σ0. Hence, ψL(σ ) ∈ I r∗ (L ,C2n) provided
that ‖ψL(σ ) − σ0‖r,L < ε0; the latter condition is satisfied if ε1 > 0 is small enough. As
before, this gives a local representation of the set {σ̃ ∈ A r (L ,C2n) : P(σ̃ ) = 0} in a
neighborhood of σ0|L as a graph over the affine linear subspace σ0|L +�0|L ⊂ A r (L ,C2n).
Here, �0 = ker D ⊂ A r (M0,C

2n) (see (5.1)).
Note that for any compacts L and L ′ with |B| ⊂ L ⊂ L ′ ⊂ M0, we have

ψL(σ |L) = ψL ′(σ )
∣∣
L (5.4)

for every σ ∈ A r (L ′,C2n) such that D(σ ) = 0 and ‖σ‖r,|B| < ε1.
Since the functions c j are bounded on a neighborhood of the origin in � (see (5.2)), there

is a number ε ∈ (0, ε1) such that the set

C0 = {
ψM0(σ ) : σ ∈ �0, ‖σ‖r,M0 < ε

} ⊂ I r∗ (M0,C
2n)

is a neighborhood of σ0|M0 in I r∗ (M0,C
2n). Furthermore, being a smooth graph over the

ball {σ ∈ �0 : ‖σ‖r,M0 < ε} in the Banach space �0, C0 is contractible. Similarly, for every
m ∈ N, the set

Cm = {
ψLm (σ ) : σ ∈ A r (Lm,C2n), D(σ ) = 0, ‖σ‖r,Lm < ε

} ⊂ I r∗ (Lm,C2n)

is a contractible neighborhood of σ0|Lm in I r (Lm,C2n).
Taking into account that for any σ ∈ A r (Lm,C2n), we have ‖σ‖r,Lm+1 ≤ ‖σ‖r,Lm by

the maximum principle, the formula (5.4) shows that the restriction map associated to the
inclusion Lm ⊃ Lm+1 maps Cm into Cm+1 for every m ≥ 0. By choosing ε > 0 small
enough, we can also ensure that the restriction map associated to Lm ⊃ K maps Cm into a
given neighborhood W of σ0|K in I r∗ (K ,C2n). 
�
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